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Abstract

The non-differentiability of the singular nonlinearity (such as f = ln |u|2) at u = 0 presents significant challenges in

devising accurate and efficient numerical schemes for the logarithmic Schrödinger equation (LogSE). To address

this singularity, we propose an energy regularization technique for the LogSE. For the regularized model, we utilize

Implicit-Explicit Relaxation Runge-Kutta methods, which are linearly implicit, high-order, and mass-conserving

for temporal discretization, in conjunction with the Fourier pseudo-spectral method in space. Ultimately, numerical

results are presented to validate the efficiency of the proposed methods.

Keywords: Logarithmic Schrödinger equation; non-differentiability; linear implicit; mass conservation; high

order

1. Introduction

In this paper, we focus on the numerical solution for the logarithmic Schrödinger equation (LogSE), which

take the form:














i∂tu(x, t) + ∆u(x, t) = λu f (u), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω̄,
(1.1)

where i =
√
−1, f (u) = ln(|u(x, t)|2), Ω ⊂ R

d, with d ≥ 1, represents a bounded domain with a smooth boundary.

The function u0 is a given initial condition with a regularity that will be specified later. The constant λ , 0

is a real number, where for λ > 0, the solution exhibits repulsive or defocusing behavior, and for λ < 0, the

solutions demonstrate attractive or focusing interactions. The LogSE (1.1) proposed as a model for nonlinear wave

mechanics [4].

LogSE (1.1) conserves both mass and energy as follows,

M(t) : =

∫

Ω

|u(x, t)|2dx ≡
∫

Ω

|u0(x)|2dx = M(0),

E(t) : =

∫

Ω

[|∇u(x, t)|2dx + λF(|u(x, t)|2)]dx

≡
∫

Ω

[|∇u0(x)|2 + λF(|u0(x)|2)]dx = E(0),

(1.2)
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where

F(ρ) =

∫ ρ

0

ln(s)ds = ρ ln ρ − ρ, ρ = |u|2. (1.3)

The nonlinearity term f (u) = ln(|u(x, t)|2) is non-differentiable at u = 0. This characteristic introduces sig-

nificant practical challenges and theoretical complexities, particularly when it comes to analyzing and solving the

numerical solutions of the LogSE (1.1). Consequently, the existing literature on this topic is somewhat limited.

For the Cauchy problem associated with the LogSE, Cazenave [6] established a suitable functional framework.

Extensive literature exists on numerical solutions for the Schrödinger equation with smooth nonlinearity, em-

ploying methods such as the finite difference method [2], time-splitting method [3, 1], and among others. However,

for the LogSE (1.1), the available numerical schemes are more limited. This scarcity arises because these methods

cannot be directly applied to the LogSE due to the non-differentiability of the nonlinearity at u = 0. To circumvent

this issue, Bao [2, 1] introduced a regularized logarithmic Schrödinger equation by substituting f (u) with fε(u
ε),

where 0 < ε ≪ 1. They developed a semi-implicit finite difference method [2], which, although not conserving

energy, provided a viable approach. Later, Bao [3] introduced a different regularization strategy at the energy den-

sity level, substituting the energy density locally in the region 0 < ρ < ε2 with a sequence of polynomials while

keeping it unchanged in the region ρ ≥ ε2. In [3, 1], Bao constructed regularized Lie-Trotter splitting and Strang

splitting methods, which preserve mass conservation but are only first and second order, respectively, for solving

the LogSE. Recently, Wang [11] developed a nonregularized first-order implicit-explicit scheme for the LogSE,

with the nonlinearity being explicit but only first order in time.

Over the past decades, a variety of relaxation Runge-Kutta (RRK) methods [9] have been developed, offering

explicit and mass conservative solutions. However, these explicit methods are plagued by stringent step size

restrictions that can limit their practical applicability. Recently, Li [10] investigated implicit-explicit relaxation

Runge-Kutta (IMEX RRK) methods for nonlinear stiff ordinary differential equations. The proposed methods are

linearly implicit, can achieve arbitrarily high order accuracy, and are designed to preserve monotonicity.

The structure of the rest of this paper is as follows: Section 2 introduces the energy regularized logarithmic

Schrödinger equation (ERLogSE). In Section 3, IMEX RRK methods are applied to discretize the ERLogSE in

time, combined with the Fourier pseudo-spectral method for spatial discretization. Section 4 presents several

numerical experiments to demonstrate the efficiency and accuracy of the proposed numerical methods. Finally,

Section 6 concludes the paper.

