
New matrices for spectral hypergraph theory, II

R. Vishnupriya∗†, R. Rajkumar‡

Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University),

Gandhigram – 624 302, Tamil Nadu, India

Abstract

The properties of a hypergraph explored through the spectrum of its unified matrix

was made by the authors in [26]. In this paper, we introduce three different hypergraph

matrices: unified Laplacian matrix, unified signless Laplacian matrix, and unified normalized

Laplacian matrix, all defined using the unified matrix. We show that these three matrices of

a hypergraph are respectively identical to the Laplacian matrix, signless Laplacian matrix,

and normalized Laplacian matrix of the associated graph. This allows us to use the spectra of

these hypergraph matrices as a means to connect the structural properties of the hypergraph

with those of the associated graph. Additionally, we introduce certain hypergraph structures

and invariants during this process, and relate them to the eigenvalues of these three matrices.
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1 Introduction

Spectral graph theory examines graph properties through the eigenvalues and eigenvectors of

matrices like the adjacency matrix, Laplacian matrix, signless Laplacian matrix, and normalized

Laplacian matrix (see, [3, 8, 10]). A hypergraph extends the concept of a graph by allowing

edges, or hyperedges, to connect more than two vertices. In spectral hypergraph theory, both

matrices and tensors have been associated with hypergraphs in recent decades, with tensors being

introduced in [24, 9, 15, 17, 27, 20, 2]. For more on tensor spectra associated with hypergraphs,

see [21]. However, computing eigenvalues is an NP-hard problem, and not all aspects of spectral

graph theory extend smoothly to hypergraphs when using tensors. These challenges highlight the
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limitations of tensor-based methods in spectral hypergraph theory. Matrix-based approaches, as

seen in [11, 23, 22, 1, 6], address these issues by analyzing hypergraph structures through the

spectra of associated matrices. A graph can be uniquely determined by its adjacency matrix, and

similarly, a hypergraph can be identified by its associated tensors mentioned above. However, this

uniqueness may not hold for the associated matrices mentioned above.

To address this, in [26], we introduced the unified matrix for a hypergraph, which is identical

to the adjacency matrix of the associated graph. We used the unified matrix’s spectrum to link

the structural properties of the hypergraph with those of the graph. We also introduced certain

hypergraph structures and invariants, related them to the eigenvalues of the unified matrix.

This paper we introduce three distinct hypergraph matrices: the unified Laplacian matrix,

the unified signless Laplacian matrix, and the unified normalized Laplacian matrix, all defined

using the unified matrix. We show that these matrices are identical to the Laplacian, signless

Laplacian, and normalized Laplacian matrices of the associated graph. This allows us to study

the spectra of these hypergraph matrices to establish connections between the structural properties

of hypergraphs and their associated graphs.

As the three matrices mentioned above are defined using the unified matrix, we will be re-

ferred [26] in the sequel as Part I. While we adhere to the terminology and notation from Part I,

some of it will be repeated here for the convenience of the reader.

The rest of the paper is arranged as follows. Section 2 contains some basic definitions and

notations on matrices, graphs and hypergraphs. In addition, we recall some definitions introduced

in Part I. In Section 3, we introduce the unified Laplacian matrix of a hypergraph. We bound the

largest unified Laplacian eigenvalue and the second smallest unified Laplacian eigenvalue, namely

the algebraic d-connectivity of a hypergraph using some hypergraph invariants. In addition, we

introduce different types of connectedness, distances and diameters in a hypergraph. Further, we

establish the relationship between those connectedness and diameters of a hypergraph. Also, we

bound the diameters of a hypergraph using its unified Laplacian eigenvalues and some hypergraph

invariants. Moreover, we extend the Matrix-Tree Theorem for a graph to hypergraphs. In Sec-

tion 4, we introduce the unified signless Laplacian matrix of a hypergraph. We characterize deeply

connected hypergraphs having no odd exact cycle using their signless Laplacian eigenvalue zero

and using its arithmetic multiplicity, we analyze some hypergraph properties. Also, we bound its

largest unified singless Laplacian eigenvalue using some hypergraph invariants. In Section 5, we

define the unified normalized Laplacian matrix of a hypergraph. We discuss when this matrix has

two as its eigenvalue, and we count its arithmetic multiplicity using some properties of a hyper-

graph. We bound unified normalized Laplacian eigenvalues using exact set diameter and some

hypergraph invariants. We introduce the unified Cheeger constant of a hypergraph and bound it

by using the second smallest unified normalized Laplacian eigenvalue of a hypergraph. Also, we

introduce exact set distance between two subsets of I(H) and provide some spectral bounds on it.

In Section 6, present some facts about cospectral hypergraphs with respect to these four matrices
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2 Preliminaries

Let S be a non-empty set. We denote the set of all non-empty subsets of S by P∗(S). A hypergraph

H consists of a non-empty set V (H) and a multiset E(H) of non-empty subsets of V (H). The

elements of V (H) are called vertices and the elements of E(H) are called hyperedges, or simply

edges of H. We denote the set of all elements in the multiset E(H) by E∗(H). H is said to be

m-uniform if all of it’s edges have the cardinality m. An edge e in H is called included if there

exist an edge e′(̸= e)in H such that e ⊂ e′. The multiplicity of an edge e in H, denoted by m(e),

is the number of occurrences of that edge in H. An edge e of H is called multiple if m(e) ≥ 2.

An edge of H having cordinality one is called a loop. The degree of a vertex v in H, denoted by

dH(v), is the number of edges in H containing v. Let δ(H) and ∆(H) denote the minimum and

the maximum degrees of all the vertices in H, respectively. H is said to be trivial if it has only one

vertex and no edge. H is said to be simple if it has no loops or multiple edges. A subhypergraph

of H is a hypergraph H ′ with V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H).

Now, we state some definitions and notations on graphs: Let G be a graph. The distance

between two vertices u and v in G, denoted by dG(u, v), is the length of the shortest path joining

u and v. If there is no path joining u and v in G, then dG(u, v) is defined to be ∞. In a connected

graph G, the value, max{dG(u, v) | u, v ∈ V (G)} is called the diameter of G. Let X, Y be

non-empty subsets of V (G). The distance between X and Y is the minimum distance between a

vertex in X and a vertex in Y . Let E(X, Y ) denotes the set of all edges in G with one vertex in

X and the other in Y . The volume of a subset S of V (G) is defined as the sum of the degrees

of all the vertices in S and is denoted by vol(S). We denote the vol(V (G)) simply by vol(G).

The Cheeger constant of G is denoted by h(G) and is defined by h(G) = min
Φ⊂S⊂V (G)

hG(S), where

hG(S) =
|E(S, V (G)\S)|

min{vol(S), vol(V (G)\S)}
. Pn, Cn and Kn denote the path, the cycle and the complete

graph on n vertices, respectively. The complete r-partite graph with partitions of cardinality

n1, n2, . . . , nr is denoted by Kn1,n2,...,nr .

Let G be a finite, loopless graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) =

{e1, e2, . . . , em}. The adjacency matrix of G, denoted by A(G), is the matrix of order n whose

rows and columns are indexed by the vertices of G and for all vi, vj ∈ V (G),

the (vi, vj)
th entry of A(G) =

m({vi, vj}), if i ̸= j and {vi, vj} ∈ E(G);

0, otherwise.

The degree matrix of G, denoted by D(G), is the diagonal matrix of order n whose rows and

columns are indexed by the vertices of G and the (vi, vi)-th entry is the degree of the vertex vi in

G for i = 1, . . . , n. The Laplacian matrix of G, denoted by L(G), is the matrix D(G)−A(G). The

signless Laplacian matrix of G, denoted by Q(G), is the matrix D(G) + A(G). The normalized

Laplacian matrix of G, denoted by L̂(G), is the matrix of order n whose rows and columns are

indexed by the vertices of G and for all vi, vj ∈ V (G),
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the (vi, vj)
th entry of L̂(G) =


1, if i = j and dG(vi) ̸= 0;

− m({vi,vj})√
dG(vi)dG(vj)

, if i ̸= j and {vi, vj} ∈ E(G);

0, otherwise.

Notice that ifH has no isolated vertices, then L̂(G) = D(G)−
1
2L(G)D(G)−

1
2 . The incidence matrix

of a simple graph G, denoted by B(G), is the 0− 1 matrix whose rows and columns are indexed

by the vertices and the edges of G, respectively. The (vi, ej)−th entry of B(G) is 1 if and only if

vi ∈ ej. Consider an orientation to each edge of a simple graph G. Then the vertex-arc incidence

matrix of G, denoted by R(G), is the matrix whose rows and columns are indexed by the vertices

and the arcs of G, respectively.

The (vi, ej)−th entry of R(G)=


1, if vi is the head of ej;

−1, if vi is the tail of ej;

0, otherwise.

We denote the all-ones matrix of size n × m by Jn×m. We denote 0 as the zero matrix of

appropriate size. A matrix is said to be totally unimodular if the determinant of any of its square

submatrix is either 0 or ±1. The rank of a matrix M is denoted by r(M). If M is a square matrix,

then the trace of M is denoted by tr(M), and the characteristic polynomial of M is denoted by

PM(x). The eigenvalues of M are denoted by λi(M), i = 1, 2, . . . , n. The spectrum of M is the

multiset of eigenvalues of M and is denoted by σ(M).

2.1 Definitions introduced in Part I

Now, we recall some notations and definitions introduced in Part I that we will use in this paper.

Let S be a non-empty set. If {S1, S2} is a 2-partition of S, then we call S1 and S2 as parts of S.

Let τ(S) denote the set of all 2−partitions of S.

Let H be a hypergraph. Let I(H) denote the set of all the parts of each edge of H together

with all the singleton subsets of V (H). The cardinality of I(H) is called the edge index or simply

the e-index of H. For S and S ′ ∈ I(H), S is said to be a neighbor of S ′ with multiplicity c (≥ 1),

if S and S ′ forms a partition of c number of edges in H. It is denoted by S
c∼ S ′. Also, we simply

write S ∼ S ′, whenever there is no necessity to mention the multiplicity of S explicitly.

Let H be a hypergraph with e-index k. Let I(H) = {S1, S2, . . . , Sk}. Then the unified matrix

of H, denoted by U(H), is the matrix of order k whose rows and columns are indexed by the

elements of I(H) and for all Si, Sj ∈ I(H),

the (Si, Sj)
th entry of U(H) =


m({Si}), if i = j, |Si| = 1 and Si ∈ E(H);

c, if Si
c∼ Sj;

0, otherwise.

The associated graph of a loopless hypergraph H, denoted by GH , is the graph whose vertex

set is I(H) and two vertices S and S ′ are joined by c (≥ 1) number of edges in GH if and only if
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S
c∼ S ′ in H. Notice that A(GH) = U(H) and so they have the same spectrum. Also, if H is a

loopless graph, then the eigenvalues of A(H) and the eigenvalues of U(H) are the same. Thereby,

we denote the eigenvalues of these two matrices commonly as λi(H), i = 1, 2, . . . , k.

Let H be a hypergraph. For each S ∈ I(H), the unified degree of S in H, denoted by dH(S),

is the cordinality of the multiset {e ∈ E(H) | S ⊆ e}.
An exact walk in H is a sequence EW : (S =)S0, e1, S1, e2, S2, . . . , en−1, Sn−1, en, Sn(= S ′),

where {Si−1, Si} is a 2-partition of the edge ei in H for i = 1, 2, 3, . . . , n. We say EW joins S and

S ′. Each Si occurs in EW is a part of EW . S and S ′ are the initial part and the terminal part

of EW , respectively; Other parts are called internal parts of EW . We call the set of all parts of

EW as its cover. If S = {u} and S ′ = {v}, then we say that EW joins u and v. The length of

EW , denoted by l(EW ), is the number of edges in EW , i.e., n. We denote the exact walk simply

by EW : (S =)S0, S1, S2, . . . , Sn−1, Sn(= S ′), when the edges of the walk are self evident.

An exact walk in a hypergraph H is said to be an exact path if all its parts are distinct. An

exact walk in H with at least three distinct edges is said to be an exact cycle if its initial and

terminal parts are the same and all the internal parts are distinct. We say an exact cycle as odd

(even) if its length is odd (even). A hypergraph with at least two (three) distinct edges is said to

be an unified path (unified cycle) if its edges and some of their parts can be arranged in an exact

path (exact cycle) sequence whose parts are pairwise disjoint.

A hypergraph H is said to be exactly connected if for any two distinct vertices u and v in H,

there exists S, S ′ ∈ I(H) with u ∈ S and v ∈ S ′ such that S and S ′ are joined by an exact path in

H. The exact distance or simply the e-distance between the distinct vertices u and v in H, denoted

by edH(u, v), is the length of a shortest exact path joining S, S ′ ∈ I(H) with u ∈ S and v ∈ S ′,

if such an exact path exists; ∞, otherwise. For a vertex u in H, we define edH(u, u) = 0. The

exact diameter of an exactly connected hypergraph H, denoted by ED(H), is the maximum of the

e-distance between all the pairs of vertices in H, i.e., ED(H) = max{edH(u, v) | u, v ∈ V (H)}.

