
EgoVid-5M: A Large-Scale Video-Action Dataset
for Egocentric Video Generation

Xiaofeng Wang 1,2,4 Kang Zhao 1 Feng Liu 4 Jiayu Wang 1 Guosheng Zhao 2,4

Xiaoyi Bao 2,4 Zheng Zhu 3 Yingya Zhang 1 Xingang Wang 2

1Alibaba 2CASIA 3Tsinghua University 4UCAS
Project Page: https://egovid.github.io

Figure 1. EgoVid-5M is a meticulously curated high-quality action-video dataset designed specifically for egocentric video generation. It
includes detailed action annotations, such as fine-grained kinematic control and high-level textual descriptions. Furthermore, it incorporates
robust data cleaning strategies to ensure frame consistency, action coherence, and motion smoothness under egocentric conditions.

Abstract
Video generation has emerged as a promising tool

for world simulation, leveraging visual data to replicate
real-world environments. Within this context, egocentric
video generation, which centers on the human perspective,
holds significant potential for enhancing applications in
virtual reality, augmented reality, and gaming. However,
the generation of egocentric videos presents substantial
challenges due to the dynamic nature of egocentric view-
points, the intricate diversity of actions, and the complex
variety of scenes encountered. Existing datasets are inade-
quate for addressing these challenges effectively. To bridge
this gap, we present EgoVid-5M, the first high-quality
dataset specifically curated for egocentric video genera-

tion. EgoVid-5M encompasses 5 million egocentric video
clips and is enriched with detailed action annotations,
including fine-grained kinematic control and high-level
textual descriptions. To ensure the integrity and usability
of the dataset, we implement a sophisticated data cleaning
pipeline designed to maintain frame consistency, action
coherence, and motion smoothness under egocentric con-
ditions. Furthermore, we introduce EgoDreamer, which is
capable of generating egocentric videos driven simultane-
ously by action descriptions and kinematic control signals.
The EgoVid-5M dataset, associated action annotations,
and all data cleansing metadata will be released for the
advancement of research in egocentric video generation.
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Dataset Year Domain Gen. Text Kinematic CM. #Videos #Frames Res

HowTo100M [43] 2019 Open ! ASR % % 136M ∼ 90 240p
WebVid-10M [2] 2021 Open ! Alt-Text % % 10M ∼ 430 Diverse
HD-VILA-100M [68] 2022 Open ! ASR % % 103M ∼ 320 720p
Panda-70M [8] 2024 Open ! Auto % % 70M ∼ 200 Diverse
OpenVid-1M [44] 2024 Open ! Auto % % 1M ∼ 200 Diverse
VIDGEN-1M [55] 2024 Open ! Auto % % 1M ∼ 250 720p

LSMDC [50] 2015 Movie % Human % % 118K ∼ 120 1080p
UCF101 [53] 2015 Action % Human % % 13K ∼ 170 240p
Ego4D [16] 2022 Egocentric % Human IMU % 931 ∼ 417K 1080p
Ego-Exo4D [17] 2024 Egocentric % Human MVS % 740 ∼ 186K 1080p
EgoViD-5M (ours) 2024 Egocentric ! Auto VIO ! 5M ∼ 120 1080p

Table 1. Comparison of EgoVid-5M and other video datasets, where Gen. denotes whether the dataset is designed for generative training,
CM. denotes cleansing metadata, #Videos is the number of videos, and #Frames is the average number of frames in a video.

1. Introduction

One of the most promising avenues in video generation is
the development of world simulators. These systems utilize
visual simulations and interactions to deliver applications in
the physical world. Contemporary research is increasingly
validating the capabilities of video generation in this realm,
including applications in autonomous driving [25,58,60,71,
78,79], autonomous agents [5,10,18,19,64,72,82], and even
in general world [4, 13]. In the context of human-centric
scenarios, leveraging behavioral actions to drive egocentric
video generation has emerged as a pivotal strategy. This
approach greatly enhances applications in Virtual Reality
(VR), Augmented Reality (AR), and gaming, offering more
immersive and interactive experiences and advancing the
state of the art in these fields.

Video generation necessitates vast quantities of high-
quality data for training. This requirement is even more
stringent in egocentric video generation, which is inherently
challenging due to the dynamic nature of egocentric per-
spectives, the richness of observed actions, and the diversity
of encountered scenarios. Despite the critical need for spe-
cialized data, there is currently a scarcity of publicly avail-
able, large-scale datasets for training egocentric video gen-
eration models. To bridge this gap, we present the EgoVid-
5M dataset, a pioneering high-quality dataset specifically
curated for egocentric video generation (see Fig. 1). As
shown in Tab. 1, EgoVid-5M is distinguished by several
key features: (1) High Quality: This dataset offers 5 mil-
lion egocentric videos at 1080p resolution. In contrast to
Ego4D [16], which is intended for egocentric perception
and includes excessive noisy camera motion that is unsuit-
able for generative training, EgoVid-5M undergoes a rigor-
ous data cleaning process. The videos are curated based
on stringent criteria, including the alignment between ac-

tion descriptions and video content, the magnitude of mo-
tion, and the consistency between frames. (2) Compre-
hensive Scene Coverage: EgoVid-5M boasts a comprehen-
sive range of scenarios including household environments,
outdoor settings, office activities, sports, and skilled oper-
ations. It encompasses hundreds of action categories, thus
covering the majority of scenes encountered in egocentric
perspectives. (3) Detailed and Precise Annotations: The
dataset includes extensive behavioral annotations, which are
categorized into fine-grained kinematic control and high-
level action descriptions. For kinematic information, we
employ Visual Inertial Odometry (VIO) to provide precise
annotations, ensuring accurate alignment with video con-
tents. For action descriptions, a multimodal large language
model combined with a large language model is utilized to
generate detailed text annotations.

