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Abstract—Multimodal Magnetic Resonance Imaging (MRI)
provides essential complementary information for analyzing
brain tumor subregions. While methods using four common MRI
modalities for automatic segmentation have shown success, they
often face challenges with missing modalities due to image quality
issues, inconsistent protocols, allergic reactions, or cost factors.
Thus, developing a segmentation paradigm that handles missing
modalities is clinically valuable. A novel single-modality parallel
processing network framework based on Hölder divergence and
mutual information is introduced. Each modality is independently
input into a shared network backbone for parallel processing,
preserving unique information. Additionally, a dynamic shar-
ing framework is introduced that adjusts network parameters
based on modality availability. A Hölder divergence and mu-
tual information-based loss functions are used for evaluating
discrepancies between predictions and labels. Extensive testing
on the BraTS 2018 and BraTS 2020 datasets demonstrates that
our method outperforms existing techniques in handling missing
modalities and validates each component’s effectiveness.

Index Terms—Missing modality learning, brain-tumor segmen-
tation, divergence learning, knowledge distillation

I. INTRODUCTION

Brain tumors are aggressive diseases requiring early detec-
tion for effective treatment. MRI is widely used for evaluating
brain tumors due to its superior soft tissue contrast and lack of
radiation exposure. MRI segmentation is crucial for isolating
healthy tissue from abnormal cells, offering various modal-
ities for effective tumor detection, including T1-weighted,
T1-weighted post-contrast- enhancement, T2-weighted, and
FLAIR. Several existing methods [1]–[6] achieved high accu-
racy in tumor segmentation when all modalities are available.
However, in real-world scenarios, one or more modalities may
be missing due to patient movement, hardware issues, or other
factors. This “missing modality” problem arises when one or
more modalities (e.g., T1w, T2, T1c, and FLAIR) are missing
during inference but available during training [7].

Several approaches have been developed to address this
issue, which can be categorized into two types [8]: modeling
each missing case individually or using a single model to
handle all cases. For the former, knowledge distillation is
commonly used to transfer competencies from a well-trained
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teacher model to a student model designed for specific missing
modalities. SMU-Net [9] employed a novel distillation strategy
where a multimodal teacher network transfers knowledge to
unimodal student networks at both the latent space and net-
work output levels. ProtoKD [10] integrated prototype learning
with knowledge distillation, effectively capturing the underly-
ing data distribution. MMCFormer [11] leveraged transformers
with auxiliary tokens to facilitate modality-specific represen-
tation transfer.

The latter category aims to address all missing-modal
situations with a single model, typically involving separate
modality encoders to project each modality into a shared latent
space before feature fusion. RFNet [12] integrated charac-
teristics from various sources using a region-cognizant com-
ponent. Moreover, Ting and Liu [13] used modality-specific
encoders, a shared decoder, and a strategy to complement
incomplete data with complete data. Furthermore, Wang et al.
[14] employed specific and shared encoders to handle missing
modalities for both segmentation and classification tasks.

However, these approaches have some shortcomings. Us-
ing a specific model for each missing modality scenario is
training-costly, for example, 2N −1 models need to be trained
when there are N modalities [8]. Conversely, a single model
for all cases often results in performance deficiencies with
few modalities available [9] and high inference costs due to
numerous parameters.

Inspired by Chang et al. [15] and high mutual information
knowledge transfer learning [16], we process four different
modalities individually to preserve unique information and
enhance the model’s ability to recognize diverse data fea-
tures, which can handle all cases with signal model with
shared backbone. Specifically, we propose a novel mutual
information-based metric with Hölder divergence [17] that
evaluate discrepancies between the predictions and labels.
What is more, a dynamic sharing framework is introduced,
which allows the model to adapt its parameters depending on
the availability of different modalities.