3 Unified Laplacian matrix of a hypergraph

In this section, we introduce the unified Laplacian matrix of a hypergraph and relate some of its

invariants to the hypergraph invariants.

Definition 3.1. Let H be a hypergraph. For S ∈ I(H), we define the modified unified degree of

S in H, denote by d∗H(S), as

d∗H(S) =

dH(S), if |S| = 1 or S /∈ E(H);

dH(S)−m(S), otherwise.

Definition 3.2. Let H be a hypergraph. For a non-empty subset S of I(H), we define the volume

of S in H, denoted by volH(S), as

volH(S) =
∑
S∈S

d∗H(S).

5



We call the volume of I(H) as the volume of H and denote it simply by vol(H).

Definition 3.3. The modified unified degree matrix of a hypergraph H with e-index k, denoted

by UD(H), is the diagonal matrix of order k whose rows and columns are indexed by the elements

S1, S2, . . . , Sk of I(H) with d∗H(Si) in the i-th diagonal entry for all i = 1, 2, . . . , k.

The modified unified degree matrix of the hypergraphH shown in Figure 1 is diag(4, 3, 3, 3, 2, 2,

3, 2, 1, 2, 1, 1, 1, 1).

b b b1 2 3

b bb4 5 6

Figure 1: The hypergraph H

Definition 3.4. The unified Laplacian matrix of a hypergraph H, denoted by UL(H), is the

matrix UD(H)−U(H).

Let H be a hypergraph with e-index k. Since UL(H) is a real symmetric matrix, its eigenvalues

are all real. We denote them by ν1(H), ν2(H), . . . , νk(H) and we shall assume that ν1(H) ≥
ν2(H) ≥ · · · ≥ νk(H). The characteristic polynomial of UL(H) is said to be the unified Laplacian

characteristic polynomial of H. An eigenvalue ofUL(H) is said to be a unified Laplacian eigenvalue

of H and the spectrum of UL(H) is said to be the unified Laplacian spectrum of H, or simply

UL-spectrum of H.

For a loopless hypergraph H, the degree of a vertex S of GH is d∗H(S) and so UD(H) = D(GH).

Consequently UL(H) = L(GH). Also, notice that if H is a loopless graph, then UL(H) = L(H)

and so the eigenvalues of UL(H) and L(H) are the same. Thereby, we denote the eigenvalues of

these two matrices commonly as νi(H), i = 1, 2, . . . , k. These reveals that the unified Laplacian

matrix of a loopless hypergraph is a natural generalization of the Laplacian matrix of a loopless

graph.

Definition 3.5. Let H be a loopless hypergraph. An orientation of an edge e in H is a 2-tuple

(S, S ′) such that {S, S ′} is a 2-partition of e. We say that S and S ′ are the tail and the head of

e, respectively. A hypergraph is said to be oriented if each of its edge has an orientation.

Also, we mean an oriented edge e with orientation (S, S ′) as one side oriented, if (S ′, S) is not

an orientation of e. A one side orientation of e is called an arc of e. Thus, for an edge e, there

can be at most τ(e) number of arcs.

Definition 3.6. Let H be a simple hypergraph with e-index k. Consider a orientation of each

edge of H. Let the resulting oriented hypergraph be H⃗. Let θ(H) denote the union of the set of
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all arcs of each edge in E(H). Then the arc incidence matrix of H⃗ (or an arc incidence matrix

of H), denoted by R(H⃗) (or R(H)), is the matrix of order k × |θ(H)| whose rows and columns

are indexed by the elements S1, S2, . . . , Sk of I(H) and by the elements T1, T2, . . . , T|θ(H)| of θ(H),

respectively. For all i = 1, 2, . . . , k; j = 1, 2, . . . , |θ(H)|,

the (Si, Tj)−th entry of R(H)=


1, if Si is the head in the arc Tj;

−1, if Si is the tail in the arc Tj;

0, otherwise.

Note 3.1. Let H be a simple hypergraph. For each edge in H, consider its all possible one

side orientations. Since the head and the tail of each orientation of an edge in H are vertices in

GH , using these orientations, we can assign orientation to each edge of GH . Then the vertex-arc

incidence matrix R(GH) of GH is the same as R(H). Since L(GH) = R(GH)R(GH)
T , it follows

that UL(H) = R(H)R(H)T .

Now we start to investigate the properties of the unified Laplacian matrix of a hypergraph.

Lemma 3.1. Let H be a hypergraph with e-index k. Then we have the following.

(i) The row sum and the column sum of UL(H) are zero.

(ii) If H is simple, then UL(H) is positive semi-definite.

(iii) If H is simple, then r(UL(H)) = r(R(H)).

(iv) The cofactors of any two elements of UL(H) are equal.

(v)
k∑

i=1

νi(H) = vol(H)−
∑

{v}∈E∗(H)

m({v}) = 2
∑

e∈E∗(H)

m(e)|τ(e)|.

(vi)
k∑

i=1

νi(H)2 = 2

( ∑
e∈E∗(H)

m(e)2|τ(e)|

)
+

∑
v∈V (H)

(dH(v)−m({v}))2 +
∑

|S|>1

S∈I(H)

d∗H(S)
2.

Proof. (i) Let U(H) := (USS′) and let S ∈ I(H). If |S| = 1, then by [26, Lemma 3.1(i)], the

row sum corresponds to S in U(H) equals dH(S). If |S| > 1, then for each e ∈ E∗(H) of

multiplicity m with S ⊆ e contributes m to the entry USS′ , where S ′ = e\{S}. So, the row

sum corresponding to S in U(H) is dH(S), if S ⊂ e; dH(S)−m(S), if S = e. Thus the result

follows from the definition of UL(H).

(ii) Since H is simple, UL(H) = L(GH). So, the result follows from the fact that L(GH) is

positive semi-definite.

(iii) Since H is simple, UL(H) = R(H)R(H)T . So, the result follows from the fact that

r(R(H)R(H)T ) = r(R(H)).
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(iv) This follows from part (i) and [3, Lemma 4.2]: “Let X be an n × n matrix with zero row

and column sums. Then the cofactors of any two elements of X are equal”.

(v) First equality follows from the fact that
k∑

i=1

νi(H) = tr(UL(H)). Consider [26, Equa-

tion (3.6)]:

∑
S∈I(H)

dH(S) = 2

 ∑
e∈E∗(H)

m(e)|τ(e)|

+
∑

{v}∈E∗(H)

m({v}) + ∂(H), (3.1)

where ∂(H) is the cardinality of the multiset of all non-singleton included edges of H.

By the definition of d∗H(S), if S is a non-loop included edge, then d∗H(S) equals dH(S)−m(S).

Notice that

vol(H) =
∑

S∈I(H)

d∗H(S) =
∑

S∈I(H)

dH(S)− ∂(H). (3.2)

Second equality follows by substituting (3.1) in (3.2).

(vi) Let UL(H) = (lSiSj
)1≤i,j≤k and let Si ∈ I(H) for i = 1, 2, . . . , k. Since UL(H) is symmetric,

we have

UL(H)2SiSi
=

k∑
t=1

lSiStlStSi
=

k∑
t=1

l2SiSt
. (3.3)

Using (3.3), we get

∑
ν∈σ(UL(H))

ν2 = tr(UL(H)2) =
k∑

i=1

UL(H)2SiSi

=
k∑

i=1

k∑
t=1

l2SiSt

= 2
∑
i<t

l2SiSt
+

k∑
i=1

l2SiSi
(3.4)

Notice that

lSiSt =


−m(e), if Si ̸= St and {Si, St} ∈ τ(e) for some e ∈ E∗(H);

d(v)−m({v}), if Si = St = {v} and {v} ∈ E∗(H);

d∗H(S), if Si = St and |Si| > 1;

0, otherwise.

The result follows by substituting lSiSt in (3.4).
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Theorem 3.1. Let H be a loopless m-uniform hypergraph with e-index k. Then,

|E(H)| = 1
m

 k∑
i=1

νi(H)−
∑

S∈I(H),
|S|≥2

d∗H(S)

.

Proof. Since H has no loops, m > 1. By Lemma 3.1(v), we have

k∑
i=1

νi(H) =
∑

S∈I(H)

d∗H(S)

=
∑

S∈I(H),
|S|≥2

d∗H(S) +
∑

S∈I(H),
|S|=1

d∗H(S)

=
∑

S∈I(H),
|S|≥2

d∗H(S) +
∑

v∈V (H)

dH(v). (3.5)

According to [26, Lemma 3.1(ii)]: If H is m-uniform, then∑
v∈V (H)

dH(v) = m · |E(H)|. (3.6)

Applying (3.6) in (3.5), we get the result.

3.1 Bounds on the unified Laplacian eigenvalues of a hypergraph

In this subsection, we bound the largest, second smallest unified Laplacian eigenvalue of a hy-

pergraph by using its invariants. Also, we introduce the exact set diameter of a hypergraph and

constrain it by using its unified Laplacian eigenvalues.

Definition 3.7. Let H be a hypergraph and let S ∈ I(H). The e-neighborhood of S in H, denoted

by NH(S), is the set of all neighbors of S in H, i.e., NH(S) = {S ′ ∈ I(H) | S ∼ S ′}.

Further, we denote

• m∗(H) := min
S∈I(H)

d∗H(S),

• d̂∗(H) := max
S∈I(H)

d∗H(S),

• d∗(H) :=
1

k

∑
S∈I(H)

d∗H(S) and we call d∗(H) as the average modified unified degree of H.

Theorem 3.2. Let H be a simple hypergraph with e-index k (≥ 2). Then,

νk−1(H) ≤
(

k

k − 1

)
m∗(H) ≤ 2

k − 1

∑
e∈E(H)

|τ(e)|.

9



Proof. By Lemma 3.1(i), it is clear that L(H)Jk×1 = 0. Therefore, the first inequality follows

from Lemma 3.1(ii) and [12, Lemma]:“Let M = (mij) be a symmetric positive semi-definite n×n

matrix and x ∈ Rn be such that Mx = 0. Then the second smallest eigenvalue λ of M satisfies

λ ≤ ( n
n−1

)min
i
{mii}”.

It is clear that

kmin{d∗H(Si) | Si ∈ I(H) for i = 1, 2, . . . , k} ≤
k∑

i=1

d∗H(Si) = vol(H). (3.7)

Dividing by k − 1 on both sides of (3.7), and applying Lemma 3.1(v) in it, we get the second

inequality.

Theorem 3.3. Let H be a simple hypergraph with e-index k. Let I(H) = {S1, S2, . . . , Sk}. Then,
we have the following.

(i) If d∗H(S1) ≥ d∗H(S2) ≥ · · · ≥ d∗H(Sk), then
t∑

i=1

νi(H) ≥
t∑

i=1

d∗H(Si) for t ∈ {1, 2, . . . , k}. The

equality holds when t = k.

(ii)
(
k−1
k

)
νk−1(H) ≤ d∗(H) ≤

(
k−1
k

)
ν1(H).

Proof. For each Si ∈ I(H), d∗H(Si) is the same as the degree of the vertex Si in GH . Moreover, the

mean degree of GH is the same as the average modified unified degree of H. Thus the results (i)

and (ii) directly follows from [10, p. 186, Theorem 7.1.3, Remark 7.1.4].

In the following result, we asserts some bounds on the largest unified Laplacian eigenvalue of

a simple hypergraph.

Proposition 3.1. Let H be a simple hypergraph with e-index k. Then, we have the following.

(i) ν1(H) ≤ k.

(ii) ν1(H) ≤ max{d∗H(S) + d∗H(S
′) | S, S ′ ∈ I(H) and S ∼ S ′}.

(iii) ν1(H) ≤ max

{
d∗H(S)[d

∗
H(S) + ζ(S)] + d∗H(S

′)[d∗H(S
′) + ζ(S ′)]

d∗H(S) + d∗H(S
′)

∣∣∣∣ S, S ′ ∈ I(H) and S ∼ S ′
}
,

where ζ(S) = 1
|NH(S)|

∑
S′∈NH(S)

d∗H(S
′).

(iv) ν1(H) ≥ max{
√

(d∗H(S)− d∗H(S
′))2 + 4USS′ | S, S ′ ∈ I(H) and S ̸= S ′}, where USS′ is the

(S, S ′)-th entry of U(H).

Proof. Since the UL-spectrum of the hypergraph H and the spectrum of L(GH) are the same, the

proofs directly follows from [10, Proposition 7.3.3 and Theorems 7.3.4, 7.3.5, 7.3.6].

Lemma 3.2. Let H be a hypergraph with e-index k. Then we have the following.

(i) GH
∼= Pk if and only if H ∼= Pk.
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(ii) GH
∼= Ck if and only if H ∼= Ck.

