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Superfocusing confines light within subwavelength structures, breaking the diffraction 

limit. Structures with spatial singularities, such as metallic cones, are crucial to enable 

nanoscale focusing, leading to significant advancements in nanophotonics, sensing, and 

imaging. Here, we exploit the spatiotemporal analogue of the wedge structure, i.e. a 

dielectric medium sandwiched between two subluminal interfaces with distinct 

velocities, to focus propagating waves beyond the diffraction limit, achieving 

spatiotemporal superfocusing. Within this structure, an incident pulse undergoes 

continuous spatial and temporal compression due to Doppler effects, which 

accumulates and results in an extreme focusing as it approaches the spatiotemporal 

vertex. Remarkably, unlike the field localization in conventional superfocusing, the 

compressed light in spatiotemporal wedges experiences significant amplification and 

then couple to the far field in free space. Our findings represent an indispensable 

paradigm for extreme concentration and amplification of propagating waves in space-

time dimensions.  

 



 

 

Introduction 

The resolution of an optical imaging system is constrained by the Abbe diffraction limit, 

which also prevents the focusing of light within a subwavelength region. As illustrated 

in Fig. 1(a), the adiabatic narrowing of the waveguide width leads to an increasingly 

delocalized electric field distribution. To overcome the diffraction limit, surface 

plasmon polaritons (SPPs) have been extensively investigated and applied in optical 

imaging [1], sensing [2], and spectroscopy [3-5]. As depicted in Fig. 1(b), the 

wavelength of the excited SPP can be progressively compressed during propagation 

towards the tip, ultimately allowing the deep subwavelength focusing of light beyond 

the diffraction limit, a phenomenon known as superfocusing. This superfocusing shows 

extreme field enhancement and hence significantly enhanced the strong light-matter 

interaction for extreme ultraviolet (EUV) generation [6] and hot-electron conversion 

with high efficiency [7] and for fundamental study of the photoelectron behavior in the 

strong-field regime [8].  

The realization of superfocusing down to the nanoscale relies on the structures with 

spatial singularities, such as metallic wedges [9], cones [10], and dimers [11]. 

Theoretically, SPPs can be compressed into a singular point without reflection enabling 

both the propagation constant and field intensity to diverge even when the absorption 

of metal is considered [9], analogous to an optical black hole, where all light within the 

event horizon is drawn towards the singular point [12]. Spatial resolution down to ~ 5 

nm has been experimentally demonstrated through the metallic wedge-assisted 

superfocusing [13]. Notably, such experiment requires extremely high manufacturing 

precision, as any deviation from the singular point can lead to significant energy losses 

(exceeding 90%) due to limited SPP coupling efficiency, dissipative losses, and 

reflection [14]. As time-reversal symmetry is preserved in non-magnetic static 

structures, the forward and backward light propagation exhibits identical physical 

characteristics, thereby rendering reflection inevitable. 



 

 

In recent years, active artificial materials with both spatial and temporal modulations 

have garnered significant attention for their unprecedented control of electromagnetic 

waves [15-21]. Particularly, harnessing the time varying and modulation as a new 

degree of freedom, various applications have been employed, such as amplification [22-

24], frequency generation [25-27], frequency compensation for phase matching [28-31], 

exploring relativistic phenomena [32], and breaking bandwidth limits in passive 

systems for impedance matching [33]. Recently, researchers have identified a novel 

gain mechanism [34-37]. Studies have demonstrated that a grating modulated at the 

speed of light exhibits a series of discrete gain points, analogous to black holes [37, 38]. 

For an infinitely long grating, both the frequency and the electric field intensity diverge. 

Moreover, the breaking of time-reversal symmetry results in a unidirectional and 

nonreciprocal amplification effect, ensuring robustness against reflections. Similar 

singularities of fields can be realized through scattering by the interluminal boundary 

[39]. 

 

 

Fig. 1. (a) Directing the fundamental guided mode to a sharp dielectric wedge with refractive index 

n at the frequency of f. (b) Superfocusing on a metallic wedge. The colors in (a) and (b) indicate the 

magnitude of the electric field. The gray solid lines represent the contour lines of the real part of Ez 

in (a) and the real part of Hz in (b). (c) Schematic of superfocusing in a spatiotemporal wedge.  