The main contributions of this paper are summarized as
follows: 1. Novel Network Architecture: We propose a new
network architecture for parallel computing based on 3D U-
Net. This framework combines unimodal parallel processing
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TABLE I
MAIN NOTATIONS USED IN THIS WORK. THIS TABLE PROVIDES AN

OVERVIEW OF THE MAIN NOTATIONS USED THROUGHOUT THIS WORK,
OFFERING A CONCISE REFERENCE FOR UNDERSTANDING THE SYMBOLS

AND TERMINOLOGY EMPLOYED IN THE ALGORITHMS DISCUSSED.

Notation Definition

xi the ith modality data of the sample.
di The deepest-level feature of the ith modality.
df The deepest-level full-modality feature.
hi The generated single-modality representation of the

ith modality.
Ŷ Integrated output under missing modalities.
Y real sample.
p(df | dm) The conditional distribution of the feature f given

the missing modality information m.
q(df | dm) The conditional distribution approximated using

variational methods.

and dynamic network module combinations to handle miss-
ing modalities during brain tumor segmentation training. 2.
New Metric Introduction: the Hölder divergence and mutual
information are introduced to evaluate discrepancies between
model predictions and labels. By minimizing the distances,
we achieve more accurate feature alignment. 3. Extensive
Validation: Extensive experiments on the BraTS 2018 and
BraTS 2020 medical image datasets [18] are conducted. The
results demonstrate that our method achieves state-of-the-art
performance, showcasing its efficiency and practicality. The
main notations used in this work is shown in Table I.

II. METHODOLOGY

A. Knowledge Distillation for Segmentation Using Hölder
Divergence

Brain tumor segmentation, particularly glioma segmen-
tation, involves distinguishing four categories: background,
whole tumor, tumor core, and enhancing tumor. Missing
modalities can degrade segmentation accuracy. The Hölder
divergence is employed for its flexibility and robustness, mak-
ing it suitable for complex models and non-symmetric data. It
supports brain tumor segmentation under missing modalities,
maintaining high accuracy in clinical settings.

The loss function using Hölder divergence is:

1

D ×H ×W

∑
dhw

DH
α (σ(Sp

dhw)|σ(S
l
dhw)), (1)

where Sp
dhw and Sl

dhw are predicted and label probabilities
for pixel (d, h, w), and DH

α denotes Hölder divergence, the
definition is shown in Definition 1:

Definition 1. (Hölder Statistical Pseudo-Divergence, HPD
[17]) HPD pertains to the conjugate exponents α and β, where
αβ > 0. In the context of two densities, p(x) ∈ Lα (Ω, ν) and
q(x) ∈ Lβ (Ω, ν), both of which belong to positive measures
absolutely continuous with respect to ν, HPD is defined as
the logarithmic ratio gap, as follows: DH

α (p(x) : q(x)) =

− log

( ∫
Ω
p(x)q(x)dx

(
∫
Ω
p(x)αdx)

1
α (

∫
Ω
q(x)βdx)

1
β

)
, when 0 < α < 1 and

β = ᾱ = α
α−1 < 0 or α < 0 and 0 < β < 1.

B. High Mutual Information Knowledge Transfer Learning

In clinical practice, the challenge of missing modality
segmentation often leads to incomplete information, limited
model generalization, and data application constraints. To
address these issues, a high mutual information knowledge
transfer learning strategy between full and missing modali-
ties is introduced. This strategy maximizes existing modality
information, compensating for the loss caused by missing
data, thereby enhancing model accuracy and stability with
incomplete datasets.

Our approach involves extracting K pairs of feature vectors{(
d
(k)
f , d

(k)
m

)}K

k=1
from the encoder layers of both the full

and missing modality paths. By calculating the entropy H(df )
and conditional entropy H(df | dm) for each pair, we derive
the mutual information MI(df ; dm) = H(df )−H(df | dm),
which shows how the full modality path reduces uncertainty
given the missing modality information. To estimate these
mutual information values accurately, a variational information
maximization method [19] is employed.