(iii) GH
∼= Kk if and only if H ∼= Kk.

(iv) GH
∼= Kn1,n2,...,nr if and only if H ∼= Kn1,n2,...,nr .

Proof. It is clear that if H is a graph, then GH
∼= H. So, in all the parts, it is enough to prove

the other direction.

(i) We assume that GH is a path. Suppose H contains an edge of cordinality greater than 2,

then GH contains atleast three vertices of degree one, which is not possible, since GH is a

path. Thus, H is a graph and so H ∼= GH .

(ii) We assume that GH is a cycle. Suppose H contains an edge of cordinality greater than 2,

then GH must contain an edge that does not belong to GH , which is not possible, since GH

is a cycle. Thus, H is a graph and so H ∼= GH .

(iii) We assume that GH
∼= Kk. Then clearly any two vertices of H are joined by an edge.

Suppose H has an edge e of cordinality greater than 2. Then there exists a pair of non-

disjoint proper subsets of e such that the vertices in GH corresponding to this pair are not

adjacent, a contradiction. Thus, H has no edge of cordinality greater than 2. So, H is the

complete graph on k vertices.

(iv) We assume that GH is a complete multipartite graph with vertex set partitions Xi, i =

1, 2, . . . , r. First we show that H is a graph. Suppose H has an edge e of cordinality greater

than two. Let S1 and S2 be parts of e. Then S1, S2 /∈ Xi for any i = 1, 2, . . . , r, since GH

is a multipartite graph. Without loss of generality, we assume that S1 ∈ X1 and S2 ∈ X2.

Since |e| > 2, either S1 or S2 is of cordinality greater than one and so there exists S3 ∈ I(H)

such that S3 ∩ Si ̸= Φ for each i = 1, 2. Thus, being GH is a complete multipartite graph,

S3 /∈ Xi for any i = 1, 2, . . . , r, which is not possible. Hence, H cannot have any edge of

cordinality greater than two. Therefore, H is a graph. Proof is complete, since for a graph

H, its associated graph GH is isomorphic to H.

Let H be a hypergraph. Let e ∈ E(H). For, any integer r, 0 < r ≤ m(e), H − er denotes the

hypergraph obtained from H by deleting the r copies of the edge e from H.

Theorem 3.4. Let H be a hypergraph with e-index k. Suppose H has a non-loop edge e such that

I(H − er) = I(H), where 0 < r ≤ m(e). Then the following hold:

If |e| = 2, then

0 = νk(H − er) = νk(H) ≤ νk−1(H − er) ≤ νk−1(H) ≤ · · · ≤ ν2(H) ≤ ν1(H − er) ≤ ν1(H);

otherwise,
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0 = νk(H − er) = νk(H) ≤ νk−1(H − er) + 2r ≤ νk−1(H) + 2r ≤ νk−2(H − er) + 4r ≤
νk−2(H) + 4r ≤ · · · ≤ ν2(H) + 2r(k − 2) ≤ ν1(H − er) + 2r(k − 1) ≤ ν1(H) + 2r(k − 1).

Proof. If needed, we rearrange the elements of I(H) as S1, S2, . . . , St, St+1, . . . , Sk such that {Si, Si+1} ∈
τ(e), for i = 2, 3, . . . , t− 1, where t = 2|τ(e)|. Since I(H − er) = I(H), we can see that

UL(H − er) = UL(H)−N, (3.8)

where

N =





r −r 0 0 · · · 0 0

−r r 0 0 · · · 0 0

0 0 r −r · · · 0 0

0 0 −r r · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · r −r

0 0 0 0 · · · −r r


t×t

0

0 0


k×k

. (3.9)

The eigenvalues of N are 0 with multiplicity k− t
2
and 2r with multiplicity t

2
. Notice that the

second largest eigenvalue λ2(N) of N is non-zero if and only if t = 2. Thus, we have

λ2(N) =

0, if |e| = 2;

2r, otherwise.
(3.10)

It is known (c.f. [10, Theorem 1.3.15]) that if A and B are n× n Hermitian matrices, then

λi(A+B) ≤ λj(A) + λi−j+1(B) for n ≥ i ≥ j ≥ 1; (3.11)

λi(A+B) ≥ λj(A) + λi−j+n(B) for n ≥ j ≥ i ≥ 1. (3.12)

Now, taking A = UL(H − er) and B = N , we get from (3.8) that A + B = UL(H). Applying

these in inequalities (3.11) and (3.12), we get

νi(H) ≤ νj(H − er) + λi−j+1(N) for k ≥ i ≥ j ≥ 1; (3.13)

νi(H) ≥ νj(H − er) + λi−j+k(N) for k ≥ j ≥ i ≥ 1. (3.14)

Taking i = j in (3.14) and since λk(N) = 0, we get

νi(H) ≥ νi(H − er) for i = 1, 2, . . . , k. (3.15)

Taking i = j+1 in (3.13) and applying the value of λ2(N) given in (3.10) in it for j = 1, 2, . . . , k−1,

we get

νj+1(H) ≤ νj(H − er), if |e| = 2; (3.16)

νj+1(H) ≤ νj(H − er) + 2r, otherwise. (3.17)

12



It is clear that νk(H) = νk(H − er) = 0.

If |e| = 2, then the result follows from (3.15) and (3.16). Otherwise, we have the following

inequalities by substituting j = 1, 2, . . . , k − 1 in (3.17) successively and applying (3.15):

νt(H) ≤ νt−1(H − er) + 2r ≤ νt−1(H) + 2r for t = 2, 3, . . . , k.

Result follows from the above inequalities.

3.1.1 New structures and invariants of hypergraphs and unified Laplacian eigenval-

ues

Definition 3.8. We call an exact path in which all the edges are distinct as an edge exact path.

An exact path of length at least two in a hypergraph is said to be an internal unified path if all

pairs of its parts are disjoint except the pair that contains its initial part and terminal part.

Definition 3.9. A hypergraph H is said to be edge exact connected if for any two distinct vertices

u and v in H, there exists S, S ′ ∈ I(H) with u ∈ S and v ∈ S ′ such that S and S ′ are joined by

an edge exact path in H.

Definition 3.10. Let H be a hypergraph. The edge exact distance or simply the ee-distance

between distinct vertices u and v in H, denoted by eedH(u, v), is the length of a shortest edge

exact path joining S, S ′ ∈ I(H) with u ∈ S and v ∈ S ′, if such an edge exact path exists; ∞,

otherwise. For a vertex u in H, we define eedH(u, u) = 0.

Definition 3.11. The edge exact diameter of an edge exact connected hypergraph H is the

maximum of the ee-distance between all the pairs of vertices in H and we denote it by EED(H),

i.e., EED(H) = max{eedH(u, v) | u, v ∈ V (H)}.

The hypergraph shown in Figure 2 is edge exact connected. It is clear that the edge exact

distance defined on an edge exact connected hypergraph H is a semi-metric. However, it is not a

metric, as the triangle inequality may fail. For instance, in the hypergraph H shown in Figure 2,

eedH(1, 6) = 3 and eedH(6, 13) = 1; but eedH(1, 13) = 5.

b b b b b b

b b b b b b
b

1 2 3 4 5 6

7 8 9 10 11 12 13

Figure 2: The hypergraph H

Definition 3.12. A hypergraph H is said to be inter-uni-connected if for any two distinct vertices

u and v in H, there exists S, S ′ ∈ I(H) with u ∈ S and v ∈ S ′ such that S and S ′ are joined by

an internal unified path in H.
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Definition 3.13. Let H be a hypergraph. The internal unified distance or simply the iu-distance

between distinct vertices u and v in H, denoted by iudH(u, v), is the length of a shortest internal

unified path joining S, S ′ ∈ I(H) with u ∈ S and v ∈ S ′, if such an internal unified path exists;

∞, otherwise. For a vertex u in H, we define iudH(u, u) = 0.

Definition 3.14. The internal unified diameter of an inter-uni-connected hypergraph H is the

maximum of the iu-distance between all the pairs of vertices in H, and we denote it by IUD(H),

i.e., IUD(H) = max{iudH(u, v) | u, v ∈ V (H)}.

The hypergraph H with V (H) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} and E(H) = {{1, 7},
{1, 8}, {2, 8}, {3, 4}, {5, 11}, {5, 12}, {5, 13}, {5, 14}, {6, 13}, {6, 14}, {9, 12}, {12, 13}, {13, 14},
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {8, 9, 10, 11}, {10, 11, 12}} is inter-uni-connected. It is clear that the

internal unified distance defined on an inter-uni-connected hypergraph H is a semi-metric. How-

ever, it is not a metric, as the triangle inequality may fail. For instance, in the inter-uni-connected

hypergraph H mentioned above, we have iudH(1, 6) = 3 and iudH(6, 14) = 2; but iudH(1, 14) = 6.

Definition 3.15. A hypergraph H is said to be uni-connected if for any two distinct vertices u

and v in H, there exists S, S ′ ∈ I(H) with u ∈ S and v ∈ S ′ such that S and S ′ are joined by an

unified path in H.

Definition 3.16. Let H be a hypergraph. The unified distance or simply the u-distance between

distinct vertices u and v in H, denoted by udH(u, v), is the length of a shortest unified path joining

S, S ′ ∈ I(H) with u ∈ S and v ∈ S ′, if such an unified path exists; ∞, otherwise. For a vertex u

in H, we define udH(u, u) = 0.

Definition 3.17. The unified diameter of an uni-connected hypergraph H is the maximum of

the u-distance between all the pairs of vertices in H, and we denote it by UD(H), i.e., UD(H) =

max{udH(u, v) | u, v ∈ V (H)}.

The hypergraph H with V (H) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and E(H) = {{1, 2}, {1, 3}, {1, 7},
{2, 3}, {2, 7}, {3, 4}, {4, 9}, {5, 6}, {5, 9}, {5, 10}, {6, 10}, {7, 8}, {8, 9}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5},
{3, 5, 6} is uni-connected. It is clear that the unified distance defined on a uni-connected hyper-

graph H is a semi-metric. However it is not a metric, as the triangle inequality may fail. For

instance, in the uni-connected hypergraph H mentioned above, udH(1, 4) = 2 and udH(4, 6) = 2;

but udH(1, 6) = 5.

Definition 3.18. A hypergraph H is said to be strong exactly connected if for any two distinct

vertices u and v in H, there exists an exact path joining u and v in H.

Definition 3.19. Let H be a hypergraph. The strong exact distance or simply the se-distance

between distinct vertices u and v in H, denoted by sedH(u, v), is the length of a shortest exact

path joining u and v, if such an exact path exists; ∞, otherwise. For a vertex u in H, we define

sedH(u, u) = 0.
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Definition 3.20. The strong exact diameter of an strong exactly connected hypergraph H is the

maximum of the se-distance between all the pairs of vertices in H, and we denote it by SED(H),

i.e., SED(H) = max{sedH(u, v) | u, v ∈ V (H)}.

A strong exactly connected hypergraph is shown in Figure 6. The strong exact distance defined

on a strong exactly connected hypergraph is a metric: For triangle inequality, let u, v ∈ V (H).

Suppose there exist w ∈ V (H) such that sedH(u, v) > sedH(u,w) + sedH(w, v). This assures that

there exists an exact path joining u to v via w of length less than sedH(u, v), which is not possible.

The remaining two conditions of a metric are straight forward.

Definition 3.21. A hypergraph H is said to be strong edge exact connected if for any two distinct

vertices u and v in H, there exists an edge exact path joining u and v in H.

Definition 3.22. Let H be a hypergraph. The strong edge exact distance or simply the see-

distance between distinct vertices u and v in H, denoted by seedH(u, v), is the length of a shortest

edge exact path joining u and v, if such an edge exact path exists; ∞, otherwise. For a vertex u

in H, we define seedH(u, u) = 0.

Definition 3.23. The strong edge exact diameter of an strong edge exact connected hypergraph

H is the maximum of the see-distance between all the pairs of vertices in H, and we denote it by

SEED(H), i.e., SEED(H) = max{seedH(u, v) | u, v ∈ V (H)}.

The hypergraph H with V (H) = {1, 2, 3, 4, 5, 6} and E(H) = {{1, 2}, {2, 3}, {3, 4}, {4, 5},
{1, 2, 3}, {1, 2, 5}, {1, 3, 5}, {2, 3, 4}, {2, 4, 6}, {3, 4, 6}} is strong edge exact connected. It is clear

that the strong edge exact distance defined on a strong edge exact connected hypergraph H is a

semi-metric. However, we are neither able to prove the triangle inequality nor to find a strong

edge exact connected hypergraph in which the strong edge exact distance defined on it violates

the triangle inequality.

Definition 3.24. A hypergraphH is said to be strong uni-connected if for any two distinct vertices

u and v in H, there exists an unified path joining u and v in H.

