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Abstract

Theoretical models often invoke triaxial nuclear shapes to explain elusive collective phenomena, but such assump-

tions are usually difficult to confirm experimentally. The only direct measurements of the nuclear axial asymmetry γ

is based on rotational invariants of zero-coupled products of the electric-quadrupole (E2) operator, the Kumar-Cline

sum rule analysis, which generally require knowledge of a large number of E2 matrix elements connecting the state

of interest. We propose an alternative assumptions-free method to determine γ of even-even rotating nuclei using only

two E2 matrix elements, which are among the easiest to measure. This approach is based on a simple description

of nuclear rotation, where the underlying assumptions of the Davydov-Filippov model are either empirically proven

or unnecessary. The γ values extracted here are found in agreement with the values deduced from Kumar-Cline sum

rules measurements (where available), providing further evidence that the proposed approach represents a reliable,

model-independent deduction of γ. The technique was applied to more than 60 deformed even-even rotating nuclei

and the results indicate that rotating nuclei generally exhibit well-defined stable axially-asymmetric shapes.

Keywords: quadrupole deformation, triaxiality, electric-quadrupole matrix elements, multi-step Coulomb excitation,

irrotational flow model, triaxial rotor model, model-independent evaluation of γ

Triaxial shapes — like kiwis or flattened footballs —

break the axial symmetry of a deformed object and are

basic ingredients in theoretical models describing both

the quantum world and the realm of general relativity,

albeit its testing through direct experimental observa-

tions remains challenging. Triaxiality plays an impor-

tant role in (i) nuclear fission [1], with its relevance to

energy production; (ii) the radiative capture of neutrons

in stellar explosions [2], responsible for the creation of

heavy elements; (iii) the formation of some superde-

formed bands in nuclei [3], and iv) the low-lying nuclear

structure [4].

The majority of nuclei show quadrupole deforma-

tions [5, 6], described by two parameters, β
2

and γ.

Here, β
2

defines the magnitude of the quadrupole defor-

mation and γ the degree of axial asymmetry or triaxial-

ity, where axially-symmetric deformations correspond

to γ = 0◦ (prolate) and γ = 60◦ (oblate) while triaxial

shapes to 0◦ < γ < 60◦. Global calculations of all even-

even nuclei in the nuclear chart [7, 8] suggest that the

Email addresses: ea.lawrie@ilabs.nrf.ac.za (Elena

Atanassova Lawrie), jnorce@uwc.ac.za (José Nicolás Orce)

URL: https://nuclear.uwc.ac.za (José Nicolás Orce)

total energy of many nuclei decreases substantially if

the nuclear shape has stable triaxial deformation.

Theoretical approaches where the γ degree of free-

dom plays a dominant role involve γ vibrations and ro-

tations. The former may appear as (i) a dynamical fea-

ture of the nuclear shape, corresponding to small γ os-

cillations of the nuclear surface around an average ax-

ially symmetric shape [9], and (ii) as large-scale γ os-

cillations caused by the γ-softness of the nuclear shape,

that may cover the whole range of γ between 0◦ and

60◦ [10]. In contrast, deformed nuclei with stable tri-

axial shape rotate around their three axes generating

sets of rotational bands that can be described within the

Davydov-Filippov (DF) model [11, 12, 13]. This rota-

tion looks like the precession of a rotating top.

Triaxial deformation has often been inferred through

indirect methods by comparing experimental observa-

tions with the predictions of theoretical models, based

on (i) the splitting of the giant dipole resonance (GDR)

into three dominant peaks [14, 15, 16, 17], (ii) the sig-

nature splitting and inversion in rotational bands [18,

19, 20, 21], (iii) the near-degeneracy of chiral partner

bands [22, 23, 24], and (iv) the features of the tilted
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precession and wobbling bands [25, 26]. Alternatively,

β2 and γ can be extracted from potential energy surface

calculations, e.g., total Routhian surface [27], Cranked

Nilsson-Strutinsky [28], and beyond mean-field calcula-

tions of total energy surfaces and collective wave func-

tions [29, 30, 4].

