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Abstract—One of the most important and topical challenges
of quantum circuits is their scalability. RSFQ technology is at
the forefront of replacing current standard CMOS-based control
architectures for a number of applications, including quantum
computing and quantum sensor arrays. By condensing the control
and readout to SFQ-based on-chip devices that are directly
connected to the quantum systems, it is possible to minimise the
total system overhead, improving scalability and integration. In
this work, we present a novel RSFQ device that generates multi
tone digital signals, based on complex pulse train sequences using
a Circular Shift Register (CSR) and a comb filter stage. We show
that the frequency spectrum of the pulse trains is dependent on
a preloaded pattern on the CSR, as well as on the delay line of
the comb filter stage. By carefully selecting both the pattern and
delay, the desired tones can be isolated and amplified as required.
Finally, we propose some architectures where this device can be
implemented to control and readout arrays of quantum devices,
such as qubits and single photon detectors.

I. INTRODUCTION

Rapid Single Flux Quantum (RSFQ) [1], [2] electronics
and their energy efficient version (ERSFQ) [3], [4] are well
developed technologies that are now being considered and
implemented for the control and readout of quantum circuits
such as qubits [5]–[9], and quantum sensors [10]–[12]. As
a result, many of the bulky standard room temperature elec-
tronics are being replaced by RSFQ circuits that can perform
the same quantum circuit manipulation, but with potentially
better scalability from decreased system overheads, better
integration for cryogenic temperatures due to the much lower
power dissipation, and faster operation (up to hundreds of GHz
[13]). Naturally, this leads to proposed architectures where
a full manipulation of qubits and single photon detectors,
such as Superconducting Nanowire Single Photon Detectors
(SNSPDs), is done in a fully digital and, therefore, more
scalable way [14].

One circuit of interest in this area is an arbitrary waveform
generator (AWG), which at its core consists of a Digital-to-
Analogue Converter (DAC), that can generate programmable
arbitrary analogue signals. This is the quintessential device
used in a myriad of control protocols, including standard
microwave based single qubit gates [15] or time-domain
measurements of RF-SNSPDs [16]. In particular, AWGs are
able, and widely used, to generate multi-tone signals for use in
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frequency division multiplexing (FDM) control architectures
[17], [18]. The RSFQ implementation of such a device usually
consists of a digital pulse-based stage which encodes the
analogue signal into a binary code that is then followed by
a DAC stage, using voltage multipliers or SQUID stacks
[19]–[22]. The only demonstration of multi-tone signal gen-
eration using SFQ-based circuits has been recently achieved
for metrology applications using the same architecture type
mentioned before, with a DAC at the output [21]. Here we
present an alternative way of generating programmable multi-
tone signals with all-digital pulse based signals, which we
name Digital Multi-Tone Generator (DMTG).

Like the previously mentioned implementations of AWG-
type RSFQ circuits, Circular Shift Registers (CSR) [23]–[26]
are at the core of this work too, since they can be used as
pulse train generators and the type of pulse train is dependent
on the initial pre-loaded data on the memory cells of the
CSR. This property allows the creation of evenly and unevenly
spaced patterns that can be controlled to generate the desired
tones on the output signal. This is also an important property
when trying to encode an analogue signal into a digital pulse
train. The second important component is a Comb Filtering
stage [27] like those seen in Cascaded-Integrator-Comb filters,
both in classical and RSFQ applications, used for decimation
and interpolation filter devices [28], [29]. This component is
also seen in some pulse multiplier circuits [19]. In this work,
comb filters are implemented to redistribute the power of the
CSR output to frequencies that depend on the characteristics
of the delay path. This improves the power of the desired
tones and attenuates spurious tones if correctly tuned. A
feedforward implementation is chosen to comply with RSFQ
device restrictions, such as summation and multiplication of
single SFQ pulses.