Definition 3.25. Let H be a hypergraph. The strong unified distance or simply the su-distance

between distinct vertices u and v in H, denoted by sudH(u, v), is the length of a shortest unified

path joining u and v, if such an unified path exists; ∞, otherwise. For a vertex u in H, we define

sudH(u, u) = 0.

Definition 3.26. The strong unified diameter of a strong uni-connected hypergraph H is the

maximum of the su-distance between all the pairs of vertices in H, and we denote it by SUD(H),

i.e., SUD(H) = max{sudH(u, v) | u, v ∈ V (H)}.

The hypergraph H with V (H) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and E(H) = {{1, 2}, {1, 3}, {1, 7},
{2, 3}, {2, 7}, {3, 4}, {4, 9}, {5, 6}, {5, 9}, {5, 10}, {6, 10}, {7, 8}, {8, 9}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5},
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{3, 5, 6} is strong uni-connected. It is clear that the strong unified distance defined on a strong uni-

connected hypergraph H is a semi-metric. However, it is not a metric, as the triangle inequality

may fail. For instance, in the strong uni-connected hypergraphH mentioned above, sudH(1, 4) = 2

and sudH(4, 6) = 2; but sudH(1, 6) = 5.

Definition 3.27. A hypergraph H is said to be deeply connected if every pair of distinct elements

of I(H) are joined by an exact path.

Definition 3.28. Let H be a hypergraph. The exact set distance between the distinct elements

S and S ′ of I(H), denoted by esdH(S, S
′), is the length of a shortest exact path joining them in

H if such an exact path exist; ∞, otherwise. For S ∈ I(H), we define esdH(S, S) = 0.

Definition 3.29. The exact set diameter of a deeply connected hypergraph H is the maximum

of the exact set distance between all the pairs of elements in I(H), and we denote it by ESD(H),

i.e., ESD(H) = max{esdH(S, S ′) | S, S ′ ∈ I(H)}.

A deeply connected hypergraph is shown in Figure 6. The exact set distance between S and

S ′ in I(H) is the same as the distance between the vertices S and S ′ in the associated graph GH .

Since the distance between vertices defined in a connected graph is a metric, it follows that the

exact set distance defined on a deeply connected hypergraph H is a metric.

It is clear that a hypergraph H is deeply connected if and only if its associated graph GH is

connected.

Definition 3.30. A hypergraph H is said to be deeply edge exact connected if every pair of distinct

elements of I(H) are joined by an edge exact path.

Definition 3.31. Let H be a hypergraph. The edge exact set distance between the distinct

elements S and S ′ of I(H), denoted by eesdH(S, S
′), is the length of a shortest edge exact path

joining them in H if such an edge exact path exist; ∞, otherwise. For S ∈ I(H), we define

eesdH(S, S) = 0.

Definition 3.32. The edge exact set diameter of a deeply edge exact connected hypergraph H

is the maximum of the edge exact set distance between all the pairs of elements in I(H), and we

denote it by EESD(H), i.e., EESD(H) = max{eesdH(S, S ′) | S, S ′ ∈ I(H)}.

The hypergraphH with V (H) = {1, 2, 3, 4} and E(H) = {{1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4},
{2, 3, 4}} is deeply edge exact connected. It is clear that the edge exact set distance defined on

a deeply edge exact connected hypergraph H is a semi-metric. However, it is not a metric, since

the triangle inequality may fail. For instance, in the deeply edge exact connected hypergraph H

mentioned above, eesdH({1, 4}, {2}) = 1 and eesdH({2}, {2, 4}) = 2; but eesdH({1, 4}, {2, 4}) = 4.

Definition 3.33. A hypergraph H is said to be deeply inter-uni-connected if every pair of distinct

elements of I(H) are joined by an internal unified path.
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Definition 3.34. Let H be a hypergraph. The internal unified set distance between the distinct

elements S and S ′ of I(H), denoted by iusdH(S, S
′), is the length of a shortest internal unified

path joining them in H if such an internal unified path exist; ∞, otherwise. For S ∈ I(H), we

define iusdH(S, S) = 0.

Definition 3.35. The internal unified set diameter of a deeply inter-uni connected hypergraph

H is the maximum of the internal unified set distance between all the pairs of elements in I(H),

and we denote it by IUSD(H), i.e., IUSD(H) = max{iusdH(S, S ′) | S, S ′ ∈ I(H)}.

The hypergraph H with V (H) = {1, 2, 3, 4, 5} and E(H) = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3},
{2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4},
{2, 3, 5}, {2, 4, 5}, {3, 4, 5}}} is deeply inter-uni connected. It is clear that the internal unified set

distance defined on a deeply inter-uni connected hypergraph H is a semi-metric. However, we are

neither able to prove the triangle inequality nor to find a deeply inter-uni connected hypergraph

in which the internal unified set distance defined on it violates the triangle inequality.

The relationships among the different types of connectedness of a hypergraph defined above is

given in Figure 3.

Uni-connected Inter uni-connected Edge exact connected Exactly connected

Strong uni-connected Strong edge exact connected Strong exactly connected

Deeply inter uni-connected Deeply edge exact connected Deeply connected

Figure 3: The relationships among different types of connectedness of a hypergraph

In a graph G, Definitions 3.9, 3.12, 3.15, 3.18, 3.21, 3.24, 3.27, 3.30 and 3.33 coincide with the

definition of connectedness; Definitions 3.10, 3.13, 3.16, 3.19, 3.22, 3.25, 3.28, 3.31, 3.34 coincide

with the definition of distance between two vertices; and Definitions 3.11, 3.14, 3.17, 3.20, 3.23,

3.26, 3.29, 3.32, 3.35 coincide with the definition of diameter.

Theorem 3.5. Let H be a hypergraph. Then we have the following.

(i) If H is uni-connected, then UD(H) ≥ IUD(H) ≥ EED(H) ≥ ED(H);

(ii) If H is strong uni-connected, then SUD(H) ≥ SEED(H) ≥ SED(H);

(iii) If H is deeply inter-uni-connected, then IUSD(H) ≥ EESD(H) ≥ ESD(H).

Proof. We prove the first inequality of part (i). The remaining two inequalities of part (i) can be

established similarly.
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If H is uni-connected, then it is also inter-uni connected, edge exact connected, and exactly

connected. Additionally, as an unified path is an inter-unified path, we have udH(u, v) ≥ iudH(u, v)

for all u, v ∈ V (H). It follows that UD(H) ≥ IUD(H).

The remaining two parts can be proved in a similar way as part (i) using the relationship

shown in Figure 3.

Theorem 3.6. Let H be a hypergraph. Then we have the following.

(i) If H is deeply inter-uni-connected, then IUSD(H) ≥ SUD(H) ≥ UD(H);

(ii) If H is deeply edge exact connected, then EESD(H) ≥ SEED(H) ≥ EED(H);

(iii) If H is deeply connected, then ESD(H) ≥ SED(H) ≥ ED(H).

Proof. If H is deeply inter-uni-connected, then it is strong uni-connected and uni-connected.

Notice that {sudH(u, v) | u, v ∈ V (H)} ⊆ {iusdH(S, S ′) | S, S ′ ∈ I(H)}. It follows that

IUSD(H) ≥ SUD(H). Also, we have sudH(u, v) ≥ udH(u, v) for all u, v ∈ V (H). It follows

that SUD(H) ≥ UD(H). Thus proof of part (i) is completed.

The remaining two parts can be proved in a similar way as part (i) using the relationship

shown in Figure 3.

Theorem 3.7. Let H be a simple hypergraph with e-index k.

(i) If S ≁ S ′ in I(H), then νk−1(H) ≤ 1
2
(d∗H(S) + d∗H(S

′)). In particular, if H ̸= Kk, then

νk−1(H) ≤ k − 2.

(ii) If H is deeply connected with exact diameter d, then

νk−1(H) ≤ d̂∗(H)− 2

√
d̂∗(H)− 1 +

2

⌊d
2
⌋

(√
d̂∗(H)− 1− 1

)
.

Proof. (i) If S ≁ S ′ in I(H), then S and S ′ are not adjacent in GH . Since the spectrum

of UL(H) and the spectrum of L(GH) are the same, the proof follows from part (iii) of

Lemma 3.2 and from [10, Theorem 7.4.4]: “If u and v are two non-adjacent vertices of a

simple graph G on n vertices, then νn−1(G) ≤ 1
2
(dG(u) + dG(v)). In particular, if G is not

complete, then νn−1(G) ≤ n− 2”.

(ii) Since H is deeply connected, GH is connected. Notice that the exact distance between

two vertices u, v in H is the same as the distance between the vertices Si, Sj in GH , where

Si, Sj ∈ I(H) with u ∈ Si, v ∈ Sj. Also, by the definition of exact distance and exact set

distance of a hypergraph, we have

{edH(u, v) | u, v ∈ V (H)} ⊆ {esdH(S, S ′) | S, S ′ ∈ I(H)}
= {dGH

(S, S ′) | S, S ′ ∈ V (GH)}.
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Taking maximum on both sides of the above inclusion, we have that ED(H) is less than

or equal to the diameter of GH . It is not hard to observe that ∆(GH) = d̂∗(H). Since the

spectrum of UL(H) and the spectrum of L(GH) are the same, the proof directly follows

from [10, Theorem 7.4.9].

The following theorems provide some spectral bounds on the different types of diameters of a

hypergraph defined above.

Theorem 3.8. Let H be a deeply inter uni-connected, simple hypergraph with e-index k. Then

IUSD(H) ≥ EESD(H) ≥ ESD(H) ≥
⌈

4

k · νk−1(H)

⌉
.

Proof. Since H is simple and deeply inter-uni-connected, it is clear that GH is simple and con-

nected. Also, the exact set diameter of H is the same as the diameter of GH . So, the proof follows

from [10, Theorem 7.5.5] and part (iii) of Theorem 3.5.

Theorem 3.9. Let H be a deeply connected, simple hypergraph with e-index k. Then, we have the

following:

(i) ED(H) ≤ SED(H) ≤ ESD(H) ≤ r−1, where r is the number of distinct unified Laplacian

eigenvalues of H.

(ii) If H ̸= Kk, then

ED(H) ≤ SED(H) ≤ ESD(H) ≤ 1 +

 log(k − 1)

log
(

ν1(H)+νk−1(H)

ν1(H)−νk−1(H)

)


and

ED(H) ≤ SED(H) ≤ ESD(H) ≤ 1 +

 cosh−1(k − 1)

cosh−1
(

ν1(H)+νk−1(H)

ν1(H)−νk−1(H)

)
 ;

(iii) ED(H) ≤ SED(H) ≤ ESD(H) ≤ 2

⌊√
2d̂∗(H)
νk−1(H)

log2(k)

⌋
.

Proof. Since H is simple and deeply connected, it is clear that GH is simple and connected. It

is clear that the exact set diameter of H is the same as the diameter of GH . So, the proof

follows from [10, Proposition 7.5.6 and Theorems 7.5.7, 7.5.8, 7.5.11], part (iii) of Theorem 3.6

and Lemma 3.2.

Notation 3.1. For a hypergraph H, we denote τ(H) :=
⋃

e∈E∗(H)

τ(e).

Lemma 3.3. Let H be a loopless hypergraph with e-index k. Then for any {T, T ′} ∈ τ(H), T and

T ′ can consecutively occur in at most k2

4
of any shortest exact path from S to S ′, where S, S ′ ∈ I(H)

and S ̸= S ′.
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Proof. Since any {T, T ′} ∈ τ(H) is an edge in GH , and any shortest exact path from S to S ′ in H

is a shortest path from S to S ′ in GH , the result follows from [19, Lemma 4.1]:“Let G be a simple

graph on n vertices. For each pair u, v of distinct vertices of G choose a shortest path Puv from u

to v. Then any edge in G belongs to at most n2

4
of the paths Puv”.

Theorem 3.10. Let H be a deeply connected, simple hypergraph with e-index k. Then

(i) UD(H) ≥ EED(H) ≥ ED(H) ≥ 4
kνk−1(H)

− ESD(H);

(ii) SUD(H) ≥ SEED(H) ≥ SED(H) ≥ ED(H) ≥ 4
kνk−1(H)

− ESD(H).

Proof. (i) We begin by proving the last inequality, using a method analogous to the proof of

Theorem 4.2 in [19]. Let x be an eigenvector corresponding to the eigenvalue νk−1(H). Then

we have

2k
∑

{S,S′}∈τ(H)

(xS − xS′)2 = νk−1(H)
∑

S,S′∈I(H)

(xS − xS′)2

= νk−1(H)

 ∑
(S,S′)∈Z

(xS − xS′)2 +
∑

(S,S′)∈Zc

(xS − xS′)2

 , (3.18)

where Z is the set of all ordered pairs (S, S ′) such that S and S ′ are respectively initial part

and terminal part of a shortest exact path in H with u ∈ S, v ∈ S ′ for some u, v ∈ V (H);

Zc = I(H)\Z.

