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Abstract
Meningeal lymphatic vessels (MLVs) are re-
sponsible for the drainage of waste products
from the human brain. An impairment in their
functionality has been associated with aging
as well as brain disorders like multiple sclero-
sis and Alzheimer’s disease. However, MLVs
have only recently been described for the first
time in magnetic resonance imaging (MRI), and
their ramified structure renders manual seg-
mentation particularly difficult. Further, as
there is no consistent notion of their appear-
ance, human-annotated MLV structures con-
tain a high inter-rater variability that most au-
tomatic segmentation methods cannot take into
account. In this work, we propose a new rater-
aware training scheme for the popular nnU-
Net model, and we explore rater-based ensem-
bling strategies for accurate and consistent seg-
mentation of MLVs. This enables us to boost
nnU-Net’s performance while obtaining explicit
predictions in different annotation styles and a
rater-based uncertainty estimation. Our final
model, MLV2-Net, achieves a Dice similarity co-
efficient of 0.806 with respect to the human ref-
erence standard. The model further matches
the human inter-rater reliability and replicates
age-related associations with MLV volume.

Keywords: Meningeal lymphatic vessels,
Glymphatic system, Segmentation, Inter-rater
variability

Data and Code Availability In Table 1, we pro-
vide an overview of the data used in this study. As
no public data on MLV structures in MRI is avail-
able, we assembled a custom segmentation dataset
comprising n = 33 labeled and n = 22 unlabeled
3D fluid-attenuated inversion recovery (FLAIR) mag-
netic resonance (MR) images from cognitively normal
subjects. To this end, four neuroanatomical experts
annotated MLV structures individually along the su-
perior sagittal sinus (SSS) in anterior, middle, and
posterior brain regions, resulting in 3×7 and 1×6 an-
notations per rater. In addition, two images were an-
notated by all raters, which allows us to assess their
inter-rater reliability (IRR). We keep another held-
out test set comprising four more images to evaluate
model accuracy. All raters annotated those images
jointly for best consistency after the annotation of
the 27 + 2 scans was finished. Finally, we use 22
raw images to evaluate our model indirectly by repli-
cating known age-related associations with MLV vol-
ume. All images have a resolution of 0.5×0.5×1mm3

and were acquired using simultaneous trimodal PET-
MR-EEG imaging (Del Guerra et al., 2018). We will
make code and trained models publicly available at
https://github.com/ai-med/mlv2-net.

Institutional Review Board (IRB) Imaging
data comes from two studies. Both studies were ap-
proved by the Ethics Review Board of the Klinikum
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Figure 1: Exemplary segmentation of meningeal lymphatic vessels (MLVs) in coronal and sagittal planes —
separated into anterior, middle, and posterior regions. On the right, we show the corresponding 3D surface
representation rendered from a superior viewpoint.

Rechts der Isar, Technical University of Munich, Ger-
many (5611/12, 338/20-S). Approvals to administer
radiotracers for both studies were obtained from the
Administration of Radioactive Substances (Bunde-
samt fuer Strahlenschutz), Germany (Z 5-22461/2 –
2014-010, Z 5- 22464/2020-199-G).

1. Introduction

The lymphatic system — part of the immune sys-
tem and responsible for the drainage of waste prod-
ucts — stretches across the entire human body and
can often be found alongside blood vessels of the cir-
culatory system. In the brain, the glymphatic sys-
tem (Iliff et al., 2012) takes a similar role in that it
clears waste products. To this end, meningeal lym-
phatic vessels (MLVs), located alongside the dural
venous sinuses, transfer interstitial fluids and macro-
molecules to deep cervical lymph nodes (Louveau
et al., 2015). An impairment in the MLVs’ function-
ality, potentially coupled with morphological changes
such as thickening, has been linked to aging (Al-
bayram et al., 2022) as well as to clinical condi-
tions like Alzheimer’s (Goodman et al., 2018), mul-
tiple sclerosis (Louveau et al., 2018), and Parkin-
son’s disease (Ding et al., 2021). Yet, MLVs have
only recently been described in 3D FLAIR MRI (Al-
bayram et al., 2022), and their segmentation has only
been done manually so far. However, manual annota-
tion of MLVs is difficult and time-consuming due to
their ramified structure, cf. Figure 1. Moreover, the
training of automatic segmentation models on expert-

annotated data is challenging due to the high inter-
rater variability.