 

Inspired by the singularities in interluminal moving gratings and boundaries, we 

propose the concept of spatiotemporal superfocusing, which involves the amplification 

of optical frequency and energy in spatiotemporally modulated systems. Our wedge in 



 

 

the space-time domain can replace the interluminal modulation, demonstrating 

superfocusing at lower modulation speeds and enabling controllable growth of 

frequency and energy. As shown in Fig. 1(c), the wedge is composed of two intersecting 

subluminal moving boundaries and the light beam experiences endless cascaded 

reflections in an ideal untruncated spatiotemporal wedge. We identified the critical 

angles necessary for achieving spatiotemporal superfocusing and an analysis of the 

impact of tip bluntness on wave confinement and amplification dynamics. Notably, the 

proposed spatiotemporal superfocusing mechanism compresses the electromagnetic 

field in both space and time while preserving its propagation characteristics. This 

intriguing aspect distinguishes itself from plasmonic superfocusing, which relies on the 

inherently decaying nature of SPPs. Our model extends the concept of superfocusing to 

spatiotemporal domain and expands the ability for electromagnetic wave control. 

 

Results and Discussions 

Superfocusing on the spatiotemporal wedge 

In this study, we consider a spatiotemporal wedge surrounded by two intersecting 

moving boundaries. Due to practical limitations in spatiotemporal resolution, it is 

assumed that the tip of the wedge is truncated by a temporal boundary, expressed as:  

         1 2 1 1 2, + / 2 / 2BC BCx t u x v t u x v t u t                ,      (1) 

where u(x − x0) denotes a step function that jumps from 0 to 1 at x0, δ is the tip width 

of the truncated wedge. The velocities of the first and second moving boundaries are 

vBC1 and vBC2, respectively, as indicated in Fig. 1(c). The phase velocity of waves in 

medium 1(or 2) is denoted as v1(2) = c0(ε1(2)/ε0)−1/2. In this study, we only consider the 

subluminal modulations, i.e. |vBC1(BC2)| < v1,v2; otherwise, the beam will be surpassed 

by boundaries and cannot be confined within the wedge through multiple reflections. 

Note that there is no physical movement of the media, rather the variation of the 

permittivity between ε1 and ε2 to produce the moving interfaces.  



 

 

To begin, we briefly investigate the scattering of waves by a subluminal moving 

boundary between two media with velocity vBC. Here, we define a moving frame using 

Lorentz transformation: 0
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01/ 1 /BCv c    [40]. In spacetime coordinate x-c0t, it rotates the x-axis with angles 

θ = arctan(vBC/c0), defining the rapidity of the moving frame [41]. Due to the breaking 

of translational symmetry in space and time, k and ω are not conserved. This results in 

the Doppler shifts for reflected and transmitted waves, expressed as ωr = γrωi and ωτ = 

γτωi, where ωi denotes the incident angular frequency. The two terms 
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 are denoted as the reflection and 

transmission scaling factors, respectively. Meanwhile, the reflection and transmission 

coefficients are also scaled relative to their static counterparts, given by r = γrr0 and τ = 

γττ0, where the transmission and reflection coefficients for the static spatial boundary 

are expressed as 1
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. To show the energy exchange through 

these time-varying media, we further evaluate the Poynting theorem. Energy transfer 

into and out of the system due to a moving boundary can be expressed as 
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, where Pi is the power flow of incident wave. 

The total power flow is amplified via the moving boundary as the permittivity 

(capacitance) transitions from a higher value to a lower one (e.g., vBC < 0, n2 > n1). A 

similar situation arises when, with current or charge remaining constant, a decrease in 

capacitance—such as suddenly increasing the distance between capacitor plates—will 

results in an increase in the energy of the LC circuit. 

Next, we examine the scattering of fields by a spatiotemporal wedge. As shown in Fig. 