The remainder of this paper is organised as follows. Section
II explains the mathematics of pulse trains and their frequency
spectra, and how the use of CSR can modify them in a
programmable way. Here an analysis of comb filters is also
shown, as a way to improve the final spectrum of the signal.
Section III then presents the proposed implementation using
RSFQ basic components, with special emphasis on the CSR,
the clocking network, and the comb filter stage. Section
IV shows the simulated results of a 8-bit DMTG using a
superconductor circuit simulator, as well as a study of how
SFQ pulse characteristics influence the final spectrum. In
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Fig. 1: Example of pulse trains generated in an 8-bit CSR, with programmability focused on tones below fclk = 10GHz: (a)
Evenly spaced pulse train generates an evenly spaced frequency spectrum (frequency division patterns). (b) Uneven spaced
pulse train generates a richer spectrum with more tones. Pattern ‘1001 1001’ generates tones at 2.5 and 7.5 GHz. All spectra
from the CSR are periodic with period equal to fclk. (c) Single stage comb filter applied on same pattern as (b), with delay
τ = 0.33 ns, tunes the spectrum in a way to amplify the 2.5 GHz tone and cut off the 7.5 GHz tone. FT is normalised
for the maximum power in each system, which corresponds to the pattern ‘1111 1111’. FT scale different between plots for
visualisation purposes.

Section V, some applications envisioned for this device are
presented. Finally conclusions are given in Section VI.

II. MULTI-TONE DIGITAL SIGNALS WITH PULSE TRAINS

Before introducing SFQ pulses in this work, this section
will be concerned with the creation of multi-tone signals using
ideal pulse trains. Later, we shall see that this approximation
holds extremely well when dealing with SFQ pulses due to
their sub picosecond time width.

A. Spectral Analysis

To start this analysis, we assume that a single SFQ pulse is
modelled by an infinitely narrow pulse which takes the form
of a Dirac delta function:

δ(x) =

{
+∞, x = 0

0, x ̸= 0
(1)

A pulse train, like one generated by a simple SFQ-DC driver
circuit clocked at a certain frequency fclk, can also be written
using Dirac functions, by infinitely summing them:

XT(x) =

+∞∑
m=−∞

δ(x−mT) (2)

where T = 1/fclk and X represents the Dirac Comb function.
These equally spaced pulse trains (with period T), have a
Fourier Transform (FT) given by:

F [XT(x)](f) =

∫ +∞

−∞
X(x)e−2πjfxdx =

1

T
X1/T(f) (3)

This result shows that the frequency spectrum of an ideal and
equally spaced pulse train, is itself an equally spaced pulse
train with ‘period’ given by 1/T, as shown in Fig. 1(a). With
these types of pulse trains, it is already possible to generate a
multi-tone signal, composed of fclk and its harmonics, but the
only way to control these tones is to change the frequency of
the drive signal, which modifies all the tones in the signal.

Using a CSR, we can redefine the Dirac Comb function to
include the pattern loaded in this circuit:

X̃N
T (x) =

+∞∑
m=−∞

N−1∑
k=0

Skδ(x− kT−mNT) (4)

where the CSR is driven by a clock frequency fclk = 1/T , N
is the number of bits of the CSR, and Sk = {0, 1} represents
the bit (pattern) stored inside memory cell k of the CSR. The
frequency spectrum of these unequally spaced pulse trains can
be calculated in the same way and it is given by:

F [X̃N
T (x)](f) =

1

NT
X 1

NT
(f) · c(f) (5)

where c(f) is a modulation function given by the pattern in
the CSR:

c(f) =

N−1∑
k=0

Ske
−2πjfkT (6)

This shows that the result of the CSR is to modulate a
frequency pulse train with spacing equal to fclk/N (X 1

NT
),

depending on the pattern loaded on it (Sk). Using Euler’s
formula, the modulation function can be interpreted as a
summation of sine waves, similar in concept to a Fourier
Series, but limited in number and amplitudes. An example
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of this modulation is shown in Fig. 1(b), with a pattern of
‘1001 1001’, for a 8-bit CSR clocked at 10 GHz. With this,
the tones at 2.5 and 7.5 GHz are generated at equal power,
while keeping the clock frequency the same. The same tones
are generated at {2.5, 7.5} + n·10 GHz, since the FT keeps
its periodicity of fclk.

An important characteristic of the patterns and spectra
generated by a CSR is the uniqueness of each one of them.
We define a unique pattern for an N-bit CSR as a pattern that
generates a frequency spectrum with a unique combination of
tones, and a unique combination of relative powers between
them, that no other pattern with the same bit length can
generate.

