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Abstract

This paper aims at improving the convergence to equilibrium of finite ergodic
Markov chains via permutations and projections. First, we prove that a specific mixture
of permuted Markov chains arises naturally as a projection under the KL divergence
or the squared-Frobenius norm. We then compare various mixing properties of the
mixture with other competing Markov chain samplers and demonstrate that it enjoys
improved convergence. This geometric perspective motivates us to propose samplers
based on alternating projections to combine different permutations and to analyze their
rate of convergence. We give necessary, and under some additional assumptions also
sufficient, conditions for the projection to achieve stationarity in the limit in terms of
the trace of the transition matrix. We proceed to discuss tuning strategies of the pro-
jection samplers when these permutations are viewed as parameters. Along the way,
we reveal connections between the mixture and a Markov chain Sylvester’s equation as
well as assignment problems, and highlight how these can be used to understand and
improve Markov chain mixing. We provide two examples as illustrations. In the first
example, the projection sampler (with a suitable choice of the permutation) improves
upon Metropolis-Hastings in a discrete bimodal distribution with a reduced relaxation
time from exponential to polynomial in the system size, while in the second example,
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the mixture of permuted Markov chain yields a mixing time that is logarithmic in
system size (with high probability under random permutation), compared to a linear
mixing time in the Diaconis-Holmes-Neal sampler.
Keywords: Markov chains, Kullback-Leibler divergence, Markov chain Monte Carlo,
Metropolis-Hastings, alternating projections, isometric involution, permutation, Sylvester’s
equation, assignment problems, Dobrushin coefficient
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1 Introduction

Given an ergodic discrete-time Markov chain with transition matrix P and stationary distri-
bution π, in this paper we focus on improving the convergence of the Markov chain towards π
via permutations and projections. In the literature, a wide variety of tools and methods have
been developed to improve mixing of finite Markov chains. This includes techniques such as
lifting Apers et al. (2021), non-reversible Markov chain Monte Carlo (MCMC) Diaconis et al.
(2000); Rey-Bellet and Spiliopoulos (2016), to name but a few. More recently, there is grow-
ing interests in using permutations as a promising technique to accelerate Markov chains, see
for example Ben-Hamou and Peres (2023); Chatterjee and Diaconis (2020); Dubail (2024a,b).

This manuscript proposes samplers based on projections to improve mixing over the
original P . These projection samplers depend on some underlying permutation matrices
that can be understood as tuning parameters of the algorithms. We summarize several key
contributions of the paper as follows.

First, we seek to understand new projections of transition matrices. It is shown in
Andrieu and Livingstone (2021) that some state-of-the-art non-reversible MCMC samplers
are in fact (π,Q)-self-adjoint, where Q is an isometric involution matrix. These notions are
to be properly recalled in Section 2 below. When Q is further assumed to be a permutation
matrix, a natural question to ask is, what is the projection of P onto the set of (π,Q)-self-
adjoint transition matrices? We prove that, the unique closest (π,Q)-self-adjoint transition
matrix, under the Kullback-Leibler divergence or the squared-Frobenius norm (when P is
π-reversible), is given by

1

2
(P +QP ∗Q). (1)

This is also known in the literature as a specific mixture of permuted Markov chains in
the sense of Dubail (2024b). In Section 2, we offer geometric interpretations and related
Pythagorean-type results of the mixture in this setting, thus continuing the line of work in
Billera and Diaconis (2001); Diaconis and Miclo (2009). These results are interesting since
this projection can be non-reversible. This is unlike earlier results in the literature where
the projections possess nice mathematical structure such as symmetry or reversibility Choi
and Wolfer (2024); Wolfer and Watanabe (2021).

Second, we compare the projection sampler (1) with other competing samplers, such as
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P,QP, PQ,QPQ or the mixture αP + (1 − α)QP ∗Q for α ∈ [0, 1]. In Section 3 we prove
that, for a host of mixing parameters such as the Dobrushin coefficient, asymptotic variances,
spectral gap and the average hitting time, (1) enjoys improved performance on these metrics
compared with its counterparts. This justifies the decision to focus on investigating transition
matrices of the form (1) in subsequent sections.

Third, we propose and analyze an alternating projection procedure to combine a sequence
of isometric involution permutation matrices Q0, . . . , Qm−1 in Section 4. Specifically, we first
project P onto the space of (π,Q0)-self-adjoint matrices, followed by (π,Q1), and so on. If
we denote the projection sampler after n steps of alternating projections to be Rn, then we
prove that a limit R∞ exists and we give a rate of convergence of Rn towards R∞ via an
application of the theory of alternating projections in Hilbert space.

Fourth, we give necessary, and under some additional assumptions also sufficient, condi-
tion characterizing the ideal situations where Rn or R∞ equals to Π, the transition matrix
where each row equals to π. We manage to relate this property to the trace of P , and more
generally to the spectrum of P or Rn via a Sylvester equation. This is discussed in Section
5.

Fifth, we discuss tuning strategies when Q is viewed as a tuning parameter of the sampler
in Section 6. Interestingly, one strategy lies in finding an optimal Q that solves a Markov
chain assignment problem. We also make connections with the equi-energy sampler Kou
et al. (2006).

Sixth, as a case-study and illustration we apply the theory developed to consider projec-
tion samplers where the original P is the Metropolis-Hastings (MH) chain in Section 7. We
show that using (1) is equivalent to either a proposal chain with increased connections or a
landscape with reduced energy barrier. We give an example where the target distribution is
a discrete bimodal distribution. In this example, upon suitable tuning of Q, the projection
sampler enjoys polynomial relaxation time while the original MH chain exhibits exponential
(in the system size) relaxation time.

Finally, we relax the assumption to consider Q being a general permutation matrix (in-
stead of an isometric involution transition matrix) when P admits the discrete uniform
stationary distribution in Section 8. We show that many of the earlier results carry over to
this setting. In particular, when Q is drawn uniformly at random from the set of permutation
matrices, we show that the total variation mixing time of the mixture of permuted chain is,
with high probability, at most logarithmic in the system size, while the competing sampler
of Diaconis-Holmes-Neal has a linear mixing time.
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2 Two types of deformed information divergences and

the induced information projections onto the set of

(π,Q)-self-adjoint transition matrices

Let X be a finite state space and we denote by L = L(X ) to be the set of transition
matrices on X . Analogously we write P(X ) to be the set of probability masses with full
support on X , that is, minx π(x) > 0 for π ∈ P(X ). For m,n ∈ Z with m ≤ n, we write
Jm,nK := {m,m+ 1, . . . , n− 1, n}. In particular, when m = 1 we write JnK := J1, nK.

Let ℓ2(π) be the Hilbert space weighted by π endowed with the inner product, for f, g :
X → R,

⟨f, g⟩π :=
∑
x∈X

f(x)g(x)π(x).

The ℓ2(π)-norm of f is defined to be ∥f∥2π = ⟨f, f⟩π. We also define ℓ20(π) := {f ∈
ℓ2(π); π(f) = 0}.

Given a probability mass π ∈ P(X ), we write S(π) ⊆ L to be the set of π-stationary
transition matrices, that is, P ∈ S(π) satisfies πP = π. We also denote by L(π) ⊆ L to be
the set of π-reversible transition matrices, that is, P ∈ L(π) satisfies the detailed balance
condition with π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ X . For P ∈ S(π), we write P ∗ ∈ S(π)
to be the time-reversal or the ℓ2(π)-adjoint of P . Thus, P ∈ L(π) if and only if P = P ∗.

Let Q : ℓ2(π) → ℓ2(π) be an isometric involution on X with respect to π as in Andrieu
and Livingstone (2021), that is, Q satisfies Q2 = I and Q∗ = Q. We write I(π) = I(π,X )
to be the set of isometric involution matrices on X with respect to π. L ∈ S(π) is said to
be (π,Q)-self-adjoint if and only if L∗ = QLQ. This is also equivalent to say that QL is
ℓ2(π)-self-adjoint, and when Q is also a Markov kernel, QL ∈ L(π). We write L(π,Q) ⊆ L to
be the set of (π,Q)-self-adjoint transition matrices. In the special case of Q = I, we recover
that L(π, I) = L(π).

We now characterize I(π) ∩ L in the finite state space setting. Let P be the set of
permutations on X . Let ψ ∈ P be a permutation, and Qψ be the induced permutation
matrix with entries Qψ(x, y) := δy=ψ(x) for all x, y ∈ X , where δ is the Dirac mass function.
Define a set of permutations with respect to π to be

Ψ(π) := {ψ ∈ P; ∀x ∈ X , ψ(ψ(x)) = x, π(x) = π(ψ(x))}.

Proposition 2.1.
I(π) ∩ L = {Qψ; ψ ∈ Ψ(π)}.

Proof. We first prove that {Qψ; ψ ∈ Ψ(π)} ⊆ I(π) ∩ L. We check that Q2
ψ(x, y) = δy=x

and hence Q2
ψ = I. The detailed balance condition is also satisfied since π(x)Qψ(x, y) =

π(x)δy=ψ(x) = π(ψ(x))δx=ψ(y) = π(y)Qψ(y, x). This shows Qψ ∈ I(π) ∩ L.
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Next, we prove the opposite direction. Precisely, if Q ∈ I(π) ∩ L, then by (Miclo, 2018,
Remark 4(a)) Q = Qσ where σ is a permutation such that σ−1 = σ. Since Qσ is π-reversible,
we check that π(x) = π(x)Qσ(x, σ(x)) = π(σ(x))Qσ(σ(x), x) = π(σ(x)). This verifies that
σ ∈ Ψ(π), which completes the proof.

Note that since the identity mapping ψ(x) = x belongs to Ψ(π) for all π ∈ P(X ), I =
Qψ ∈ I(π)∩L, and hence the set I(π)∩L is non-empty. We also note that ±(2Π−I) ∈ I(π)
but these are not transition matrices, where Π is the matrix with each row equals to π.

Another remark is that, for ψ ∈ Ψ(π), this is an “equi-probability” permutation with
respect to π since we require π(x) = π(ψ(x)) for all x. This connection with the equi-energy
sampler Kou et al. (2006) is further highlighted in Section 6.

As another important point to note, QP or PQ have been proposed and analyzed in the
literature as promising samplers over the original P , see for example Ben-Hamou and Peres
(2023); Chatterjee and Diaconis (2020) and the references therein. In the special case of
P ∈ L(π) and Q ∈ I(π) ∩ L, we see that

(QP )∗ = Q(QP )Q, (PQ)∗ = Q(PQ)Q,

and hence both QP,PQ ∈ L(π,Q). That is, they are (π,Q)-self-adjoint transition matrices,
even if they are non-reversible with respect to π.