Leveraging the proposed EgoVid-5M dataset, we train
different video generation baselines to validate the dataset’s
quality and efficacy. Various architectures, such as U-Net
[3, 65] and DiT [30], are employed as baseline models, and
the experimental results demonstrate that EgoVid-5M sig-
nificantly bolsters the training of egocentric video genera-
tion. In addition, we propose EgoDreamer, which utilizes
both action descriptions and kinematic control to drive the
generation of egocentric videos. To provide a comprehen-
sive assessment of action-driven egocentric video genera-
tion, we establish an extensive set of evaluation metrics.
These metrics encompass multiple dimensions, including
visual quality, frame coherence, semantic compliance with
actions, and kinematic accuracy. Extensive experiments
show that EgoVid-5M markedly enhances the capability of
various video generation models to produce high-quality
egocentric videos.

The main contributions of this paper can be summarized
as follows: (1) We introduce EgoVid-5M, the first publicly
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Figure 2. Data annotation pipeline and cleansing metadata of EgoVid-5M.

released, high-quality dataset tailored for egocentric video
generation. This dataset is proposed to advance both re-
search and applications in the domain of egocentric visual
simulation. (2) Our dataset includes detailed and precise ac-
tion annotations, incorporating both fine-grained kinematic
control and high-level textual descriptions. In addition, we
employ robust data cleaning strategies to ensure frame con-
sistency, action coherence, and motion smoothness within
EgoVid-5M. (3) Utilizing EgoVid-5M, we conducted exten-
sive experiments on various video generation baselines to
validate the dataset’s quality and efficacy. Furthermore,
to support future advancements in action-driven egocentric
video generation, we propose EgoDreamer, which lever-
ages both action descriptions and kinematic control to drive
egocentric video generation.

2. Related Work

2.1. Video Generation as World Simulators

Video generation technology has seen rapid advance-
ments recently. Both diffusion-based [3, 6, 7, 21, 30, 41, 65,
81] and token-based [23, 54, 59, 69, 74, 75] video genera-
tion models have proven that the quality and controllabil-
ity of video generation are steadily improving [83]. No-
tably, the introduction of the Sora model [4] attracts signifi-
cant attention which convincingly shows that current video
generation models are capable of understanding and ad-
hering to physical laws, thereby substantiating the poten-
tial of these models to function as world simulators. This
perspective is echoed by Runway, which posits that their

Gen-3 Alpha [14] is progressing along this promising tra-
jectory. Additionally, video generation models, employed
as simulators, have demonstrated significant utility in vari-
ous real-world applications, including autonomous driving
simulations [25, 58, 60,71, 78, 79] and agent-based environ-
ments [5, 10, 18, 19, 64, 72, 82]. Within this context, action-
driven egocentric video generation, which centers on the
human perspective, holds significant potential for enhanc-
ing applications in VR, AR, and gaming. However, current
research in the egocentric domain predominantly concen-
trates on understanding tasks [1,15,34,37,42,45,47,48,67],
and generative tasks associated with egocentric scenarios
are largely confined to exocentric-to-egocentric video syn-
thesis [32, 36, 39]. This highlights a substantial gap in gen-
erating action-driven egocentric videos. While some meth-
ods have explored video generation driven by action in-
teraction [20, 24, 26, 27, 40, 62, 66, 73], these approaches
are mainly concerned with natural scenes featuring smooth
camera transitions. This focus limits their ability to model
intricate motion patterns inherent in egocentric videos.

2.2. Video Generation Datasets

In the realm of video generation, the quantity and qual-
ity of training data are pivotal for training effective mod-
els. Currently, the field of general video generation ben-
efits from several pioneering open-source video datasets.
WebVid-10M [2] consists of 52K hours of video, totaling
10.7M text-video pairs. Similarly, InternVid [61] contains
over 7M videos spanning nearly 760K hours, resulting in
234M video clips and a comprehensive dataset with 4.1B
words in descriptive texts. Panda70M [8] stands out with
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its collection of 70M high-resolution and semantically co-
herent video samples. OpenVid-1M [44], offers a million-
level, high-quality dataset encompassing diverse scenarios
such as portraits, landscapes, cities, metamorphic elements,
and animals. In contrast to these general-purpose datasets,
specific-scenario datasets typically comprise a limited num-
ber of text-video pairs tailored for particular contexts. UCF-
101 [53] is an action recognition dataset featuring 101
classes and 13,320 total videos. Taichi-HD [51], a more
focused collection, includes 2,668 videos capturing a sin-
gle person performing Taichi movements. In the domain
of egocentric video generation, existing datasets such as
Ego4D [16] and Ego-Exo4D [17] are primarily designed
for egocentric scene understanding tasks and often include
excessive noisy camera motion, rendering them unsuitable
for generative training. Additionally, EgoGen [31], a syn-
thetic dataset, can not fully encapsulate the complex vari-
ations inherent in real-world egocentric views. To address
this gap, we introduce the EgoVid-5M dataset, a pioneer-
ing and meticulously curated collection designed explicitly
for egocentric video generation. EgoVid-5M comprises 5M
egocentric video clips with precise action annotations and
cleansing metadata.

3. EgoVid-5M
The training of video generation relies on large-scale,

high-quality video data. Therefore, we built EgoVid-5M
based on the large-scale Ego4D dataset [16]. Notably, al-
though Ego4D contains thousands of hours of egocentric
videos, it is intended for egocentric perception and includes
excessive noisy camera motion that is unsuitable for gen-
erative training. Additionally, the narration annotation in
Ego4D is overly simplistic and lacks semantic consistency
with frames. To address these issues, we propose a data
annotation pipeline that provides detailed and accurate an-
notations of fine-grained kinematic control and high-level
action descriptions. Furthermore, a data cleaning pipeline
is developed to ensure alignment between action descrip-
tions and video content, as well as the magnitude of motion
and consistency between frames.