We approximate the conditional distribution p(df | dm)
with the variational distribution q(df | dm) to optimize the
layer-wise mutual information. The optimization process is
defined by the following loss function LMI :

−
K∑

k=1

γkEd
(k)
f ,d

(k)
m ∼p

(
d
(k)
f ,d

(k)
m

) [log q (d(k)f | d(k)m

)]
, (2)

In our framework, the parameter γk increases with the layer
level k, reflecting the richer semantic information in higher
network layers. This ensures effective knowledge transfer by
assigning higher weights to these layers. The implementation
of the variational distribution is given by:

− log q(df | dm)

=
C∑

c=1

H∑
h=1

W∑
w=1

(
log σc +

(dc,h,w
f −µc,h,w(dm))

2

2σ2
c

)
+ constant,

(3)

where µ(·) and σ represent the heteroscedastic mean and
homoscedastic variance of the Gaussian distribution, respec-
tively. W and H denote the width and height of the image,
C represents the number of channels, and constant is a fixed
term.

C. Overall Framework

Let X and Y denote samples from a multimodal dataset,
where X = {xj}Mj=1 contains M samples with N modalities
per sample: xj = {xi

j}Ni=1, with xi
j ∈ X representing the

ith modality data of the jth sample. Corresponding label is
yj . To leverage features from different modalities, a parallel
3D U-Net-based network is designed. Each sample’s data
is first encoded into a common feature space by channel
encoders fi, unifying data representation across channels.



Fig. 1. The Framework of Robust Divergence Learning for Missing-Modality Segmentation. This figure illustrates the overall structure of the proposed robust
divergence learning approach, specifically designed to address segmentation challenges in scenarios where certain modalities are missing.

Subsequently, each modality’s data is independently input into
a parameterized shared backbone T (·; θ) to generate unique
single-modality representations hi: hi = T (fi(xi); θ).

The final output in our shared network architecture includes
a Dynamic Combination Network Module (DC). For missing
modalities, we exclude their representations and use a flexible
fusion operator M(·) to integrate remaining single-modality
representations H ⊆ {h1, h2, . . . , hn}: Ŷ = M(H).

The Dice loss function [20] is utilized to optimize consis-
tency between the fused predicted image Ŷ and target labels
Y , ensuring precise pixel-wise training:

LDice(Ŷ , Y ) = 1− 2

J

J∑
j=1

∑I
i=1 Ŷi,jYi,j∑I

i=1 Ŷ
2
i,j +

∑I
i=1 Y

2
i,j

, (4)

where I is the total number of voxels and J is the number of
classes, Ŷi,j is the predicted probability of voxel i belonging
to class j, and Yi,j is the one-hot encoded label.

Facing the challenges of medical image processing with
missing modalities, inspired by Hinton’s knowledge distilla-
tion [21], the high mutual information knowledge transfer loss
LMI is introduced to enhance model accuracy. After that, the
total loss can be obtained:

Lall = LDice(Ŷ , Y ) + LMI + LHD(Ŷ , Y ). (5)

III. EXPERIMENTS AND ANALYSIS

A. Datasets and Evaluation Metrics

To improve the model’s logical coherence, result reliability,
and algorithm robustness in brain tumor segmentation, this
study utilizes the BraTS 2018 and BraTS 2020 datasets [18].
These datasets are widely recognized in the field of medical
imaging for multi-classification and segmentation tasks. They
are extensive collections of multi-modal MRI scans (T1,

T1Gd, T2, and FLAIR) from patients with high-grade and low-
grade gliomas. Expertly annotated, these datasets mark tumor
subregions like the enhancing tumor, peritumoral edema, and
necrotic core. They are essential for advancing and validating
automated brain tumor segmentation algorithms. To evaluate
the effectiveness of our method, the Dice Similarity Coefficient

(DSC) [20], Dice(P,G) =
2× |P ∩G|
|P |+ |G| is used, which is a

common performance metric in medical image analysis. The
DSC measures the overlap between the model’s output (P )
and the ground truth (G). A higher Dice coefficient indicates
better predictive performance.