We now introduce two types of deformed Kullback-Leibler (KL) divergences that depend
on Q.

Definition 2.1 (Q-left-deformed and Q-right-deformed KL divergences). Let π ∈ P(X ). Let
Q ∈ I(π) ∩ L be an isometric involution transition matrix, P,L ∈ L. The Q-left-deformed
KL divergence from L to P with respect to π is defined to be

QDKL(P∥L) := Dπ
KL(QP∥QL) :=

∑
x

π(x)
∑
y

QP (x, y) ln

(
QP (x, y)

QL(x, y)

)
,

where the usual conventions of 0 ln(0/0) := 0 and 0·∞ := 0 applies. Note that the dependency
on π of QDKL is suppressed.

Similarly, we define the Q-right-deformed KL divergence from L to P with respect to π
to be

DQ
KL(P∥L) := Dπ

KL(PQ∥LQ).

Note that in the special case of Q = I, IDKL = DI
KL is the classical KL divergence rate

from L to P when P ∈ S(π).
In the next proposition, we summarize a few properties of DQ

KL and QDKL:

Proposition 2.2. Let π ∈ P(X ) and Q ∈ I(π) ∩ L be an isometric involution transition
matrix. For P,L ∈ L, we have the following:
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1. (Non-negativity)

QDKL(P∥L) ≥ 0.

Equality holds if and only if QP = QL if and only if P = L. Similarly,

DQ
KL(P∥L) ≥ 0.

Equality holds if and only if PQ = LQ if and only if P = L.

2. (Duality) Let P,L ∈ S(π).

QDKL(P∥L) = DQ
KL(P

∗∥L∗).

Proof. First, we prove non-negativity.

QDKL(P∥L) = Dπ
KL(QP∥QL) ≥ 0,

and the equality holds, by (Wang and Choi, 2023, Proposition 3.1), if and only if QP = QL
if and only if P = L. The proof for DQ

KL is similar and hence omitted.

Next, we prove duality. We see that,

QDKL(P∥L) = Dπ
KL(QP∥QL) = Dπ

KL(P
∗Q∥L∗Q) = DQ

KL(P
∗∥L∗),

where the second equality follows from the bisection property (Choi and Wolfer, 2024, The-
orem III.1).

For P ∈ S(π) and Q ∈ I(π) ∩ L being an isometric involution transition matrix, we
define

P = P (Q) :=
1

2
(P +QP ∗Q). (2)

It can readily be seen that QPQ = P
∗
, and hence P ∈ L(π,Q). In the special case of Q = I,

we recover that P (I) is the additive reversiblization of P . We also note that P (Q) can be
interpreted as a specific mixture of permuted Markov chains in the sense of Dubail (2024b).

The next result presents a Pythagorean identity, which can be interpreted as the property
that P is the closest (π,Q)-self-adjoint transition matrix to a given P :

Proposition 2.3. Let P ∈ S(π) and Q ∈ I(π) ∩ L be an isometric involution transition
matrix. For L ∈ L(π,Q), we then have

QDKL(P∥L) = QDKL(P∥P ) + QDKL(P∥L), (3)

DQ
KL(P∥L) = DQ

KL(P∥P ) +DQ
KL(P∥L). (4)
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Proof. First, we prove (3). It is easy to see that

QDKL(P∥L) = QDKL(P∥P ) +
∑
x

π(x)
∑
y

QP (x, y) ln

(
QP (x, y)

QL(x, y)

)
,

thus it suffices to show that the second term on the right hand side can be expressed as∑
x

π(x)
∑
y

QP (x, y) ln

(
QP (x, y)

QL(x, y)

)
=
∑
x

π(x)
∑
y

P ∗Q(x, y) ln

(
QP (x, y)

QL(x, y)

)
. (5)

To see (5), we compute that∑
x

∑
y

π(x)QP (x, y) ln

(
QP (x, y)

QL(x, y)

)
=
∑
x

∑
y

π(y)P ∗Q(y, x) ln

(
QP (y, x)

QL(y, x)

)
,

where the equality uses the fact that L, P ∈ L(π,Q).
Next, we prove (4). Applying (3) to (P ∗, L∗) and using the duality formula in Proposition

2.3, we note that

DQ
KL(P∥L) =

QDKL(P
∗∥L∗)

= QDKL(P
∗∥P ∗) + QDKL(P ∗∥L∗)

= DQ
KL(P∥P ) +DQ

KL(P∥L),

where we use that P ∗∗ = P .

2.1 Projection under the squared-Frobenius norm

In this subsection, we consider projection of P under the squared-Frobenius norm. Let
n = |X | and we write M to be the set of real-valued matrices on X , that is,

M = M(X ) := {M ∈ Rn×n},

equipped with the Frobenius inner product defined to be, for M,N ∈ M,

⟨M,N⟩F := Tr(M∗N)

and the induced Frobenius norm ∥A∥F :=
√

⟨A,A⟩F , where Tr(M) is the trace of M and

M∗(x, y) := π(y)
π(x)

M(y, x) for all x, y is the ℓ2(π)-adjoint of M . Define for Q ∈ I(π) ∩ L,

M(π,Q) := {M ∈ M; M = QMQ}.

We also define

M(Q) :=
1

2
(M +QMQ).
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Note that M(Q) is a projection in the functional analytic sense, since it can be checked that
for all M ∈ M,

M(Q)(Q) =M(Q).

In fact, it is an orthogonal projection. To see that, we observe that

⟨M(Q), N⟩F =
1

2
⟨M,N⟩F +

1

2
Tr(N∗QMQ) =

1

2
⟨M,N⟩F +

1

2
Tr(QN∗QM)

= ⟨M,N(Q)⟩F ,

where the second equality follows from the cyclic property of trace and Q∗ = Q. Note that
M(π,Q) is a subspace of the Hilbert space (M, ⟨·, ·⟩F ). However, L(π,Q) is not a subspace
since it is not closed under scalar multiplication. For example, if P ∈ L(π,Q) and α < 0,
then αP /∈ L(π,Q).

We now state that M(Q) is the unique orthogonal projection of M onto M(π,Q) under
the squared-Frobenius norm:

Proposition 2.4 (Pythagorean identity under squared-Frobenius norm). Let M ∈ M,
Q ∈ I(π) ∩ L and N ∈ M(π,Q). We have

∥M −N∥2F =
∥∥M −M(Q)

∥∥2
F
+
∥∥M(Q)−N

∥∥2
F
.

In particular, this yields M(Q) is the unique projection of M onto M(π,Q).

Proof.

∥M −N∥2F = ⟨M −N,M −N⟩F

=

〈
M −QMQ

2
+
M +QMQ

2
−N,

M −QMQ

2
+
M +QMQ

2
−N

〉
F

=
∥∥M −M(Q)

∥∥2
F
+
∥∥M(Q)−N

∥∥2
F
+ 2

〈
M −QMQ

2
,
M +QMQ

2
−N

〉
F

,

and it suffices to show that the rightmost inner product equals to zero, that is,〈
M −QMQ

2
,
M +QMQ

2
−N

〉
F

= Tr

((
M −QMQ

2

)∗(
M +QMQ

2
−N

))
= 0.

To see that, we shall prove that Tr(A) = Tr(−A) with A =
(
M−QMQ

2

)∗ (M+QMQ
2

−N
)
.

We calculate that

Tr

((
M −QMQ

2

)∗(
M +QMQ

2
−N

))
= Tr

((
M +QMQ

2
−N

)∗(
M −QMQ

2

))
= Tr

(
Q2

(
M∗ +QM∗Q

2
−N∗

)(
M −QMQ

2

))
8



= Tr

(
Q

(
M∗ +QM∗Q

2
−N∗

)(
M −QMQ

2

)
Q

)
= Tr

((
QM∗ +M∗Q

2
−QN∗

)(
MQ−QM

2

))
= Tr

((
QM∗Q+M∗

2
−N∗

)(
QMQ−M

2

))
= Tr

((
QMQ−M

2

)∗(
QMQ+M

2
−N

))
,

where the third equality follows from the cyclic property of the trace and the fifth equality
makes use of N∗ = QN∗Q. This completes the proof.

Using both Proposition 2.3 and 2.4, we see that, for a given P ∈ L(π), not only P (Q)
is the unique information projection of P onto L(π,Q) under the deformed divergences
DQ
KL and QDKL, it is also the unique orthogonal projection of P onto M(π,Q) under the

squared-Frobenius norm.

3 Comparisons of some samplers

Given π ∈ P(X ), P ∈ S(π) and Q being an isometric involution transition matrix, the aim of
this section is to compare the convergence of various natural samplers associated with these
matrices, such as P , QP , PQ, QPQ, P (Q) or more generally the mixture αP +(1−α)QPQ
for α ∈ [0, 1].

3.1 Comparisons of entropic parameters

In this section, we compare parameters related to the KL divergence and entropy.

To this end, let us recall that the KL-divergence Dobrushin coefficient (Wang and Choi,
2023, Definition 2.7) is defined to be

Definition 3.1. Let π ∈ P(X ), P ∈ S(π). Then the KL-divergence Dobrushin coefficient of
P , cKL(P ), is defined to be

cKL(P ) := max
M,N∈S(π),M ̸=N

Dπ
KL(MP∥NP )
Dπ
KL(M∥N)

∈ [0, 1].

Making use of the KL-divergence Dobrushin coefficient, we first show that, for π-stationary
transition matrices, the original π-weighted KL divergence in fact coincides with the de-
formed KL divergences that we introduce earlier in Section 2.
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Proposition 3.1. Let π ∈ P(X ),M,N ∈ L and Q ∈ I(π) ∩ L. We have

Dπ
KL(M∥N) = DQ

KL(M∥N).

If M,N ∈ S(π), then

Dπ
KL(M∥N) = QDKL(M∥N).

Proof. IfM = N , then the equalities obviously hold and the values are all zeros. ForM ̸= N ,
we note that

Dπ
KL(M∥N) = Dπ

KL((MQ)Q∥(NQ)Q)
≤ cKL(Q)D

π
KL(MQ∥NQ)

≤ Dπ
KL(MQ∥NQ)

≤ cKL(Q)D
π
KL(M∥N) ≤ Dπ

KL(M∥N).

The equalities hold and hence Dπ
KL(MQ∥NQ) = Dπ

KL(M∥N).

Using the duality in Proposition 2.2 and the bisection property (Choi and Wolfer, 2024,
Theorem III.1), we note that

QDKL(M∥N) = DQ
KL(M

∗∥N∗) = Dπ
KL(M

∗∥N∗) = Dπ
KL(M∥N).