2. The energy regularized LogSE

In this context, the energy-regularization technique proposed by Bao et al. in [3] is employed to address the

singularity issue of the logarithmic term in the LogSE. This approach uses a polynomial approximation to smooth

out the singularity at the origin for the energy density function F(ρ), as depicted in equation (1.3). The energy

regularized method, as demonstrated in [3], yields superior performance compared to direct regularization of the

logarithmic nonlinearity in the LogSE. The energy density F(ρ) is approximated using a piecewise smooth function

that incorporates a polynomial approximation near the origin as follows,

Fεk (ρ) = F(ρ)χ{ρ≥ε2} + Pεk+1(ρ)χ{ρ<ε2}, k ≥ 2, (2.1)

where χ
A

is the characteristic function of the set A and

Pεk+1(ρ) = ρ ln ε2 − 1 −
k
∑

j=1

1

j
(1 − ρ

ε2
) j

is a polynomial of degree k + 1, which allows Fε
k
∈ Ck([0,+∞)), Fε

k
(0) = F(0) = 0 (this satisfies the regularized

energy to be well-defined on the whole space). We can obtain

f εk (ρ) = (Fεk )′(ρ) = ln ρχ{ρ≥ε2} + (Pεk+1)′(ρ)χ{ρ<ε2}

= ln ρχ{ρ≥ε2} + [ln(ε2) − k + 1

k
(1 − ρ

ε2
)k −

k−1
∑

j=1

1

j
(1 − ρ

ε2
) j]χ{ρ<ε2}, ρ ≥ 0.

(2.2)
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One can get the energy regularized logarithmic Schrödinger equation (ERLogSE) with a small parameter 0 < ε ≪
1 as follows















i∂tu
ε(x, t) + ∆uε(x, t) = λuε f k

ε (uε), x ∈ Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω̄,
(2.3)

which preserves the mass conservation law

Mε(t) : =

∫

Ω

|uε(x, t)|2dx ≡
∫

Ω

|u0(x)|2dx = M(0), (2.4)

where f k
ε defined in (2.2) for ERLogSE.

3. The construction of Regularized IMEX RRK methods

3.1. High order Regularized IMEX RRK methods

We rewrite ERLogSE (2.3) as

uεt = gI(uε) + gE(uε), (3.1)

where gI(uε) = i∆uε, gE(uε) = iλuε f k
ε (uε).

Applying the different orders IMEX RRK methods to the ERLogSE (3.1). We can get the semi-discrete system

as follows:






























uε
i
= u

ε,n
γ + τ

i
∑

j=1

aI
i j

gI
j
+ τ

i−1
∑

j=1

aE
i j

gE
j
, i = 1, . . . , s,

u
ε,n+1
γ = u

ε,n
γ + τγn

s
∑

j=1

bI
j
gI

j
+ τγn

s
∑

j=1

bE
j
gE

j
,

(3.2)

where gI
j
= gI(tn + c jτ, u

ε
j
), gE

j
= gE(tn + c jτ, u

ε
j
), j = 1, . . . , s, and uε,n+1

γ is the approximation at t̂n+1 = t̂n + γnτ.

Define

AI
= (aI

i j)s×s, aI
i j = 0 for j > i,

AE
= (aE

i j)s×s, aI
i j = 0 for j ≥ i,

bI
= (bI

1, . . . , b
I
s)

T , bE
= (bE

1 , . . . , b
E
s )T ,

and the s-stage IMEX RK method can be represented by a double Butcher tableau,

cI AI

(bI)T ,
cE AE

(bE)T ,

where cI
i
=

s
∑

j=1

aI
i j
, cE

i
=

s
∑

j=1

aE
i j
, i = 1, . . . , s.

We rewrite (3.2) into










































uε
i
= uε,nγ + τ

i
∑

j=1

aI
i j

gI
j
+ τ

i−1
∑

j=1

aE
i j

gE
j
, i = 1, . . . , s,

uε,n+1
= u

ε,n
γ + τ

s
∑

j=1

bI
j
gI

j
+ τ

s
∑

j=1

bE
j
gE

j
,

u
ε,n+1
γ = uε,n+1

+ (γn − 1)(uε,n+1 − u
ε,n
γ ).

(3.3)

Theorem 3.1. For the semi-discrete scheme (3.2), if we set

γn =







































1,
s
∑

j=1

(bI
j
gI

j
+ τγn

s
∑

j=1

bE
j
gE

j
) = 0,

−2
s
∑

j=1
ℜ(bI

j
gI

j
+bE

j
gE

j
,un
γ)

τ‖
s
∑

j=1

bI
j
gI

j
+

s
∑

j=1

bE
j
gE

j
‖2
,

s
∑

j=1

(bI
j
gI

j
+

s
∑

j=1

bE
j
gE

j
) , 0.