B. Training Details

In this study, a PyTorch-based framework [22] (version
2.3.0) is utilized for training all models on a server equipped
with dual NVIDIA RTX A6000 GPUs. The standard 3D U-
Net architecture [23] is adopted, featuring a single encoder-
decoder parallel processing structure that incorporates residual
blocks and group normalization techniques. During training,
a batch size of 8 is set, and the Adam optimizer [24] is
employed to update model parameters, starting with a learning
rate of 0.0008 and a weight decay of 0.00001. Training is
conducted for 600 epochs to ensure comprehensive learning
and performance optimization. Post-training, thorough testing
of the model is conducted under all possible channel dropout
configurations.

1) Compare Experimental Models: The comparative ex-
perimental models employed in this study are RFNet [25],
MMFormer [26], MA3E [27], MTI [28], and GGDM [29].
Each model makes unique contributions to the field of missing
modality segmentation, as outlined below. The results for
RFNet, MMFormer, MA3E, and MTI are sourced from their
respective original research papers, all adhering to the same
experimental configuration as RFNet. Additionally, the GGMD



TABLE II
QUANTITATIVE EVALUATION OF SEGMENTATION RESULTS (DSC ↑) ON BRATS 2018. THIS TABLE PRESENTS THE QUANTITATIVE RESULTS OF

SEGMENTATION PERFORMANCE, MEASURED BY THE DICE SIMILARITY COEFFICIENT (DSC), ON THE BRATS 2018 DATASET. THE RESULTS PROVIDE A
COMPARATIVE EVALUATION OF THE EFFECTIVENESS OF DIFFERENT SEGMENTATION METHODS, WHERE HIGHER DSC VALUES INDICATE BETTER

SEGMENTATION ACCURACY.

Task Methods Fl T2 T1c T1 T2,Fl T1c,Fl T1c,T2 T1,Fl T1,T2 T1,T1c ∼ T1 ∼ T1c ∼ T2 ∼ Fl. Full Avg.

WT

RFNet 85.8 85.1 73.6 74.8 89.3 89.4 85.6 89.0 85.4 77.5 90.4 90.0 89.9 86.1 90.6 85.5
mmFormer 86.1 81.2 72.2 67.5 87.6 87.3 83.0 87.1 82.2 74.4 88.1 87.8 87.3 82.7 89.6 82.9

M3AE 88.7 84.8 75.8 74.4 89.9 89.7 86.3 89 86.7 77.2 90.2 89.9 88.9 85.7 90.1 85.8
MTI 88.4 86.6 77.8 78.7 90.3 89.5 88.2 89.7 88.1 81.8 90.6 89.7 90.4 88.4 90.6 87.3

GGDM 89.3 87.0 79.9 75.9 90.7 90.6 88.6 90.2 88.2 81.1 91.3 91.0 90.5 87.9 91.0 87.6
OUR 89.8 88.2 80.5 78.8 90.8 90.7 89.3 90.4 88.7 82.0 91.3 91.0 90.9 89.2 91.3 88.2

TC

RFNet 62.6 66.9 80.3 65.2 71.8 81.6 82.4 72.2 71.1 81.3 82.6 74.0 82.3 82.9 82.9 76.0
mmFormer 61.2 64.2 75.4 56.6 69.8 77.9 78.6 65.9 69.4 78.6 79.6 71.5 79.8 80.4 85.8 73.0

M3AE 66.1 69.4 82.9 66.4 70.9 84.4 84.2 70.8 71.8 83.4 84.6 72.7 84.1 84.4 84.5 77.4
MTI 66.7 68.8 81.5 65.6 71.8 84.8 84.8 72.0 72.3 83.5 85.8 74.1 85.2 85.8 85.9 77.9

GGDM 77.3 76.3 85.3 58.1 78.5 87.0 87.6 76.3 76.8 85.6 87.1 78.3 86.5 86.2 85.8 80.8
OUR 76.2 77.6 86.5 72.6 79.3 86.6 87.2 78.6 79.1 86.9 87.1 80.1 87.1 87.4 87.3 82.6