Consider (S, S ′) ∈ Z. Let PSS′ := S, S1, S2, . . . , St−1, S
′ be a corresponding shortest exact

path such that u ∈ S, v ∈ S ′ for some u, v ∈ V (H), and let F(PSS′) = {{S, S1}, {S1, S2}, . . . ,
{St−1, S

′}}. Then, we have

(xS − xS′)2 = [(xS − xS1) + (xS1 − xS2) + · · ·+ (xSt−1 − xS′)]2

≤ edH(u, v)
∑

{T,T ′}∈F(PSS′ )

δ2({T, T ′})

≤ ED(H)
∑

{T,T ′}∈F(PSS′ )

δ2({T, T ′}), (3.19)

where δ2({T, T ′}) = (xT − xT ′)2.

Now consider (S, S ′) ∈ Zc. Since H is deeply connected, there exists a shortest exact path

P ′
SS′ from S to S ′. Then, similar to (3.19), we get

(xS − xS′)2 ≤ ESD(H)
∑

{T,T ′}∈F(P ′
SS′ )

δ2({T, T ′}). (3.20)
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Applying (3.19) and (3.20) in (3.18), we get

2k
∑

{S,S′}∈τ(H)

(xS − xS′)2 ≤ νk−1(H)
∑

(S,S′)∈Z

ED(H)
∑

{T,T ′}∈F(PSS′ )

δ2({T, T ′})

+ νk−1(H)
∑

(S,S′)∈Zc

ESD(H)
∑

{T,T ′}∈F(P ′
SS′ )

δ2({T, T ′})

≤ νk−1(H)
∑

{T,T ′}∈τ(H)

∑
(S,S′)∈Z

ED(H)δ2({T, T ′})χPSS′ ({T, T ′})

+ νk−1(H)
∑

{T,T ′}∈τ(H)

∑
(S,S′)∈Zc

ESD(H)δ2({T, T ′})χP ′
SS′ ({T, T

′}),

(3.21)

where χPSS′ : τ(H) → {0, 1} is the characteristic function of F(PSS′) on τ(H), i.e., for each

{T, T ′} ∈ τ(H),

χPSS′ ({T, T ′}) =

1, if {T, T ′} ∈ F(PSS′);

0, otherwise,

and similarly, χP ′
SS′ is the characteristic function of F(P ′

SS′) on τ(H).

Now from Lemma 3.3, for {T, T ′} ∈ τ(H), we have∑
(S,S′)∈Z

χPSS′ ({T, T ′}) ≤ k2

2
and

∑
(S,S′)∈Zc

χP ′
SS′ ({T, T

′}) ≤ k2

2
.

Thus substituting the above inequalities in (3.21), we have

2k
∑

{S,S′}∈τ(H)

(xS − xS′)2 ≤ νk−1(H)k2

2

 ∑
{T,T ′}∈τ(H)

δ2({T, T ′})

 (ED(H) + ESD(H)).

(3.22)

Since δ2({T, T ′}) = (xT − xT ′)2 for {T, T ′} ∈ τ(H), (3.22) becomes

2k ≤ νk−1(H)k2

2
(ED(H) + ESD(H)).

Hence the last inequality of part (i) follows.

Since H is deeply connected, it is uni-connected. Therefore, the remaining inequalities follow

from part (i) of Theorem 3.5 and the last inequality of this part.

(ii) Since H is deeply connected, it is strong uni-connected. So the first three inequality follows

from part (ii) of Theorem 3.5. Also, from part (iii) of Theorem 3.6, SED(H) ≥ ED(H).

Therefore, part (iii) follows from the last inequality of part (i) of this result.
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3.2 Deep exact components, exact trees and unified Laplacian eigen-

values

In this subsection, we introduce some more new structures on hypergraphs, and study the interplay

between these structures and unified Laplacian spectrum of the hypergraphs.

Definition 3.36. Let H be a hypergraph. Let D ⊆ I(H) be such that for each S ∈ D with

|S| > 1 has atleast one neighbor in D. The subhypergraph H ′ of H induced by all the exact paths

joining S and S ′ whose parts belongs to D for all distinct elements S, S ′ ∈ D and the vertices

corresponding to all the singletons in D is called the exact subhypergraph of H induced by D.

Notice that in a graph G, the exact subhypergraph of G induced by D is the induced subgraph

of G induced by the vertex subset D ⊆ V (G).

Example 3.1. Consider the hypergraph H shown in Figure 4(a). Let D = {{1}, {4}, {5}, {6},
{2, 3}}. Then the exact subhypergraph of H induced by D is as shown in Figure 4(b).

b b b1 2 3

b bb4 5 6

b b b1 2 3

b bb4 5 6

(a) (b)

Figure 4: (a) The hypergraph H; (b) The exact subhypergraph of H induced by D

Definition 3.37. We define a relation ρ on I(H) as follows: For S, S ′ in I(H), S ρ S ′ if and only if

either S = S ′ or there exists an exact path joining S and S ′ in H. It is not hard to see that ρ is an

equivalence relation on I(H). Let [S] denote the equivalence class of ρ determined by S ∈ I(H).

We call the exact subhypergraph of H induced by [S] as the deep exact component (or simply the

DE-component) of H corresponding to [S]. We call a DE-component of H corresponding to [S]

as trivial if [S] is a singleton and it contains a singleton element of I(H).

Notice that if G is a graph, then the DE-component of G corresponding to the equivalence

class [S] is nothing but the component of G whose vertex set is [S].

Definition 3.38. A DE-component H ′ of a hypergraph H is said to have multiplicity k if H ′ is

corresponding to exactly k distinct equivalence classes induced by ρ.

If H is a deeply connected hypergraph, then any two distinct elements in I(H) are connected

by an exact path. Therefore, ρ induces exactly one equivalence class, which is, I(H), and so H is

the only DE-component of H with multiplicity one.
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Example 3.2. Consider the hypergraphH shown in Figure 4(a). Then the equivalence classes cor-

responding to ρ are the following: [{1}] = {{1}, {2, 3}}, [{2}] = {{2}, {1, 3}}, [{3}] = {{3}, {4}, {1, 2},
{5, 6}} and [{5}] = {{5}, {6}, {4, 5}, {4, 6}}. The subhypergraphs H1, H2, H3 and H4 shown in

Figure 5 are the DE-components of H ′ corresponding to [{1}], [{2}], [{3}] and [{5}], respectively.
Notice that each DE-component of H ′ is with multiplicity one.

b b b1 2 3

b b b
1 2 3

b bb4 5 6 b bb4 5 6

H1 H2 H3

b b b1 2 3

H4

Figure 5: The DE-components of the hypergraph H

Lemma 3.4. Let H be a simple hypergraph. Then there is a one-to-one correspondence between

the set of all equivalence classes induced by ρ on I(H), and the set of all components of GH . More

precisely, there is a one-to-one correspondence between the multiset of all DE-components of H

whose number of occurrences are their multiplicities, and the set of all components of GH .

Proof. Let X be the set of all equivalence classes induced by the relation ρ on I(H), and let Y be

the set of all components of GH .

It can be easily seen that X is the same as the multiset of DE-components of H whose number

of occurrences are their multiplicities. Thus to prove this result, it is enough to show that there

is a bijection from X into Y .

Let S ∈ I(H) and let [S] ∈ X . Notice that [S] ⊆ V (GH). Now, we consider the subgraph

G′
H of GH induced by [S]. We show that G′

H is a component of GH . Let S ′, S ′′ ∈ V (G′
H). Since

V (G′
H) = [S], we have S ′ρS ′′. So, there exists an exact path in H ′ joining S ′ and S ′′ whose

parts belongs to [S]. This gives a path joining S ′ and S ′′ in G′
H . Therefore, G′

H is connected.

To show G′
H is a component of GH , it is enough to show that there is no T ∈ V (GH) with

T /∈ V (G′
H) such that T is adjacent to any T ′ ∈ V (G′

H). Suppose such a T exists. Then TρT ′ for

some T ′ ∈ V (G′
H) (= [S]) and so T ∈ [S]. This contradict to the fact that T /∈ V (G′

H). Thus,

corresponding to [S] ∈ X , we get G′
H ∈ Y whose vertex set is [S].

Now, we define a map f : X → Y by f([S]) = G′
H , where G′

H is the subgraph of GH induced

by [S]. Clearly, the map f is well defined.

We shall show that the map f is 1− 1. Let [S], [T ] ∈ X with [S] ̸= [T ]. Let G′ and G′′ ∈ Y be

the elements associated with [S] and [T ] under f . Since [S] ̸= [T ], we have S ∈ [S] but S /∈ [T ]. So,

S ∈ V (G′) but S /∈ V (G′′). Therefore, G′ and G′′ are two different components of GH , establishing

that f is 1− 1.

23



Next, we show that f is onto. Let G′
H ∈ Y . Since G′

H is connected, there is a path joining any

two of its distinct vertices. Also, there is no vertex S ∈ V (GH)\V (G′
H) is adjacent to any vertex

in G′
H . It is evident that V (G′

H) is an equivalence class induced by ρ in I(H), i.e., V (G′
H) ∈ X .

It is clear that f(V (G′
H)) = G′

H . Therefore, f is onto. This completes the proof.

Theorem 3.11. Let H be a simple hypergraph with e-index k. Then the number of DE-components

of H counting with their multiplicities equals k − r(R(H)).

Proof. Notice that r(R(H)) = r(R(GH)). Hence the proof directly follows from Lemma 3.4

and [3, Theorem 2.3]: “If G is a simple graph on n vertices and has t connected components, then

r(R(G)) = n− t”.

Theorem 3.12. Let H be a simple hypergraph. Then the algebraic multiplicity of 0 as an eigen-

value of UL(H) equals the number of DE-components of H counting with their multiplicities.

Proof. Notice that the algebraic multiplicity of the unified Laplacian eigenvalue 0 of H is the

same as the nullity of UL(H), which is equal to |I(H)| − r(UL(H)). So, the proof follows from

Lemma 3.1(iii) and Theorem 3.11.

Corollary 3.1. Let H be a simple hypergraph with e-index k. Then, νk−1(H) ̸= 0 if and only if

H is deeply connected.

Proof. Since H is simple, it is clear that from (i) and (ii) of Lemma 3.1, we have νk = 0. If H is

deeply connected, then there is exactly one DE-component of H which is H itself, and vice versa.

Therefore, there is only one equivalence class for I(H) with respect to ρ and so the multiplicity of

H is one. Now, from Theorem 3.12, we have νk−1(H) ̸= 0. Conversely, if νk−1(H) ̸= 0, then 0 is

the algebraic multiplicity of 0 as an eigenvalue of UL(H) is one. Therefore, from Theorem 3.12 H

has exactly one DE-component with multiplicity one, and so H becomes deeply connected.

From the above corollary, νk−1(H) characterize the deeply connectedness of the hypergraph

H. Thereby we define the following

Definition 3.39. Let H be a hypergraph with e-index k. We refer to the second smallest eigen-

value of UL(H) as the algebraic deep connectivity or simply the algebraic d-connectivity of H.

Definition 3.40. A hypergraph H is said to be an exact tree or simply an e-tree if for any pair

of distinct elements of I(H), there exists a unique exact path joining them in H.

It can be seen that H is an e-tree if and only if GH is a tree. In graphs, an e-tree is a tree.

Example 3.3. The hypergraph H shown in Figure 6 is an e-tree.

Definition 3.41. Let H be a hypergraph. Let H ′ be a subhypergraph of H such that I(H ′) =

I(H). If there exists D ⊆ τ(H ′) such that for any two elements S and S ′ ∈ I(H), there exist a

unique exact path (S =)S0, S1, . . . , Sn(= S ′) joining S and S ′ in H ′ with {Si, Si+1} ∈ D for all

i = 0, 1, . . . , n − 1. Then we call H ′ as an exact spanning subhypergraph of H. Also, we refer to

(H ′, D) as an exact spanning pair of H.
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b b b
1 2 3

b4

Figure 6: The e-tree H

For a graph G, an exact spanning pair (G′, D) is a spanning tree G′ in G, where D is the set

of all 2-partitions of E(G′).

Example 3.4. Consider the hypergraph H shown in Figure 7. Then H is an exact spanning

b
b

b b b

b

bb

1
2

3 4 5

78

6

Figure 7: The hypergraph H

subhypergraph of itself. In addition, (H,D1) and (H,D2) are exact spanning pair of H, where

D1 = τ(H)\{{{1}, {2, 3}}, {{1, 2}, {3}}}, and D2 = τ(H)\{{{1}, {2, 3}}, {{3}, {4, 5}}}.
Let H ′ and H ′′ be hypergraphs obtained from H by deleting the edges {1, 8} and {7, 8},

respectively. Notice that I(H) = I(H ′) = I(H ′′). Then H ′ and H ′′ are exact spanning sub-

hypergraphs of H. In addition, (H ′, D′) and (H ′′, D′′) are exact spanning pairs of H, where

D′ = τ(H ′)\{{{3}, {4, 5}}} and D′′ = τ(H ′′)\{{{3}, {4, 5}}}.