The total amount of possible patterns for an N-bit CSR is
given by 2N−1. Since most of these are not unique, we define
some rules to obtain a minimal set of patterns that can generate
all others. To help us study the uniqueness of patterns, some
definitions are useful: first, for a N-bit pattern, we define S
as the number of set bits, that is, the number of ‘ones’ in
the pattern. Secondly, we define a distance variable D as a
set of distances (cyclical) between all set bits in the pattern,
where we define a distance of 1 for two consecutive set bits.
This set has a cardinality equal to S and the sum of its values
must equal the total number of bits N for a valid pattern. For
instance, the pattern ‘1001 1001’ for an 8-bit CSR (see Fig.
1(b)), has a number of set bits S = 4 and the distance set is
D = {3, 1, 3, 1}.

The first rule that stands out to eliminate duplicate patterns
is that any pattern with the same number of set bits S and the
same distance set D generates the same pattern. For instance,
patterns ‘1000 0000’ and ‘0100 0000’ both have S = 1 and
D = {8}. This type of bit shift results in a phase shift of the
pulse train, but has no effect on the tones generated. This rule
can be extended to include patterns whose distance set is a
cyclic permutation (CP) of another (e.g. {1, 3, 1, 3} which is
obtained by shifting {3, 1, 3, 1}).

Secondly, infinitely long pulse trains exhibit time-reversal
symmetry, meaning their spectra remain unchanged whether
the pulse train is run from t0 → t1 or from t1 → t0,
where t1 > t0. This means that within a set of non-
cyclical permutations (NCPs), we can remove further potential
duplicate patterns by performing a ‘mirror’ operation. For
instance, taking a few periods of the pattern ‘1101 0000’ with
D = {1, 2, 5}, and running it backwards (−t), it is possible
to observe that the pattern ‘1100 0010’ with D̃ = {1, 5, 2}
is obtained, both generating the same frequency spectrum, as
confirmed through later simulations.

Heuristically, there is another rule that removes additional
patterns from the unique set, despite not following completely
our original definition of uniqueness. For each pattern obtained
so far, there exists a pattern (defined as its dual) obtained
by performing a bitwise NOT operation, that also generates
the same tones, with the same power relative to each other,
except the tones generated at {n·fclk} which have greater or
lower power output depending on how many bits are set in
the pattern. From the definition, we count every dual pattern
as a unique pattern since the output power of these tones
have a higher power than the original pattern, although the

remaining tones powers are equal. For instance, the patterns
‘1000 0000’ (S = 1, D = {8}) and ‘0111 1111’ (S = 7,
D = {1, 1, 1, 1, 1, 1, 2}) generate exactly the same tones,
except the tones at {n·fclk} which have increased power for
the latter (more sets bits correspond to higher total power at
the output). By definition, every pair of dual patterns must
have a sum of their set bits equal to N.

With these dual patterns, one can obtain a smaller set of
unique patterns below fclk, since one needs only to look at
unique patterns with set bits S = {1, 2, . . . ,N/2}. These are
shown for an 8-bit CSR in Fig. 2, clocked at 10 GHz. The
higher the number of set bits in the pattern, the higher the
power spectral density. In a similar way, the more tones spread
through the spectrum, the lower the spectral density for each
one. This is easily seen with patterns ‘1000 0000’ and ‘1111
1111’, where the former has S=1 and all fclk/N tones with
their amplitude reduced by two orders of magnitude, when
compared to the latter, with S=8 and only one tone.

Fig. 2: Unique Patterns for an 8-bit CSR clocked at fclk = 10
GHz. Uniqueness of each pattern defined by which tones it
generates and the relative power between all of them. Bold
patterns correspond to frequency division patterns (equally
spaced in time and frequency). For each pattern shown (with
exception of ‘1111 1111’), there exists a dual pattern that
generates the same tone distribution but with the tone at fclk
having increased power. Width of tones is artificially increased
for visualisation purposes, since we are using Dirac delta
functions. FT is normalised to the maximum output power
of the system, corresponding to the pattern ‘1111 1111’.