Related work Deep neural networks for medical
image segmentation are commonly trained to remove
this variablility (Guo et al., 2024; Hatamizadeh et al.,
2022; Ronneberger et al., 2015). However, this ap-
proach does not model the reality where disagree-
ment about the true contours of a structure often
exists (Warfield et al., 2004). This issue is espe-
cially problematic for newly discovered structures,
such as MLVs, which bear enormous potential for
innovative findings but for which a common notion
of their appearance does not (yet) exist. Notably,
a few dedicated methods for rater-aware segmenta-
tion were developed (Kohl et al., 2018; Mirikharaji
et al., 2021; Warfield et al., 2004; Zhang et al., 2023).
These approaches yielded effective results for certain
standard applications, e.g., skin lesion (Mirikharaji
et al., 2021) or brain tumor segmentation (Zhang
et al., 2023), but transferring them to new tasks is
difficult due to the large number of hyperparameters
involved. These choices are non-trivial, not repro-
ducible, and subject to the developer’s experience and
preferences (Isensee et al., 2021). At the same time,
the best segmentation results are typically obtained
with nnU-Net (Isensee et al., 2024), which provides
a versatile framework for hyperparameter selection.
Unfortunately, nnU-Net cannot model the variabil-
ity in segmentations provided by different raters —
a functionality essential for trustworthy and compre-
hensible clinical predictions. We close this gap and
develop a rater-based ensembling strategy for nnU-
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Net that keeps its architecture intact and augments
it with the ability to replicate individual raters’ an-
notation styles.

Contribution We present the first automatic
method for segmentation of MLVs from 3D FLAIR
MRI. To achieve accurate and reliable segmentation
of the ramified structure, we made the following tech-
nical contributions. First, we developed an innovative
rater-aware training scheme for the popular nnU-Net
model that takes into account the different raters in-
volved in the creation of the training set. This en-
ables nnUNet to learn individual raters’ segmenta-
tion styles and to explicitly predict a set of plausi-
ble segmentations. In a second step, we aggregate
the predictions with a weighted majority-label voting
scheme for best segmentation accuracy. In addition,
we obtain a rater-based uncertainty prediction from
the model. Finally, since the volume of MLVs is usu-
ally of utmost importance for downstream analyses,
we derive error boundaries of the model’s predicted
volumes with respect to the ground-truth volume.

2. Methods

2.1. MLV2-Net architecture

Figure 2 shows an overview of MLV2-Net, which
stands for rater-based majority-label-voting-network
for meningeal lymphatic vessels. MLV2-Net builds
upon nnU-Net (Isensee et al., 2021) and takes a 3D
image of shape H×W×D as input. In addition, we
incorporate a unique encoding of the rater (rater en-
coding) of the same shape as the image. The rationale
behind this encoding is that it provides relevant infor-
mation about the rater, in our case a neuroanatomical
expert who provides annotations of MLVs, without
any architectural changes that might derange nnU-
Net’s hyperparameter search strategy. As output, the
network yields voxel-wise segmentation maps, sep-
arated by foreground class and rater. Eventually,
all predictions are aggregated via weighted majority-
label voting as shown in Figure 3. Apart from the
input and output, we keep nnU-Net intact; hence, we
benefit from its structured parameter selection and
obtain a reproducible setup.

2.2. Rater-aware training and inference

During the training and inference of MLV2-Net, we
consider the different raters in the input and the out-
put of the model.

Rater as input To enable the network to learn
the styles of different raters from the training data,
we provide this information as input to the net-
work. Technically, we assign a zero-centered one-hot-
encoded ID to each rater and concatenate it as addi-
tional channels to the input image volume as depicted
in Figures 2 and 3. Namely, we assign the four raters
in our setting the codes [1, 0], [-1, 0], [0, 1], and [0,
-1]. In general, this scheme leads to R/2 additional
input channels for R raters, which can be well pro-
cessed by nnU-Net’s initial convolutional layer. Im-
portantly, we disable the per-channel z-score normal-
ization in nnU-Net for the rater-encoding channels,
which would set them to zero and essentially erase
the rater information.