3.1. Data Annotation Pipeline

In order to simulate egocentric videos from actions, we
construct detailed and accurate action annotations for each
video segment, encompassing low-level kinematic control
(e.g., ego-view translation and rotation), as well as high-
level textual descriptions. The annotation pipeline is shown
in the upper part of Fig. 2.
Kinematic Control Annotation In order to accurately
describe complex egocentric movements, we utilize the
Visual-Inertial Odometry (VIO) method to construct kine-
matic control signals. This involves using ParticleSfM [80]
to obtain scale-ambiguous camera poses Pc from video, fol-

lowed by integrating IMU signals {It}T−1
t=0 to obtain more

accurate and scaled camera poses. However, there are sev-
eral challenges to overcome. (1) The IMU signals are sub-
ject to noise. (2) The transformation matrix between the
IMU and the camera is unknown. (3) The initial velocity of
the IMU is unknown. (4) The scale factor of the Pc is un-
known. To address the aforementioned problems, we first
utilize high-pass Butterworth filters FIFFT (Hlow(s)·F(s))
and low-pass Butterworth filters FIFFT (Hhigh(s) · F(s))
to filter out the gravity signal and high-frequency noise,
where F(s) = FFFT (I) is the Fast Fourier Transform and
FIFFT is the inverse operation. Hlow(s) = 1

1+( s
wc

)2n is

the low-pass filter, Hhigh(s) =
( s
wc

)2n

1+( s
wc

)2n is the high-pass
filter, wc represents the cutoff frequency while n represents
the filter order. Next, we propose a quality filter to drop
the low-quality Pc and I , where the motivation is that the
number of reconstructed points Np (generated from Parti-
cleSfM) is a reflection of the accuracy of Pc [66], and the
variance of IMU reflects the dynamic nature of the video.
Therefore, the retained data needs to simultaneously satisfy
Np ≥ Nthres and 1

T

∑T−1
t=0 (It − I)2 ≤ Vthres. Next, we

perform the least squares minimization with Pc and the in-
tegrated IMU signal {It}T−1

t=0 to calculate the initial velocity
v(0) of the IMU signal, the transformation matrix TI from
IMU to the camera, and the scale factor λ of the Pc:

min
v0,TI ,λ

|TIPI(T − 1)− λPc|2, (1)

where PI(T − 1) can be derived from:

PI(t+ 1) = PI(t) + v(t)∆t+
1

2
I(t)∆t2, (2)

v(t+ 1) = v(t) + I(t)∆t, (3)

with the initial condition P (0) = 0. Finally, we utilize the
Kalman filter to fuse these two signals under the camera
coordinate (see supplement for more details).
Textual Description Annotation In addition to kinematic
control, another supplementary information of egocentric
action is textual descriptions. In the Ego4D dataset, only
human narrations serve as text annotations, but the narra-
tions are relatively simple and lack semantic consistency
with frames (see supplement). Therefore, we utilize a
multimodal large language model (MLLM) to provide
detailed action captions for the videos. Considering
that existing open-source multimodal language models
are not as proficient in following instructions as large
language models (LLM), we first prompt LLaVA-NeXT-
Video-32B-Qwen [77] to provide detailed captions for
videos (including foreground, background, main subjects,
and action information). Then, we prompt Qwen2 [70]
to summarize egocentric action descriptions from the
aforementioned captions, with human narrations as the sup-
plementary prompt. Through the combination of MLLM
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(a) Top 20 noun distribution

(b) Top 20 verb distribution

(e) Frame-frame alignment distribution 

(f) Motion smoothness distribution

(c) Text-video action alignment distribution 

(d) Text-video semantic alignment distribution 

(g) Optical flow score distribution

(h) Clarity score distribution

Figure 3. Data annotation distribution of EgoVid-5M. (a) and (b) describe the quantities of the top 20 verbs and nouns. (c) Text-video
action alignment is assessed using the EgoVideo score. (d) and (e) measure the semantic similarity between text and frames and between
frames and the first frame using the average CLIP score. (f) Motion smoothness is quantified by the variance of translation and rotation.
(g) Motion strength is represented by the average global optical flow. (h) Video clarity is determined by the DOVER score.

and LLM, our textual descriptions can accurately describe
egocentric action while ensuring semantic consistency.
We also utilize LLM to analyze the Nouns and Verbs in
each textual description, and classify them into hundreds
of action categories (as shown in the Fig. 3(a)-(b)). The
resulting textual descriptions include actions in household
environments, outdoor settings, office activities, sports, and
skilled operations, thus covering the majority of scenes
encountered in egocentric perspectives.

3.2. Data Cleaning Pipeline

The data quality significantly influences the effective-
ness of training generative models. Prior works [3, 44, 55]
have delved into various cleaning strategies to improve
video datasets, focusing on aesthetics, semantic coherence,
and optical flow magnitude. Based on these cleaning strate-
gies, this paper presents a specialized cleaning pipeline
specifically designed for egocentric scenarios. The pipeline
is illustrated in the lower part of Fig. 2.
Text-video Consistency We utilize CLIP EgoVideo [45]
and [49] to evaluate the alignment between textual descrip-
tions and video frames, leveraging EgoVideo’s focus on
action alignment and CLIP’s emphasis on global semantic
similarity. In particular, evenly-spaced frames are gathered
to calculate the EgoVideo similarity with the text. (refer
to Fig. 3(c) for Egovideo score distribution). Subsequently,
these four frames are separately extracted to calculate CLIP
similarity with the corresponding text (see Fig. 3(d) for
CLIP similarity score distribution).
Frame-frame Consistency The higher the semantic consis-

tency between video frames, the more conducive it is to gen-
erative training. To analyze this relationship, we uniformly
extract three frames alongside the first frame to compute
frame CLIP similarity. The distribution of semantic consis-
tency is illustrated in Fig. 3(e).
Motion Smoothness Excessive egocentric motion can lead
to video fluctuations, which is detrimental to training visual
generation models. To address this issue, we propose mea-
suring the degree of translation variation 1