These rules allow us to create a procedure to generate the
unique patterns for any N-bit CSR, as shown in Algorithm
1. This procedure grows exponentially with the number of
bits, since it requires various calculations of combinations
and permutations. As expected, the number of unique patterns
grows in a similar way, although slower than the original 2N.
Two boundaries can be defined for a quick estimation of this
number: the lower boundary is defined as the sum of all s-
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combinations of the set S = {1, 2, . . . ,N} whose sum of
elements equal N. The higher boundary is obtained from the
latter, by adding the unique non-cyclic permutations (NCP) for
each combination. The real number is then obtained by using
procedure 1 and dual patterns to eliminate some of the extra
NCPs from the higher boundary that generate equal spectra.

Algorithm 1 Generating unique patterns on an N-bit CSR.

s← 0 // Number of set bits
Pt ← {} // Output set of unique patterns
while s ≤ N/2 do

Empty set of dual patterns Pt ← {}
Get all distance set combinations D ←

(N
s

)
for Dj in D do

if Sum(Dj) = N then
for di in NCPs(Dj) do

if (CP(di) /∈ Pt) ∧
(

CP(d̃i) /∈ Pt

)
∧(

CP(di) /∈ Pt)
)

then
Pt ← di
Pt ← di

s← s+ 1

Increasing the number of bits, N, in the shift register
increases the frequency resolution since the base pulse train in
the frequency space, defined in Eq. (5), is equally spaced by
1/NT = fclk/N. This means more tones can be generated
within the same frequency range from 0 to fclk. Another
additional benefit of increasing the number of bits, is that for
a long enough CSR, it is possible to simply overlap evenly
spaced pulse trains of different frequencies and obtain a pattern
with these frequencies only.

B. Comb Filtering

Using a CSR with a pre loaded pattern increases the control
of the tones generated with pulse trains. We can further
improve it by using comb filtering stages as shown in this
section. There are two types of comb filters: feedback and
feedforward filters [27]. These can be defined as two-port
circuits, where a delayed version of the output or input signal
(respectively) is added onto itself. Mathematically:

y(t) = x(t) + αy(t− τ), [Feedback] (7)
y(t) = x(t) + αx(t− τ), [Feedforward] (8)

where x(t) is the input signal, y(t) is the output signal, τ
is the added delay and α is the scaling factor of the delayed
signal. A block diagram of both types of filters is shown in Fig.
4(b). While the latter type has a potentially better amplitude
response (specifically, it can target some tones more effectively
due to the sharper frequency spectrum), its implementation
using RSFQ circuits is not as straightforward, since the scaling
factor needs be less than 1 to avoid instabilities in the filter
output. To have the scaling factor less than 1, the top branch of
the comb filter would need to have Josephson junctions with
IcRN product different from the rest of the circuit. Therefore,
and as a first proof of concept, we look at the feedforward
implementation and how it is used in the DMTG.

Taking the Fourier Transform of Eq.(8), we obtain:

F [y(t)](f) = F [x(t)](f) + αF [x(t− τ)](f)

=
(
1 + αe−2πjfτ

)
F [x(t)](f) (9)

Like the previous section with the CSR pattern, this result
shows that the modulation is achieved by summation of sine
waves, but in this case, their frequency can be fine tuned by the
delay of each filtering stage. There is, however, an exception
to the usefulness of the comb filter, which happens when the
delay matches the period spacing of the clock (1/fclk). When
such circumstances occur and because SFQ pulses cannot be
added together (as in, on the same time instance, two pulses
will not sum their amplitudes), the comb filter either produces
no delayed pulse, so the spectrum will be exactly the same as
it is seen at the end of the CSR, or it produces a delayed pulse
which effectively changes the original pattern of the CSR into
another pattern.

Fig. 3 shows an example of the effect of using a feedforward
comb filter stage on a 8-bit CSR with a preloaded pattern of
‘1001 1001’. As the delay is tuned from 0 to N/fclk, the tones
at 2.5, 7.5 and 10 GHz are periodically tuned from 0 to a
maximum amplitude. A cross section of the 2D plot can also
be seen, where the periodic behaviour of the tones at 2.5 and
7.5 GHz is plotted, together with a curve showing the distance
between these two tones. By selecting the correct delay, we
can tune both tones to be at a maximum of separation (for
example to suppress the 7.5 GHz tone, with delay 0.33ns) or
a minimum of separation, which for this pattern corresponds
to both tones at equal strength. Fig. 1(c) shows the result of
selecting a delay equal to 0.33 ns on the output of the CSR.
As predicted, the tone at 7.5 GHz is suppressed.