Our second result states that, when measured by Dπ
KL, the KL divergence from Π to

any of P, PQ,QP,QPQ are all the same. Analogous results hold for the KL-divergence
Dobrushin coefficient. We also demonstrate that the projection is trace-preserving in the
sense that Tr(P ) = Tr(P (Q)), a property that we shall utilize in Section 5 below.

Proposition 3.2. Let π ∈ P(X ), P ∈ S(π) and Q ∈ I(π) ∩L to be an isometric involution
transition matrix. Let Π be the matrix where each row equals to π. We have

• (One-step contraction measured by Dπ
KL)

Dπ
KL(P∥Π) = Dπ

KL(PQ∥Π) = Dπ
KL(QP∥Π) = Dπ

KL(QPQ∥Π). (6)

• (KL-divergence Dobrushin coefficient)

cKL(P ) = cKL(PQ) = cKL(QP ) = cKL(QPQ). (7)

• (Projection is trace-preserving)

Tr(P ) = Tr(QP ∗Q) = Tr(P (Q)). (8)

10



Proof. (6) can readily be seen from (3.1). We replace P above in this proof by QP to yield
the rightmost equality of (6).

Next, we prove (7). Using submultiplicativity of cKL (Wang and Choi, 2023, Proposition
3.9), we see that

cKL(P ) = cKL((PQ)Q) ≤ cKL(PQ)cKL(Q) ≤ cKL(PQ).

Replacing P by PQ in the equations above yields

cKL(PQ) ≤ cKL(PQ
2) = cKL(P ).

Similarly, cKL(P ) = cKL(QP ) can be shown. Replacing P by QP in the expressions
above leads us to cKL(QP ) = cKL(QPQ).

Finally, we prove (8), which follows from the linearity and cyclic property of trace, Q2 = I
and Tr(P ) = Tr(P ∗).

Our next result states that, the KL-divergence from Π to P (Q) is at least smaller than
that to P .

Proposition 3.3 (Pythagorean identity). Let π ∈ P(X ), P ∈ S(π) and Q ∈ I(π) ∩ L to be
an isometric involution transition matrix. Let Π be the matrix where each row equals to π.
We have

Dπ
KL(P∥Π) ≤ Dπ

KL(P∥P ) +Dπ
KL(P∥Π) = Dπ

KL(P∥Π),

and the equality holds if and only if P ∈ L(π,Q) so that P (Q) = P .

Similarly, if P is further assumed to be π-reversible, then

cKL(P (Q)) ≤ cKL(P ).

Remark 3.1. Note that by Proposition 3.2, we have

Dπ
KL(P (Q)∥Π) = Dπ

KL((1/2)(PQ+QP ∗)∥Π).

Proof. By taking L = Π in Proposition 2.3, we see that

DQ
KL(P∥Π) = DQ

KL(P∥P ) +DQ
KL(P∥Π)

In view of Proposition 3.1 and 3.2, we arrive at

Dπ
KL(P∥Π) = DQ

KL(P∥Π)
= DQ

KL(P∥P ) +DQ
KL(P∥Π)

= Dπ
KL(PQ∥PQ) +Dπ

KL(PQ∥Π)
= Dπ

KL(P∥P ) +Dπ
KL(P∥Π)

11



≥ Dπ
KL(P∥Π),

where the equality holds if and only if P = P if and only if P is itself (π,Q)-self-adjoint.

Using the convexity of cKL (Wang and Choi, 2023, Proposition 3.9), we see that

cKL(P ) ≤
1

2
(cKL(P ) + cKL(QPQ)) = cKL(P ),

which the last equality follows from Proposition 3.2.

In view of Proposition 3.2 and 3.3, given an arbitrary π-stationary P , it is thus ad-
vantageous to use the transition matrix P n(Q) over other competing samplers such as
P n, QP n, P nQ,QP nQ, when measured by Dπ

KL.

For α ∈ [0, 1], we define Pα(Q) := αP + (1− α)QPQ. In the special case of α = 1/2, we
recover P 1/2(Q) = P (Q) when P ∈ L(π). Also, we compute that

αP + (1− α)QPQ(Q) = P (Q). (9)

An interesting consequence of Proposition 3.3 is that the choice of α = 1/2 is optimal
within the family (Pα(Q))α∈[0,1] in the sense that it minimizes the KL divergence Dπ

KL and
the KL-divergence Dobrushin coefficient when P is π-reversible:

Corollary 3.1 (Optimality of α = 1/2). Let P ∈ L(π) and Q ∈ I(π) ∩ L be an isometric
involution transition matrix. We have

min
α∈[0,1]

Dπ
KL(Pα(Q)∥Π) = Dπ

KL(P (Q)∥Π),

min
α∈[0,1]

cKL(Pα(Q)) = cKL(P (Q)).

The proof can readily be seen from Proposition 3.3 by replacing P therein by Pα(Q)
and using (9). It is interesting to note that P and QPQ are “equivalent” in terms of their
one-step contraction and Dobrushin coefficient, but randomly choosing to move according
to P or QPQ at each step using a fair coin (i.e. using (1/2)(P + QPQ)) improves the
performance.

3.2 Comparisons of spectral parameters

The aim of this subsection is to compare spectral parameters of various Markov chains. To
this end, let us now fix a few notations.

For a matrix M ∈ M, we write λ(M) to be the set of eigenvalues of M counted with
multiplicities. For a self-adjoint M , we denote by λ1(M) ≥ λ2(M) ≥ . . . λ|X |(M) to be its
eigenvalues arranged in non-increasing order. The right spectral gap γ(P ) of P ∈ L(π) is
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defined to be γ(P ) := 1− λ2(P ), while the second largest eigenvalue in modulus SLEM(P )
of P is defined to be SLEM(P ) := max{λ2(P ), |λ|X |(P )|}.

We shall be interested in several hitting and mixing time parameters that are related to
the spectrum of ergodic P ∈ L(π). Let τA = τA(P ) := inf{n ∈ N; Xn ∈ A} be the first
hitting time of the set A of the Markov chain (Xn)n∈N associated with P , where the usual
convention of inf ∅ := ∞ applies. We write τx := τ{x} for x ∈ X . The average hitting time
tav(P ) of P is defined to be

tav(P ) :=
∑
x,y

π(x)π(y)Ex(τy).

The eigentime identity Aldous and Fill (2002) relates tav(P ) to the spectrum of P via

tav(P ) =

|X |∑
i=2

1

1− λi(P )
.

The relaxation time of P is given by

trel(P ) :=
1

γ(P )
.

Under the assumptions that P ∈ L(π) and Q ∈ I(π)∩L is an isometric involution transi-
tion matrix, QPQ is a similarity transformation of P and hence various spectral parameters
between these two coincide.

Proposition 3.4. Let P ∈ L(π) and Q ∈ I(π) ∩ L is an isometric involution transition
matrix. We have

λ(QPQ) = λ(P ).

Consequently, this leads to

tav(QPQ) = tav(P ), trel(QPQ) = trel(P ).

In the next results, we compare the eigenvalues of αP + (1− α)QPQ for α ∈ (0, 1) with
that of P (or QPQ). A natural tool to utilize in this context is the Weyl’s inequality.

Proposition 3.5. Let P ∈ L(π) and Q ∈ I(π) ∩ L is an isometric involution transition
matrix. Fix α ∈ (0, 1) and recall that Pα(Q) = αP + (1− α)QPQ. Let n := |X |. We have

• λ2(Pα(Q)) ≤ λ2(P ), where the equality holds if and only if there exists a common eigen-
vector f such that Pα(Q)f = λ2(Pα(Q))f , Pf = λ2(P )f and QPQf = λ2(QPQ)f .

• λn(P ) ≤ λn(Pα(Q)), where the equality holds if and only if there exists a common eigen-
vector g such that Pα(Q)g = λn(Pα(Q))g, Pg = λn(P )g and QPQg = λn(QPQ)g.

13



Consequently, this leads to

SLEM(Pα(Q)) ≤ SLEM(P ).

If P (and hence QPQ) is further assumed to be positive-semi-definite, then

max{α, 1− α}λ2(P ) ≤ λ2(Pα(Q)) ≤ λ2(P ),

max{α, 1− α}SLEM(P ) ≤ SLEM(Pα(Q)) ≤ SLEM(P ).

Proof. This proposition is mainly a consequence of the Weyl’s inequality (So, 1994, Theorem
1.3). Specifically, in view of Proposition 3.4, we note that

λ2(Pα(Q)) = λ1(Pα(Q)− Π) ≤ λ1(α(P − Π)) + λ1((1− α)(QPQ− Π)) = λ2(P ),

where the equality holds in the Weyl’s inequality if and only if there exists a common
eigenvector f .

Similarly, applying the Weyl’s inequality again leads to

λn(Pα(Q)) ≥ λn(αP ) + λn((1− α)QPQ) = λn(P ),

where the equality holds in the Weyl’s inequality if and only if there exists a common
eigenvector g.

In the positive-semi-definite setting, we note that by Weyl’s inequality

αλ2(P ) ≤ αλ2(P ) + (1− α)λn(QPQ) ≤ λ2(Pα(Q)),

(1− α)λ2(QPQ) ≤ (1− α)λ2(QPQ) + αλn(P ) ≤ λ2(Pα(Q)),

and the desired result follows from Proposition 3.4.

In view of Proposition 3.5, it is advantageous to consider the family of samplers (Pα(Q))α∈[0,1]
over the original P . Within this family and in the positive-semi-definite case, we see that
the speedup measured in terms of λ2 is at most one half, and as such one may seek to find
an optimal Q that minimizes λ2(Pα(Q)) subject to the constraints Q∗ = Q and Q2 = I. We
shall discuss tuning strategies of Q in Section 6.

Another interesting consequence of Proposition 3.5 lies in the equality characterizations.
Under what situation(s) are we guaranteed to have λ2(Pα(Q)) < λ2(P )? Suppose that P
is ergodic, π-reversible with distinct eigenvalues (such as birth-death processes), and hence
both the algebraic and geometric multiplicity equal to 1 for each eigenvalue of P . Suppose
that there exists x ̸= y such that π(x) = π(y). We define ϕ(x) := y, ϕ(y) := x, ϕ(z) := z for
all z ∈ X\{x, y}. Define Qϕ(x, y) = δy=ϕ(x), the Dirac mass of the set {y = ϕ(x)}. Then,
a necessary condition for λ2(Pα(Qϕ)) = λ2(P ) is that the common eigenvector f satisfies
f(x) = ±f(y). Thus, under these assumptions of Qϕ, if the eigenvector of P has distinct
absolute values such that |f(x)| ≠ |f(y)| for all x ̸= y, the Weyl’s inequality is strict and
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hence λ2(Pα(Qϕ)) < λ2(P ). Similar analysis can be done to give a sufficient condition for
λn(P ) < λn(Pα(Qϕ)).