T

∑T−1
t=0 (Trt −

Tr)2 and rotation variation 1
T

∑T−1
t=0 (Rot −Ro)2 to quan-

tify motion smoothness, where Tr and Ro are translation
and rotation measured in Sec. 3.1 (see motion smoothness
distribution in Fig. 3(f)).
Motion Strength A typical approach to describe video mo-
tion strength is optical flow [56]. Therefore, we first repre-
sent video motion by averaging global optical flow (see mo-
tion strength distribution in Fig. 3(g)), we additionally cal-
culate the five-point optical flow, which includes the propor-
tion of optical flow score across pixel intervals: 0–4, 4–8,
8–12, 12–16, and above 16 (more details see supplement).
This method offers a multi-faceted perspective on motion
strength, addressing both the movement of small foreground
objects and the overall camera motion.
Clarity Assessment For egocentric scenes, clarity and re-
alism are paramount. Therefore, instead of relying on CLIP
for aesthetic scoring [9], we apply DOVER [63] to assess
video clarity (refer to Fig. 3 for DOVER score distribution),
prioritizing visual sharpness and detail in our dataset.

Based on the cleansing metadata, we vary thresholds to
filter and obtain high-quality training data. Specifically,
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Figure 4. The overall framework of EgoDreamer. EgoDreamer introduces (a) the Unified Action Encoder to embed different action inputs
simultaneously, and it utilizes (b) the Adaptive Alignment to integrate action conditions into the egocentric video generation branch (c).

experiments are conducted in Sec. 5.2 to explore the ef-
fects of three mainstream cleaning strategies on egocentric
video generation training. Additionally, given the signif-
icance of data cleaning strategies in training video gener-
ation models [3, 44, 55], and the substantial computational
cost—thousands of GPU days—to annotate and clean mil-
lions of videos, we release all annotation and cleansing
metadata to encourage community research into the impact
of various cleaning strategies on egocentric video training.

4. EgoDreamer

In the context of ego-centric world simulators, action-
driven video generation is paramount. However, existing
action-driven video generation approaches [20, 24, 26, 27,
40,62,66,73] primarily focus on camera movements within
static scenes, making it challenging to model complex ego-
motion. Therefore, we propose EgoDreamer, which can
produce egocentric videos driven simultaneously by high-
level action descriptions and low-level kinematic control.
As illustrated in Fig. 4, EgoDreamer adopts a similar archi-
tecture of [65] to enable image-conditioned video genera-
tion. Besides, EgoDreamer features two key innovations:
(1) It introduces a Unified Action Encoder (UAE) that em-
beds two distinct action inputs, allowing for a more nuanced
representation of ego movements. (2) It leverages Adaptive
Alignment (AA) that encapsulates multi-scale control sig-

nals in the parametric alignment perspective, enhancing the
action control efficacy.
Unified Action Encoder. In this framework, the UAE
simultaneously encodes both low-level and high-level ac-
tions. Specifically, it first utilizes Plücker embedding
[20, 52] to encode kinematic signals:

pu,v = (t× du,v,du,v) , (4)

du,v = RK−1[u, v, 1]T + t, (5)

where R and t is the rotation matrix and translation vector,
K is the intrinsic matrix, and pu,v is the Plücker embed-
ding at pixel (u, v). Then, low-level signal p is encoded
through a series of U-Net blocks, while a high-level action
description d is simultaneously embedded via CLIP [49]
and cross-attention mechanisms. The action output A of
one U-Net block can be formulated as:

A = Ft(Fc(Fs(Fconv(p)),CLIP(d))), (6)

where Ft is the temporal self-attention, Fc is the cross-
attention, Fs is the spatial self-attention, Fconv is the 2D
convolution block. Notably, previous methods [20, 66] en-
code text and kinematics separately, ignoring that low-level
kinematics and high-level action descriptions are coupled.
In contrast, the proposed UAE focuses on modeling the re-
lationship between different action inputs, thus the gener-
ated action control signals capture both camera movements
and complex egocentric dynamics (e.g., hand interactions).
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open tool chest, places metal tool container in drawer

Figure 5. The video visualization comparison across different data cleaning strategies reveals distinct outcomes, where the blue box
highlights the difference. Videos generated by strategy-1 fail to capture local motion and tend to be stationary. In contrast, videos produced
by strategy-2 exhibit excessive motion, compromising semantic coherence. Meanwhile, videos generated by strategy-3 effectively model
intricate hand movements, striking a balance between motion strength and semantic fidelity.
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Figure 6. Video generation quantitative comparisons between
different data cleaning strategies, where the baseline is Dynami-
Crafter [65] initialized with its original weights.

Adaptive Alignment. Based on the multi-scale U-Net ar-
chitecture, the UAE outputs multi-scale {Ai}3i=0. Then
EgoDreamer encapsulates control signals in the perspective
of parametric alignment:

Li = αLi +
Ai − µL

σL
, (7)

where Li is the output of one U-Net block in the main Diffu-
sion branch, α is a learnable parameter, µL, σL are the mean
and standard deviation of Li. The introduced AA module is
inspired by cross normalization [46] and applies it to multi-

scale U-Net feature alignment. Compared to ControlNet’s
zero-initialization [76], our method achieves better control
effectiveness.