ET

RFNet 35.5 43.0 67.7 32.3 45.4 72.5 70.6 38.5 42.9 68.5 73.1 46.0 71.1 70.9 71.4 56.6
mmFormer 39.3 43.1 72.6 32.5 47.5 75.1 74.5 43.0 45.0 74.0 75.7 47.7 75.5 74.8 77.6 59.9

M3AE 35.6 47.6 73.7 37.1 45.4 75.0 75.3 41.2 48.7 74.7 73.8 44.8 74.0 75.4 75.5 59.9
MTI 40.5 41.4 75.7 44.5 48.3 76.8 77.7 44.4 47.7 77.1 76.6 50.0 77.4 78.5 80.4 62.5

GGDM 47.4 53.4 81.6 34.7 55.2 82.0 82.6 51.1 54.7 82.0 82.1 56.0 82.2 82.8 82.1 67.6
OUR 48.6 52.9 82.4 48.7 55.8 83.0 83.2 53.8 56.9 82.8 83.7 58.4 83.2 83.5 84.1 69.4

method is tested, according to authors’ code. These models are
outlined below:

1. RFNet (Ding et al., ICCV 2021) [25]: RFNet is a
region-aware fusion network designed for the segmentation of
brain tumors in scenarios with incomplete multi-modal data. 2.
MMFormer (Zhang et al., MICCAI 2022) [26]: MMFormer
is a multimodal medical transformer developed to improve
brain tumor segmentation in scenarios involving incomplete
multimodal data. 3. MA3E (Liu et al., AAAI 2023) [27]:
M3AE is a multimodal representation learning approach for
brain tumor segmentation that effectively handles missing
modalities. 4. MTI (Ting and Liu, JBHI 2024) [28]: MTI
is a multimodal transformer designed to enhance brain tumor
segmentation using incomplete MRI data. 5. GGMD (Wang et
al., AAAI 2024) [29]: GGMD is a method designed to enhance
robustness in brain tumor segmentation when handling missing
modalities.

Tables II–III showcase the performance of our research
method on the BraTS 2018 and BraTS 2020 datasets, bench-
marked against five state-of-the-art brain tumor segmentation
techniques, and the symbol ∼ (·) in Tables II–III denotes
the amissing of a specific modality, with optimal performance
results highlighted in black across different tumor types. The
results highlight our method’s superior performance across all
three evaluated tumor regions—Whole Tumor (WT), Tumor
Core (TC), and Enhancing Tumor (ET)—achieving the highest
average Dice Similarity Coefficient (DSC). Specifically, Table
II demonstrates improvements of 0.6% in WT, 1.8% in TC,
and 1.8% in ET regions compare to existing state-of-the-art
methods on the BraTS 2018 dataset. Similarly, Table III shows
enhancements of 0.8% in WT, 0.7% in TC, and 0.9% in ET

Fig. 2. This figure presents the segmentation results of three models on the
BraTS 2018 dataset using different modality inputs. The second row shows the
reproduced results of the M3AE, the third row shows the reproduced results
of the GGMD, and the fourth row displays the results of ours. Each column
represents different input settings: the first four columns show the results for
single modality inputs (T1, T1ce, T2, and Flair, respectively), the fifth column
displays the results using all four modalities as input simultaneously, and the
last column shows the corresponding ground truth.

regions on the BraTS 2020 dataset.
Our method excels notably in scenarios with missing mul-

timodal data, achieving substantial gains of 2.0% to 6.0% in
Dice coefficients. For instance, in Table II, when only the T1
modality is available, our method outperforms other advanced
algorithms by 0.1%, 6.2%, and 4.2% in WT, TC, and ET
regions, respectively. Correspondingly, Table III indicates im-
provements of 2.4%, 2.9%, and 3.0% under similar conditions.



These findings underscore the robustness of our method
in maintaining efficient segmentation performance despite
significant deficits in multimodal data.Furthermore, Figure 2
compares our method with other advanced techniques like
M3AE and GGMD under single-modal and full-modal input
conditions. These segmentation results validate our conclu-
sions from the evaluation metrics, demonstrating that our
method surpasses other advanced technologies in handling
multimodal data, especially when only a single modality is
available. This performance advantage is particularly notable
under single-modal input conditions.