Analogous to Corollary 3.1, an interesting corollary of Proposition 3.5 is that the choice
of α = 1/2 is optimal within the family (Pα(Q))α∈[0,1] in the sense that it minimizes SLEM
and λ2 when P is π-reversible:

Corollary 3.2 (Optimality of α = 1/2). Let P ∈ L(π) and Q ∈ I(π) ∩ L be an isometric
involution transition matrix. We have

min
α∈[0,1]

SLEM(Pα(Q)) = SLEM(P (Q)),

min
α∈[0,1]

λ2(Pα(Q)) = λ2(P (Q)).

The proof can readily be seen from Proposition 3.5 by replacing P therein by Pα(Q) as
well as (9).

3.3 Comparisons of asymptotic variances

In addition to entropic and spectral parameters, another commonly used parameter to assess
the convergence of Markov chain samplers is asymptotic variance. In this subsection, we
compare the asymptotic variances of various Markov chains. We first fix a few notations.

For an ergodic P ∈ S(π), its fundamental matrix Z(P ), see for example (Brémaud, 1999,
Chapter 6), is defined to be

Z(P ) := (I − (P − Π))−1,

where we recall that Π is the matrix where each row equals to π. Note that the above inverse
always exists for ergodic P . For Q ∈ I(π) ∩ L, we see that

Z(QPQ) = QZ(P )Q.

Let (Xn)n≥0 be the Markov chain with ergodic transition matrix P . Its asymptotic
variance of f ∈ ℓ20(π) is, for any initial distribution µ,

lim
n→∞

1

n
Varµ

(
n∑
i=1

f(Xi)

)
= 2⟨f, Z(P )f⟩π − ⟨f, f⟩π =: v(f, P ).

For a proof of the above expression one can consult (Brémaud, 1999, Theorem 6.5). From
this definition we readily check that

v(f, P ) = v(Qf,QPQ). (10)
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A useful variational characterization of asymptotic variance for P ∈ L(π) Sherlock (2018) is
given by

v(f, P ) = sup
g∈ℓ20(π)

4⟨f, g⟩π − 2⟨(I − P )g, g⟩π − ⟨f, f⟩π. (11)

The worst-case asymptotic variance, studied for example in Frigessi et al. (1993), is

V (P ) := sup
f∈ℓ20(π),∥f∥π=1

v(f, P ) =
1 + λ2(P )

1− λ2(P )
, (12)

while the average-case asymptotic variance, investigated in Chen et al. (2012), is

v(P ) :=

∫
f∈ℓ20(π),∥f∥π=1

v(f, P )dS(f), (13)

where dS(f) is the uniform measure on the normalized surface area.

Our first proposition compares the asymptotic variances between Pα(Q) and P .

Proposition 3.6. Let P ∈ L(π) be ergodic and Q ∈ I(π) ∩ L be an isometric involution
transition matrix. For α ∈ [0, 1], recall that Pα(Q) = αP +(1−α)QPQ. For any f ∈ ℓ20(π),
we have

v(f, Pα(Q)) ≤ αv(f, P ) + (1− α)v(Qf, P ).

In particular, if f satisfies Qf = ±f , it leads to

v(f, Pα(Q)) ≤ v(f, P ),

and hence

min
α∈[0,1]

v(f, Pα(Q)) = v(f, P (Q)).

Proof. First, we calculate that

4⟨f,g⟩π − 2⟨(I − Pα(Q))g, g⟩π − ⟨f, f⟩π
= α (4⟨f, g⟩π − 2⟨(I − P )g, g⟩π − ⟨f, f⟩π) + (1− α) (4⟨f, g⟩π − 2⟨(I −QPQ)g, g⟩π − ⟨f, f⟩π) .

Taking the sup over g ∈ ℓ20(π) and using (11) leads to

v(f, Pα(Q)) ≤ αv(f, P ) + (1− α)v(f,QPQ)

= αv(f, P ) + (1− α)v(Qf, P ),

where the last equality follows from (10).

Finally, when Qf = ±f and P is π-reversible, by replacing P with Pα(Q) above and
recalling (9) earlier, we arrive at

min
α∈[0,1]

v(f, Pα(Q)) = v(f, P (Q)).

16



Our second result compares the worst-case and average-case asymptotic variance between
Pα(Q) and P , and demonstrates the optimality of α = 1/2.

Proposition 3.7. Let P ∈ L(π) and Q ∈ I(π) ∩ L be an isometric involution transition
matrix. Fix α ∈ (0, 1) and recall that Pα(Q) = αP + (1− α)QPQ. We have

• (worst-case asymptotic variance)

V (Pα(Q)) ≤ V (P ),

where the equality holds if and only if λ2(Pα(Q)) = λ2(P ) if and only if there exists a
common eigenvector g such that Pα(Q)g = λ2(Pα(Q))g, Pg = λ2(P )g and QPQg =
λ2(QPQ)g.

If P is further assumed to be positive-semi-definite, then

max{α, 1− α}V (P ) ≤ V (Pα(Q)) ≤ V (P ).

• (average-case asymptotic variance)

v(Pα(Q)) ≤ v(P ).

Consequently, this leads to

min
α∈[0,1]

V (Pα(Q)) = V (P (Q)),

min
α∈[0,1]

v(Pα(Q)) = v(P (Q)).

Proof. We first handle the results for worst-case asymptotic variance. Using (12), Proposition
3.5 and the fact that the mapping 0 < c 7→ 1+c

1−c is strictly increasing, we have

V (Pα(Q)) =
1 + λ2(Pα(Q))

1− λ2(Pα(Q))
≤ 1 + λ2(P )

1− λ2(P )
= V (P ),

and so the equality holds if and only if λ2(Pα(Q)) = λ2(P ). If P is positive-semi-definite,
using the inequality that, for a ∈ (0, 1) and c > 0,

a
1 + c

1− c
≤ 1 + ac

1− ac
,

we arrive at

max{α, 1− α}V (P ) ≤ 1 + max{α, 1− α}λ2(P )
1−max{α, 1− α}λ2(P )

≤ 1 + λ2(Pα(Q))

1− λ2(Pα(Q))
= V (Pα(Q)),

where the second inequality above follows from Proposition 3.5.
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Next, we proceed to show the results for average-case asymptotic variance. In view of
Proposition 3.6, it suffices to show that

v(P ) =

∫
f∈ℓ20(π),∥f∥π=1

v(Qf, P )dS(f),

which is indeed true since∫
f∈ℓ20(π),∥f∥π=1

v(Qf, P )dS(f) =

∫
f∈ℓ20(π),∥f∥π=1

v(f,QPQ)dS(f)

=
2

|X | − 1
Tr(Z(QPQ))− 1

=
2

|X | − 1
Tr(Z(P ))− 1

= v(P ),

where the first equality uses (10), the second equality comes from (Chen et al., 2012, Theorem
2.1), the third equality uses λ(P ) = λ(QPQ), and the last equality uses again (Chen et al.,
2012, Theorem 2.1).

Finally, the optimality of α = 1/2 can be seen by replacing P with Pα(Q) above and
recalling (9) earlier.

When will there be no improvement in the worst-case asymptotic variance, i.e. V (Pα(Q)) =
V (P )? One interesting consequence of Proposition 3.7 is that, there is no improvement if
and only if λ2(P ) = λ2(Pα(Q)) and by the Weyl’s inequality if and only if there exists a
common eigenvector.

4 Alternating projections to combine Qs

Let m ∈ N and suppose that we have a sequence of isometric involution matrices Qi ∈
I(π) ∩ L for i ∈ J0,m − 1K. Is there a way to combine these Qi to further improve the
convergence to equilibrium?

One natural idea in this context is alternating projections. Specifically, given a P ∈ L(π),
we first project it onto the space L(π,Q0) to obtain R1 = R1(Q0, . . . , Qm−1, P ) := P (Q0).
Second, we project R1 onto the space L(π,Q1) to obtain R2 = R2(Q0, . . . , Qm−1, P ) :=
R1(Q1). Third, we projectR2 onto the space L(π,Q2) to obtainR3 = R3(Q0, . . . , Qm−1, P ) :=
R2(Q2). We proceed iteratively and the projection order is deterministic in a cycle in the
order of Q0, . . . , Qm−1. Precisely, for n ∈ N, we define

Rn = Rn(Q0, . . . , Qm−1, P ) := Rn−1(Q(n−1) mod m) (14)

with the initial condition R0 := P .
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We remark that, in the context of MCMC, alternating projections have appeared in the
analysis of Gibbs samplers in Diaconis et al. (2010); Qin (2024).

The sequence of alternating projections (Ri)i∈N yields a monotone sequence of mixing
time parameters:

Proposition 4.1. Let P ∈ L(π) and Qi ∈ I(π)∩L for i ∈ J0,m−1K be a sequence of isomet-
ric involution transition matrices. Define Rn as in (14). The sequences (Dπ

KL(Rn∥Π))n∈N,
(cKL(Rn))n∈N, (SLEM(Rn))n∈N, (V (Rn))n∈N and (v(Rn))n∈N are monotonically non-increasing
in n with limits

lim
n→∞

Dπ
KL(Rn∥Π) = inf

n∈N
Dπ
KL(Rn∥Π),

lim
n→∞

cKL(Rn) = inf
n∈N

cKL(Rn),

lim
n→∞

SLEM(Rn) = inf
n∈N

SLEM(Rn),

lim
n→∞

V (Rn) = inf
n∈N

V (Rn),

lim
n→∞

v(Rn) = inf
n∈N

v(Rn).

Proof. Using the monotone convergence theorem, the desired results can readily be seen by
recursive application of Proposition 3.3, 3.5, 3.7 and noting a lower bound of zero on these
quantities.

Denote the intersections of L(π,Q0), . . . ,L(π,Qm−1) to be

E = E(π,Q0, . . . , Qm−1) :=
m−1⋂
k=0

L(π,Qk).

Note that since Π ∈ L(π,Qk) for all k ∈ J0,m− 1K, Π ∈ E and hence E ̸= ∅. Since L(π,Qk)
is a convex and compact set and intersections preserve convexity and compactness, E is also
a convex and compact set. Let R∞ be an information projection of P ∈ L(π) onto E , that
is,

R∞ = R∞(Q0, . . . , Qm−1, P ) := argmin
N∈E

Dπ
KL(P∥N).

Observe that since for fixed P the mapping N 7→ Dπ
KL(P∥N) is convex (see e.g. Melbourne

(2020)) and the above minimization is taken over a convex and compact set E , a unique
minimizer R∞ exists owing to the Pythagorean theorem (see e.g. (Brémaud, 2017, Lemma
13.2.3)).