III. RSFQ IMPLEMENTATION

A. Circular Shift Registers
CSRs are an extension of linear shift registers, where the

output of the last memory cell is connected to the input of
the first, creating a circular flow of data (Fig. 4(a)). An N-bit
CSR consists of N D Flip-Flops (DFFs) connected in series
using Josephson Transmission Lines (JTLs), to control the
delay between cells. To clock the CSR, 2-way splitters are
usually used, however, in this device we use 3-way splitters
to meet the requirements of our clocking network, as will be
explained below.

Shift registers are synchronous circuits, meaning they re-
quire a clock to advance to the next internal state, independent
of the data inputs. The type and architecture of the clock dis-
tribution network is therefore crucial for the correct operation
of this device, considering all internal and external delays on
the data and clock paths. Particularly important is the clock
skew, tcs, of the circuit, which for a CSR must equal to 0
[24], [30]. This quantity is defined as the time between a clock
pulse arriving at the ith memory cell and the same clock pulse
reaching the (i+ 1)th cell (see Fig. 4(a)). For a CSR:

tTotal
cs =

N∑
i=1

tics = (t1 − t2) + (t2 − t3) + . . .+ (tN − t1) = 0

(10)
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Fig. 3: Comb filter effect on frequency spectrum for the same
pattern and CSR shown in Fig. 1 (b). (a) 2D view of spectrum
versus comb filter delay. (b) Slice view of the two frequencies
of interest (2.5 and 7.5 GHz) and a curve (green) illustrating
the difference between these two latter, which is utilised to
adjust the two tones in relation to each other. In this example,
the largest difference is achieved for a delay ∼ 0.066 ns,
or 0.333 ns, where the amplitude of the 7.5 GHz tone is
reduced to zero; or 0.133 and 0.266 ns, where the latter tone
is amplified and the 2.5 GHz tone reduced, but not removed.

where tics = (ti − ti+1), and ti is the time when clock pulse
arrives at the ith cell. To avoid any racing conditions, the clock
skew for each cell plus the data delay between cells must be
greater than the hold time of the cell. This must still be met,
even though the total clock skew of the CSR is zero.

To satisfy this condition, a type of clocking network was
designed which is based on a type of symmetrical-mixed clock
design as seen in Refs. [22], [24], [26]. Here, N/2 bits of
the shift register are clocked in a concurrent way and the
remaining N/2 bits are clocked in a counter flow manner,
but only one input and output of data are used, as shown

D1 D2
. . . DN

t1 t2 tN
Concurrent

Counter

Circular

(a)

Delay Delayα α

+ +

(b)

Feedback Feedforward

D1

DN

Clock

+

Merger

Splitter

Data
(in)

. . .

. . .

. . .

DN/2

DN/2+1

Single Stage
(2x DFF)

N/2 Stages

D-JTLNDRO

+
Data
(out)

D-JTLNDRO

+

D1

DN

Comb Filter

NDROS
RS

S RS

(c)

Fig. 4: (a) Diagram of N-bit linear shift register being clocked
in a concurrent or counter flow. tn represents the time when the
clock signal arrives at memory cell n. The total clock skew of
a circular shift register (dotted) is equal to zero. (b) Diagram
of two types of comb filters: feedback [left] and feedforward
[right], both with a delay and scaling factor stage. (c) Block
diagram of a DMTG, using a N-bit CSR and a single stage
comb filter step. Full symmetric clock distribution is used with
N/2 bits having concurrent flow and the remaining N/2 having
counter flow of data and clock. A non destructive readout cell
(NDRO) is used to ensure a way of writing data in the CSR and
forming the loop to generate the pulse train, as well as used in
the comb filter to allow a zero delay output (Set and Reset).
D-JTL (delay JTL) is used as a tuneable way of changing the
fluxon propagation speed in the JTL.

in Fig. 4(c). This ensures that the two blocks have negative
and positive clock skews, respectively, but when combined in
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a loop the total equals to zero. Another alternative is to use
a standard binary tree clock distribution, which has a higher
overhead of splitters. For binary-tree clocking, the clock skew
between adjacent memory cells is zero, so the sum will always
also be zero. The total amount of splitters necessary for this
type of clock network is N− 1, whereas for the symmetrical
type it requires N/2.