1(c), from a geometric perspective, the trajectories of pulses and the boundaries of the 

wedge form a sequence of similar triangles in spacetime coordinates, resulting in 

indefinitely sustained multiple reflections. As a result, the frequencies and amplitudes 



 

 

may diverge in a cascaded manner. The angular frequency and the amplitude for 

forward and backward propagating waves in the wedge can be written as  
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where the subscripts F and B indicate the forward and backward propagating waves and 

the superscript N denotes the order of the roundtrip scattering in the spatiotemporal 

wedge and N∈ℕ0. The scaling factors for reflected and transmitted waves of first and 

second moving boundaries are given by γr,BC1(BC2) = γr(vBC1(BC2),v2), γτ,BC1(BC2) = 

γτ(vBC1(BC2),v2,v1). The corresponding amplitudes of scattered fields due to static 

boundaries are given by    22
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compress and amplify light beam, it requires vBC1 > vBC2, which is the necessary 

condition for γr,BC1γr,BC2 ≥ 1; hence, only if a spatiotemporal wedge points in the 

direction of time flow can it achieve spatiotemporal superfocusing. Meanwhile, based 

on the Poynting’s theorem, ε2 > ε1 is required for amplification after a roundtrip.  

In the case of symmetric wedges with vBC1 = −vBC2, the reflection scaling factor is 

always greater than 1, i.e., γr(vBC1,v2) = γr(vBC2,v2) = γr  > 1, leading to increasing 

reflection frequencies and amplitudes. The total field is the superposition of all light 

beams scattered by the spatiotemporal wedge. We consider scattering from a truncated 

spatiotemporal wedge expressed as Eq. (1). As shown in Fig. 2(a), a Gaussian pulse 

impinges on a spatiotemporal wedge, which results in two sharp and strong pulses re-

radiating along the forward and backward directions. The enlarged field distribution 

near the tip is depicted in the inset of Fig. 2(a). To clearly show the pulse evolution, we 

depict a series of snapshots in Fig. 2(b). As the thickness of the wedge uniformly 

decreases from t1 to t3 (indicated by the gray area in Fig. 2(b)), the pulses are 



 

 

continuously compressed and amplified. At time t4, two pulses radiate into the far-field 

regime along opposite directions, as shown in the bottom panel of Fig. 2(b).  

 

 

Fig. 2. (a) The electric field distribution for a pulse scattered by a spatiotemporal wedge. Inset: The 

enlarged field distribution near the tip, where the spatiotemporal wedge is truncated by a temporal 

boundary. (b) Snapshots of field distribution in (a) from t1 to t4. The gray region indicates the 

spatiotemporal wedge whose width decreases as time evolves. The insets in (b) show the enlarged 

waveform of the pulses. The trajectories of the moving boundaries are depicted by gray solid lines. 

Here, the wedge is truncated at t = 0 with the tip width of δ = 2×10−4λ. The permittivities of media 

ε1 = 1 and ε2 = 3.52. The velocities of the moving boundaries are vBC1 = −vBC2 = v2/2 and the opening 

angle of the wedge is δθ = 16.26°. The incident pulse has a unit peak amplitude. 

 

The unique superfocusing phenomena between metallic wedges and spatiotemporal 

wedges can be explained by their distinct wave compression mechanisms. For 

plasmonic superfocusing, the fields are localized at the nanoscale with conserved 

frequency. However, the proposed spatiotemporal wedge compresses the wave in both 

space and time, thereby retaining its propagation characteristics. The evanescent 

characteristics of the former limit its applicability to only the near field and require 

additional optical components for coupling. In contrast, the latter offers a novel 

superfocusing mechanism, preserving propagation characteristics that ensure 



 

 

compatibility with modulated waveguides [42, 43], making it suitable for integrated 

platforms.  

 

Critical conditions for spatiotemporal superfocusing 

In the case of an untruncated spatiotemporal wedge, if the reflection coefficient for each 

round trip exceeds one, i.e., γr(vBC1,v2)γr(vBC2,v2) ≥ r0
−2, the field intensity will 

exponentially increase over time and diverge at the tip. We refer to this phenomenon as 

spatiotemporal superfocusing. At the critical threshold, where the equation holds as 

equality (γr,BC1γr,BC2 = r0
−2), the superposed scattered waves with equal amplitudes can 

also lead to a diverging field intensity. Conversely, below this threshold, the 

superposition of scattered fields will be amplified but eventually converge to a finite 

value, which we define as spatiotemporal focusing. Compared to luminal regimes, 

wave compression and energy extremes based on spatiotemporal wedges are 

controllable. In the following sections, we will illustrate the critical condition for 

spatiotemporal superfocusing with respect to the geometry of wedges in spacetime 

coordinates, including the opening angle  1 2       and orientation angle 

1 2
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First, we consider the critical condition for superfocusing in the symmetric case with 

�̅� = 0. The critical opening angle for superfocusing can be determined by γr = r0
−1, 

which can be expressed as:  

2
2

1

2arctanc

n

n
   .                      (3) 

As δθ increases, the scaling factor γr monotonically increases, leading to spatiotemporal 

superfocusing when δθ ≥ δθc. 