We state a decomposition of the KL divergence and squared-Frobenius norm, and use it
to show that the information projection of any Rk onto E coincides and are equal to R∞:

Proposition 4.2. Let l,m, n ∈ N ∪ {0} with l > n ≥ 0 and m ≥ 1. Let P ∈ L(π) and
Qi ∈ I(π) ∩ L for i ∈ J0,m − 1K be a sequence of isometric involution transition matrices.
Define Rn as in (14).
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• For E ∈ E, we have

Dπ
KL(Rn∥E) =

l−1∑
j=n

Dπ
KL(Rj∥Rj+1) +Dπ

KL(Rl∥E).

• For E ∈ E, we have

∥Rn − E∥2F =
l−1∑
j=n

∥Rj −Rj+1∥2F + ∥Rl − E∥2F .

• We have

R∞(Q0, . . . , Qm−1, P ) = R∞(Q0, . . . , Qm−1, Rl).

• (Projection is trace-preserving)

Tr(Rn) = Tr(P ).

Proof. Let Q = Qn mod m. For the first item, we repeatedly apply Proposition 3.1 and the
Pythagorean identity in Proposition 2.3 to obtain

Dπ
KL(Rn∥E) = DQ

KL(Rn∥E)
= DQ

KL(Rn∥Rn+1) +DQ
KL(Rn+1∥E)

= Dπ
KL(Rn∥Rn+1) +Dπ

KL(Rn+1∥E)
= Dπ

KL(Rn∥Rn+1) +Dπ
KL(Rn+1∥Rn+2) +Dπ

KL(Rn+2∥E)

=
...

=
l−1∑
j=n

Dπ
KL(Rj∥Rj+1) +Dπ

KL(Rl∥E).

Now, we take n = 0 above and sinceDπ
KL(R0∥E) ≥ Dπ

KL(R0∥R∞), we are led toDπ
KL(Rl∥E) ≥

Dπ
KL(Rl∥R∞), and hence R∞(Q0, . . . , Qm−1, P ) = R∞(Q0, . . . , Qm−1, Rl), which proves the

third item.

For the second item, we repeatedly apply Proposition 2.4 to obtain

∥Rn − E∥2F = ∥Rn −Rn+1∥2F + ∥Rn+1 − E∥2F
= ∥Rn −Rn+1∥2F + ∥Rn+1 −Rn+2∥2F + ∥Rn+2 − E∥2F
=

...

=
l−1∑
j=n

∥Rj −Rj+1∥2F + ∥Rl − E∥2F .

Finally, we apply Proposition 3.2 repeatedly to yield Tr(Rn) = Tr(P ).
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Our main result shows that the limit of Rn exists and is given by R∞.

Theorem 4.1. Let m,n ∈ N. Let P ∈ L(π) and Qi ∈ I(π) ∩ L for i ∈ J0,m − 1K be a
sequence of isometric involution transition matrices. Define Rn as in (14). The following
limit exists (pointwise or in total variation):

lim
n→∞

Rn = R∞,

and

R∞ ∈ L(π) ∩ E , Tr(R∞) = Tr(P ).

Proof. The proof is inspired by that of (Csiszár, 1975, Theorem 3.2). On a finite state space
X , it suffices to show that for every converging subsequence (Rnk

)k≥1 such that Rnk
→ R′,

we have R′ = R∞.

For M,N ∈ L and π ∈ P(X ), we define the π-weighted total variation distance between
M and N to be

Dπ
TV (M,N) :=

∑
x

π(x)
∑
y

|M(x, y)−N(x, y)|.

First, we show that R′ ∈ E . Taking n = 0 in Proposition 4.2 and using Proposition 4.1
give us that

lim
l→∞

l−1∑
j=0

Dπ
KL(Rj∥Rj+1) = lim

l→∞
Dπ
KL(P∥E)−Dπ

KL(Rl∥E) = Dπ
KL(P∥E)− inf

l∈N
Dπ
KL(Rl∥E) <∞,

and hence liml→∞Dπ
KL(Rl∥Rl+1) = 0. By the Markov chain Pinsker’s inequality (Wang

and Choi, 2023, Proposition 3.5), we thus have liml→∞Dπ
TV (Rl, Rl+1) = 0. By the triangle

inequality, the subsequences (Rnk
)k≥1, (Rnk+1)k≥1, (Rnk+2)k≥1 up to (Rnk+m)k≥1 all converge

to R′. Since the spaces L(π,Q0), . . .L(π,Qm−1) are closed, R
′ ∈ E . It is also obvious to note

that R′ ∈ L(π) since P ∈ L(π).
By the definition of R∞ and Proposition 4.2, we have

Dπ
KL(Rnk

∥R′) ≥ Dπ
KL(Rnk

∥R∞).

Taking k → ∞ yields

lim
k→∞

Dπ
KL(Rnk

∥R∞) = Dπ
KL(R

′∥R∞) = 0,

and hence R′ = R∞.

Finally, to prove that Tr(R∞) = Tr(P ), we take the limit n→ ∞ in item 3 of Proposition
4.2. Since X is finite and Rn converges to R∞ pointwise, this completes the proof.
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R∞ can therefore be interpreted as an “optimal” transition matrix that combinesQ0, . . . , Qm−1.

Figure 1: Improving the mixing of P via alternating projections withm = 1. The intersection
E = ∩1

i=0L(π,Qi) is the striped region in the bottom, and R∞ is the projection of R0 = P
onto E under Dπ

KL.

In using these alternating projections to improve mixing, the worst possible case that can
happen is that P = R∞, that is, using these alternating projections have no effect on the
original P . This happens if and only if P ∈ E , that is, the original P is (π,Qi)-self-adjoint
for all i ∈ J0,m− 1K.

On the other hand, an ideal scenario is that R∞ = Π, and by Proposition 4.2 that
happens if and only if

Dπ
KL(P∥Π) =

∞∑
j=0

Dπ
KL(Rj∥Rj+1).

We shall investigate some other necessary conditions of R∞ = Π in Section 5.
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A special case appears when (Qi)
m−1
i=0 is pairwise commutative, that is, QiQj = QjQi for

all i ̸= j, i, j ∈ J0,m− 1K. Define the product to be

Q = Q(π,Q0, . . . , Qm−1) :=
m−1∏
i=0

Qi.

Using the pairwise commutative property one can verify that Q2 = I, Q∗ = Q and Rn = Rm

for all n ≥ m. It can also be seen that

E = L(π,Q),

and hence

R∞ = P (Q) =
1

2
(P +QPQ) = Rm.

4.1 A recursive simulation procedure for (Rn)n∈N

In view of Proposition 2.1, let (ψi)
m−1
i=0 be a sequence of permutations with ψi ∈ Ψ(π) and

we take Qi = Qψi
to be the induced permutation matrices. In this subsection, we devise a

recursive simulation procedure for Rn assuming R0 = P ∈ L(π).
First, to simulate R1 = (1/2)(P + Q0PQ0) is straightforward: with probability 1/2 we

either use P or Q0PQ0. Let σ1 be a random permutation defined to be either the identity
map i or ψ0 with equal probability. That is,

σ1 :=

{
i, with probability 1/2,

ψ0, with probability 1/2.

Thus, to simulate one step of R1 with an initial state x to a state y, it is equivalent to
simulate y′ ∼ P (σ1(x), ·) followed by setting y = σ1(y

′).

Building upon R1, we simulate R2 = (1/2)(R1 +Q1 mod mR1Q1 mod m). Let σ2 be a ran-
dom permutation defined to be either the identity map i or ψ1 mod m with equal probability.
That is,

σ2 :=

{
i, with probability 1/2,

ψ1 mod m, with probability 1/2.

Thus, to simulate one step of R2 with an initial state x to a state y, it is equivalent to
simulate y′ ∼ P (σ1(σ2(x)), ·) followed by setting y = σ2(σ1(y

′)).

Continuing the above construction recursively or by induction, we simulateRn = (1/2)(Rn−1+
Qn−1 mod mRn−1Qn−1 mod m). Let σn be a random permutation defined to be either the iden-
tity map i or ψn−1 mod m with equal probability. That is,

σn :=

{
i, with probability 1/2,

ψn−1 mod m, with probability 1/2.
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Thus, to simulate one step of Rn with an initial state x to a state y, it is equivalent to
simulate y′ ∼ P (σ1 ◦ . . . ◦ σn(x), ·) followed by setting y = σn ◦ . . . ◦ σ1(y′).

In summary, we first simulate realizations of the permutations σ1, . . . , σn. Starting from
an initial state x, we draw a random y′ ∼ P (σ1◦. . .◦σn(x), ·), then we set y = σn◦. . .◦σ1(y′).
This simulates a move from x to y using Rn.

4.2 Angle between subspaces and the rate of convergence of Rn

towards R∞

In practice, to compute R∞, we can only run the alternating projections up to a finite time n
and arrive at Rn. How far away is Rn from R∞? One way to measure this is, by Proposition
4.2,

Dπ
KL(Rn∥R∞) =

∞∑
j=n

Dπ
KL(Rj∥Rj+1).

We now apply the theory of alternating projections to obtain a rate of convergence. First,
we recall the notation of Section 2.1, where we have m closed subspaces (M(π,Qi))

m−1
i=0 of

the Hilbert space (M, ⟨·, ·⟩F ). Denote the intersection to be F = F(π,Q0, . . . , Qm−1) :=
∩m−1
i=0 M(π,Qi).

For any two closed subspace (Mi)
2
i=1 of M, we define the cosine of the angle between

these two subspaces (Deutsch, 2001, Definition 9.4) to be

α(M1,M2) := sup{|⟨M1,M2⟩F |; Mi ∈ Mi ∩ (M1 ∩M2)
⊥, ∥Mi∥F ≤ 1, i ∈ {1, 2}}.

Consider α(M(π,Qi),M(π,Qj)) for i ̸= j. If Qi is different from (resp. similar to) Qj, we
expect the angle between the two subspaces to be large (resp. small), leading to a small (resp.
large) α. Thus, α in our context can be broadly understood as a measure of dissimilarity
between two permutations.

Let P ∈ L(π) ⊆ M and consider the sequence (Rn) defined in (14). Define the projection
of P onto F under the Frobenius norm to be

R′
∞ = argmin

M∈F
∥P −M∥F .

According to (Deutsch, 2001, Corollary 9.28), we have

lim
n→∞

∥Rmn −R′
∞∥F = 0.

Since Rn → R∞ pointwise as shown in Theorem 4.1, we thus have R∞ = R′
∞.