5. Experiment

5.1. Experiment Details

Dataset. The proposed EgoVid-5M dataset is partitioned
as the training set and the validation set. For the valida-
tion set, we select samples with high text-video semantic
consistency, moderate video motion, high video clarity, and
diverse scene coverage including household environments,
outdoor settings, office activities, sports, and skilled oper-
ations. This resulted in a final validation set EgoVid-val
with 1.2K samples, with a training set EgoVid-train with
4.9M samples. Notably, due to the known issue in Ego4D
IMU annotation1, we annotate kinematic controls for 65K
video samples with accurate IMU data. The annotated sub-
set EgoVid-65K is ∼ 5× larger than the current largest kine-
matic annotation dataset [66], which is utilized further to
train the ability of kinematic control video generation.
Training We validate the effectiveness of our EgoVid-5M
using video diffusion baselines with different architectures,
including U-Net (SVD [3] and DynamiCrafter [65]), and
DiT (OpenSora [81]). Building upon these pre-trained mod-
els, we employe a continuous training approach to train
480p videos for enhanced training efficiency. For Ego-
Dreamer, we first initialize it with pre-trained weights [65],

1https://ego4d-data.org/docs/data/imu/
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OpenSora OpenSora w/EgoVid

DynamiCrafter

Close the bathroom door.

DynamiCrafter w/EgoVid
Wash a red car, focuses on the door area, creating foam, and wiping it clean.

SVD
Move a chess piece in an ongoing game.

SVD w/EgoVid

Figure 7. Visualizations demonstrate that EgoVid-fintuned baselines (OpenSora [81], SVD [3], DynamiCrafter [65]) generate egocentric
videos with stronger frame-consistency and better semantic-alignment.

Method w. EgoVid CD-FVD ↓ Semantic Consistency ↑ Action Consistency ↑ Clarity Score ↑ Motion Smoothness ↑ Motion Strength ↑

SVD [3] % 591.61 0.258 0.465 0.479 0.971 18.897
SVD [3] ! 548.32 0.266 0.471 0.485 0.974 21.032

DynamiCrafter [65] % 243.63 0.257 0.481 0.473 0.986 9.357
DynamiCrafter [65] ! 236.82 0.265 0.494 0.483 0.987 18.329

OpenSora [81] % 809.46 0.260 0.489 0.520 0.983 7.608
OpenSora [81] ! 718.32 0.266 0.494 0.528 0.986 15.871

Table 2. EgoVid significantly enhances egocentric video generation. Experimental results demonstrate that training with EgoVid improves
performance across all three baselines on six metrics.

then EgoDreamer are further trained on EgoVid to adapt to
egocentric scenes. Finally, we finetune the proposed UAE
and AA using EgoVid-65K. All experiments are conducted
on NVIDIA A800 GPUs. For additional training details,
please refer to the supplementary materials.

Evaluation. We adopt a set of metrics from AIGCBench
[11] and VBench [28] to assess the quality of the generated
egocentric videos. Specifically, our evaluation metrics uti-
lize the CD-FVD [12] for spatial and temporal quality, the
CLIP [49] for semantic consistency, the EgoVideo [45] for
action consistency, the DOVER [63] for clarity score, frame
interpolation model [33] for motion smoothness, and RAFT
[56] for motion strength. Additionally, following [20, 66],
we assess kinematic control consistency using translation
error and rotation error, which measures the difference be-
tween COLMAP poses and the ground truth poses in the
canonical space [66]. The specific calculations for each
metric are detailed in the supplement.

Next, we verify the impact of different data cleaning
strategies on egocentric video generation. Subsequently, we
substantiate, quantitatively and qualitatively, that the pro-
posed EgoVid can enhance various baselines’ egocentric
video generation capabilities. Finally, experiments are con-
ducted to demonstrate that the proposed EgoDreamer can
generate egocentric videos under the control of both action

descriptions and kinematic signals.

5.2. Data Cleaning Strategy Comparison

In this subsection, we employ the state-of-the-art video
diffusion model DynamiCrafter [65] as the baseline, which
is trained on the Image+Text-to-Video task to evaluate vari-
ous data cleaning strategies.
Strategy-1. This strategy focuses on ensuring text-frame
consistency (with CLIPTF ≥ 0.275) and frame-frame con-
sistency (CLIPFF ≥ 0.8). Additionally, we retained videos
with an average optical flow ≥ 3 and a DOVER score ≥ 0.3.
This process yielded a subset EgoVid-1M-1. DynamiCrafter
is finetuned for one epoch using this subset. As illustrated in
Fig. 6, this model achieved the highest semantic consistency
metrics. However, the stringent criteria for both text-frame
and frame-frame consistency favored the retention of videos
with slow motion. Consequently, the motion strength of the
generated videos falls below the baseline, which is not de-
sirable for effective video generation.
Strategy-2. The thresholds for text-frame consistency and
frame-frame consistency are relaxed (CLIPTF ≥ 0.27,
CLIPFF ≥ 0.75). Besides, we retain videos with an aver-
age optical flow between 3 and 40, and those with a DOVER
score ≥ 0.3. This strategy results in a subset EgoVid-1M-
2. Upon finetuning DynamiCrafter for one full epoch, as
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Clean the stovetop, …Clean the wall, …

Press right buttons on the washing machinel, ... Press left buttons on the washing machine, ...

Figure 8. Visualizations show that EgoDreamer can realize distinct action controls based on different text descriptions.