B. Comb Filtering

Comb filtering in RSFQ circuits must be modified slightly
compared to the standard digital signal processing filter, since
SFQ pulses cannot be summed in amplitude like normal
signals can. This means that the two signals generated must
be merged, instead of summed. Also, the scaling factor seen
in Eq. (8) is harder to achieve, specifically when α < 1,
since the amplitudes of SFQ pulses are set during the design
phase by the critical current density jc and IcRN product of
the junctions. It is also possible to use an amplifying JTL to
increase the voltage of the SFQ pulse and obtain α > 1, which
can be useful for increasing the power of the output tones.

The implementation of comb filtering in this work is based
on the feedforward architecture with a unity scaling factor. The
circuit has three basic RSFQ cells: one splitter to generate
the two data paths, one merger to combine the two pulses
and one long JTL, which we call a delay JTL, which delays
the propagation of SFQ pulses in one branch of the circuit.
This delay (τ ) is tuneable by changing the bias current
of the entire delay JTL, based on fluxon propagation and
interaction in JTLs [31]. This implementation is shown in
Fig. 4(c), alongside a full block diagram of the multi-tone
generator device, comprised of a N-bit CSR and a single stage
feedforward comb filtering stage, with one data input and one
data output. A NDRO cell is used to break the loop of the
CSR and choose whether the CSR is in write (SET=0) or read
mode (SET=1), which opens and closes the loop, respectively.
Another NDRO switch is added to the comb filter to allow
for an output with no delayed pulse. Alternatively, an RSFQ
DC switch could be used as a replacement for NDRO cells,
to reduce the complexity and overhead of the design.

IV. SIMULATIONS

To test the operation of the device, a simulation model was
implemented using PSCAN2 superconductor circuit simulator
[32]. A netlist of the device was designed using SeeQC’s high
density fabrication process parameters, specifically devised
for digital circuits and quantum applications [33]. A modular
approach is used to optimise the design, starting with the
memory cells and the shift register and further adding the
comb filter stage. The optimisation process was done at 10GHz
(a conventional operation frequency for superconducting quan-
tum circuits), therefore for higher frequencies the margins are
expected to be narrower. The global margins XI, XJ, and XL,
represent the total deviations of the bias currents, junction
critical currents, and inductances, respectively, in the device,
such that the correct operation is not compromised. Maximum
margins are capped at 40%. These are obtained from the full
circuits and tested at different clock frequencies (namely, 10,

Pattern ‘1000 1000’ Pattern ‘1001 1001’
10 GHz 20 GHz 50 GHz∗ 10 GHz 20 GHz 50 GHz∗

XI [-28,25] [-21,25] [-21,18] [-28,25] [-22,23] [-21,18]
XJ [-22,25] [-22,18] [-16,23] [-20,25] [-19,18] [-16,18]
XL [-40,40] [-40,40] [-40,40] [-40,40] [-40,40] [-35,34]

TABLE I: Simulated Global Margins for an 8-bit device (in
percentages).

20 and 50 GHz) and with different patterns on the CSR. For
operation around 50 GHz and above, slight modifications of
the CSR were made, increasing the IcRN product for faster
practical circuit operation and removing some JTLs between
data cells. A maximum frequency of 86 GHz was obtained
with correct operation of the CSR without the comb filter, as
a demonstration of the robustness of the design. A summary
of these tests is shown in Table I.

The output frequency spectrum was obtained from the
simulations by using the Lomb-Scargle periodogram [34].
This algorithm provides an estimation of the discrete Fourier
Transform for samples with unevenly spaced time data, which
is crucial for the analysis of PSCAN2 simulations due to its
dynamic time step.

The dependence of the frequency spectrum on the charac-
teristics of the SFQ pulses comprising the pulse train was also
investigated and is shown in Fig. 6. Firstly, by changing the
characteristic voltage Vc of the output junctions, we observe
a change in the relative powers between the tones of the
signal, as shown in Fig. 6(b). This is in agreement with the
result obtained in Ref. [7], where for narrow pulses, the higher
frequency components have increased power. This can become
a problem when working with superconducting circuits since
at some critical power these high frequency tones may break
Cooper pairs and poison the system with quasiparticles [8]. In
practice, the advantage of having narrower pulses is to make
the pulse trains and subsequently the control pulses, shorter in
time. Since the area of the pulse, Φ0, remains the same, the
average power output also does not change.