Define for i ∈ {0, 1, . . . , r − 2}

αi := α(M(π,Qi),∩m−1
j=i+1M(π,Qj)),
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α :=

√√√√1−
r−2∏
i=0

(1− α2
i ). (15)

Using (Deutsch, 2001, Theorem 9.33) we arrive at

Corollary 4.1. Let P ∈ L(π) ⊆ M and consider the sequence (Rn) defined in (14), where
Qi ∈ I(π) ∩ L for i ∈ J0,m − 1K is a sequence of isometric involution transition matrices.
We have

∥Rmn −R∞∥F ≤ αn ∥P∥F ,

where α is given by (15).

An implication of the above Corollary allows us to answer the following question: how
many alternating projection steps t one need to run until we are guaranteed that ∥Rt −R∞∥F ≤
ε for a given error ε > 0? Using the crude bound that ∥P∥F ≤

√
|X |, we see that one can

set

t = m
log(

√
|X |/ε)

log(1/α)
.

5 The “maximum speed limit” of projection samplers

In this section, we explore necessary conditions of achieving Rn = Π or R∞ = Π.

5.1 A simple three-point example that achieves P (Q) = Π

In this subsection, we let X be a three-point state space. The aim of this subsection is to
provide a non-trivial example that achieves P (Q) = Π. For P ∈ L(X ), recall that λ(P ) is
the set of eigenvalues of P . Let P be a transition matrix given by

P =

1
2

1
3

1
6

1
3

1
6

1
2

1
6

1
2

1
3

 , λ(P ) =

{
1,± 1

2
√
3

}
.

Clearly, π = (1/3, 1/3, 1/3) and P ∗ = P . We take Q to be

Q =

0 1 0
1 0 0
0 0 1

 , λ(Q) =

{
1, 1,−1

}
.

It can easily be seen that Q∗ = Q and Q2 = I. We compute that

QP =

1
3

1
6

1
2

1
2

1
3

1
6

1
6

1
2

1
3

 , λ(QP ) =

{
1,±

√
−3

6

}
,
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PQ =

1
3

1
2

1
6

1
6

1
3

1
2

1
2

1
6

1
3

 , λ(PQ) =

{
1,±

√
−3

6

}
,

QPQ =

1
6

1
3

1
2

1
3

1
2

1
6

1
2

1
6

1
3

 , λ(QPQ) =

{
1,± 1

2
√
3

}
,

P (Q) =
1

2
(P +QPQ) =

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 , λ(P (Q)) =

{
1, 0, 0

}
,

1

2
(PQ+QP ) =

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 , λ

(
1

2
(PQ+QP )

)
=

{
1, 0, 0

}
.

We see that there are two interesting properties of P : it satisfies Tr(P ) = 1 and λ(P ) ∩
λ(−P ) ̸= ∅. This motivates our investigations in the following subsections.

5.2 A necessary condition of Rn = Π in terms of trace

In view of Proposition 4.2 and 3.2, we recall that the projections are trace-preserving and
hence

Tr(Rn) = Tr(P ).

Thus, if for some n ∈ N∪ {∞} such that Rn = Π, this implies Tr(P ) = 1. We record this as
a Corollary:

Corollary 5.1. Let P ∈ S(π) and consider the sequence (Rn) defined in (14), where Qi ∈
I(π) ∩ L for i ∈ J0,m − 1K is a sequence of isometric involution transition matrices. If
Rn = Π for some n ∈ N ∪ {∞}, then

Tr(P ) = 1.

Consequently, this implies that if P is positive-definite so that Tr(P ) > 1, then for any
sequence of (Qi)

m−1
i=0 , Rn ̸= Π for all n ∈ N ∪ {∞}.

5.3 A necessary condition of P (Q) = Π via the Sylvester’s equation

Let us first briefly recall the Sylvester’s equation. It is a linear matrix equation in X ∈ M
of the form, for given A,B,C ∈ M,

AX +XB = C.

The Sylvester’s theorem (Horn and Johnson, 2013, Theorem 2.4.4.1) gives a necessary and
sufficient condition for the above Sylvester’s equation to admit a unique solution in X ∈ M
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for each given C: X is unique if and only if λ(A) ∩ λ(−B) = ∅, that is, A and −B have no
eigenvalue in common.

In our setting, we specialize into A = P,B = P ∗ and C = 2Π with P ∈ S(π). We note
that X = Π is always a solution. Thus, if P (Q) = Π, the Sylvester’s equation has at least
two solutions X ∈ {Π, Q}, and hence by the Sylvester’s theorem we have λ(P )∩λ(−P ∗) ̸= ∅.
We record this as a Corollary:

Corollary 5.2. Let P ∈ S(π) and Q ∈ I(π)∩L be an isometric involution transition matrix.
If P (Q) = Π, then

λ(P ) ∩ λ(−P ∗) ̸= ∅,
that is, P and −P ∗ have at least one common eigenvalue.

Consequently, the above result implies that, for π-reversible P ∈ L(π), if it is positive-
definite or if |λi(P )| ̸= |λj(P )| for all i ̸= j, then P and −P ∗ = −P have no common
eigenvalue, and hence P (Q) ̸= Π.

5.4 Characterization of R∞ when π is the discrete uniform distri-
bution, and a necessary and sufficient condition of R∞ = Π

In this subsection, we let n = |X | and consider π to be the discrete uniform distribution
with P = P T ∈ L(π). Without loss of generality we assume the state space is of the form
X = JnK. For j ∈ J2, nK, we define the permutations (ψ1,j)

n
j=2 to be ψ1,j(1) = j, ψ1,j(j) = 1

and ψ1,j(x) = x for all x ∈ X\{1, j}, and denote the induced permutation matrices by
(Q1,j)

n
j=2. Clearly, Q1,j ∈ I(π) ∩ L, and we recall that the intersection of (L(π,Q1,j))

n
j=2 is

written as

E =
n⋂
j=2

L(π,Q1,j).

In the above setting, the main result of this subsection characterizesR∞ and demonstrates
that R∞ is a linear combination of Π and I. It also proves that, under the choices of the
permutation matrices (Q1,j)

n
j=2, Tr(P ) = 1 is necessary and sufficient to achieve R∞ = Π:

Theorem 5.1. Let π be the discrete uniform distribution on X and P = P T ∈ L(π). Denote
the sequence of isometric involution transition matrices to be Q1,j as in this subsection, and
define the sequence of projections (Rl)l∈N as in (14). The limit R∞ is given by

R∞ = (nb)Π + (a− b)I =


a b . . . b

b a
. . .

...
...

. . . . . . b
b . . . b a

 , (16)

where a = a(Q1,2, . . . , Q1,n, P ), b = b(Q1,2, . . . , Q1,n, P ) ∈ [0, 1] satisfy nb + a − b = 1. In
particular, R∞ = Π if and only if Tr(P ) = 1.
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Proof. First, we shall prove by induction on k ∈ JnK that the first k rows and k columns of
R∞ is of the form 

a b . . . b . . .

b a
. . . b . . .

...
. . . . . .

... . . .
b . . . b a . . .
. . . . . . . . . . . . . . .

 ,

that is, R∞(x, x) = a for all x ∈ JkK and R∞(x, y) = b for all x ̸= y, x, y ∈ JkK.

When k = 1, what we seek to prove obviously holds. When k = 2, since R∞ ∈ L(π,Q1,2),
we see that

R∞(1, 1) = R∞(ψ1,2(1), ψ1,2(1)) = R∞(2, 2),

R∞(1, 2) = R∞(ψ1,2(1), ψ1,2(2)) = R∞(2, 1).

Assume that the induction hypothesis holds for some k. Since R∞ ∈
⋂k
j=2 L(π,Q1,j), the

first k + 1 rows and k + 1 columns of R∞ can be written as

a b . . . b c . . .

b a
. . . b c . . .

...
. . . . . .

...
... . . .

b . . . b a c . . .
d . . . d d e . . .
. . . . . . . . . . . . . . . . . .


,

where c, d, e ∈ [0, 1] are some constants. To see that c = d, we note c = R∞(1, k + 1) =
R∞(ψ1,k+1(1), ψ1,k+1(k + 1)) = R∞(k + 1, 1) = d. Similarly, we have a = e since a =
R∞(1, 1) = R∞(ψ1,k+1(1), ψ1,k+1(1)) = R∞(k + 1, k + 1) = e. Finally, b = c since b =
R∞(1, 2) = R∞(ψ1,k+1(1), ψ1,k+1(2)) = R∞(k + 1, 2) = d = c. This completes the induction.

By Corollary 5.1, Tr(P ) = 1 is a necessary condition of R∞ = Π. In the opposite
direction, if Tr(P ) = 1, the trace-preserving property of projections in Proposition 4.2 gives
Tr(R∞) = 1. We see that

Tr(R∞) = Tr((nb)Π + (a− b)I) = nb+ (a− b)n = na = 1,

which gives a = b = 1/n, and hence R∞ = Π.

Using (16), we see that the right spectral gap of R∞ is

γ(R∞) = nb.

In the following proposition, we give a lower bound of 1/2 when P is closer to Π than to I
in Frobenius norm:
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Proposition 5.1. In the setting of Theorem 5.1, if ∥P − Π∥F ≤ ∥P − I∥F or equivalently

Tr(P ) ≤ n+ 1

2
,

then

γ(R∞) ≥ 1

2
.

Proof. By Proposition 4.2, the assumption ∥P − Π∥F ≤ ∥P − I∥F implies ∥R∞ − Π∥F ≤
∥R∞ − I∥F . Using (16), we compute that

∥R∞ − Π∥F = |a− b| ∥Π− I∥F ,
∥R∞ − I∥F = |1− (a− b)| ∥Π− I∥F .

This leads to |a− b| ≤ |1− (a− b)|, and hence a− b ≤ 1/2. Since 1− nb = a− b, this yields
nb ≥ 1/2.

To see the equivalence, we compute that

∥P − Π∥2F =
∑
x,y

(
P (x, y)− 1

n

)2

=
∑
x,y

P (x, y)2 − 2

n

∑
x,y

P (x, y) + 1

=
∑
x,y

P (x, y)2 − 1,

∥P − I∥2F =
∑
x,y

(P (x, y)− δx=y)
2

=
∑
x,y

P (x, y)2 − 2
∑
x,y

P (x, y)δx=y +
∑
x,y

δx=y

=
∑
x,y

P (x, y)2 − 2
∑
x

P (x, x) + n,

and hence ∥P − Π∥F ≤ ∥P − I∥F is equivalent to∑
x

P (x, x) ≤ n+ 1

2
.