Rotational invariants represented as Kumar-Cline

(KC) sums [31, 32] remain to date the only direct ex-

perimental technique to establish the magnitude of tri-

axiality, γ
KC

, in the intrinsic frame of the nucleus. Such

an analysis requires experimental data on a large num-

ber of electric-quadrupole (E2) matrix elements of up to

sixth-order E2 invariants to evaluate also statistical fluc-

tuations, which are hard to determine experimentally.

Among more than 270 deformed rotating even-even nu-

clei with a ratio of excitation energies between the first

4+
1

and 2+
1

states of R
4/2
≥ 2.4 [33], γ

KC
values have

only been determined for 19; namely, 74,76Ge [34, 35],
76Kr [36], 98Sr [37], 104Ru [38], 106−110Pd [39, 40],
148Nd [41], 166,168Er [42, 43], 172Yb [44], 182,184W [45],
186−192Os [46] and 194Pt [46]. These are all stable nu-

clei, except for 76Kr [36] with a half-life of 14.8 h,

and 98Sr [37] with a half-life of 0.653 s, where the

corresponding E2 matrix elements were primarily ex-

tracted from multi-step Coulomb-excitation measure-

ments [47]. The deduced γ
KC

values indicate that

all these nuclei present triaxial deformations, which

highlights the need for establishing a simpler model-

independent approach for evaluating triaxiality.

Recently, an assumption-free approach was proposed

for even-even rotating nuclei through the generalized

triaxial-rotor model (TR) with independent electric

quadrupole and inertia tensors [48]. This approach is

based on the DF model, but the moments of inertia

(MoI) asymmetry is described through a new parameter

Γ, in an independent way from the shape asymmetry γ.

Thus the assumption of the DF model that the MoI fol-

low the irrotational-flow dependence with respect to γ

become redundant. The generalized TR model was then

applied for the 2+
1

and 2+
γ

states of 26 even-even rotating

nuclei with R
4/2
≥ 2.4 [49, 50], for which experimen-

tal data on the required four E2 matrix elements were

available. As it was applied to the 2+
1

and 2+
γ

states only,

it made the additional assumption of the DF model re-

garding the spin-dependence of the MoI also redundant;

hence, providing an empirical, assumptions-free deter-

mination of the γ deformation for these nuclei. More-

over, all these nuclei were found to possess triaxial de-

formations, supporting the consideration that triaxiality

might be a common feature for nuclei.

In this Letter, we propose to expand this approach

and determine the magnitude of the nuclear triaxiality

of even-even rotating nuclei in the same assumption-

free approach, but using only two E2 matrix elements.

The number of required E2 matrix elements is reduced

because we adopt the irrotational-flow dependence be-

tween the parameters Γ and γ. We consider that this

dependence was proved within the assumptions-free

generalized TR approach for 12 even-even nuclei [49]

and for 13 more even-even rotating nuclei, discussed

in this work. Thus, the proposed analysis for the 2+
1

and 2+
γ

states, while remaining based on the DF equa-

tions allows us to determine the γ deformation of more

than 60 even-even rotating nuclei in a simple, model-

independent evaluation.

Deformed nuclei can easily be recognised by their

large B(E2; 2+
1
→ 0+

1
) reduced transition probabilities

values (of ' 20 Weisskopf units) connecting the first-

excited 2+
1

and the ground 0+
1

states with an E2 transi-

tion. The B(E2) values for rotating nuclei are directly

proportional to the square of the intrinsic quadrupole

moment of the nucleus, Q
0
, and the corresponding

〈I
1

K 2 0 | I
2
K〉 Clebsch–Gordan coefficient [5, 51], and

for axially-symmetric deformed nuclei,

B(E2; 0+
1
→ 2+

1
) =

5

16π
Q2

0
, (1)

where Q
0

is related to β
2

by [5]

Q
0
=

3√
5π

ZeR2β
2

[

1 + 0.16β
2

]

, (2)

with Z being the proton number, R = 1.2 A1/3 fm the

radius of a nucleus with a sharp surface, and A = N + Z

the atomic mass number with N the number of neutrons.

The Hamiltonian of a deformed rotating nucleus with

stable triaxial deformation comprises simultaneous ro-

tations around the nuclear axes,

H = ~
2

2ℑ
1

Î2
1
+

~
2

2ℑ
2

Î2
2
+

~
2

2ℑ
3

Î2
3
, (3)

where Î
k

are the operators of the total angular momen-

tum projections onto the body-fixed axes, and ℑ
1
, ℑ

2
,

andℑ
3

the corresponding MoI. The DF model generally

adopts two main assumptions about the nuclear rotation.