Increasing the pulse train length improves the bandwidth of
the output tones, as seen in Fig. 6(c). The longer the pulse
train, the narrower the tones, which in practice means our
control pulse trains cannot be too short in time. The average
power output is the same in the time domain (since the peak
power and the duty cycle remain constant), although there is
more energy in the system.

Clock jitter is another metric which exists in real exper-
iments and can affect the frequency spectrum of the output
signal. While the base simulations shown do not include
a known and controllable source of jitter, there is a small
variation of the clock period due to the way the simulation,
particularly the dynamic time step calculation, is performed,
but accounts for less than few picoseconds. Adding more jitter,
the tones tend to shift from their expected value by a few MHz
(as seen on the right side of Fig. 6(b), where the tone at 100
GHz slightly shifts) and noise at higher frequencies increases.

When discussing powers with pulse trains and frequency
spectra, one must distinguish between a couple of variables.
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Fig. 5: Frequency spectra obtained from PSCAN2 time simulations using the Lomb-Scargle periodogram algorithm for a 5 ns
pulse train. The same pattern used in Fig. 1(c) is used for comparison, without (a) and with (b) the comb filtering stage set
very close to the 0.333 ns delay to obtain the best separation between the two tones, 2.5 and 7.5 GHz (as shown in Fig. 3).
Dashed lines on time domain plots show the input data (pre-loading) sent to the CSR. Insets highlight one SFQ pulse (top),
as well as the width of one of the frequency tones (bottom).

The average power in the time domain of a pulse train will be
given by:

Pavg = Ppeak · Duty Cycle = Ppeak ·
σpulse

Tclk
· n

N
(11)

where Tclk = 1/fclk, σpulse is the width of each SFQ pulse and
n is the number of set bits in an N-bit pattern. Increasing
the pulse length, as done in this work, increases the total
energy in the signal, but the average power in time domain
remains. For the Lomb Scargle periodogram algorithm, the
result is a metric of the squared amplitudes of each Fourier
component at each frequency, with units of mV2 in this work.
This is known as the Power Spectrum (PS). Since we are
dealing with discrete signals, that is, sampling rate and number
of points are finite, one drawback is that the DFT and all
estimations scale with the number of points N of our original
signal, making the amplitude of the calculation arbitrary and
with no real meaning. For the transform to be useful, we
calculate the Power Spectral Density (PSD) which is obtained
by dividing the power spectrum by the frequency resolution
of the spectrum:

PSD ≡ PS
fsN

(12)

where fs is the frequency resolution and N is the number
of sample points. Using the PSD, the area under each tone
represents the fraction of the signal power that is concentrated
around that tone. Increasing the total length of the pulse train
therefore decreases the tone width, but amplitude increases so
that the total area remains constant, since the input power
remains the same (higher length means more energy but
averaged over longer period).

V. OUTLOOK

The DMTG device presented and discussed herein has ap-
plications in both classical RSFQ circuitry, as well as a control
circuit for quantum systems that also require a cryogenic
environment and the higher frequencies achieved with RSFQ
and ERSFQ technologies. Two examples which motivated this
work are qubit and SNSPD control and readout systems.

For standard qubit control, a microwave pulse is carefully
crafted to excite single qubit gates and drive qubit state rotation
on the XX and YY axes. For this method, our device could be
used as a way to multiplex the control and use a single line
for many qubits, after it is filtered and impedance matched on
a RF module, as shown in Ref. [35].

Currently, SFQ-based digital control is achieved using a
simple DC-SFQ converter (or a combination of such) and
clocked at a subharmonic of the qubit transition frequency
[8]. The idea is that each pulse rotates the qubit state slightly
around the XX or YY axis of the Bloch Sphere, and by
controlling the number of pulses the desired final state can
be obtained. The subhamornic is used to avoid driving the
qubit directly, since the SFQ system is capacitively coupled to
it. Our device could be used like this in a fully digital way or
can be used to implement more complex pulse sequences as
shown in Ref. [36]. These sequences can optimise SFQ-based
qubit control by reducing leakage outside the computational
space and increasing the fidelity of single qubit gates.