Handle glass slide, examine it under microscope, …Walk through a clean, organized laboratory, …

Figure 9. Visualizations demonstrate that EgoDreamer can generate various egocentric videos based on different low-level commands.

shown in Fig. 6, we observe a significant improvement in
the motion strength. However, the accelerated motion in-
troduces artifacts, leading to visual fragmentation. Con-
sequently, this negatively impacts the text-frame semantic
consistency, resulting in scores below the baseline.
Strategy-3. we further relax the thresholds for text-frame
consistency (CLIPTF ≥ 0.26) and frame-frame consistency
(CLIPFF ≥ 0.7), while introducing an action consistency
constraint (EgoVideo score ≥ 0.22). Videos are retained
with an average optical flow between 3 and 35, as well as
those with a DOVER score ≥ 0.3. Notably, as mentioned in
Sec. 3.2, we also retain videos with average optical flow val-
ues below 3, provided that the proportion of optical flow (≥
12 pixels) is greater than 3%. This resulted in the EgoVid-
1M-3 subset. Compared to the previous two strategies, the
model finetuned on EgoVid-1M-3 effectively enhances both
semantic and action consistency while ensuring moderate
motion strength, achieving the best CD-FVD score. Fur-
thermore, the 5-point optical flow filtering method allowed
for a focus on local motion scenarios. As illustrated in
Fig. 5, strategy-3 accurately models intricate hand move-
ments, in contrast to the stationary visuals of strategy-1 and
the exaggerated motion of strategy-2.

5.3. Enhancement in Egocentric Video Generation

In this subsection, experiments are conducted to verify
that the proposed EgoVid enhances the egocentric video
generation capabilities of various baselines. Specifically,

SVD [3], DynamiCrafter [65], and OpenSora [81] are se-
lected as baselines, which are initialized with their original
weights, and then we employ EgoVid-1M-3 for finetuning.
For training efficiency and fair comparison, we resize all in-
put video to 480p and focus exclusively on the Image+Text-
to-Video tasks. As shown in Tab. 2, the experiment re-
sults demonstrate that training with EgoVid improves per-
formance across all three baselines on six different metrics.
Specifically, the EgoVid finetuning significantly enhances
the motion strength of egocentric videos while also improv-
ing consistency in text-video alignment, action-video align-
ment, and overall image clarity. Consequently, the CD-FVD
metric shows a notable improvement. Additionally, we con-
duct a visualization comparison of different baselines be-
fore and after finetuning, as illustrated in Fig. 7. Prior to
EgoVid finetuning, various baselines exhibit issues such as
frame fragmentation and distortion in egocentric scenarios
(e.g., appearance of incongruous objects and hand fragmen-
tation). This underscores the inadequacy of most existing
video generation models in egocentric contexts. However,
after the EgoVid finetuning, the generated videos not only
achieve superior alignment with text prompts, but also ex-
hibit enhancement in visual quality.

5.4. EgoDreamer Experiments

In this subsection, we conduct experiments to demon-
strate that EgoDreamer can generate egocentric videos un-
der the control of both action descriptions and kinematic
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w. EgoVid ControlNet ControlNeXt AA UAE CD-FVD ↓ Semantic Consistency ↑ Action Consistency ↑ Rot Err ↓ Trans Err ↓

! 241.90 0.263 0.490 5.32 9.27
! ! 238.87 0.266 0.493 4.01 8.66
! ! ! 239.01 0.268 0.494 3.58 8.41
! ! ! 234.13 0.269 0.497 3.59 7.93
! ! ! 229.82 0.268 0.498 3.28 7.62

Table 3. Ablation study on training strategy and different components of EgoDreamer.

signals. Additionally, the efficacy of the proposed UAE and
AA modules will be validated. In our experiments, we ini-
tialize EgoDreamer using weights from [65]. The results
are presented in Tab. 3. In Row-1, the low-level kinematic
control signals are integrated via ControlNet [12], which re-
sembles [20, 66]. Row-2 utilizes EgoVid-1M-3 to pre-train
the model. Compared with Row-1, results indicate signif-
icant improvements across five metrics after EgoVid-1M-3
finetuning. In Row-3, we further introduce the UAE mod-
ule to strengthen the association between low-level kine-
matic control and high-level action descriptions. The exper-
imental results indicate that this enhancement further im-
proves action alignment and reduces the deviation in low-
level kinematic control compared to Row-2. In Row-4 and
Row-5, we replace the ControlNet with ControlNext [46]
and the AA module. The results reveal that the AA mod-
ule exhibits superior performance compared to both Con-
trolNet and ControlNext, as it facilitates learnable param-
eterized alignment from a multi-scale perspective. Finally,
we visualize videos generated by EgoDreamer, as depicted
in Fig. 8. Under initial frame conditions, varying the input
text descriptions enables EgoDreamer to realize distinct ac-
tion controls. Furthermore, as illustrated in Fig. 9, with the
same initial frame, the model can generate videos that in-
corporate a composite of multiple low-level kinematic con-
trols. Notably, EgoDreamer to produce videos with meter-
level movements (e.g., walking) and centimeter-level nu-
anced movements (e.g., intricate hand actions in a labora-
tory environment). Additional visualizations can be found
in the supplement.

6. Discussion and Conclusion

In this paper, we present EgoVid-5M, which is the first
high-quality dataset meticulously curated for egocentric
video generation, comprising 5 million video clips enriched
with detailed action annotations. This dataset effectively
addresses the challenges associated with the dynamic nature
of egocentric perspectives, the intricate diversity of actions,
and the complex variety of encountered scenes. The imple-
mentation of a sophisticated data cleaning pipeline further
ensures the dataset’s integrity and usability, maintaining
frame consistency, action coherence, and motion smooth-
ness under egocentric conditions. Additionally, we propose

EgoDreamer, which showcases the ability to generate ego-
centric videos by simultaneously incorporating action de-
scriptions and kinematic control signals, thereby enhancing
the realism and applicability of generated content. We hope
that the proposed EgoVid-5M dataset, along with the asso-
ciated annotations and metadata, will serve as a valuable
resource for the research community. We encourage re-
searchers to leverage these innovations to propel further ex-
ploration and development in the realm of egocentric video
generation, ultimately advancing applications in virtual re-
ality, augmented reality, and gaming.
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In the supplement materials, we first elaborate on the an-
notation and cleaning details of EgoVid. Then we present
additional training details of different baselines and the pro-
posed EgoDreamer. Subsequently, the evaluation details
are elaborated. Finally, we present additional visualizations.