(3.4)
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(3.2) would satisfy the conservation of mass:

‖uε,n+1
γ ‖2 = ‖uε,nγ ‖2. (3.5)

Proof. From (3.2) and the definition of (3.4), we have

‖uε,n+1
γ ‖2 − ‖uε,nγ ‖2 = ‖uε,nγ + τγn

s
∑

j=1

bI
jg

I
j + τγn

s
∑

j=1

bE
j gE

j ‖2 − ‖uε,nγ ‖2

= τ2γ2
n‖

s
∑

j=1

bI
jg

I
j +

s
∑

j=1

bE
j gE

j ‖2 + 2τγn

s
∑

j=1

ℜ(bI
jg

I
j + bE

j gE
j , u
ε,n
γ )

= 0.

(3.6)

This ends the proof.

Lemma 3.1. [10] Suppose that the given IMEX RK method is p-th order accurate with p ≥ 2. For sufficiently

small τ, the relaxation coefficient γn defined in (3.4) satisfies

γn = 1 + O(τp−1). (3.7)

Theorem 3.2. The truncation error of IMEX RRK method (3.3) is O(τp+1).

Proof. Since the convergence order of IMEX RK method is O(τp), putting the exact solution into the second

equation of (3.3), one can obtain

uε(t̂n + τ) = Φn(uε(t)) + O(τp+1),

where

Φn(uε(t)) = uε(t̂n) + τ

s
∑

j=1

bI
jg

I(uε(t̂n j)) + τ

s
∑

j=1

bE
j gE(uε(t̂n j)),

and t̂n j = t̂n + c jτ, j = 1, . . . , s.

Then substitute the exact solution into the third equation of (3.3), we obtain the truncation error of the third

equation of (3.3) as follows

T n+1
= uε(t̂n+1) −Φn(uε(t)) − (γn − 1)

(

Φn(uε(t)) − uε(t̂n)
)

= uε(t̂n+1) − (uε(t̂n + τ) + O(τp+1)
) − (γn − 1)

(

uε(t̂n + τ) + O(τp+1) − uε(t̂n)
)

= uε(t̂n+1) − uε(t̂n + τ) − (γn − 1)
(

uε(t̂n + τ) − uε(t̂n)
)

+ O(τp+1) + O
(

(γn − 1)τp+1)

= uε(t̂n + τ + (γn − 1)τ) − uε(t̂n + τ) − (γn − 1)uε′(t̂n + τ)τ + O(τp+1)

= uε(t̂n + τ) + (γn − 1)τuε
′
(t̂n + τ) + O

(

(γn − 1)2τ2)

− u(t̂n + τ) − (γn − 1)τuε
′
(t̂n + τ) + O(τp+1) = O(τp+1),

where we used t̂n+1 = t̂n + γnτ. This ends the proof.

4. Numerical Experiments

In the numerical test, the following RK methods will be used in time:

1. RK(1,2), Implicit-explicit midpoint [7];

2. RK(2,3), two-stage, third-order RK [7];

3. RK(6,4), also named ARK4(3)6L[2]SA in [8];

4. RK(8,5), also named ARK5(4)8L[2]SA in [8],

and we apply Fourier pseudo-spectral method in space where can be used FFT method. We only show numerical

results for the ERLogSE, the results of ERSSE are quite similar which are omitted for brevity.
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4.1. Accuracy test

Consider the LogSE (1.1) with the exact Gaussian solution [5] in 1-dimension as follows,

u(x, t) = b exp
(

i
(

x · ς − (a + |ς|2)t
)

+ (λ/2)|x − 2ςt|2), x ∈ R, t ≥ 0, (4.1)

where a = −λ(1 − ln |b|2), b ∈ R and λ, ς ∈ R are given constants. To quantify the numerical errors, we define the

following error functions:

eε(tn) = uεre f (·, tn) − uε,n, êε(tn) = uex(·, tn) − uεre f (·, tn),

êερ(tn) = ρex(·, tn) − ρεre f (·, tn) = |uex(·, tn)|2 − |uεre f (·, tn)|2, eεE = E(u0) − Eεk(u0).
(4.2)

Here u
ε,n
j

is the numerical solution, uex is the exact solution of LogSE (1.1), uε
re f

is the ‘exact’ solution of ERLogSE

(2.3) with he =
5

211 , τe = 10−5. The initial data is taken as u0 = u(x, 0) in (4.1) and the boundary conditions are

given such that the exact solution. Here ς = 0, T = 1, Ω = [−10, 10], λ = −1, b = 1.