Firstly, the relative ratios of ℑ
1
, ℑ

2
, and ℑ

3
for a given

γ deformation follow the irrotational-flow dependence,

ℑk(γ) = ℑ
0

sin2

(

γ − k
2π

3

)

, (4)

with ℑ
0

the MoI of an axially symmetric nucleus with

respect to an axis that is orthogonal to the axis of sym-

metry [52], and k = 1, 2, 3. In fact, the γ dependence in
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Eq. 4 is more general than the irrotational-flow model

(for details see Ref. [6], page 121). Secondly, the DF

model needs an assumption about the spin dependence

of the MoI. In the original DF model, the MoI remains

constant as a function of spin, whereas in later applica-

tions variable moments of inertia [53] are often intro-

duced.

Instead of adopting the γ dependence of Eq. 4, the

generalized TR model describes the asymmetry in the

three MoI independently from γ, by introducing a new

MoI-asymmetry parameter Γ [48]. Accordingly, the E2

matrix elements connecting the 0+
1
, 2+

1
and 2+

γ
states are

given by

〈0+
1
‖ Ê2 ‖ 2+

1
〉 =

√

5

16π
Q

0
cos(γ + Γ), (5)

〈2+
1
‖ Ê2 ‖ 2+

1
〉 = −

√

25

56π
Q

0
cos(γ − 2Γ) (6)

= −〈2+
γ
‖ Ê2 ‖ 2+

γ
〉,

〈2+
1
‖ Ê2 ‖ 2+

γ
〉 =

√

25

56π
Q

0
sin(γ − 2Γ), (7)

〈0+
1
‖ Ê2 ‖ 2+

γ
〉 =

√

5

16π
Q

0
sin(γ + Γ). (8)

Therefore, empirical values for the axial asymmetry of

the shape of rotating nuclei (γ
TR

) and of the MoI (Γ
TR

)

can be extracted from Eqs. 5, 6, 7, and 8 [49],

γ
TR
=

1

3
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(10)

using four measured E2 matrix elements. Note that

these equations remain assumptions-free for rotating

nuclei because they are applied to the 2+ states only;

i.e., the spin-dependence of the MoI becomes irrelevant.

Available experimental data allowed γ
TR

and Γ
TR

values

to be deduced for 26 even-even rotating nuclei [49, 50],

further testing whether Γ and γ are independent or may

follow the irrotational-flow model dependence,

Γ(γ) = −1

2
cos−1

























cos (4γ) + 2 cos (2γ)
√

9 − 8 sin2 (3γ)

























. (11)

Agreement validating Eq. 11 was reported for 12 even-

even rotating nuclei with R
4/2
> 2.7 [49]. The same

evaluation for all nuclei with R
4/2
> 2.4, where exper-

imental data on four E2 matrix elements are available is

shown in Fig. 1. Discrepancies are observed for 76Kr

and 194,196Pt, probably arising from the mixed nature

of the corresponding 2+
γ

states. Indeed, shape coexis-

tence at low-excitation energy was confirmed in 76Kr,

while the observed 2+
γ

states in the two Pt isotopes are

observed to decay through transitions with E0 com-

ponents [54], which also suggests the presence of co-

existing shapes [55].
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Figure 1: The irrotational-flow model Γirr(γ) (solid line) in compari-

son with empirical γ
TR

and Γ
TR

values for deformed even-even nuclei

with R
4/2

values between 2.4 and 3.3.

Henceforth, we extend the application of the general-

ized TR approach [49] by adopting Eq. 11 not as an as-

sumption, but as an empirically established dependence.

This allows the application of this model-independent

approach to a much larger range of rotating nuclei.