In the remaining of this subsection, we let c = c(P ) := Tr(P ). Suppose that c ∈ [0, 1),
and by Theorem 5.1, we note that

R∞(Q1,2, . . . , Q1,n, P ) ̸= Π.
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Consider instead the transition matrix P ′ given by

P ′ := αI + (1− α)P, α :=
1− c

n− c
∈ [0, 1],

then P ′T = P ′ ∈ L(π). Furthermore, Tr(P ′) = 1, and hence by Theorem 5.1 and Proposition
5.1 we have

R∞(Q1,2, . . . , Q1,n, P
′) = Π, γ(R∞(Q1,2, . . . , Q1,n, P

′)) ≥ 1

2
.

Thus, it is advantageous to consider first P ′ and then the sequence of alternating projections
(Rl) induced by P ′ to improve mixing over the original P .

More generally, if P is such that c ∈ [0, n+1
2
]\{1}, then by Theorem 5.1 this is not an

ideal situation since the limit of the projections is

R∞(Q1,2, . . . , Q1,n, P ) ̸= Π.

However, by Proposition 5.1

γ(R∞(Q1,2, . . . , Q1,n, P )) ≥
1

2
.

In other words, for P ∈ {P ∈ L(π); π(x) = 1/n for all x,Tr(P ) ≤ n+1
2
}, the limit R∞

induced from any member of this family mixes fast since it has a constant order relaxation
time.

A special case arises when c = 0, or equivalently P (x, x) = 0 for all x. This leads to
a = 0, b = 1/(n− 1). Even if R∞ ̸= Π, R∞ is an “optimal reversible stochastic matrix” that
minimizes the worst-case asymptotic variance in the sense of (Frigessi et al., 1992, Remark
3).

6 Tuning strategies of Q

In this paper, given a P ∈ L(π), we propose projection samplers such as P (Q) or more
generally the sequence of alternating projections (Rl)l∈N as improved variants compared
with the original P . In these cases, the isometric involution transition matrix Q ∈ I(π) ∩ L
can be understood as a parameter in these algorithms, and the improvement depends on
the tuning of Q. For instance, the choice of Q = I is always feasible, yet it leads to no
improvement since P (I) = P . On the other hand, we have seen in Section 5 that depending
on P it might be possible to achieve Rl = Π or R∞ = Π with suitable choices of Qs.

In this section, we explore some possible tuning strategies of Q.
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6.1 Tuning Q via optimization and Markov chain assignment prob-
lems

The first strategy seeks to find an optimal Q that minimizes the discrepancy between P (Q)
and Π or more generally between Rl and Π.

Precisely, we would like to find Q that minimizes the π-weighted KL divergence or the
squared-Frobenius norm for a given P ∈ S(π):

Q∗,KL = Q∗,KL(P ) := argmin
Q∈I(π)∩L

Dπ
KL(P (Q)∥Π),

Q∗,F = Q∗,F (P ) := argmin
Q∈I(π)∩L

∥∥P (Q)− Π
∥∥2
F
.

The above optimization problems may not be solved in realistic time frame in practice,
since π may involve normalization constant that is non-tractable. Fortunately, using the
Pythagorean identities in Proposition 2.4 and 3.3, we see that

Q∗,KL = argmax
Q∈I(π)∩L

Dπ
KL(P∥P (Q)) = argmax

ψ∈Ψ(π)

Dπ
KL(P∥P (Qψ)),

Q∗,F = argmax
Q∈I(π)∩L

∥∥P − P (Q)
∥∥2
F
= argmax

ψ∈Ψ(π)

∥∥P − P (Qψ)
∥∥2
F
.

The rightmost maximization problems can be understood as Markov chain assignment prob-
lems constrained to choosing permutations within the set Ψ(π). While in general assignment
problems can be solved in polynomial time in |X | Korte and Vygen (2018), this may still be
computationally infeasible in practice since |X | might be exponentially large in many models
of interest in the context of MCMC.

The above can be generalized to consider multidimensional Markov chain assignment
problems. Specifically, we seek to solve, for m, l ∈ N,

argmin
ψi∈Ψ(π), ∀i∈J0,m−1K

Dπ
KL(Rl(Qψ0 , . . . , Qψm−1 , P )∥Π)

= argmax
ψi∈Ψ(π),∀i∈J0,m−1K

l−1∑
j=0

Dπ
KL(Rj(Qψ0 , . . . , Qψm−1 , P )∥Rj+1(Qψ0 , . . . , Qψm−1 , P )),

argmin
ψi∈Ψ(π), ∀i∈J0,m−1K

∥∥Rl(Qψ0 , . . . , Qψm−1 , P )− Π
∥∥2
F

= argmax
ψi∈Ψ(π),∀i∈J0,m−1K

l−1∑
j=0

∥∥Rj(Qψ0 , . . . , Qψm−1 , P )−Rj+1(Qψ0 , . . . , Qψm−1 , P )
∥∥2
F
,

where the equalities follow from the Pythagorean identities in Proposition 2.4 and 3.3. Note
that in general multidimensional assignment problems are NP hard Nguyen et al. (2014) to
solve, and there are heuristics to solve these in practice such as the cross-entropy method.

We remark that, this technique of converting the original problem of minimization of KL
divergence to a maximization problem is in the spirit of evidence lower bound (ELBO) in
variational inference, see for example Blei et al. (2017).
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6.2 Tuning Q adaptively in a single run

Let H : X → R be a target Hamiltonian function, and πβ be its associated Gibbs distribution
at inverse temperature β ≥ 0, that is, for x ∈ X ,

πβ(x) :=
e−βH(x)

Zβ
,

where Zβ :=
∑

x∈X e
−βH(x) is the normalization constant. Thus, we see that πβ(x) = πβ(y)

if and only if H(x) = H(y).

The second tuning strategy lies in adjusting Q adaptively on the fly as the algorithm
progresses. Specifically, given a P ∈ L(πβ) such as the Metropolis-Hastings algorithm or
the Gibbs sampler, we run a non-homogeneous and adaptive Markov chain with transition
matrix at each time l ∈ N to be

1

2
(P +Qψl

PQψl
),

along with the initial condition Qψ1 = I. We record the trajectories of this adaptive Markov
chain. At time l ≥ 2, suppose the past trajectory is {x0, x1, . . . , xl−1}. We search for an
“equi-energy” pair that is not mapped in Qψl−1

: if there exists i, j such that H(xi) = H(xj),
ψl−1(xi) = xi, ψl−1(xj) = xj, then we update the permutation to ψl(xi) = xj, ψl(xj) =
xi, ψl(x) = ψl−1(x) for all x ∈ X\{xi, xj}.

6.3 Tuning Q using an exploration chain in multiple runs

The third strategy uses an exploration Markov chain, such as the proposal chain in Metropolis-
Hastings or the Metropolis-Hastings chain at high temperature, for k ∈ N times. Each time
a permutation matrix Ql is generated as outlined in Section 6.2. Then, we combine this
sequence of matrices (Ql)

k
l=1 using alternating projections as discussed in Section 4. This

idea is inspired by the equi-energy sampler Kou et al. (2006).

7 Application to Metropolis-Hastings

The aim of this section is to concretely illustrate and quantify the benefit of using the
projection sampler P (Q) over the original P , when the latter is taken to be the transition
matrix of the classical Metropolis-Hastings (MH) algorithm. We also present a simple model
in which πβ is a discrete bimodal distribution, where the relaxation time of the projection
sampler, upon suitable choice of Q, is polynomial in β and size of the state space while that
of the MH is exponential in these parameters. Thus, the relaxation (and hence mixing) time
is improved from exponential to polynomial via this technique.
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To this end, let us briefly recall the MH dynamics. Given a proposal Markov chain with
transition matrix N that is ergodic and reversible, and a Gibbs distribution πβ associated
with Hamiltonian H and inverse temperature β, the MH algorithm is a discrete-time Markov
chain with transition matrix given by Pβ = Pβ(N,H) = (Pβ(x, y))x,y∈X , where

Pβ(x, y) :=

{
N(x, y)min

{
1, eβ(H(x)−H(y))

}
= N(x, y)e−β(H(y)−H(x))+ , if x ̸= y;

1−
∑

z:z ̸=x Pβ(x, z), if x = y.

For α ∈ [0, 1] and ψ ∈ Ψ(π), we compute that, for x ̸= y,

(Pβ)α(Qψ)(x, y) = αN(x, y)e−β(H(y)−H(x))+ + (1− α)N(ψ(x), ψ(y))e−β(H(ψ(y))−H(ψ(x)))+

= (αN(x, y) + (1− α)N(ψ(x), ψ(y)))e−β(H(y)−H(x))+

= Pβ(αN + (1− α)QψNQψ, H)(x, y), (17)

where the second equality follows fromH(x) = H(ψ(x)). Therefore, the family ((Pβ)α(Qψ))α∈[0,1]
can be interpreted as MH chains with modified proposals (αN + (1 − α)QψNQψ)α∈[0,1]
targeting the same H at the same inverse temperature β. This interpretation also illus-
trates it is perhaps advantageous to use (Pβ)α(Q): the proposal αN + (1 − α)QNQ has
at least as many connections as the original proposal N , that is, {(x, y); N(x, y) > 0} ⊆
{(x, y); (αN + (1− α)QNQ)(x, y) > 0}. In this sense, this technique to improve mixing is
in the spirit of Gerencsér and Hendrickx (2019).

To quantify the speed of convergence towards πβ of the MH chain, we now recall an
important parameter that is known as the hill-climbing constant, energy barrier or the
critical height in the literature. In a broad sense, it measures the difficulty of navigating
on the landscape of H. Precisely, we say that a path from x to y is any sequence of points
starting from x0 = x, x1, x2, . . . , xn = y such that N(xi−1, xi) > 0 for i ∈ JnK. As N is
irreducible, for any x ̸= y such path exists. We write Γx,y = Γx,y(N) to be the set of paths
from x to y, and elements of Γx,y are denoted by γ = (γi)

n
i=0. The value of the Hamiltonian

H(x) can be interpreted as the elevation at x, and the highest elevation along a path γ ∈ Γx,y

is
Elev(γ) = max{H(γi); γi ∈ γ},

and the lowest possible highest elevation along path(s) from x to y is

H(x, y) := min{Elev(γ); γ ∈ Γx,y}.

For Pβ(N,H), the associated critical height is defined to be

h(Pβ) := max
x,y∈X

{H(x, y)−H(x)−H(y)}+min
z
H(z), (18)

Using a classical result of (Holley and Stroock, 1988, Lemma 2.3, 2.7), the right spectral
gap of the MH chain can be bounded using h(Pβ): there exists constants 0 < c = c(N) ≤
C = C(N) <∞ that do not depend on β such that

ce−βh(Pβ) ≤ γ(Pβ) ≤ Ce−βh(Pβ). (19)
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We now compare the critical heights of the family ((Pβ)α(Q))α∈[0,1], and demonstrates
the optimality of α = 1/2: the sampler (1/2)(Pβ + QPβQ) has the smallest critical height
within this family, thus leading to improved convergence over the original Pβ. In addition to
critical height, (1/2)(Pβ+QPβQ) also enjoys some advantageous properties over the original
P in terms of entropic and spectral parameters as well as asymptotic variances if we recall
Section 3. It justifies the decision to focus on analyzing (1/2)(Pβ +QPβQ) in this context.