Rater as output To enforce the model to con-
sider the rater, i.e., to coerce the network to pre-
dict the correct structure as annotated by a certain
rater, we create rater-specific foreground labels for
the loss computation (a combination of cross-entropy
and Dice loss as in nnUNet). These are also the la-
bels predicted by MLV2-Net during inference. Specif-
ically, we use labels “Anterior MLV/Rater 1”, “An-
terior MLV/Rater 2”, “Anterior MLV/Rater 3”, and
“Anterior MLV/Rater 4” instead of one label “An-
terior MLV”. Likewise for labels “Middle MLV” and
“Posterior MLV”. This results in RF + 1 labels, i.e.,
the cartesian product of R rater and F foreground
labels, and the background. We do not create rater-
specific background labels, as this would be redun-
dant.

2.3. Weighted majority-label voting

To aggregate the segmentation maps in the styles of
different raters, we employ a weighted majority-label
voting, which we illustrate in Figure 3. As shown,
we multiply the number of votes from rater-specific
foreground predictions by a weight wfg > 1. Com-
pared to the standard majority vote (wfg = 1), this
increases the sensitivity to foreground labels, which
we found to correspond best to human consensus
decision-making (cf. Section 3.3). In the rare case of
a tie, we choose the class with the lowest index. By
default, nnU-Net also creates an ensemble of mod-
els via cross-validation and aggregates the voxel-wise
mean of the predicted logits. We keep this mecha-
nism untouched, i.e., cross-validation ensembling is
part of the nnU-Net blocks in Figure 3, and com-
pute the majority-label vote externally, treating each
cross-validation ensemble as one voting model.
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Table 1: Composition of the annotated and raw datasets used in this study.

Name Used for
Joint annot. #Annotations

#Images
by all raters per image

Training set Training & validation ✗ 1 27
IRR set Testing (inter-rater reliability) ✗ 4 2
Consensus set Testing (accuracy) ✓ 1 4
Raw set Testing (downstream analysis) N/A N/A 22

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

MRI

Rater Encoding

1 1 1 1
1 1 1 1
1 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

nnU-Net Model

Channel 0

Channel 1

Channel 2

HxWxDx3 HxWxDx13

Background

R1

R2

R3

S3S2S1

R4

Figure 2: Illustration of MLV2-Net. It augments nnU-Net with a rater-specific encoding and yields rater-
aware segmentations as output. ‘⊙‘ denotes a channel-wise concatenation of inputs. In this example, we
show the encoding and segmentation output figuratively for rater 3 (R3) and three foreground segmentation
labels (S1− S3). We train nnU-Net from scratch, as indicated by the flame.

2.4. Rater-based uncertainty

Apart from the consensus prediction, we obtain a
rater-based uncertainty map in MLV2-Net. The un-
certainty is based on the agreement of rater-based
predictions of the model, i.e., the uncertainty is
higher the more rater-based predictions speak against
the majority label for a certain voxel. This provides
us with an estimate of the reliability of the predic-
tion, which renders the model more faithful as it
can be used to detect potential failure cases. Un-
like alternative uncertainty estimation methods, e.g.,
Monte Carlo Dropout (Gal and Ghahramani, 2016),
MLV2-Net does not require a variational network ar-
chitecture but keeps nnU-Net overall intact. An-
other advantage of our explicit rater-based modeling
is that individual, potentially flawed, or deprecated
segmentation styles can easily be ignored post hoc,
i.e., without re-training. This is typically impossible

with variational approaches that implicitly model the
data variability.

2.5. Boundaries on segmented volume based
on Dice

The performance of segmentation models is com-
monly evaluated with the Dice similarity coefficient
(DSC). However, in the end, the segmented volume
is often of utmost importance in medical imaging.
Therefore, in the following, we derieve error bound-
aries on the predicted volume relative to the ground-
truth or reference volume.

Theorem 1 Given the Dice similarity coefficient
(DSC) of a segmentation model, the predicted vol-
ume relative to the ground-truth volume is bounded
by 2

DSC − 1 from above and by 2
2−DSC − 1 from be-

low.
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Figure 3: Illustration of the weighted majority-label voting in MLV2-Net for four raters (R1–R4). Shown is
an exemplary ambiguous prediction for a single voxel. R3 would segment the voxel as background (B), R4
as foreground segment 1 (S1), and R1 and R2 as foreground segment 2 (S2). The foreground weight in the
example is set to wfg = 3.