Specifically, from Eqs. 5 and 6 we define the ra-

tio R
22/02

that is based on the two typically well-known

〈2+
1
‖ Ê2 ‖ 2+

1
〉 and 〈0+

1
‖ Ê2 ‖ 2+

1
〉 matrix elements,

R
22/02
≔

〈2+
1
‖ Ê2 ‖ 2+

1
〉

〈0+
1
‖ Ê2 ‖ 2+

1
〉
= −

√

10

7

cos(γ − 2Γ)

cos(γ + Γ)
, (12)

which taking Eq. 11 into account becomes

R
22/02

(γ) = −
√

10

7

cos

(

γ + cos−1

(

cos(4γ)+2 cos(2γ)√
4 cos(6γ)+5

))

cos

(

γ − 1
2

cos−1

(

cos(4γ)+2 cos(2γ)√
8 cos2(3γ)+1

)) .

(13)

The function R
22/02

(γ), shown in the left panel of Fig.

2 (solid line), is continuous in the [0◦, 60◦] γ range,

varying smoothly between R
22/02

(γ = 0◦) = −1.195

(prolate) and R
22/02

(γ = 60◦) = +1.195 (oblate) and

3
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Figure 2: R
22/02

(left) and R
22γ/02

(right) ratios as a function of the γ deformation. The solid curves are calculated within the proposed here approach

while the experimental data (circles) are calculated from available matrix elements for even-even nuclei with R
4/2
> 2.4. The corresponding γ

values are extracted from the theoretical (solid line) curves. The first derivatives (dashed lines) reveal high sensitivity to the γ degree of freedom.

vanishing for γ = 30◦. Therefore, one can deduce the

γ
R22/02

deformation of an even-even rotating nucleus us-

ing the R
22/02

curve together with R
22/02

determined from

the experimentally-determined matrix elements. The

first derivative
dR

22/02

dγ
(dashed line) shown in the inset of

Fig. 2 is also continuous, with a maximum at γ = 30◦.
This method allows the precise determination of γ val-

ues for nuclei with large asymmetry, while considerable

uncertainties are expected for nuclei with nearly axially-

symmetric shapes.

Following this approach, we have evaluated R
22/02

and

γ
R22/02

for 63 deformed even-even nuclei with R4/2 > 2.4.

These values are shown in the left panel of Fig. 2 and

listed in Table 1 along with the corresponding 〈2+
1
‖

Ê2 ‖ 2+
1
〉 and 〈0+

1
‖ Ê2 ‖ 2+

1
〉 matrix elements, which

were deduced from the corresponding evaluations of

Q
S
(2+

1
) [56] and B(E2; 0+

1
→ 2+

1
) [57] values, respec-

tively, unless more recent and precise experimental data

were available. Deformations are labelled as prolate or

oblate in the few cases where |R
22/02
| > 1.195, depending

on the sign of R
22/02

. There was no sign measured for the

〈2+
1
‖ Ê2 ‖ 2+

1
〉 matrix element of 160Dy, we adopted

negative sign in agreement with the systematics, see

note p in Table 1. The sign of the 〈2+
1
‖ Ê2 ‖ 2+

γ
〉 matrix

element in 76Kr was changed to positive (together with

the same change for the 〈2+
γ
‖ Ê2 ‖ 0+

1
〉 matrix element,

which keeps the sign of the P3 term unchanged [58]),

in order to comply with the systematically observed

prolate-type shapes of the neighbouring nuclei. The

P3 term is defined in Coulomb-excitation theory [59]

as the interference between the direct excitation ampli-

tude 01
+ → 2+

1
and the indirect one, 0+

1
→ 2+

γ
→ 2+

1
,

and depends on the product of the three related matrix

elements; Refs. [36, 60]). One of the nice achievements

of the generalized TR model is that it can explain the

sign of the P
3

term [58].

For some of the nuclei analysed in our work there

are previous assumptions-free evaluations of γ
TR

and/or

γ
KC

. A comparison of these values with those estab-

lished in the proposed approach shows an overall agree-

ment, with most values overlapping at the one- or two-σ

level, see the top panels of Fig. 3. Deviations are notice-

able for the 194,196Pt nuclei where, as mentioned above,

shape-coexisting effects are expected to play a role in

the formation of the 2+
γ

states.