7. Annotation and Cleaning Details
7.1. Kinematic Annotation Details

To enhance kinematic annotation accuracy, we fuse cam-
era poses from IMU and ParticleSfM [80], utilizing the
Kalman filter. First, we filter the IMU data to remove grav-
itational components and noise. Next, we employ least
squares estimation to determine the initial velocity and scale
factor for the ParticleSfM poses. Finally, we align both the
IMU poses and ParticleSfM results to the camera coordi-
nate system (detailed explanations of these processes can be
found in the main text). The Kalman filter implementation
involves the following steps:

The state vector x = [x, y, z, q1, q2, q3, q4, vx, vy, vz] is
initialized from IMU pose to represent position, quaternion,
and velocity. The error covariance matrix P, process noise
covariance Q and observation noise covariance FR are ini-
tialized as 0.1 · I10×10, 0.01 · I10×10 and 0.1 · I7×7. In the
prediction step, the state transition function f is applied to
predict the next state:

xk|k−1 = f (xk−1,uk) , (8)

where uk consists of IMU readings, and f predicts the
next state by updating the current state through integration,
incorporating the linear acceleration and angular velocity
measured by the IMU. The covariance of the predicted state
is updated as:

Pk|k−1 = FPk−1F
T +Q, (9)

where F is the Jacobian of the transition matrix. In the up-
date phase, we compute the measurement residual yk:

yk = x′
k −Hxk|k−1, (10)

where x′ = [x′, y′, z′, q′1, q
′
2, q

′
3, q

′
4] is the ParticleSfM pose,

H =

[
I3×3 0
0 I4×4

]
] is the Jacobian of the observation

model.
The innovation covariance Sk is given by:

Sk = HPk|k−1H
T +R, (11)

and the Kalman gain is calculated by:

Kk = Pk|k−1H
TS−1

k . (12)

The state estimate is then updated:

xk = xk|k−1 +Kkyk. (13)

Finally, the error covariance matrix is updated:

Pk = (I−KkH)Pk|k−1. (14)

This iteration continues for each IMU reading, yielding a
refined series of pose estimates.

7.2. Data Cleaning Details

Five-Point Optical Flow Filtering. A typical approach to
describe video motion strength is optical flow [56]. There-
fore, we first represent video motion by averaging global
optical flow. Notably, this approach only encapsulates the
average motion magnitude. However, in egocentric scenar-
ios, where a substantial portion of the scene remains static
and only foreground elements (e.g., hands) exhibit motion,
applying a filtering strategy based solely on average opti-
cal flow may result in the inadvertent exclusion of valu-
able, fine-grained hand movement data. Therefore, as a
supplement, we calculate the five-point optical flow, which
involves the proportion Pm∼n of optical flow score across
different pixel intervals:

Pm∼n =

∑
x,y δ(m ≤ |F (x, y)| < n)

N
, (15)

where N is the total pixel number, F is the optical flow
map, δ is the indicator function. Specifically, we calcu-
late P0∼4, P4∼8, P8∼12, P12∼16, P16∼, their distribution is
shown in Fig 11. We performed data filtering based on the
five-point optical flow, as illustrated in Fig. 10, where the
average optical flow magnitude is less than 3 pixels, and
over 3% of the pixels exhibit motion greater than 12 pixels.
The figure shows that although most of the background el-
ements remain static, the hand movements are dynamic and
extensive. Such data are beneficial for training egocentric
video generation with subtle hand motions.
Semantic Consistency Comparison.

In the Ego4D dataset, only human narrations are avail-
able as text annotations. However, these narrations are rel-
atively simple and lack semantic alignment with the video
frames. To address this, we first employ a multimodal large
language model (MLLM) [77] to generate detailed captions
for the videos. Then, a large language model (LLM) [70]
is used to summarize egocentric action descriptions from
these detailed captions. We calculate the semantic consis-
tency between captions and the frames using CLIP [49]. As
shown in Fig. 12, the semantic similarity of our generated
captions is significantly higher than that of the original hu-
man narrations.

8. Training Details
We validated the effectiveness of our EgoVid-5M using

video diffusion baselines with different architectures, in-
cluding U-Net (SVD [3] and DynamiCrafter [65]), and DiT
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Figure 10. Videos cleaned from the five-point optical flow strategy (average optical flow below 3, and the proportion of optical flow (≥12
pixels) is greater than 3%). This strategy retains videos with a static background while capturing detailed and extensive motion in hands.

Figure 11. Five-point optical flow distribution.
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Figure 12. Semantic consistency comparison between our text an-
notation and the original human narration.

(OpenSora [81]). The training details are as follows: (1) For
SVD, we employ the pre-trained 1.1 version2 and extend its
img-to-video architecture to an Image+Text-to-Video setup.

2huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1

Specifically, we replace the image CLIP branch with a text
CLIP branch3, which is aligned with the image CLIP ver-
sion used in SVD. During training, input videos are resized
to 480p, and we employed the EDM scheduler [29] with a
learning rate of 1e-4 and a batch size of 64, finetuning on
EgoVid-1M-3 for one epoch. (2) For DynamiCrafter, we
leverage the pre-trained model at 512 resolution 4. Videos
are resized to 480p during training, utilizing the DDPM
scheduler [22] with a learning rate of 1e-5 and a batch size
of 64. The finetuning was conducted on EgoVid-1M-3 for
one epoch. (3) For OpenSora, we used the pre-trained ver-
sion 1.2 model5, adjusting its data bucket strategy to train
only on 480p inputs, and set mask ratios to mask only the
first frame. The model was trained with the RF [35, 38]
scheduler, a learning rate of 1e-4, and a batch size of 64,
using EgoVid-1M-3 for one epoch.

For EgoDreamer, we first initialize it with the pre-trained
model at 512 resolution [65], then EgoDreamer are further
trained on EgoVid-1M-3 to adapt to egocentric scenes, with
batch size 64 and learning rate 1e-5. Finally, we finetune

3huggingface.co/openai/clip-vit-base-patch32
4huggingface.co/Doubiiu/DynamiCrafter 512
5huggingface.co/hpcai-tech/OpenSora-STDiT-v3
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Closing the bathroom door.

Clean the stovetop, …Clean the wall, …

Sit on gray couch, place white mug on table. Sit on gray couch, hold white mug with both hands.

Walk into the bathroom.

Clean the window, …Clean the white countertop, …

Figure 13. Visualizations showing that EgoDreamer can generate action-driven egocentric videos based on high-level text descriptions.

Working on a motorcycle part with attention to detail.

Focus on a bathroom shelf with cleaning supplies and toiletries.

Hold bowl,  prepare to transfers noodles.

Push cart with potted plants through lab, past workstations and equipment.

Figure 14. Visualizations showing that EgoDreamer can generate action-driven egocentric videos based on low-level kinematic control.

the proposed Unified Action Encoder (UAE) and Adaptive Alignment (AA) using EgoVid-65K, with batch size 32 and
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learning rate 1e-5.

9. Evaluation Details

The evaluation metrics are mainly from AIGCBench
[11] and VBench [28], along with other metrics such as CD-
FVD [12], EgoVideo score [45] and kinematic consistency
(Translation Error and Rotation Error) [20, 66]. These met-
rics are as follows:
Overall Quality. CD-FVD6 is utilized to measure spatial
and temporal quality. Compared with traditional FVD [57],
CD-FVD favors both quality and motion of video frames.
Semantic Consistency. CLIP7 [49] is employed to calcu-
late the semantic consistency of text and frames. We uni-
formly sample four frames from each generated video, cal-
culate the similarity between each frame and the text using
CLIP, and then compute the average similarity score.
Action Consistency. EgoVideo8 [45] is utilized to calcu-
late the action consistency of text and frames. In this met-
ric, four frames are uniformly sampled from each video to
calculate the action similarity between frames and text.
Motion Strength. We employed the optical flow score to
quantify the motion strength in videos. Specifically, we uti-
lized the RAFT model9 [56] to calculate the optical flow
score. For each video, we sampled frames at 8-frame inter-
vals as input to the model. The motion strength of the video
segment was then determined by averaging the optical flow
scores across all sampled frames.
Motion Smoothness. To assess the continuity of
motion in the generated video, we utilize the AMT
model10 [45]. Specifically, for a generated video
with frames [f0, f1, ..., f2n−1, f2n], we remove the odd-
numbered frames, resulting in [f0, f2, ..., f2n]. The AMT
model is then employed to interpolate the omitted frames
[f̂1, f̂3, ..., f̂2n−1]. Finally, we compute the mean absolute
error between the interpolated frames and the original ones.
Clarity. We leverage DOVER11 [63] to calculate the video
clarity, and we use the fused score that focuses on both aes-
thetic perspective and technical perspective.
Kinematic Consistency. Following [20, 66], we assess
kinematic consistency using translation error and rotation
error, which measures the difference between COLMAP
poses and the ground truth poses in the canonical space:

RotErr =

n∑
i=1

arccos
tr
(
Ri

genR
i T
gt

)
− 1

2
, (16)

6github.com/songweige/content-debiased-fvd
7huggingface.co/openai/clip-vit-large-patch14
8drive.google.com/file/d/1k6f1eRdcL17IvXtdX J8WxNbju2Ms3AW/view
9github.com/princeton-vl/RAFT

10huggingface.co/lalala125/AMT/resolve/main/amt-s.pth
11huggingface.co/teowu/DOVER/resolve/main/DOVER.pth

TransErr =

n∑
i=1

∥∥Ti
gt −Ti

gen

∥∥
2
, (17)

where Ri
gen,R

i
gt are the generated and ground truth rotation

matrix for the i-th frame. Ti
gen,T

i
gt are translation vectors

for the generated and ground truth camera translation in the
i-th frame.

10. Visualizations
We conducted additional visualizations of the results

generated by EgoDreamer. As shown in Fig. 15, Ego-
Dreamer can leverage action descriptions to generate di-
verse egocentric videos, encompassing scenes such as
householding, cooking, knitting, gardening, and music.
These videos include both subtle hand movements and more
extensive movements involving walking. Furthermore, as
illustrated in Fig. 13, given the same initial frame, chang-
ing the high-level text descriptions can generate egocentric
videos that comply with semantic control. Lastly, as de-
picted in Fig. 14, given the same initial frame, altering the
low-level kinematic control can generate egocentric videos
that conform to pose control.
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Close the oven door.

Knit on an armchair.

Transfer onions to a pot.

Clean shoes using a brush.

Cooking with a spatula, in the kitchen.

Pushing a lawnmower with both hands, outdoors.

Spinning knobs on the DJ deck.

Figure 15. Visualizations verifying that EgoDreamer can generate diverse egocentric videos based on action descriptions.
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