Proposition 7.1. Let Pβ be the transition matrix of the MH chain with ergodic proposal N
and target distribution πβ, and Q ∈ I(πβ) ∩ L. We have

• (Similarity preserves critical height)

h(Pβ) = h(QPβQ).

• (Optimality of α = 1/2) For α ∈ [0, 1],

h((Pβ)α(Q)) ≤ h(Pβ).

In particular,

min
α∈[0,1]

h((Pβ)α(Q)) = h((Pβ)1/2(Q)).

Proof. We show the first item. Using Proposition 3.4, we have

γ(Pβ) = γ(QPβQ).

Now, if we consider (19) and since QPβQ = Pβ(QNQ,H), we have

h(Pβ) = − lim
β→∞

1

β
ln(γ(Pβ))

= − lim
β→∞

1

β
ln(γ(QPβQ))

= h(QPβQ).

We proceed to prove the second item and it suffices to show for α ∈ (0, 1) in view of the
first item. By Proposition 3.5, we see that

γ((Pβ)α(Q)) ≥ γ(Pβ),

and using (19) and (17) again yield

h(Pβ) = − lim
β→∞

1

β
ln(γ(Pβ))

≥ − lim
β→∞

1

β
ln(γ((Pβ)α(Q)))
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= h((Pβ)α(Q)).

To demonstrate the optimality of α = 1/2, we note that

(Pβ)α(Q) = Pβ(αN + (1− α)QNQ,H),

and applying the result above with Pβ replaced by (Pβ)α(Q) leads to

h((Pβ)α(Q)) ≥ h((Pβ)α(Q)1/2(Q)) = h((Pβ)1/2(Q)).

The above result also illustrates a way to tune Q: we should seek to choose Q such
that the critical height h((Pβ)1/2(Q)) is minimized. In the remaining of this section, we
shall specialize into a discrete bimodal example on a line that has been investigated in the
literature Madras and Zheng (2003).

Specifically, we consider X = {−J,−J + 1, . . . , J − 1, J} for J ∈ N, H(x) = −|x| for
x < J − 1, H(J − 1) = −J and H(J) = −J − 1, while the proposal chain N is taken to
be a simple nearest-neighbor random walk on X with holding probability of 1/2 at the two
boundaries ±J . In this setting, there is a global mode of πβ at J and a local mode located
at −J . It can readily be seen that

h(Pβ) = J = H(0)−H(−J).

The bottleneck of mixing in this case is the hill at x = 0 that separates the two modes,
in which the MH chain needs to climb over if it is initiated at x < 0 or x > 0, which is
exponentially unlikely as β → ∞.

Let ψ(−J) = J − 1, ψ(J − 1) = −J and ψ(x) = x for x ∈ X\{−J, J − 1}, and we take
Q = Qψ. It can readily be seen that Q2 = I and Q∗ = Q since H(−J) = H(J − 1) = −J .
It turns out this choice of Q is optimal since the critical height of (Pβ)1/2(Q) is zero. To see

that, since h((Pβ)1/2(Q)) is attained in a path from a local minimum to a global minimum

of H, the lowest elevation is zero since QNQ(−J, J) = N(J − 1, J) = 1/2 > 0. This is
graphically illustrated in Figure 2.
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Figure 2: A landscape with a local minimum at −J and a global minimum at J . The
original critical height is h(Pβ) = J , while h((Pβ)1/2(Q)) = 0. The reason is that there is a
zero elevation path from −J to J − 1 to J owing to the choice of Q.

Using (19), the relaxation time of (Pβ)1/2(Q) is subexponential while that of Pβ is ex-
ponential in β and J . Note that at each time there is at most two additional permutation
steps in (1/2)(Pβ +QPβQ) compared with the original Pβ.

Proposition 7.2. In the bimodal example, we have

lim
β→∞

1

β
ln(trel((Pβ)1/2(Q))) = 0,

lim
β→∞

1

β
ln(trel(Pβ)) = J.

In fact, a finer polynomial upper bound can be obtained for trel((Pβ)1/2(Q)). Precisely,

in the notations of Ingrassia (1994), we have

bΓ ≤ 2J(2J − 1)

2
= 2J2 − J, γΓ ≤ 2(2J − 1) + 4 = 4J + 2, d∗ = 4.

Applying (Ingrassia, 1994, Theorem 4.1) in view of these upper bounds leads to

Proposition 7.3. In the bimodal example, we have

trel((Pβ)1/2(Q)) ≤ bΓγΓd
∗ = O(J3).
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8 Improving discrete-uniform samplers with general

permutations and projections

In this section, we shall consider ergodic P ∈ S(π) where π is the discrete uniform dis-
tribution on X . In earlier sections, we have restricted ourselves to Q ∈ I(π) ∩ L, the set
of isometric involution transition matrices, and shown that such Qs are induced by equi-
probability permutations in Proposition 2.1. In this paper, we shall relax this assumption of
Q to general permutation matrix in this section only.

In this setting, it is not necessary to use MCMC samplers to sample from the discrete
uniform: if we have a Qσ drawn uniformly at random from the set of permutation matrices,
then we can consider Qσe1, where e1 is the vector with 1 in the first entry and 0 in all
remaining entries. This resulting vector would have a 1 in a position sampled uniformly
from JnK. The main message in this section is that the kernel P (Q) have improved mixing
time over the original P .

Precisely, we define

Q := {Qψ;ψ ∈ P}

and let Q ∈ Q. If Q = Qψ, we see that Q
∗ = Qψ−1 , the ℓ2(π)-adjoint of Q. We also note that

in general Q∗ ̸= Q. In addition, it is obvious to see that Q is unitary since QQ∗ = Q∗Q = I.
Generalizing (2) to Q ∈ Q, we analogously define

P (Q) :=
1

2
(P +QP ∗Q).

The advantage of working under the setting of discrete uniform π is that all of P,QP, PQ,QPQ,P (Q) ∈
S(π), thus it is sensible to compare these transition matrices as candidate samplers of π.

We first demonstrate that a few results in earlier sections such as Section 2 and Section
3 can be generalized to a general permutation Q. Our first result states that, in terms of
one-step KL divergence from Π or the KL-divergence Dobrushin coefficient, the samplers
P,QP, PQ,QPQ cannot be distinguished. The proof is omitted as it is analogous to Propo-
sition 8.1.

Proposition 8.1. Let π be the discrete uniform distribution, P ∈ S(π) and Q ∈ Q be a
permutation matrix. Let Π be the matrix where each row equals to π. We have

• (One-step contraction measured by Dπ
KL)

Dπ
KL(P∥Π) = Dπ

KL(PQ∥Π) = Dπ
KL(QP∥Π) = Dπ

KL(QPQ∥Π).

• (KL-divergence Dobrushin coefficient)

cKL(P ) = cKL(PQ) = cKL(QP ) = cKL(QPQ).
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The second result gives a Pythagorean identity under Dπ
KL, and its proof is similar to

Proposition 3.3.

Proposition 8.2 (Pythagorean identity). Let π be the discrete uniform distribution, P ∈
S(π) and Q ∈ Q be a permutation matrix. Let Π be the matrix where each row equals to π.
We have

Dπ
KL(P (Q)∥Π) ≤ Dπ

KL(P∥P (Q)) +Dπ
KL(P (Q)∥Π) = Dπ

KL(P∥Π),

and the equality holds if and only if P (Q) = P .

Similarly, if P is further assumed to be π-reversible, then

cKL(P (Q)) ≤ cKL(P ).

For α ∈ [0, 1], we see that

αP + (1− α)QP ∗Q(Q) = P (Q).

Together with Proposition 8.2, we observe that the choice of α = 1/2 is optimal within the
family (αP + (1− α)QP ∗Q)α∈[0,1] as it minimizes the KL divergence Dπ

KL:

Corollary 8.1 (Optimality of α = 1/2). Let π be the discrete uniform distribution, P ∈ S(π)
and Q ∈ Q be a permutation matrix. We have

min
α∈[0,1]

Dπ
KL(αP + (1− α)QP ∗Q∥Π) = Dπ

KL(P (Q)∥Π).

To apply the projection sampler P (Q) in practice, one may seek to tune Q using similar
strategies discussed in Section 6. For instance, using the Pythagorean identity in Proposition
8.2, we see that

argmin
Q∈Q

Dπ
KL(P (Q)∥Π) = argmax

ψ∈P
Dπ
KL(P∥P (Qψ)),

where the rightmost optimization problem is an assignment problem.

8.1 The example of Diaconis-Holmes-Neal

In this subsection, we specialize into the following: let X = JnK, and consider P to be the
nearest-neighbour simple random walk with holding probability of 1/2 at the two endpoints 1
and n, that is, P (1, 1) = P (n, n) = 1/2, P (x, x+1) = 1/2 for x ∈ Jn−1K and P (x, x−1) = 1/2
for x ∈ J2, nK. Clearly P satisfies the assumption of this section: it is ergodic and admits
the discrete uniform stationary distribution.

This P demonstrates a diffusive behaviour in the sense that the underlying Markov chain
has a worst-case total variation mixing time of the order of n2. This motivates Diaconis
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et al. (2000) to introduce a non-reversible lifting of P that aims at correcting the diffusive
behaviour, who also prove that order n steps are necessary and sufficient for the lifted chain
to mix in worst-case total variation distance.

Let us recall that for µ, ν ∈ P(X ), the total variation distance between them is

∥µ− ν∥TV :=
1

2

∑
x∈X

|µ(x)− ν(x)|,

and the worst-case total variation mixing time of the Markov chain associated with P is, for
ε > 0,

tmix(P, ε) := inf

{
n ∈ N; max

x∈X
∥P n(x, ·)− π∥TV < ε

}
.

The main result of this subsection is that, if the permutation matrix Q is drawn uniformly
at random from Q, then with high probability tmix(P (Q), ε) is at most of the order lnn:

Proposition 8.3. Let P ∈ S(π) be the nearest-neighbour simple random walk on JnK de-
scribed at the beginning of this subsection, and Q be a permutation matrix drawn uniformly
at random from Q. For all ε ∈ (0, 1), there exists C(ε) such that with high probability

tmix(P (Q), ε) ≤
lnn

ln 2
+ C(ε)

√
lnn.

Proof. We apply (Dubail, 2024a, Theorem 1.1), where we note that P is π-reversible, and
the entropy rate of P is ln 2.
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