Thus, the γ deformations were evaluated in an

assumptions-free method for thirty even-even rotating

nuclei beyond those for which γ
TR

and γ
KC

were avail-

able. Many of these nuclei were found consistent with

small triaxial deformations, not excluding axial sym-

metry, but we also identified a considerable number of

triaxial nuclei, including 56Fe (γ
R22/02
= 22.4+1.8

−3.2
), 78Kr

(γ
R22/02
= 21.7+1.0

−1.3
), 152Sm (γ

R22/02
= 12.6+1.8

−4.3
), 170Er (γ

R22/02

= 20.9+2.1
−4.4

), 192Pt (γ
R22/02

= 33.4+1.6
−1.3

), 198Pt (γ
R22/02

=

33.2+1.2
−1.0

), and 198Hg (γ
R22/02
= 36.8+3.4

−1.9
). It should also

be noted that γ values inferred from this analysis are

fully independent of the presence and features of the 2+
γ

γ band. For instance, it allows the assignment of tri-

axiality for nuclei where the γ band has not yet been

established, as we did for 56Fe. In addition, it permits

an evaluation of triaxiality for nuclei where the 2+
γ

band

is competing with other shape-coexisting structures and
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Figure 3: Triaxial deformations γ
R

22/02
(top panels) and γ

R
22γ/22

(bottom panels) versus γ
TR

(left) and γ
KC

(right).

is, therefore, mixed. For instance, we have inferred tri-

axiality for 78Kr, 152Sm, and 170Er, where strong shape-

coexisting phenomena occur [61, 62, 63, 55], based en-

tirely on the matrix elements of their 2+
1

states. We have

also established triaxial deformations for the 192,198Pt

isotopes that are in agreement with the systematics

(similar to the available γ
KC

value of the neighbouring
196Pt isotope [46, 64]) and proposed a triaxial shape

for 198Hg, in contrast to the common assumption that

the heavy Hg isotopes have axially-symmetric oblate

deformations. More details about the structural impli-

cations of these results will be presented in a separate

manuscript.

We have also defined another ratio of matrix ele-

ments, R
22γ/22

,

R
22γ/22
≔

〈2+
1
‖ Ê2 ‖ 2+

γ
〉

〈2+
1
‖ Ê2 ‖ 2+

1
〉
= − tan(γ − 2Γ), (14)

which allows to deduce nuclear triaxiality. Again, using

Eq. 11,

R
22γ/22

(γ) = − tan

























γ + cos−1

























cos (4γ) + 2 cos (2γ)
√

9 − 8 sin2 (3γ)

















































.

(15)

The function R
22γ/22

(γ) is shown in the right panel of

Fig. 2 (solid line), while its first derivative is plotted

in the inset (dashed line). This ratio has an advantage

over R
22/02

because of its sensitivity to γ throughout the

full [0◦, 60◦] range. It can be applied to all even-even

rotating nuclei where the 2+γ band head is well estab-

lished, and not affected by shape co-existence or other

phenomena. We have thus examined the available data

for 〈2+
1
‖ Ê2 ‖ 2+

γ
〉 matrix elements in all deformed

even-even rotating nuclei with R4/2 > 2.4, as listed in

Table 1. In most cases the matrix element is deduced

from the measured B(E2; 2+
γ
→ 2+

1
) value.

In order to test this approach we have first calculated

the R
22γ/22

ratios and the corresponding γ
R22γ/22

values for

the deformed even-even nuclei where γ
TR

and/or γ
KC

are

available. Comparisons of γ
R22γ/22

vs γ
TR

and γ
R22γ/22

vs

γ
KC

are shown in the bottom left and right panels of Fig.

3, respectively. Except for 148,150Nd and 194,196Pt, there

5



Table 1: The transitional and diagonal matrix elements (in units of eb) used to calculate the R
22/02

and R
22γ/02

ratios and the extracted

γ deformation based on these ratios. For comparison the γ deformations deduced wherever possible using four matrix elements

and using the Kumar-Cline rule are also listed. The data for the diagonal 〈2+
1
‖ Ê2 ‖ 2+

1
〉 as well as the transitional 〈0+

1
‖ Ê2 ‖ 2+

1
〉

and 〈2+
1
‖ Ê2 ‖ 2+

γ
〉 matrix elements are taken from Refs. [56, 57, 33], unless stated differently.