4.1.1. Convergence rate of the regularized model

Here we consider the error between the solutions of the ERLogSE (2.3) and the LogSE (1.1). Fig. 4.1 depicts

‖êε‖, ‖êερ‖, eε
E

at t = 1 with different regularized nonlinearities f ε
2
, f ε

10
computed by IMEX RRK(2,3), and other

RRK schemes are not depicted here for the sake of conciseness. We can draw the following conclusions: (i) The

solution of ERLogSE (2.3) converges linearly to LogSE (1.1) in terms of ε; (ii) The density ρε of the solution of

ERLogSE (2.3) exhibits linear convergence to that of the LogSE (1.1) in terms of ε; (iii) The regularized energy

Eε
k

converges quadratically to the original energy E; (iv) Across these three figures, it is evident that for any given

ε, the solutions with larger values of n yield superior performance.
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Fig. 4.1. Convergence order ERLogSE to LogSE, i.e. ‖êε(t = 1)‖, ‖êερ(t = 1)‖, eε
E

(t = 1).

4.1.2. Convergence rate of the numerical scheme

Firstly, we investigate the relaxation coefficient γn at t = 1 for various values of n, ε and the results shown in

Fig.4.2, substantiate Lemma 3.1.

Next, to assess the temporal convergence rate, we set the mesh size to h = he, and varied the time step as

τ = 2− j × 10−1 for j = 1, 2, . . . , 5 with n = 2, n = 4 under different ε. Fig.4.3 displays the temporal convergence

rates of the IMEX RRK methods, calculated using various schemes. The RRK methods show a convergence rate

of p, confirming the theoretical predictions in Theorem 3.2.

Additionally, to evaluate the spatial convergence rate of the Fourier pseudo-spectral method, we fixed the time

step τ = τe, and ε = 10−6 and selected different numbers of grid points N j = 8 + 2( j + 1), j = 1, 2, . . . , 5. Table 4.1

illustrates the spatial convergence rates of the IMEX RRK method, with the RRK(2,3) scheme being particularly

noteworthy.
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Fig. 4.2. Convergence order of max(|γn − 1|) for different IMEX RRK schemes.
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Fig. 4.3. Convergence order in time of RRK with different ε.

4.2. Dynamics

In this section, we investigate long time dynamics of LogSE with Gaussian-type initial datum in 1D. To this

end, we fix λ = −1, x ∈ [−40, 40], τ = 2 × 10−3, h = 5
16

. The initial datum is chosen as

u0(x) =

2
∑

k=1

bke−
ak
2

(x−xk)2
+ivk x, x ∈ R, (4.3)

where bk, ak, xk and vk are real constants, i.e, the initial data is the sum of 2 Gaussons with velocity vk and initial

location xk. We take v1 = −v2 = 2, x1 = −x2 = −30, bk = ak = 1(k = 1, 2).

Analyzing Fig. 4.4, we observe the following behaviors: (i) The mass is well conserved throughout the simu-

lations, indicating the effectiveness of our numerical methods in preserving this fundamental property; (ii) In the

case of moving Gaussons, they pass completely through each other, eventually moving separately. Oscillations

occur during the interaction.

5. Conclusion

We introduced an energy regularization approach to address the singularity present in the LogSE (1.1) by em-

ploying a polynomial approximation. Subsequently, we developed a family of IMEX RRK methods, combined

Table 4.1: Space accuracy tests of the Fourier spectral discretization (τ = 1 × 10−5, ε = 10−6, T = 1).

RK (Stage, Order)
RRK

N eε order

(2,3)

12 2.54e − 01 -

14 1.38e − 01 3.95

16 5.59e − 02 6.77

18 1.66e − 02 10.30

20 3.73e − 03 14.17
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Fig. 4.4. Plots of |uε(x, t)| (first column); |uε(x, t)| at different time (second column) and evolution of mass error (third column) (Case for

RRK(2,3)).

with the Fourier spectral method, to solve the ERLogSE (2.3). Our analysis demonstrated that these IMEX RRK

methods not only inherit the mass conservation properties but also maintain the same convergence order as their

standard counterparts. Furthermore, we conducted numerical experiments that substantiated our theoretical find-

ings
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