 



 

 

 

Fig. 3. Critical phenomena for spatiotemporal superfocusing demonstrated by multi-scattering from 

wedges. The magnitude of electric field |Ez| in spacetime coordinates with the opening angle (a) (δθ 

= 3.27⸰) < δθc; (c) δθ = (δθc = 9.33⸰); (e) (δθ = 16.26⸰) > δθc. The spectra of fields at positions of x = 

10λ and x = −10λ (denoted as EF and EB) are shown in (b), (d), and (f), respectively. The insets show 

the integral of each Gaussian pulse versus its central frequency. Here, δ = 2×10−4λ. 

 

To illustrate the critical effect of superfocusing, we consider a pulse incident from a 

position far from the tip. When δθ < δθc, the amplitude of the pulse decreases with each 

reflection and dissipates as it approaches the tip, as illustrated in Fig. 3(a). The spectra 

of the scattered pulses at x = 10λ and x = −10λ are shown in Fig. 3(b). After each 

scattering event, the pulse undergoes compression, leading to a broadening of pulse 

width by a factor of 1/γτ(r). The inset presents the integrated area of each pulse relative 

to its central frequency, where the pulse area is proportional to the scattering coefficient 

for monochromatic wave excitation. When δθ = δθc, the reflection coefficient within 

the spatiotemporal wedge reaches unity. Aside from the first backward-propagating 

pulse and the wave scattered by the truncated wedge, all scattered fields exhibit the 

same amplitude, as seen in Fig. 3(c). Due to the broadening of the pulse width, the peak 

amplitude of each pulse decreases, as depicted in Fig. 3(d), while the pulse area remains 

unchanged, as shown in the inset. By further increasing the opening angle, the intensity 

of the scattered waves is significantly amplified by repeated reflections, as 



 

 

demonstrated in Fig. 3(e). The corresponding spectrum is shown in Fig. 3(f), where 

both the frequency and amplitude grow exponentially, as indicated in the inset of Fig. 

3(f). 

 

 

Fig. 4. Dependencies of the maximum amplitudes of forward and backward propagating pulses on 

the opening angle (a) and the orientation angle (b). The left panel depicts the geometry of the 

spatiotemporal wedges. Here, �̅� = 0⸰ in (a) and δθ = 6⸰ in (b). 

 

Next, we evaluate the superfocusing condition for the orientation angle. In contrast to 

a spatial wedge, a spatiotemporal wedge does not possess rotational symmetry, because 

time flows in a single direction toward the future. The rotation of a wedge in spatial 

coordinates is characterized by the SO(2) group, while for spatiotemporal wedges, it is 

represented by the Lorentz group SO+(1,1) [41]. By fixing the opening angle and 

increasing the magnitude of the orientation angle �̅� , the scaling of the reflection 

coefficient changes monotonically, resulting in a transition from focusing to 

superfocusing. The critical orientation angle is determined by the following analytical 

expression: 
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To demonstrate the superfocusing effects and their critical conditions, we examine the 

dependence of the maximum scattered amplitudes of forward and backward-

propagating waves on the tip width (δ) and the opening/orientation angles. For the 

symmetric case (�̅� = 0), when δθ ≥ δθc, the maximum amplitude of the superposed 

scattered fields increases as the tip narrows, leading to extreme field amplification and 

exhibiting the characteristics of a superfocusing effect. Otherwise, the scattered fields 

initially undergo amplification but eventually stabilize at a maximum value, as shown 

in Fig. 4(a). Similar critical phenomena are observed when increasing ห�̅�ห, as presented 

in Fig. 4(b). As the orientation angle increases towards the interluminal regime, the 

reflection scaling factor tends to infinity, as described by Eqs. 2(a) and 2(b). For �̅� ≠ 

0, the distribution of maximum amplitudes becomes asymmetric with respect to �̅� = 

0, indicating the nonreciprocal characteristics of scattering from spatiotemporal wedges.  