Proof. The DSC and the relative predicted volume
V rel can be calculated from a confusion matrix com-
prising false negative (FN), true positive (TP ), false
positive (FP ), and true negative (TN) voxels. By
definition, the DSC is calculated as

DSC =
2 · TP

2 · TP + FN + FP
=

2 · TP
1 + TP + FP

, (1)

where we utilized the fact that TP + FN ≡ 1 when
normalized to the ground-truth (GT) volume. The
relative predicted volume, i.e., the predicted relative
to the GT volume, is given by

V rel =
Predicted volume

GT volume
=

TP + FP

TP + FN
= TP + FP.

(2)
Rearranging Equation (1) to FP = 2·TP

DSC − TP − 1
and inserting it into Equation (2) yields

V rel =
2 · TP
DSC

− 1. (3)

From TP ≤ 1, we obtain V rel ≤ 2
DSC − 1. Similarly,

we get V rel ≥ 2
2−DSC −1 by rearranging Equation (1)

to TP = DSC·(FP+1)
2−DSC and FP ≥ 0. ■

3. Results

3.1. Experimental setting

We implemented MLV2-Net into nnU-Net (v2, 3D
Fullres), based on Python (v3.11), PyTorch (v2.1),
and CUDA (v12.1). As there is no reference
method for automatic segmentation of MLVs, we

compare MLV2-Net to a diverse set of baseline
methods. Namely, we implemented a registration-
based segmentation propagation algorithm (Modat
et al., 2009) (SegProp) that aggregates all train-
ing references through an optimized threshold, Uni-
verSeg (Butoi et al., 2023), a recent foundation model
for medical image segmentation that we adapted for
3D images by fusing overlapping patches from all
three image planes, and the standard nnU-Net con-
figurations (2D and 3D Fullres) (Isensee et al., 2021).
In addition, we implemented an ensemble of sepa-
rate, rater-specific models (not to be confused with
nnU-Net’s cross-validation-based ensembling strat-
egy), and we ablate the weighted majority-label vot-
ing and the rater-specific labels. We ran all methods
consistently on a single Nvidia GeForce RTX 3090
graphics card with 24GB VRAM. All experiments
were conducted with the data described in the ini-
tial paragraph about data and code availability.

3.2. Inter-rater reliability and rater-based
uncertainty

As a measure of inter-rater reliability (IRR), we com-
pute a Fleiss’ kappa score (Fleiss, 1971) based on
our IRR dataset. This dataset contains an annota-
tion from each rater for each image. Considering all
three foreground labels as a single entity, we obtain
a Fleiss’ kappa of κ = 0.73/0.79 for the two IRR im-
ages, respectively. The ensemble of separate, rater-
specific nnU-Net models closely replicates the expert
raters’ IRR (κ = 0.74/0.80). With the single-model
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Figure 4: Ground-truth annotation from rater 2 (R2) and corresponding predictions from nnUNet and MLV2-
Net with different rater queries (R1–R4). We show projections along the vertical axis for best visibility; note
that this makes the vessels appear thicker but better displays segmentation characteristics than slices.

Table 2: Accuracy of all implemented methods in terms of Dice similarity coefficient (DSC). We report
results (mean ± SD) from the cross-validation and the held-out consensus test set in anterior, middle, and
posterior regions and foreground (all regions combined). Best and second results are highlighted.

Cross-validation Consensus set

Method Variant Anterior Middle Posterior Foreground

MLV2-Net wfg = 3 0.626± 0.108 0.709± 0.092 0.687± 0.120 0.806± 0.030
MLV2-Net Oracle 0.638± 0.151 0.712± 0.094 0.688± 0.122 -

nnU-Net 3D Fullres 0.593± 0.117 0.689± 0.098 0.682± 0.116 0.787± 0.046
nnU-Net 2D 0.618± 0.106 0.707± 0.099 0.683± 0.109 0.760± 0.024

UniverSeg All planes 0.341± 0.106 0.459± 0.159 0.490± 0.114 0.529± 0.177
UniverSeg Coronal 0.262± 0.090 0.437± 0.135 0.401± 0.100 0.498± 0.130
UniverSeg Sagittal 0.312± 0.113 0.411± 0.148 0.413± 0.124 0.427± 0.187
UniverSeg Transverse 0.275± 0.102 0.318± 0.128 0.366± 0.107 0.417± 0.113

SegProp Optimized 0.350± 0.137 0.445± 0.104 0.396± 0.110 0.493± 0.079
SegProp Standard 0.200± 0.078 0.291± 0.072 0.228± 0.080 0.294± 0.065

MLV2-Net, however, we obtain a higher agreement
(κ = 0.79/0.82).