Superconducting Nanowire Single Photon Detectors
(SNSPD) are another area where superconductor electronics
are foreseen to improve scalability. In particular, large arrays
of RF-SNSPDs (SNSPDs integrated in lumped element
resonators) can be used in conjunction with RSFQ electronics
to create a control and readout system that can scale more
efficiently than DC-SNSPDs [16]. The output signal with
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Fig. 6: Influence of pulse train characteristics on frequency
spectrum for the same pattern applied to an 8-bit CSR, as
seen in Fig. 5, focusing on the 2.5 GHz tone. (a) An increasing
characteristic voltage, Vc=IcRN, of the output junctions in the
circuit, results in a narrower pulse with an increased amplitude.
Difference in time shown corresponds to the small jitter in
PSCAN2 simulations. (b) Increasing Vc, the output power of
lower frequency tones remains approximately constant, while
higher frequencies are amplified. (c) To decrease the width of
each tone, a longer pulse train should be considered. For a 50
ns pulse train, a bandwidth of 15 MHz is obtained, compared
to 84 MHz for a 5 ns pulse train. Vc is in dimensionless
PSCAN2 units, where unity equals 0.287 mV.

multiple tones would be sent to an array of resonators that are
coupled to the SNSPDs, and, using frequency multiplexing,

all pixels could be probed simultaneously with only one
input. The readout architecture would closely follow the same
one used for microwave electronics, where a multi-tone input
signal is sent to the signal, filtered, and down-converted using
IQ mixers, to then be detected by an Analogue-to-Digital
Converter, which could also be implemented with RSFQ
circuitry [37], [38]. In this case, no down-conversion would
be necessary. Additionally, time domain multiplexing could
be used to sweep the local oscillator signal (LO) such that
the down-converted signal frequency could always fit within
the bandwidth of the ADC, reducing the sample rate, but
increasing the total bandwidth available for the resonators.
The same architecture could be implemented to probe an
array of readout resonators coupled to qubits in the standard
dispersive regime [39]. A summary of these architectures is
shown in Fig. 7.

VI. CONCLUSION

In conclusion, we have presented a novel RSFQ device that
uses the properties of pulse trains and their Fourier Transform,
to create multi-tone signals that depend on the data (pattern)
loaded in the memory cells of an N-bit CSR. We have shown
the existence of and the means to obtain all unique patterns
for an N-bit CSR, although the search for optimal and unique
patterns is computationally complex and requires exponential
time. Together with a feedforward comb filter stage, the tones
generated are further concentrated around certain frequencies,
which increases the tuneability of the output, as well as
increasing the amplitude of the desired tones. Additionally,
stacking comb filters can further improve the amplitude and
spectrum.

In terms of components, the device is relatively simple to
fabricate, uses well developed and studied RSFQ components,
and the number of junctions in the circuit grows reasonably
well with increasing N. The simulated circuits show a great
match with the predicted frequency spectra for every pattern
and it is also shown that changing the SFQ pulse width,
pulse train length, and clock periodicity has an influence on
the result. This is all consistent with the results predicted
theoretically. The average margins are shown to be quite
good for different patterns at around 20%, which is similar
to margins obtained experimentally for RSFQ devices with
complexity involving few hundred junctions. It is also shown
that the maximum operating frequency is dependent on the
characteristic voltage of the junctions, but with this fabrication
parameters, operation close to 100 GHz can be achieved.

In the future, a way of improving the algorithm to search for
unique patterns with an improved time complexity is required,
as well as a method to estimate a set of patterns which can
be used, given the tones desired by the user.
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Fig. 7: Proposed SFQ-Based Architectures for Qubit and
SNSPDs applications utilising the Digital Multi-Tone Gener-
ator (DMTG) device presented in this work. (a) Qubit control
using a RF module (see Ref. [35]) to filter the complex pulse
train into an analogue signal to drive XX and YY qubit state
rotations. (b) Directly applying the SFQ pulses to the qubit
yields a full digital control method, also working as XX and
YY qubit gates (see Ref. [8], [36]). (c) Resonator readout
is also possible using a heterodyne scheme where both the
multi tone signal and a local oscillator are generated on-chip.
Down-conversion can be possibly substituted by a RSFQ based
ADC to directly digitise the signal from the quantum system,
creating a full RSFQ based control system.
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