Nucleus 〈2+
1
‖ Ê2 ‖ 2+

1
〉 〈0+

1
‖ Ê2 ‖ 2+

1
〉 〈2+

1
‖ Ê2 ‖ 2+

γ
〉 γ

R22/02
γ

R22γ/22
γ

TR
γ

KC

12C 0.125(24)a 0.063(2) oblate
20Ne -0.303(40) 0.182(4) 0.052(3) prolate 9.2+1.1

−1.2
22Ne -0.284(16)b 0.152(1) 0.043(17) prolate 8.1+2.7

−3.1
22Mg -0.57(57)b 0.184(43) 0+30.5

−0
24Mg -0.237(26)c 0.209(2) 0.083(3) 17.3+4.3

−17.3
15.5+1.1

−1.2
28Si 0.211(40) 0.181(2) 45.3+14.7

−8.0
50Cr -0.475(92) 0.324(5) 0+13.1

−0
56Fe -0.303(40) 0.313(3) 0.145(9) 22.4+1.8

−3.2
18.4+1.2

−1.4
58Fe -0.356(66) 0.349(9) 0.258(39) 21.4+3.0

−21.4
21.8+1.4

−2.1
62Fe -0.11(53)d 0.319(97) 28.2+31.8

−28.2
74Ge -0.251(26) 0.553(14) 0.630(44) 27.4+0.3

−0.3
27.5+0.3

−0.4
23.8(14) 26(8)

76Ge -0.240(20)e 0.526(20)e 0.535(7)e 27.3+0.3
−0.3

27.1+0.2
−0.2

28.1(8) 27(5)
80Ge -0.61(41) f 0.408(10) f < |0.8| f 0+27.2

−0
<25.3 or >34.7

78Se -0.34(12) 0.586(10) 0.469(19) 26.5+1.4
−1.8

25.4+1.2
−2.3

25.6(22)
80Se -0.409(92) 0.502(8) 0.435(12) 24.5+1.7

−2.7
24.2+1.0

−1.6
22.8(10)

82Se -0.290(92) 0.428(12) 0.208(25) 25.8+1.6
−2.3

21.7+2.0
−3.4

19.5(13)
76Kr -0.9(3)g 0.871(15) 0.09(4)g,o 21.1+4.7

−21.1
5.6+2.8
−3.1

10.7(1.1) 6(3)
78Kr -0.80(4)h 0.796(10) 0.26(6)h 21.7+1.0

−1.2
14.8+2.0

−2.5
98Sr -0.63(32)i 1.14(20) 26.8+1.9

−2.7
21(3)

104Ru -0.71(11) j 0.917(25) j 0.75(4) j 24.9+1.1
−1.4

24.2+0.8
−1.1

22.6(10) 25(3)
110Ru -1.10(52)k 1.022(37)k 1.32(25)k 20.0+6.6

−20.0
24.9+1.7

−4.6
29.0(54)

106Pd -0.72(7)l 0.812(10) 0.810(37)s 23.6+1.0
−1.3

24.5+0.5
−0.6

22.4(9) 20(2)
108Pd -0.810(90)l 0.874(11) 1.049(44) 23.1+1.3

−1.9
25.2+0.5

−0.6
20.6(9) 19(5)

110Pd -0.87(17)m 0.930(12) 0.830(28) 22.9+2.2
−4.8

23.6+1.0
−1.4

19.9(20) 16(1)
130Ba -1.35(20) 1.067(22) 0+19.9

−0
148Nd -1.93(18) 1.157(13) 1.342(17) prolate 21.5+0.6

−0.7
14.1(3) 15(5)