In Figure 4, we show four rater-specific predictions
of MLV2-Net for an exemplary scan alongside the
annotation of R2. The R2-specific prediction corre-
sponds well to the raters’ reference. It can also be
seen that conditioning the model on the other raters
(R1, R3, R4) yields a reasonable variability in the
prediction. The vanilla nnU-Net, however, is not ca-
pable of modeling this variability and produces only
a single prediction.

In Figure 5, we show the rater-based prediction un-
certainty of MLV2-Net for the two images in our IRR
set and compare it to the voxel-wise inter-rater vari-
ability. Qualitatively, the same boundary regions are
subject to inter-rater variability and prediction un-
certainty. This indicates that the rater-based model
uncertainty matches the actual variability in the an-

notated data locally, thereby supporting the globally
computed quantitative IRR results and the qualita-
tive inspection from above.

3.3. Accuracy and consensus decision-making

While annotation variability among human raters is
natural and unavoidable, most applications demand
consistent segmentation. In our held-out consensus
test set, we tried to remove the variability as much
as possible through all four raters’ joint annotation
of the images. This is the reference standard for con-
sensus decision-making but, unfortunately, it is only
feasible for a few images. In Table 2, we report the
average accuracy of all implemented methods on this
consensus set and in a 5-fold cross-validation on our
training set, separated by anterior, middle, and poste-
rior regions. Qualitative predictions are in Figure 6.
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Figure 5: Inter-rater variability between human ex-
perts and in MLV2-Net. We plot the disagreement
between raters, i.e., a score of one implies that at
least one rater disagrees, two means it is a tie, and
project voxel-wise values to the sagittal plane. Shown
are the two IRR test cases for which individual an-
notations from all four raters are available.

The models evaluated on the consensus set are en-
sembles of the five cross-validation models.

First, it stands out that MLV2-Net yields the high-
est accuracy during cross-validation and on the con-
sensus set, followed by the vanilla nnU-Net. Surpris-
ingly, UniverSeg, which was pre-trained on more than
22K medical scans, is not competitive with supervised
learning from scratch on our comparably small train-
ing set — even after deliberate optimization. Visu-
ally, SegProp also produces reasonable MLV segmen-
tations but is not competitive in terms of quantitative
measures. All models achieve higher Dice scores on
the consensus set and sacrifice accuracy in the cross-
validation, where the best accuracy is obtained with
the respective rater as an input to MLV2-Net (oracle).
This is likely due to the higher annotation variabil-
ity in the training set compared to the consensus set.
Nonetheless, it is noteworthy that MLV2-Net learns
to produce highly accurate and consistent segmenta-
tions from training data with non-neglectable anno-
tation variability. In Figure 7, we plot the accuracy
of MLV2-Net (wfg = 3) and the relative segmented
volume in all annotated test samples and from the
cross-validation. All results lie within the theoreti-
cally derived error bounds. On average, the relative
predicted volume can be assumed to be between 0.67
and 1.49 on the consensus set (mean DSC = 0.806).

Table 3: Ablation study of training and consensus-
finding strategies. Using our consensus set, we report
the mean ± SD Dice similarity coefficient (DSC).

Configuration DSC

Standard majority vote (wfg = 1) 0.790± 0.030
Weighted Majority Vote (wfg = 4) 0.790± 0.043
No rater-specific labels (wfg = 3) 0.800± 0.032
Rater-specific models (wfg = 3) 0.804± 0.029
Weighted majority vote (wfg = 2) 0.805± 0.031
Weighted majority vote (wfg = 3) 0.806± 0.030

3.4. Ablation study

From the ablation study in Table 3, we infer that
the most important design choice in MLV2-Net is the
weighted majority-label voting. It makes the model
more sensitive to foreground voxels than the stan-
dard, equally weighted majority vote. Other method-
ological choices, such as using a single-model ap-
proach and rater-specific labels, seem to have only
a minor positive effect on segmentation accuracy.

For our setting with four raters, we can deduce ex-
plicit segmentation thresholds in dependence of the
foreground weight wfg. In words, wfg = 3 means
that a voxel is segmented as foreground if no more
than two out of the four rater-specific predictions an-
ticipate it to be background (with three background
votes, the voxel is predicted as background due to our
policy to choose the lower-label index in case of a tie,
cf. Section 2.3). With wfg = 2, two votes on the back-
ground can only be overruled if the other two votes
are on the same MLV sub-label (anterior, middle,
posterior), which makes it slightly less foreground-
sensitive than wfg = 3. Increasing the sensitivity
to foreground votes further by setting wfg = 4 re-
duces the performance to the standard majority vote.
Thus, we deduce that a moderately increased fore-
ground sensitivity emulates human consensus-finding
best based on the given data.