Let H be a hypergraph. Let X be an eigenvector of UL(H). For an element S ∈ I(H), we

write XS to denote the S-th entry of X.

The following theorem gives some information about the eigenvectors corresponding to the

algebraic d-connectivity of a hypergraph H.

Theorem 3.13. Let H be an e-tree. Let X be an eigenvector corresponding to the algebraic

d-connectivity of H. Then exactly one of the following holds:

• No entry of X is zero. In this case, there exists a unique pair of elements of I(H), say S, S ′

such that S ∼ S ′ with XS > 0 and XS′ < 0. Further, the entries of X are increasing along

any exact path in H which starts at S and does not contain S ′ as its part, while the entries
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of X are decreasing along any exact path in H which starts at S ′ and does not contain S as

its part.

• N0 = {S ∈ I(H) | XS = 0} is non-empty and any pair of elements in it are joined by an

exact path in H. Moreover, there is a unique T ∈ N0 such that T ∼ T ′ with T ′ /∈ N0. The

entries of X are either increasing, decreasing, or identically 0 along any exact path in H

which starts at T .

Proof. Since H is an e-tree, GH is a tree. Also, UL(H) = L(GH). So, the result directly follows

from [13, Proposition 1.1].

Theorem 3.14. Let H be a non-trivial e-tree. Then the multiplicity of any eigenvalue of H cannot

exceed the number of elements S ∈ I(H) with d∗H(S) = 1.

Proof. Notice that the set of all elements S ∈ I(H) with d∗H(S) = 1 is nothing but the set of all

pendent vertices of GH . It is known that the multiplicity of any eigenvalue of a non-trivial tree T

is bounded above by the number of pendent vertices of T (c.f [10, Excercise 5.2]). So, the result

follows.

Lemma 3.5. Let H be a simple hypergraph. Then there is a one-to-one correspondence between

the set of all exact spanning pairs of H, and the set of all spanning subgraphs of GH .

Proof. Let X be the set of all exact spanning pairs (H ′, D) of H, and let Y be the set of all

spanning trees G of GH .

We show that there is a bijection from X into Y .

Let (H ′, D) ∈ X . Then by the definition of exact spanning pair, given any two elements S and

S ′ of I(H), there exists a unique exact path (S =)S0, S1, . . . , Sn(= S ′) in H ′ with {Si, Si+1} ∈ D

for all i = 0, 1, . . . , n − 1. Corresponding to this we get a unique path joining the vertices S and

S ′ in GH . Let G be the subgraph of GH induced by these unique paths. Notice that I(H) =

V (GH) = V (G). Therefore, G ∈ Y .

Using the above construction, we define a map f : X → Y by f((H ′, D)) = G. Clearly, f is

well defined.

Now, we shall show that f is 1− 1. Let (H ′, D′) and (H ′′, D′′) ∈ X with (H ′, D′) ̸= (H ′′, D′′).

Let G′ and G′′ ∈ Y be corresponding to (H ′, D′) and (H ′′, D′′) under f , respectively. Since

D′ ̸= D′′, without loss of generality, we assume that {S, S ′} ∈ D′ but {S, S ′} /∈ D′′. This implies

that S ∪ S ′ is an edge in G′ but not an edge in G′′. Therefore, G ̸= G′′. So f is 1− 1.

Finally, we shall show that f is onto. Let G ∈ Y . Let H ′ be the subhypergraph of H induced

by all the edges S ∪ S ′, where SS ′ ∈ E(G). Since V (G) = I(H) and by the definition of spanning

tree, corresponding to each unique path in G, there exists a unique exact path in H ′ joining any

two elements of I(H). Then clearly, (H ′, D′) ∈ X, where D′ = {{S, S ′} | SS ′ ∈ E(G)}. Also,

notice that f((H ′, D′)) = G. Thus f is onto.
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The Matrix-Tree Theorem for a graph G states that each cofactor of L(G) equals the number

of spanning trees of G (c.f. [3, Theorem 4.8]). A hypergraph version of the Matrix-Tree Theorem

for a graph is given below.

Theorem 3.15. Let H be a simple hypergraph. Any cofactor of UL(H) is equal to the number of

exact spanning pairs of H.

Proof. Since H is simple, GH is also simple and vice versa. By Lemma 3.1(iv), all the cofactors

of UL(H) are equal. Thus the result follows from Lemma 3.5, the fact UL(H) = L(GH) and by

applying the Matrix-Tree Theorem to GH .

We refer to the theorem stated above as the Matrix-Exact Spanning Subhypergraph Theorem

for hypergraphs. When applied to graphs, it coincides with the Matrix-Tree Theorem.

Theorem 3.16. If H is a simple hypergraph, then the number exact spanning pairs of H equals
1
k
ν1(H)ν2(H) · · · νk−1(H).

Proof. If H is simple, then the eigenvalues of UL(H) and L(GH) are the same. So, the result

follows from Lemma 3.5 and from [3, Theorem 4.11]:“Let G be a simple graph on n vertices. Let

the eigenvalues of L(G) be ν1(G) ≥ ν2(G) ≥ · · · ≥ νn(G) = 0. Then the number of spanning trees

of G equals 1
n
ν1(G)ν2(G) · · · νn−1(G)”.

4 Unified signless Laplacian matrix of a hypergraph

In this section, we introduce the unified signless Laplacian matrix of a hypergraph and study the

interplay between the properties of this matrix with the properties of the hypergraph.

Definition 4.1. The unified signless Laplacian matrix of a hypergraph H, denoted by UQ(H), is

defined as UD(H) +U(H).

Let H be a hypergraph with e-index k. SinceUQ(H) is a real symmetric matrix, its eigenvalues

are all real. We denote them by ξ1(H), ξ2(H), . . . , ξk(H) and we shall assume that ξ1(H) ≥ ξ2(H) ≥
· · · ≥ ξk(H), where k is the e-index of H. The characteristic polynomial of UQ(H) is said to be

the unified signless Laplacian characteristic polynomial of H. An eigenvalue of UQ(H) is said

to be a unified signless Laplacian eigenvalue of H and the spectrum of UQ(H) is said to be the

unified signless Laplacian spectrum of H, or simply the UQ-spectrum of H.

Definition 4.2. Let H be a simple hypergraph. The edge parts incidence matrix of H, denoted

by B(H), is the 0 − 1 matrix of order k × |τ(H)| whose rows and columns are indexed by the

elements of I(H) and τ(H), respectively. The (Si, Tj)−th entry of B(H) is 1 if and only if Si ∈ Tj.

Notice that for a loopless hypergraph H, UQ(H) = Q(GH). If H is simple, then B(H) =

B(GH). Since Q(GH) = B(GH)B(GH)
T , it follows that UQ(H) = B(H)B(H)T .

27



Also, if H is a loopless graph, then UQ(H) = Q(H), and so the eigenvalues of Q(H) and

UQ(H) are the same. Thereby, we denote the eigenvalues of these two matrices commonly as

ξi(H), i = 1, 2, . . . , k. These reveals that the unified signless Laplacian matrix of a hypergraph is

a natural generalization of the signless Laplacian matrix of a loopless graph.

The following are some simple observations on the unified signless Laplacian matrix of a hy-

pergraph.

Lemma 4.1. Let H be a hypergraph with e-index k. Then, we have the following.

(i) If H is simple, then UQ(H) is positive semi-definite;

(ii)
k∑

i=1

ξi(H) = vol(H) +
∑

{v}∈E(H)

m({v}) = 2

( ∑
e∈E∗(H)

m(e)|τ(e)|+
∑

{v}∈E(H)

m({v})

)
.

Proof. (i) Since H is simple, UQ(H) = Q(GH). The result follows from the fact that Q(GH) is

positive semi-definite.

(ii) First equality follows from the fact that

k∑
i=1

ξi(H) = tr(UQ(H)) = vol(H) +
∑

{v}∈E(H)

m({v}). (4.1)

Second equality follows by substituting the expression for vol(H) mentioned in Lemma 3.1(v)

in (4.1).

Theorem 4.1. Let H be a simple hypergraph having no odd exact cycle. Then, B(H) is totally

unimodular.

Proof. Since H has no odd exact cycle, it follows that GH has no odd cycle and hence GH is bi-

partite. Since, B(H) and B(GH) have the same spectrum, the proof follows from [3, Lemma 2.19]:

“If G is a bipartite graph, then B(G) is totally unimodular”.

Theorem 4.2. Let H be a hypergraph with e-index k. Let e ∈ E(H) be a non-loop edge such that

I(H − er) = I(H), where 0 < r ≤ m(e). Then the following hold:

If |e| = 2, then

0 ≤ ξk(H − er) ≤ ξk(H) ≤ ξk−1(H − er) ≤ ξk−1(H) ≤ · · · ≤ ξ2(H) ≤ ξ1(H − er) ≤ ξ1(H);

otherwise,

0 ≤ ξk(H − er) ≤ ξk(H) ≤ ξk−1(H − er) + 2r ≤ ξk−1(H) + 2r ≤ ξk−2(H − er) + 4r ≤
ξk−2(H) + 4r ≤ · · · ≤ ξ2(H) + (k − 2)2r ≤ ξ1(H − er) + (k − 1)2r ≤ ξ1(H) + (k − 1)2r.

Proof. Proof is similar to that of Theorem 3.4.
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Theorem 4.3. Let H be a simple hypergraph having no odd exact cycle, then the characteristic

polynomial of UQ(H) coincides with the characteristic polynomial of UL(H).

Proof. If H is simple and has no odd exact cycles, GH is a simple bipartite graph. Since

UQ(H) = Q(GH) and UL(H) = L(GH), the proof follows from [10, Proposition 7.8.4]:“For any

simple bipartite graph G, the characteristic polynomial of Q(G) coincides with the characteristic

polynomial of L(G)”

Theorem 4.4. Let H be a non-trivial, deeply connected, simple hypergraph with e-index k. Then,

H has no odd exact cycle if and only if ξk(H) = 0. Also, in this case, 0 is a simple unified signless

Laplacian eigenvalue.

Proof. Since H is a non-trivial, deeply connected, simple hypergraph with e-index k, it turns out

that GH is a non-trivial, connected, simple graph on k vertices. Notice that a DE-component of H

has no odd exact cycle if and only if all the components ofGH corresponding to thisDE-component

are bipartite. Since UQ(H) = Q(GH), the result directly follows from [10, Theorem 7.8.1]: “Let

G be a non-trivial connected simple graph with n vertices. Then G is bipartite if and only if

ξn(G) = 0. In this situation, 0 is a simple eigenvalue”.

Corollary 4.1. Let H be a hypergraph. Then the multiplicity of the eigenvalue 0 of UQ(H) is

equal to the sum of the number of trivial DE-components of H and the number of non-trivial

equivalence classes [S] induced by ρ on I(H) such that no T ∈ [S] is a part of an odd exact cycle

in H. In particular, if H has no odd exact cycle, then the multiplicity of the eigenvalue 0 of

UQ(H) is the number of DE-components of H counted with their multiplicities.

Proof. If a component of the associated graph GH of H is non-trivial, then by Theorem 4.4, this

component has 0 as its signless Laplacian eigenvalue with multiplicity one if and only if it has no

odd exact cycle. i.e., GH is bipartite. Since the eigenvalues of UQ(H) includes all the eigenvalues

of each component of GH , it follows that H has 0 as its signless Laplacian eigenvalue, with the

multiplicity equal to the number of components of GH which are either trivial or bipartite.

Since for each component of GH , there exists a unique equivalence class induced by ρ on

I(H) (c.f. Lemma 3.4), let [S] be the equivalence class corresponding to a non-trivial bipartite

component G′ of GH . Since G′ has no odd cycle, it is clear that no T ∈ [S] is a part of an odd

exact cycle in H. Therefore, the number of bipartite components of GH is the same as the number

of such equivalence classes induced by ρ on I(H).

Additionally, a DE-component of H is trivial if and only if the corresponding component of

GH is trivial. Therefore, the number of trivial components in GH is the same as the number of

trivial DE-components of H.

In particular, no T ∈ I(H) is a part of an odd exact cycle, as H has no such exact cycles. Thus,

the proof follows from the fact that the number of equivalance classes induced by ρ on I(H) is equal

to the number of DE-components of H, counted with their multiplicities (c.f. Lemma 3.4).
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Definition 4.3. A hypergraph H is said to be subset-regular, if the unified degree of all S ∈ I(H)

are the same.

It is clear that a subset-regular graph is a regular graph.

Theorem 4.5. Let H be a simple hypergraph with e-index k and no included edges. Then, ξ1(H) ≥
4
k
|τ(H)|. Equality holds if and only if H is subset-regular. Furthermore, if H is subset-regular,

then the degree of any S ∈ I(H) is ξ1(H)
2

, and the number of DE-components counted with their

multiplicities equals the algebraic multiplicity of ξ1(H).