150Nd -2.64(66) 1.645(9) 1.427(9) prolate 19.5+1.8
−2.6

10.2(9)
152Sm -2.198(21) 1.860(1) 0.422(29) 12.6+1.8

−4.3
10+0.6
−0.6

154Sm -2.467(53) 2.084(11) 0.108(8) 12.2+3.6
−12.2

2.5+0.2
−0.2

154Gd -2.401(53) 1.968(4) 0.549(22)s 0+7.9
−0

11.5+0.4
−0.4

156Gd -2.546(53) 2.168(25) 0.425(7) 13.8+2.8
−13.8

8.9+0.2
−0.2

7.3(9)
158Gd -2.652(53) 2.256(24) 0.390(23) 13.7+2.8

−13.7
7.9+0.4
−0.4

160Gd -2.744(53) 2.277(3) 0.166(16) 0+12.5
−0

3.43+0.3
−0.4

160Dy -2.38(53)p 2.247(9) 0.468(17) 20.4+4.0
−20.4

10.2+1.8
−2.0

164Dy -2.74(20) 2.370(14) 0.444(18) 15.7+4.2
−15.7

8.6+0.6
−0.6

166Er -2.51(53) 2.397(19) 0.510(16) 20.7+3.6
−20.7

10.5+1.7
−1.9

9.9(5) 18(3)
168Er -3.25(25)n 2.43(7)n 0.47(2)n prolate 7.8+0.6

−0.6
8.2(3) 9(3)

170Er -2.51(27) 2.416(14) > 0.385 20.9+2.1
−4.3

> 8.3
170Yb -2.876(40) 2.392(15) 0.366(38)r 0+12

−0
7.0+0.7
−0.7

172Yb -2.929(53) 2.468(30) 0.250(6) 11.2+4.2
−11.2

4.8+0.1
−0.1

5.0(7) 6 (6)
174Yb -2.876(66) 2.419 (33) 0.269(27)r 10.5+5.3

−10.5
5.2 +0.5

−0.5
176Yb -3.008(79) 2.278(20) 0.289(19) prolate 5.4+0.4

−0.4
176Hf -2.771(26) 2.328(37) 0.387(36)r 10.1+4.6

−10.1
7.6+0.6
−0.6

178Hf -2.665(26) 2.176(145) 0.362(12) 0+16.9
−0

7.4+0.2
−0.2
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Nucleus 〈2+
1
‖ Ê2 ‖ 2+

1
〉 〈0+

1
‖ Ê2 ‖ 2+

1
〉 〈2+

1
‖ Ê2 ‖ 2+

γ
〉 γ

R22/02
γ

R22γ/22
γ

TR
γ

KC

180Hf -2.639(26) 2.156(1) 0.396(23) prolate 8.1+0.4
−0.4

180W -2.77(53) 2.037(34) 0+19
−0

182W -2.77(53) 2.031(10) 0.454(6)s 0+18.8
−0

8.7+1.4
−1.5

10.6(2) 12(3)
184W -2.51(27) 1.925(9) 0.497(7) 0+15

−0
10.3+0.9

−0.9
11.4(3) 12(3)

186W -2.11(40) 1.871(10) 0.564(20) 17.7+5.5
−17.7

13.0+1.5
−2.0

184Os -3.6(16) 1.793(22) 0+18.9
−0

186Os -2.151(53) 1.750(21) 0.835(32) prolate 16.5+0.4
−0.4

20.3(8) 22(2)
188Os -1.926(53) 1.581(11) 0.720(40) 0+12.1

−0
16.1+0.6

−0.6
19.4(5) 21(2)

190Os -1.557(40) 1.534(29) 1.028(54) 21.5+0.7
−0.8

21.1+0.4
−0.5

23.3(13) 25(2)
192Os -1.267(40) 1.425(35) 1.230(35) 23.6+0.5

−0.5
23.7+0.2

−0.3
27.1(8) 26(2)

192Pt 0.79(27) 1.393(23) 1.894(61) 33.4+1.6
−1.3

32.6+1.3
−0.7

194Pt 0.63(0.19) 1.277(27) 1.72(12)s 32.9+1.1
−0.9

32.3+1.0
−0.5

38.5(7) 40(2)
196Pt 0.82(0.11) 1.184(29) 1.35(15)s 34.3+0.9

−0.7
33.8+0.8

−0.5
38.8(11)

198Pt 0.55(16) 1.035(24) 1.13(0.11) 33.1+1.2
−1.0

33.1+1.3
−0.7

198Hg 0.90(0.16) 0.980(4) 0.147(9) 36.8+3.4
−1.9

51.3+1.5
−1.4

200Hg 1.27(0.15) 0.925(15) 0.276(31) oblate 48.9+1.5
−1.3

202Hg 1.15(0.18) 0.784(13) 0.444(59) oblate 43.6+2.1
−1.7

204Hg 0.53(27) 0.651(16) 35.5+24.5
−3.2

a from Ref. [65]; b from Ref. [66]; c from Ref. [67]; d from Ref. [68]; e from Ref. [35]; f from Ref. [60]; g from Ref.