3.5. Downstream analysis of MLV volume

Finally, we apply our model in a downstream analy-
sis of MLV volume using unlabeled imaging data. Re-
cently, Albayram et al. (2022) found a positive associ-
ation of age with MLV volume based on manual anno-
tations. Using our MLV2-Net model, we can replicate
this finding based on a group of adults (n = 4, age
51-62) and a larger young reference cohort (n = 18,
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Figure 6: Predictions of all implemented methods based on an image from our consensus test set. The
first row shows the orthogonal projections onto axial (top) and sagittal (bottom) planes. We reduced the
brightness of the FLAIR image to highlight the segmentation details.
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age 22-34), see Figure 8. The difference is significant
based on p < 0.05 (two-sided t-test). This result indi-
rectly confirms the accuracy of our model and proves
its applicability for analyzing real-world study data.
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Figure 8: Box plots of the MLV volume predicted
by MLV2-Net for two age groups. Lines indicate the
median, boxes span the inter-quartile range (IQR),
and whiskers extend to 1.5×IQR.
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4. Discussion

MLV segmentation task The task of MLV seg-
mentation is new and challenging due to the rami-
fied structure, the thin diameter, and the high inter-
rater variability among experts on the voxel level.
The difficulty of segmenting these structures is re-
flected in the high inter-rater variability in the expert-
annotated data (Fleiss’ kappa of κ = 0.73/0.79),
cf. Section 3.2. According to Landis and Koch
(1977), this corresponds to a substantial agreement
(0.6 < κ ≤ 0.8), which is inferior to perfect agree-
ment (κ > 0.8). Nonetheless, we achieved a high ac-
curacy of DSC = 0.806 on our consensus test set. As
no established baselines exist for this task, we tried
to cover various methods ranging from segmentation
propagation over supervised learning to recent foun-
dation models, cf. Section 3.3. Yet, future research
should investigate and compare alternative model ar-
chitectures and training paradigms to draw a more
complete picture of the task at hand.

Dataset size We are aware that the number of an-
notated scans (n = 33) used in this study is com-
parably small, especially when compared to recent
segmentation datasets with annotations of thousands
of anatomies (Wasserthal et al., 2023). Yet, datasets
with around 30 annotated scans are not uncommon
for 3D medical image segmentation (Antonelli et al.,
2022). In fact, creating much larger segmentation
datasets manually for MLV structures is impossible
due to their complex shape, the low contrast even in
FLAIR imaging, and the required high resolution of
0.5mm in sagittal and vertical axes. In our experi-
ments, we tried to account for the small dataset size
by tuning hyperparameters based on extensive cross-
validation on the training set. Moreover, we indi-
rectly assessed our model’s performance on n = 22
unannotated scans (cf. Section 3.5) by replicating
known age-related associations with MLV volume.
Finally, we put particular effort into assessing the
inter-rater reliability (cf. Section 3.2) and created a
consensus test set to ensure the used annotations are
of high quality.

Foreground bias in ensemble decision-making
In our ablation study in Section 3.4, we found a fore-
ground weight of wfg = 3 to work best for the given
MLV datasets. This essentially creates a bias to-
ward foreground labels, which seems to mimic human
consensus decision-making to a certain degree in our
case. However, it is unclear how this observation gen-

eralizes to other data, structures, and rater groups.
Albeit an analysis of this relation is out of scope for
this paper, it could be an interesting starting point
for follow-up research to investigate the observed fore-
ground annotation bias and its implications.

5. Conclusion

In summary, we presented the first automatic method
for MLV segmentation from 3D FLAIR imaging.
Our model, MLV2-Net, outperformed state-of-the-art
baselines by embracing the styles of all annotators in-
volved in the creation of the training set. In contrast
to most segmentation methods, MLV2-Net provides
a rater-based uncertainty estimation. Together with
the derived theoretical bounds on the segmented vol-
ume, we expect MLV2-Net to be a valuable tool for
clinical researchers that study the glymphatic system.
Yet, the technical contributions and code are generic
and could be beneficial for other applications as well.
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