Proof. Since, each edge of GH corresponds to an element in τ(H), and vice versa, we have

|E(GH)| = |τ(H)|. Notice that H has no included edges and is subset-regular if and only if

GH is regular. Therefore, the proof directly follows from [10, Theorem 7.8.6].

Theorem 4.6. Let H be a hypergraph with e-index k. Then,

ξk(H) ≤ 2

k

 ∑
e∈E∗(H)

m(e)|τ(e)|+
∑

{v}∈E(H)

m({v})

 ≤ ξ1(H)

Proof. Notice that ξk(H) ≤ ξi(H) ≤ ξ1(H) for all i = 1, 2, . . . , k. Adding these inequalities for

i = 1, 2, . . . , k and from Lemma 4.1(ii), the result follows.

Theorem 4.7. Let H be a simple hypergraph with e-index k. Let I(H) = {S1, S2, . . . , Sk}. If

d∗H(S1) ≥ d∗H(S2) ≥ · · · ≥ d∗H(Sk), then
t∑

i=1

ξi(H) ≥
t∑

i=1

d∗H(Si) for t = 1, 2, . . . , k. The equality

holds when t = k.

Proof. Since UQ(H) is positive semi-definite and from [10, Theorem 1.3.2]:“Let M be a positive

semi-definite matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then
r∑

i=1

λi is bounded below by the

sum of the r largest diagonal entries of M”, we obtain the inequalities of this result. Moreover, if

t = k, equality holds by Lemma 4.1(ii).

Theorem 4.8. For a simple hypergraph H, we have 2m∗(H) ≤ ξ1(H) ≤ 2∆(H). In addition, if

H is deeply connected, then the equality holds in either place if and only if H is subset-regular and

has no included edges.

Proof. It is clear that H is simple if and only if GH is simple. As the elements of I(H) are the

vertices of GH , we have δ(GH) = m∗(H). Notice that H is deeply connected if and only if GH is

connected. Moreover, H is subset-regular and has no included edges if and only if GH is regular.

Therefore, the proof follows from [10, Proposition 7.8.14]: “For any simple graph G, we have

2δ(G) ≤ ξ1(G) ≤ 2∆(G). For a connected graph G, equality holds in either place if and only if G

is regular”.
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Theorem 4.9. Let H be a simple hypergraph with e-index k. Then, min{d∗H(S) + d∗H(S
′)} ≤

ξ1(H) ≤ max{d∗H(S) + d∗H(S
′)}, where the minimum and the maximum runs over all the elements

{S, S ′} of τ(H).

Proof. Notice that two vertices S and S ′ in GH are adjacent if and only if {S, S ′} ∈ τ(H). Since

the degree of a vertex S in GH is the same as d∗H(S) in H, and since ξ1(GH) = ξ1(H), the proof

directly follows from [10, Theorem 7.8.15]: “Let G be a simple graph on n vertices with vertex

degrees d1, d2, . . . , dn. Then, min{di+ dj} ≤ ξ1(G) ≤ max{di+ dj}, where (i, j) runs over all pairs
of adjacent vertices of G”.

Theorem 4.10. Let H be a simple hypergraph. Then the following holds:

(i) ξ1(H) = 0 if and only if H has no edges;

(ii) ξ1(H) < 4 if and only if all the DE-components of H are exact paths;

(iii) For a deeply connected hypergraph H, ξ1(H) = 4 if and only if H is either a cycle graph or

K1,3.

Proof. (i) Notice that H has no edge if and only if GH has no edge.

(ii) Let H ′ be an DE-component of H corresponding to the equivalence class [S], where S ∈
I(H). Then by Lemma 3.4, [S] admits a component G′ in GH under f . Let [S] =

{S1, S2, . . . , Sn}. It is clear that if G′ is a path in GH with vertices S1, S2, . . . , Sn, then

H ′ is an exact path in H with parts S1, S2, . . . , Sn, and vice versa.

Thus all the DE-components of H are exact paths if and only if all the components of GH

are paths.

(iii) If H is deeply connected, then GH is connected. Also, from parts (ii) and (iv) of Lemma 3.2,

GH
∼= Cn if and only if H ∼= Cn and GH

∼= K1,3 if and only if H ∼= K1,3.

Since UQ(H) = Q(GH), the proof follows from [10, Proposition 7.8.16] and from the above

facts.

Theorem 4.11. Let H be a deeply connected, simple hypergraph with e-index k. Then, 2 +

2 cos π
k
≤ ξ1(H) ≤ 2k − 2. The lower bound is attained for Pk, and the upper bound is for Kk.

Proof. Since H is deeply connnected and simple, it follows that GH is connected and simple. The

proof follows from parts (i), (iii) of Lemma 3.2 and [10, Proposition 7.8.17]: “Let G be a connected

graph on n vertices. Then, 2 + 2 cos π
n
≤ ξ1(G) ≤ 2n − 2. The lower bound is attained for Pn,

and the upper bound is for Kn”.
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5 Unified normalized Laplacian matrix of a hypergraph

In this section, we introduce the unified normalized Laplacian matrix of a hypergraph and study

its spectral properties. Also, we bound its eigenvalues using hypergraph invariants.

Definition 5.1. Let H be a hypergraph with e-index k. The unified normalized Laplacian matrix

of H, denoted by UL(H), is the matrix of order k whose rows and columns are indexed by the

elements of I(H) and for all Si, Sj ∈ I(H),

the (Si, Sj)
th entry of UL(H) =



1, if i = j, and |Si| ≠ 1;

1− m({Si})
d∗H(Si)

, if i = j, |Si| = 1 and Si ∈ E(H);

− c√
d∗H(Si)d∗H(Sj)

, if Si
c∼ Sj;

0, otherwise.

It can be seen that if H has no isolated vertices, then UL(H) = UD(H)−
1
2UL(H)UD(H)−

1
2 .

Since UL(H) is real symmetric, its eigenvalues all are real. We denote them by ν̂1(H), ν̂2(H),

. . . , ν̂k(H) and we shall assume that ν̂1(H) ≥ ν̂2(H) ≥ · · · ≥ ν̂k(H). The characteristic polynomial

of UL(H) is said to be the unified normalized Laplacian characteristic polynomial of H. An

eigenvalue ofUL(H) is said to be a unified normalized Laplacian eigenvalue of H and the spectrum

ofUL(H) is said to be the unified normalized Laplacian spectrum of H, or simplyUL(H)-spectrum

of H.

Note 5.1. For a loopless hypergraph H, UL(H) = L̂(GH). A hypergraph H has no isolated

vertices if and only if GH has no isolated vertices: For, suppose that H has no isolated vertices.

Notice that a vertex of GH is corresponding to either a vertex of H or a proper subset of an edge

of H. So, by the construction of GH , the vertices of GH cannot be isolated. The converse is clear.

It is known that for a loopless hypergraph H, UD(H) = D(GH) and UL(H) = L(GH). In view of

these, for a loopless hypergaph H having no isolated vertices, we have

UL(H) = UD(H)−
1
2UL(H)UD(H)−

1
2 = D(GH)

− 1
2L(GH)D(GH)

− 1
2 = L̂(GH).

On the other hand, if H is a loopless graph, then UL(H) = L̂(H) and so the eigenvalues

of UL(H) and L̂(H) are the same. Thereby, we denote the eigenvalues of these two matrices

commonly as ν̂i(H), i = 1, 2, . . . , k. These shows that the unified normalized Laplacian matrix of

a hypergraph is natural generalization of the normalized Laplacian matrix of a loopless graph.

Theorem 5.1. If H is a hypergraph, then UL(H) is singular.

Proof. If H has no edge, then the result is obvious. If H has atleast one edge, then the vector

UD(H)
1
2Jk×1 is non-zero. Then, it can be easily seen that 0 is an eigenvalue of UL(H) corre-

sponding to the eigenvector UD(H)
1
2Jk×1 and so UL(H) is singular.
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The following theorem counts the arithmetic multiplicity of the zero eigenvalue of UL(H) using

DE-components of H.

Theorem 5.2. The number of DE-components of a simple hypergraph H counted with their

multiplicities equals the arithmetic multiplicity of 0 as the eigenvalue of UL(H).

Proof. As the number of components of GH equals the number of DE-components of H counting

with their multiplicities (c.f. Lemma 3.4), the proof directly follows from [10, Theorem 7.7.3]:

“The multiplicity of 0 as an eigenvalue of L̂(G) equals the number of components of a simple

graph G”.

Theorem 5.3. Let H be a simple hypergraph with e-index k (≥ 2). Then, we have the following.

(i)
k∑

i=1

ν̂i(H) ≤ k, equality holds if and only if H has no trivial DE-component;

(ii) If H ̸= Kk, then ν̂k−1(H) ≤ 1;

(iii) If H has no isolated vertices, then ν̂k−1(H) ≤ k
k−1

and ν̂1(H) ≥ k
k−1

; Equality holds if and

only if H = Kk;

(iv) ν̂1(H) ≤ 2, with equality if and only if there exists a non-trivial equivalence class [S] induced

by ρ on I(H) such that no T ∈ [S] is a part of an odd exact cycle in H;

(v)
k∑

i=1

ν̂i(H) = k − t, where t is the number of trivial DE-components of H.

Proof. We observe the following: If the e-index of H is atleast 2, then GH has atleast 2 vertices.

Also, H is simple if and only if GH is simple.

Since UL(H) = L̂(GH), the results (i)-(iv) follow from [10, Theorem 7.7.2] and from the

respective arguments given below.

(i) From Lemma 3.2(v), it is known that H has no isolated vertices if and only if GH has no

isolated vertices. Also, notice that in a simple hypergraph, the isolated vertices are the

trivial DE-components of H.

(ii) and (iii) follows from Lemma 3.2(iii).

(iv) As in the proof of Lemma 3.4, if H has a non-trivial DE-component H ′ corresponding to

[S], then [S] admits a non-trivial component G′
H in GH under f . Notice that [S] has no T

as a part of any odd exact cycle if and only if G′
H has no odd cycle and so it is bipartite.

Thus H has a non-trivial DE-component which has no odd exact cycle if and only if GH

has a non-trivial bipartite component.
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(v) Suppose H has t trivial DE-components. Then H has t isolated vertices. Let H ′ be the

subhypergraph of H obtained by deleting all its isolated vertices. Then, H ′ has no trivial

DE-component and has e-index k − t. Therefore, by part (i),
k−t∑
i=1

ν̂i(H
′) = k − t. Since the

trace of UL(H) and UL(H ′) are the same, we have
k−t∑
i=1

ν̂i(H
′) =

k∑
i=1

ν̂i(H).

Corollary 5.1. Let H be a hypergraph. Then the multiplicity of the eigenvalue 2 of UL(H)

is equal to the number of non-trivial equivalence classes [S] induced by ρ on I(H) such that no

T ∈ [S] is a part of an odd exact cycle in H. In particular, if H has no odd exact cycle, then the

number of non-trivial DE-components of H counted with their multiplicities equals the arithmetic

multiplicity of 2 as the eigenvalue of UL(H).

Proof. Let [S] be a non-trivial equivalence class induced by ρ on I(H) such that no T ∈ [S]

is part of an odd exact cycle in H. Corresponding to [S], there exists a component G′ of GH

(c.f. Lemma 3.4). Also, notice that V (G′)(= [S]) is an equivalence class induced by ρ on V (GH).

Thus from Theorem 5.3(iv), G′ has 2 as a normalized Laplacian eigenvalue. Since the eigenvalues

of UL(H) contains all the eigenvalues of each component of GH , it follows that H has 2 as its

normalized Laplacian eigenvalue with multiplicity equals the number of equivalence classes induced

by ρ on I(H) such that no T ∈ [S] is part of an odd exact cycle in H.

In particular, if H has no odd exact cycle, no T ∈ I(H) is part of an odd exact cycle. Then

proof follows from the fact that the number of equivalance classes induced by ρ on I(H) equals

the number of DE-components of H, counted with their multiplicities.

Theorem 5.4. A simple hypergraph H with e-index k has no odd exact cycle if and only if

ν̂1(H) = 2 with the same multiplicity as ν̂k(H).

Proof. It is clear that H has no odd exact cycle if and only if GH has no odd cycle, i.e., if and only

if GH is bipartite. So, the result follows from [10, Corollary 7.7.4]: “A simple graph G is bipartite

on n vertices if and only if the eigenvalue ν̂1(G) = 2 with the same multiplicity as ν̂n(G)”.

Theorem 5.5. Let H be a simple deeply connected hypergraph. If each edge of H belongs to at

least r exact cycles of length 3, then

ν̂1(H) ≤ max
S∈I(H)

{
1 +

1

2d∗H(S)

(√
4d∗H(S)(t(S)− r) + r2 − r

)}
,

where t(S) =
∑

S′∈NH(S)

d∗H(S
′). The equality holds for Kr+2.