[36]; h from Ref. [61]; i from Ref. [37]; j from Ref. [38]; k from Ref. [69]; l from Ref. [39]; m from Ref. [40]; n from

Ref. [43]; o the sign of the entry was changed, see text for more details p the entry has no sign, negative sign is

assumed, see text for more details; q γ = 60◦ − γ is also possible; r pure E2 is assumed; s the transition has E0

component.

is overall agreement between the axial asymmetries de-

rived by these three different methods, most often within

one or twoσ intervals. The discrepancies for the two Nd

isotopes probably arise because of the presence of K = 0

excited bands lying at very similar excitation energy to

the 2+
γ

bands (resulting in mixing of the 2+
γ

states), while

the Pt isotopes were already discussed above. Thus, the

agreement observed in Fig. 3 validates the proposed de-

termination of γ based on the R
22γ/22

ratio. It should be

noted that this method allows to determine γ with good

precision even for near axially-symmetric nuclei; for in-

stance, 172Yb with γ
R22γ/22

= 4.8(1)◦. The γ
R22γ/22

defor-

mations determined using the R
22γ/22

ratios are illustrated

in the right panel of Fig. 2 and listed in Tab. 1 for 27 nu-

clei, in addition to those previously determined through

the γ
TR

analysis [49, 50]. The values of γ derived from

the R
22/02

and R
22γ/22

ratios are similar (except for 198Hg),

and describe shapes with all possible triaxialities.

It is important to stress that R
22γ/22

analysis assigned

triaxial shapes to all the 53 even-even rotating nu-

clei where 〈2+
1
‖ Ê2 ‖ 2+

γ
〉 and 〈2+

1
‖ Ê2 ‖

2+
1
〉 are known. This observation is in line with

the suggestion that assumption-free analyses (such as

the model-independent γ
KC

evaluation based on multi-

step Coulomb-excitation measurements with sufficient

statistics [45, 39, 46, 38, 35], and the generalized TR

model), establish triaxial deformations for the vast ma-

jority of the studied nuclei. These findings suggest that

ideal axially-symmetric prolate or oblate nuclear rotors

may not be common.

In summary, this work proposes the use of simple ra-

tios, R
22/02

and R
22γ/22

, of typically easy-to-measure E2

matrix elements (〈0+
1
‖ Ê2 ‖ 2+

1
〉, 〈2+

1
‖ Ê2 ‖ 2+

1
〉 and

〈2+
1
‖ Ê2 ‖ 2+

γ
〉) to extract the γ deformation of even-

even rotating nuclei in a model-independent way. The

approach is based on the Davidov-Filippov equations

for the 2+
1

and 2+
γ

states of even-even rotating nuclei. It

is parameter-free because all assumptions of the model

were either proven empirically (irrotational-flow depen-

dence of the MoI from γ) or become irrelevant (the spin

dependence of the MoI). It requires experimental data

on two matrix elements only, facilitating its application

on a larger number of even-even rotating nuclei. The

γ values determined using these ratios are in agreement

with those established with the model-independent KC

sum rules approach and the generalized TR model. The

R
22/02

ratio analysis allows the precise identification of

triaxial deformations in the range 20◦ / γ
R22/02

/ 40◦

using the E2 matrix elements of the 2+
1

state alone;

hence, opening the interesting prospect of determining
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the triaxiality of exotic nuclei. As this approach does

not require knowledge of the 2+
γ

band, it is also very

valuable for measuring triaxiality in nuclei where shape

coexistence appears at low excitation energies and af-

fects the corresponding γ band. The R
22γ/22

ratio analy-

sis needs knowledge of the 〈2+
1
‖ Ê2 ‖ 2+

γ
〉 matrix ele-

ment and is very sensitive in the full 0◦ < γ
R22γ/22

< 60◦

range. We report results from the proposed analyses on

more than 60 even-even rotating nuclei where the ax-

ial asymmetries of the nuclear shapes are deduced in an

assumption-free approach.

The work is based on research supported in part

by the National Research Foundation of South Africa

(Grant Number 150650).
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