2) Exploration of the Superiority of Hölder Divergence:
To explore the superiority of Hölder divergence, this study
conduct experimental comparisons using Hölder divergence
and other f -divergences [30], including Total Variation [30],
Squared Hellinger [30], Kullback-Leibler [30], Neyman χ2

[30], and Jensen-Shannon divergence [30]. As shown in the
table IV, the average Dice coefficient of Hölder divergence
reached 80.1% after adjusting the hyperparameter α, which
is 6.1% higher than the best-performing alternative methods.
This significant performance advantage underscores the im-
portance of Hölder divergence in improving model accuracy.

The experimental data consistently demonstrate that the
application of Hölder divergence significantly enhances seg-
mentation task performance, validating its effectiveness in the
field of medical image processing. Additionally, our research
reveals the critical role of Hölder divergence in enhancing
knowledge distillation techniques to improve segmentation
efficiency, providing valuable references and guidance for
future research and development in related technologies. These
findings not only deepen our understanding of the potential
of Hölder divergence but also provide empirical evidence for
optimizing deep learning models using this method.

C. Exploring the Impact of Hölder Conjugate Exponents on
Experimental Results

To further investigate the impact of Hölder conjugate expo-
nents on experimental results, we explore various Hölder con-
jugate exponents. As shown in Table V, this study compares
the performance under different Hölder hyperparameters (α),
KLD, and without the application of knowledge distillation.
The experimental results indicate that when the Hölder diver-
gence hyperparameter α = 1.1, the performance improves by
an average of 0.7% compared to the case without knowledge
distillation and by 6.1% compared to KL divergence. This
result underscores the crucial role of selecting an appropriate
Hölder conjugate exponent (α) in significantly enhancing
model performance.

Our findings clearly demonstrate the critical role of Hölder
divergence in enhancing knowledge distillation techniques to
improve segmentation task efficiency. Throughout our ex-
periments, we consistently observe that setting the Hölder
conjugate exponent to α = 1.1 markedly improves the model’s
segmentation performance, further validating the effectiveness
of Hölder divergence.

D. Ablation Study

In this study, we conduct a series of ablation experiments
to demonstrate the effectiveness of mutual information knowl-
edge transfer, denoted as LMI , between full and missing
modalities. Additionally, we explore the impact of the Hölder
divergence-based loss function, LHD, on model performance.
Compared to traditional multimodal processing methods, our
parallel network framework selectively activates only the data
relevant to the available modalities. This approach effectively
preserves the unique information of each modality, enhancing
the model’s ability to recognize diverse data features. Further-
more, the introduction of the Hölder divergence loss function
improves the model’s performance in handling multimodal
data by precisely quantifying the mutual information between
modalities, thereby promoting better feature alignment.

First, we evaluate the utility of different components within
our network architecture, including the Dice loss function
LDice, mutual information knowledge transfer LMI between
full and missing modalities, and Hölder divergence-based
knowledge distillation LHD. The results, as shown in Table
VI, indicate that the mutual information knowledge trans-
fer LMI and Hölder divergence-based knowledge distillation
LHD effectively improve model performance in various miss-
ing modality scenarios compared to the traditional segmen-
tation loss Ldice alone. Specifically, when three modalities
are missing, these strategies improve performance by 12.2%
and 12.7%, respectively; with two missing modalities, they
improve performance by 7.8% and 8.2%; with one missing
modality, they improve performance by 6.8% and 7.2%; and
with all modalities present, they improve performance by
6.5% and 6.9%. On average, the performance improvement
for different modality inputs are 8.7% and 9.1%. Moreover,
the combination of the parallel network architecture, mutual
information knowledge transfer between full and missing
modalities, and Hölder divergence-based knowledge distilla-
tion achieve the best results, further validating the effectiveness
and superiority of our approach.