 

Influence of blunted tip 

In practical experiments, the non-instantaneous variation in optical parameters is a non-

negligible factor, leading to a blunted tip, which truncates cascaded reflections and 

reduces the reflection coefficient. We calculate the corresponding scattered fields using 

FDTD numerical simulations. The blunted spatiotemporal wedge can be expressed as: 

           1 2 1

1
, tanh tanh

2 BC BC BC BCx t k x v t k x v t u t             ,    (5) 

where kBC represents the sharpness of the moving boundary. The permittivity profile of 

the wedge, as described by Eq. (5), is depicted in Fig. 5(a), and the scattered fields are 

shown in Figs. 5(b) and 5(c). The scattered fields illustrate that a decrease in sharpness, 

i.e., kBC , leads to a significant reduction in the intensity of the backward-scattering 



 

 

waves, while the forward-propagating waves remain unchanged. These phenomena are 

more clearly observed in the corresponding spectra, as illustrated in Figs. 5(d) and 5(e). 

Specifically, for the backward-scattered pulses, the amplitude of the high harmonic 

components rapidly decreases, accompanied by a noticeable redshift compared to the 

ideal wedge as kBC approaches infinity. In contrast, the low-frequency components 

remain stable. Due to the significant role of high-frequency component intensity, the 

blunted wedge markedly affects the performance of spatiotemporal superfocusing, 

particularly in terms of backscattering. 

 

 

 

Fig. 5. The effect of smoothed boundaries on spatiotemporal superfocusing. (a) Profile of 

permittivity for a rounded spatiotemporal wedge and the distribution of the index at time t0 (inset). 

(b) & (c) The backward and forward propagating pulses scattered by the rounded wedge, 

respectively. (d) & (e) The corresponding spectra in (b) and (c). Here, δθ = 28.84⸰; the fields of 

backward (forward) propagating waves are recorded at x = −4.5λ (4.5λ). 

 

The experimental realization of spatiotemporal wedges remains challenging, 

particularly in achieving rapid and strong modulation, as well as independent control 

over temporal and spatial dimensions. Recently, FPGA-controlled two-dimensional 

diode arrays was employed to generate microwave spatiotemporal coding metasurfaces 

[44]. Subsequently, temporal boundaries have been experimentally demonstrated using 

transmission line metamaterial through voltage-controlled reflective switches [42], 



 

 

further showcasing the potential for extending towards the realization of moving 

boundaries and spatiotemporal wedges. On the other hand, at telecom wavelengths, 

electrically driven waveguides equipped with distributed PIN diodes was employed to 

realize nonreciprocity [43]. Although the wave velocity within waveguides is below the 

speed of light, realizing subluminal spatiotemporal boundaries and wedges remains 

challenging. Nevertheless, the existing experimental platforms present promising 

pathways toward achieving spatiotemporal wedges. The spatiotemporal superfocusing 

mechanism proposed in this paper retains propagation characteristics, demonstrating 

unique advantages and irreplaceable potential for integrated applications and 

subsequent signal processing. 

Conclusion 

We have constructed a wedge configuration in spacetime coordinates to achieve 

spatiotemporal superfocusing for the first time, allowing light beams to be compressed, 

amplified, and re-radiated into free space. Unlike near-field superfocusing based on SPs, 

the pulses scattered by the proposed spatiotemporal wedge remain in propagating 

modes, with their frequencies and amplitudes scaled due to the relativistic effects of 

moving boundaries in a cascaded manner. By modifying the geometry of the wedge, 

specifically the opening and orientation angles, the strength of superimposed fields can 

transition from convergent to divergent values, corresponding to spatiotemporal 

focusing and superfocusing, respectively. In practice, for wedges truncated with a flat 

top, the strength of scattered fields grows exponentially as the tip width becomes 

sharper, without diverging. Additionally, for blunted tips, we observe a counterintuitive 

phenomenon where reflections are significantly diminished, while transmission retains 

its strength even in the presence of pronounced bluntness. Our study provides a novel 

approach for achieving superfocusing through spatiotemporal wave manipulation, 

demonstrating distinctive phenomena compared to spatial counterparts and offering 

additional advantages of being broadband and lossless. 
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