Proof. Since H is simple and deeply connected, it follows that GH is simple and connected. Now,

the result follows from [16, Theorem 3.2], Lemma 3.2(iii) and from the fact that an exact cycle of

length 3 in H becomes a triangle in GH .
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Theorem 5.6. Let H be a simple deeply connected hypergraph with e-index k. Then we have the

following.

(i) ν̂k−1(H) ≥ 1

ESD(H)vol(H)
;

(ii) If ESD(H) ≥ 4, then ν̂k−1(H) ≤ 1− 2

√
d̂∗(H)− 1

d̂∗(H)

(
1− 2

ESD(H)

)
+

2

ESD(H)
.

Proof. Since H is simple and deeply connected, GH is simple and connected. Also, notice that

ESD(H) is the same as the diameter of GH . Part (i) directly follows from [8, Lemma 1.9]. It is

not hard to observe that ∆(GH) = d̂∗(H). Thus, part (ii) follows from [8, Lemma 1.14].

Theorem 5.7. Let H be a simple deeply connected hypergraph. Then

ν̂1(H) ≥ 2|τ(H)|
2|τ(H)| −∆(H)

.

Proof. It is clear that the number of edges in GH equals |τ(H)|. Notice that ∆(H) = ∆(GH).

So, the result follows from [16, Corollary 3.6]: “Let G be a simple connected graph with m edges.

Then ν̂1(G) ≥ 2m
2m−∆(G)

”.

Theorem 5.8. Let H be a simple deeply connected hypergraph with e-index k.

(i) If H ̸= Kk, then ν̂k−1(H) = 1 if and only if H is a complete multipartite graph;

(ii) ν̂2(H) ≥ 1; the equality holds if and only if H is a complete bipartite graph.

Proof. Since H is a simple and deeply connected hypergraph, GH is a simple connected graph.

Part (i) follows from parts (iii), (iv) of Lemma 3.2 and from [16, Theorem 3.11]: “Let G( ̸= Kn)

be a simple connected graph on n vertices. Then ν̂n−1(G) = 1 if and only if G is a complete

multipartite graph”.

Part (ii) follows from Lemma 3.2(iv) and from [16, Theorem 3.12]: “Let G be a connected

graph on n vertices. Then ν̂2(G) ≥ 1. The equality holds if and only if G is a complete bipartite

graph”.

5.1 Unified Cheeger constant, exact set distance and unified normal-

ized Laplacian eigenvalues

In this subsection, we introduce the unified Cheeger constant of a hypergraph, and the exact set

distance between two subsets of I(H); and obtain some spectral bounds on these invariants.

Definition 5.2. Let H be a simple hypergraph. Let X and Y be non-empty subsets of I(H). We

denote Ê(X ,Y) = {{S, S ′} ∈ τ(H) : S ∈ X , S ′ ∈ Y or S ∈ Y , S ′ ∈ X}. Let X c := I(H)\X . Then

we denote Ê(X ,X c) simply by Ê(X ).
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For a non-empty proper subset X of I(H), we define

uc(X ) =
|Ê(X )|

min{volH(X ), volH(X c)}
.

We define the unified Cheeger constant of H as

uc(H) = min
X⊂I(H)

uc(X ).

Notice that each edge in Ê(X ) of H contributes to the values volH(X ) and volH(X c). So we

have min{volH(X ), volH(X c)} ≥ |Ê(X )|. Therefore, for any simple hypergraph, uc(X) ≤ 1 and

so, uc(H) ≤ 1.

Theorem 5.9. Let H be a simple hypergraph with e-index k and let ν∗(H) = max
i ̸=k

|1− ν̂i(H)|. Let
X and Y be two non-empty subsets of I(H). Then we have the following.

(i)

∣∣∣∣|Ê(X ,Y)| − volH(X )volH(Y)

vol(H)

∣∣∣∣ ≤ ν∗(H)
√

volH(X )volH(Y);

(ii)

∣∣∣∣|Ê(X ,Y)| − volH(X )volH(Y)

vol(H)

∣∣∣∣ ≤ ν∗(H)

√
volH(X )volH(Y)volH(X c)volH(Yc)

vol(H)
;

(iii)

∣∣∣∣|Ê(X ,X )| − volH(X )2

vol(H)

∣∣∣∣ ≤ ν∗(H)

√
volH(X )volH(X c)

vol(H)
≤ ν∗(H)volH(X );

Proof. Notice that for any S ⊂ I(H), volH(S) = vol(S). Also, |Ê(X ,Y)| = |E(X ,Y)|. Since the

spectrum of UL(H) and L̂(GH) are the same, the parts (i), (ii) and (iii) follows from Theorems 5.1,

5.2 and Corollary 5.3 of [8], respectively.

Theorem 5.10. Let H be a simple, deeply connected hypergraph. Then for any non-empty subset

S ⊆ I(H), we have

ν̂1(H) ≥ 2|τ(H)|
volH(S)(2τ(H)− volH(S))

.

Proof. The number of edges in GH equals |τ(H)|. Also, notice that volH(S) = vol(S). So, the

result directly follows from [16, Theorem 3.5].

Theorem 5.11. Let H be a simple deeply connected hypergraph with e-index k. Then we have the

following.

(i) uc(H)2 < 2ν̂k−1(H) ≤ 4uc(H);

(ii) ν̂k−1(H) > 1−
√

1− uc(H)2.

Proof. Since uc(H) = h(GH) and UL(H) = L̂(GH), the results (i) and (ii) directly follow from

Lemma 2.1, Theorems 2.2 and 2.3 of [8].
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Definition 5.3. Let X and Y be two non-empty subsets of I(H). We define the exact set distance

between X and Y as the minimum of the exact set distance between each S ∈ X and S ′ ∈ Y . We

denote it by esdH(X ,Y), i.e., esdH(X ,Y) = min{esdH(S, S ′) : S ∈ X , S ′ ∈ Y}.

Theorem 5.12. Let H be a simple hypergraph with e-index k.

(1) Let X and Y be proper subsets of I(H).

(i) If H ≇ Kk, then esdH(X ,Y) ≤


log
√

volH(X c)volH(Yc)
volH(X )volH(Y)

log ν̂1(H)+ν̂k−1(H)

ν̂1(H)−ν̂k−1(H)

;
(ii) If H ≇ Kk, then esdH(X ,Y) ≤


cosh−1

√
volH(X c)volH(Yc)
volH(X )volH(Y)

cosh−1 ν̂1(H)+ν̂k−1(H)

ν̂1(H)−ν̂k−1(H)

.
(2) Let Xi be proper subsets of I(H), i = 1, 2, . . . , t.

(i) If H ≇ Kk, then min
i ̸=j

esdH(Xi,Xj) ≤ max
i ̸=j


log
√

volH(X c
i )volH(X c

j )

volH(Xi)volH(Xj)

log 1
1−ν̂k−t+1(H)

 , whenever 1 −

ν̂k−t+1(H) ≥ ν̂1(H)− 1;

(ii) min
i ̸=j

esdH(Xi,Xj) ≤ max
i ̸=j


log
√

volH(X c
i )volH(X c

j )

volH(Xi)volH(Xj)

log ν̂1(H)+ν̂k−t+1(H)

ν̂1(H)−ν̂k−t+1(H)

, if ν̂1(H) ̸= ν̂k−t+1(H);

(iii) min
i ̸=j

esdH(Xi,Xj) ≤ min
1≤j≤t

max
i ̸=j


log
√

volH(X c
i )volH(X c

j )

volH(Xi)volH(Xj)

log
ν̂j+1(H)+ν̂k−t+j−1(H)

ν̂j+1(H)−ν̂k−t+j−1(H)

, if ν̂j+1(H) ̸= ν̂k−t+j−1(H);

Proof. Since esdH(S, S
′) is the same as the distance between two vertices S and S ′ in GH , it can

be easily seen that esdH(X ,Y) is the same as the distance between the vertex subsets X and Y
of GH . Also, for any S ⊂ I(H), we have volH(S) = vol(S) and UL(H) = L̂(GH). Thus (i)-(ii)

of part 1, and (i)-(iii) of part 2 follow from Lemma 3.2(iii) and Theorems 3.1, 3.3, 3.10, 3.11 and

3.12 of [8].

6 Cospectral hypergraphs

In this section, we present some facts about cospectral hypergraphs with respect to the four

matrices considered in this paper.

Hypergraphs that have the same spectrum of an associated matrix M are referred to as cospec-

tral hypergraphs with respect to M , or simply M -cospectral hypergraphs. A hypergraph H is said

to be determined by its spectrum with respect toM if there is no other non-isomorphic hypergraph

M -cospectral with H.
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The cospectrality of graphs with respect to the adjacency matrix, Laplacian matrix, signless

Laplacian matrix, and normalized Laplacian matrix has been studied in the literature (see, for

example, [5],[7],[14]). In addition, graphs that are determined by the spectrum of each of these

four matrices are found in the literature (see, for example, [4],[18],[25]).

Since a loopless hypergraph and its associated graph have the same unified spectrum, unified

Laplacian spectrum, unified signless Laplacian spectrum and unified normalized Laplacian spec-

trum, the problem of finding the cospectral hypergraphs with respect to the unified matrix (resp.

unified Laplacian matrix, unified signless Laplacian matrix and unified normalized Laplacian ma-

trix) reduces to addressing the following question: “For a given family G of cospectral graphs

having at least one loopless graph with respect to the adjacency matrix (resp. Laplacian matrix,

signless Laplacian matrix and normalized Laplacian matrix), what is the family of hypergraphs

whose associated graphs belongs to G?”
The number of cospectral families of all loopless graphs with respect to the adjacency matrix

is the same as the number of cospectral families of all loopless hypergraphs with respect to the

unified matrix. Moreover, each such cospectral family G of loopless graphs must be contained in

the cospectral family H of loopless hypergraphs whose associated graphs belong to G. However,

G and H are the same if and only if for each G ∈ G, there is no hypergraph H ∈ H, other than

G whose associated graph is G. For instance, as per [25], the graphs Pn, Cn, Kn, and Km,m are

uniquely determined with respect to the adjacency spectra. Consequently, the cospectral family

G of each of these graphs must consist of only that graph. With these information and from

Lemmas 3.2, we conclude that H = G for each of these graphs.

Since, the unified matrix of a loopless hypergraph and its associated graph are the same, and

the unified matrix and the adjacency matrix of a loopless graph are the same, we conclude that

any loopless hypergraph which is determined by the spectrum of its unified matrix must, in fact,

be a graph and that is determined by the adjacency spectrum. Conversely, a graph which is

determined by its adjacency spectrum may not necessarily be determined by its unified spectrum.

For instance, the graph G, which is the disjoint union of 3 copies of K2, is determined with respect

to the adjacency matrix (c.f. [25]); but not with respect to the unified matrix, since G and the

complete hypergraph on 3 vertices have the same unified spectrum. However, the converse is

true if the following condition is satisfied: Let G be a graph which is determined by its adjacency

spectrum. Then G is determined by its unified spectrum if and only if there is no hypergraph, other

than G itself, whose associated graph is G.

The above information regarding the unified matrix of a hypergraph also applies to the unified

Laplacian matrix, the unified signless Laplacian matrix and the unified normalized Laplacian

matrix.
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Conclusion

The unified Laplacian matrix, unified signless Laplacian matrix and unified normalized Lapla-

cian matrix associated with a hypergraph provides a unified approach for linking spectral hyper-

graph theory with the spectra of the adjacency matrices of graphs. In this context, we intro-

duced certain hypergraph structures and invariants, such as edge exact connectedness, inter-uni-

connectedness, uni-connectedness, strong exactly connectedness, strong edge exact connectedness,

strong uni-connectedness, deeply connectedness, deeply edge exact connectedness, deeply inter-

uni-connectedness, edge exact distance, internal unified distance, unified distance, strong exact

distance, strong edge exact distance, strong unified distance, exact set distance, edge exact set

distance, internal unified set distance, edge exact diameter, internal unified diameter, unified di-

ameter, strong exact diameter, strong edge exact diameter, strong unified diameter, exact set

diameter, edge exact set diameter, internal unified set diameter, deep exact components, alge-

braic d-connectivity, exact tree, unified Cheeger constant, and related them to the eigenvalues of

these matrices. Although the relationships between these structures and invariants and the spec-

trum of the unified matrix of the hypergraph have been established, further research is needed

to explore their properties from a non-spectral hypergraph theoretical viewpoint. Moreover, this

approach allows for the extension of various results and properties of graphs, typically expressed

using Laplacian matrix, signless Laplacian matrix and normalized Laplacian matrix, respectively,

to hypergraphs using the unified Laplacian matrix, unified signless Laplacian matrix and unified

normalized Laplacian matrix.

Since the unified Laplacian matrix, unified signless Laplacian matrix and unified normalized

Laplacian matrix of a hypergraph are natural generalization of Laplacian matrix, signless Laplacian

matrix and normalized Laplacian matrix, respectively of a loopless graph, the results we established

in this paper generalize the corresponding results in graphs.
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