E. Conclusion

In this work, we present the quantitative evaluation results
of our proposed method for addressing missing modality
segmentation, a common challenge in clinical practice. Our ap-
proach utilizes a 3D U-Net combined with a parallel network
architecture, integrating mutual information knowledge trans-
fer and knowledge distillation based on Hölder divergence.
This method enhances brain tumor segmentation capabilities
despite missing modalities by efficiently transferring knowl-
edge and optimizing model generalization. Key components
of our framework include: 1. Parallel U-Net network with
single modality input to handle missing modalities. 2. Mutual
information knowledge transfer to enhance model processing
capabilities. 3. Optimization of knowledge transfer efficiency
through Hölder divergence during knowledge distillation. Ab-
lation experiments highlight the critical role of each compo-
nent and reveal the impact of the Hölder conjugate exponent
on model performance.



TABLE III
QUANTITATIVE EVALUATION OF SEGMENTATION RESULTS (DSC ↑) ON BRATS 2020. THIS TABLE PROVIDES A QUANTITATIVE ASSESSMENT OF THE
SEGMENTATION PERFORMANCE ON THE BRATS 2020 DATASET, MEASURED USING THE DICE SIMILARITY COEFFICIENT (DSC). AN UPWARD ARROW

(↑) INDICATES THAT HIGHER DSC VALUES CORRESPOND TO BETTER SEGMENTATION ACCURACY, ALLOWING A CLEAR COMPARISON OF THE
EFFECTIVENESS OF DIFFERENT MODELS OR APPROACHES ON THIS DATASET.

Task Methods Fl T2 T1c T1 T2,Fl T1c,Fl T1c,T2 T1,Fl T1,T2 T1,T1c ∼ T1 ∼ T1c ∼ T2 ∼ Fl. Full Avg.

WT

RFNet 87.3 86.1 76.8 77.2 89.9 89.9 87.7 89.7 87.7 81.1 90.7 90.6 90.7 88.3 91.1 87.0
mmFormer 86.5 85.5 78.0 76.2 89.4 89.3 87.5 88.7 86.9 80.7 90.4 89.8 89.7 87.6 90.5 86.4

M3AE 86.5 86.1 73.9 76.7 89.3 89.5 87.4 89.4 87.2 78.1 90.2 90.4 90.0 88.6 90.6 86.3
MTI 89.1 86.5 77.4 78.1 90.5 90.0 88.4 89.9 88.0 81.2 90.6 90.3 90.7 88.7 90.6 87.3

GGDM 91.0 88.3 80.6 77.4 92.1 91.9 89.8 91.6 89.3 82.7 92.3 92.1 91.6 89.2 92.0 88.8
OUR 91.9 89.2 81.5 80.5 92.5 92.4 90.0 92.1 89.8 83.2 92.8 92.6 92.3 89.9 92.7 89.6

TC

RFNet 69.2 71 81.5 66.0 74.1 84.7 83.5 73.1 73.1 83.4 85 75.2 85.1 83.5 85.2 78.2
mmFormer 64.6 63.3 81.5 63.2 70.3 83.7 82.6 71.7 67.7 82.8 83.9 72.4 84.4 79.0 84.6 75.7

M3AE 68.0 70.3 81.4 66.0 75.0 82.0 83.0 73.8 72.5 82.4 83.1 75.1 82.4 84.1 84.4 77.6
MTI 69.3 71.5 83.4 66.8 75.5 85.6 86.4 73.9 73.3 85.2 86.4 75.9 86.5 86.5 87.4 79.6

GGDM 77.0 79.1 87.6 70.5 81.6 88.0 88.5 80.3 81.1 88.0 88.1 82.4 87.9 88.4 88.0 83.8
OUR 78.6 79.8 87.5 73.4 82.5 88.9 88.6 81.2 80.8 88.1 88.8 82.5 88.9 88.6 88.8 84.5

ET

RFNet 38.2 46.3 74.9 37.3 49.3 76.7 75.9 41.0 45.7 78.0 77.1 49.9 76.8 77.0 78.0 61.5
mmFormer 36.6 49.0 78.3 37.6 49.0 79.4 77.2 42.9 49.1 81.7 78.7 50.0 80.6 68.3 79.9 62.6

M3AE 40.5 46.0 72.4 39.9 47.3 74.7 76.8 43.2 46.6 75.4 77.1 48.2 75.9 77.4 78.0 61.3
MTI 43.6 45.6 78.9 41.3 48.7 81.8 81.7 48.2 50.0 79.2 81.0 52.5 81.8 78.5 81.6 65.0

GGDM 49.8 52.5 84.2 39.7 56.5 84.6 84.5 54.6 55.3 84.2 84.2 58.6 84.3 84.3 84.1 69.4
OUR 51.9 54.6 84.6 44.3 57.7 84.9 84.8 55.4 55.1 84.3 84.9 58.6 84.4 84.3 84.3 70.3

TABLE IV
COMPARISON OF THE SUPERIORITY OF HÖLDER DIVERGENCE WITH

DIFFERENT f -DIVERGENCES ON THE BRATS 2018 DATASET. THIS TABLE
ILLUSTRATES THE COMPARATIVE PERFORMANCE OF HÖLDER

DIVERGENCE AGAINST DIFFERENT TYPES OF f -DIVERGENCES ON THE
BRATS 2018 DATASET.

Methods Dice

f -divergence WT TC ET Avg.

Total Variation [30] 67.2 1.9 0.9 23.3
Squared Hellinger [30] 85.3 75.4 60.1 73.6
Kullback-Leibler [30] 84.5 76.2 61.4 74.0

Neyman χ2 [30] 83.4 75.1 59.9 72.8
Jensen-Shannon [30] 84.6 76.5 59.8 73.6

Hölder [17] 88.2 82.6 69.4 80.1

TABLE V
EXPLORING THE IMPACT OF HÖLDER CONJUGATE EXPONENTS ON

EXPERIMENTAL RESULTS BASED ON THE BRATS 2018 DATASET. THIS
TABLE ILLUSTRATES HOW VARYING THE HÖLDER CONJUGATE

EXPONENTS AFFECTS THE EXPERIMENTAL OUTCOMES DERIVED FROM
THE BRATS 2018 DATASET. IT HIGHLIGHTS THE RELATIONSHIPS

BETWEEN DIFFERENT CONJUGATE EXPONENT VALUES AND THEIR
INFLUENCE ON THE PERFORMANCE METRICS WITHIN THE CONTEXT OF

THE EXPERIMENTS.

Methods Dice

divergence α WT TC ET Avg.

- - 87.8 82.9 67.4 79.4
KL - 84.5 76.2 61.4 74.0

Hölder 1.05 87.8 82.6 69.2 79.9
Hölder 1.08 88.2 82.6 68.7 79.9
Hölder 1.10 88.2 82.6 69.4 80.1
Hölder 1.15 88.1 82.8 67.9 79.6
Hölder 1.20 87.9 83.1 68.1 79.7

TABLE VI
QUANTITATIVE EVALUATION RESULTS OF THE ABLATION STUDY ON THE

BRATS 2018 DATASET. THIS TABLE PRESENTS THE IMPACT OF DIFFERENT
MODEL COMPONENTS ON PERFORMANCE, HIGHLIGHTING THE

EFFECTIVENESS OF EACH COMPONENT IN CONTRIBUTING TO OVERALL
ACCURACY AND ROBUSTNESS.

Methods Number of Missing Modalities

Ldice LMI LHD 3 2 1 0 Avg.

✓ × × 60.2 71.9 77.1 80.5 70.7
✓ ✓ × 72.4 79.7 83.9 87.0 79.4
✓ × ✓ 72.9 80.1 84.3 87.4 79.8
✓ ✓ ✓ 73.6 80.3 84.4 87.6 80.1

Despite its effectiveness, the method has some limitations:
1. Training costs due to the large number of parameters and
extensive tuning requirements, and 2. Sensitivity to hyperpa-
rameter selection, necessitating extensive experimentation and
validation.
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