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MAXIMAL ROOT SUBSYSTEMS OF AFFINE REFLECTION SYSTEMS

AND DUALITY

IRFAN HABIB

Abstract. Any maximal root subsystem of a finite crystallographic reduced root system is
either a closed root subsystem or its dual is a closed root subsystem in the dual root system.
In this article, we classify the maximal root subsystems of an affine reflection system (reduced
and non-reduced) and prove that this result holds in much more generality for reduced affine
reflection systems. Moreover, we explicitly determine when a maximal root subsystem is a
maximal closed root subsystem. Using our classification, at the end, we characterize the
maximal root systems of affine reflection systems with nullity less than or equal to 2 using
Hermite normal forms; especially for Saito’s EARS of nullity 2. This in turn classifies the
maximal subgroups of the Weyl group of an affine reflection system that are generated by
reflections.

1. Introduction

In [18] Høegh–Krohn and Torresani introduced a new class of infinite-dimensional Lie alge-
bras which generalizes both finite-dimensional simple Lie algebras and affine Lie algebras. They
called the Lie algebras as quasi-simple Lie algebras. A quasi-simple Lie algebra L is equipped
with an invariant, symmetric, non-degenerate bilinear form which has a distinguished finite-
dimensional self-centralizing subalgebra H. Moreover, the Lie algebra L has a weight space
decomposition with respect to H. Since then, a vast number of research has been done to
understand them, specially after [1] where the name Extended Affine Lie algebra (EALA in
short) appeared for the first time. One other standard reference for EALA is [27].

More generally, Lie algebras L having weight space decomposition with respect to a non-
zero abelian subalgebra H (called toral subalgebra) form a large class of Lie algebras. We can
assign to each such Lie algebra L a subset ∆ of the dual space H∗ of H, called its root system.
The interaction of the Lie algebra with its root system provides an approach to studying
the structure of Lie algebra via its root systems. For a finite-dimensional simple Lie algebra
L, the root system of L completely determines L upto isomorphism (see [19]). There is a
non-degenerate bilinear form on H∗ induced by the non-degenerate bilinear form on H. A
non-isotropic root relative to this form is called a real root. Assume that Φ is the collection of
all real roots in ∆. There is an associated group, called the Weyl group, which is a subgroup
of GL(H∗) (the group of invertible operators on H∗) and is by definition generated by the
reflections {sα : α ∈ Φ}. A subset Ψ of Φ is called a root subsystem if sα(β) ∈ Ψ for all
α, β ∈ Ψ. The reflection subgroups of the Weyl group are in one-to-one correspondence with
the root subsystems of Φ. In particular, maximal root subsystems correspond to maximal
reflection subgroups of the Weyl group. This in turn provokes a systematic study of the
structure of the root systems apart from its connection with the Lie algebra (see [22, 29, 32]).
One of the motivations of this work is to study the reflection subgroups of the Weyl groups of
affine reflection systems (which contains studying the reflection subgroups of extended affine
Lie algebras) with more emphasis on the combinatorial aspects.

The classification of the reflection subgroups of finite and affine Weyl groups has been
achieved in [12] by classifying root subsystems of finite and real affine root systems. It is
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2 IRFAN HABIB

well-known that the classification of all root subsystems may be deduced from that of the
closed root subsystems in the finite setting, see [7]. The root subsystems of untwisted affine
Lie algebras have been characterized in [13]. The maximal root subsystems for twisted affine
root systems were still un-characterized and in this article, we shall describe them as Corollary
of the classification Theorem.

A subset Ψ of Φ is called a closed subset if α + β ∈ Ψ whenever α, β ∈ Ψ and α + β ∈
Φ. If in addition, Ψ is a root subsystem, we call Ψ a closed root subsystem . Closed root
subsystems (subsets) have been studied extensively since they are closely related to the H
invariant subalgebras of L. The problem of classifying closed subsets even for (real) affine root
systems is wide open. The invertible closed subsets of affine root systems were classified in [8]
and the parabolic subsets were classified in [15]. Anna Felikson et al. started the classification
of regular subalgebras of affine Lie algebras (which are related to the closed root subsystems
of real affine root systems) in [14] and it was completed in [30], see also [21]. A combinatorial
description of biclosed sets of real affine root systems was given in [3]. In the finite-dimensional
setting, closed subsets of a root system are in one-to-one correspondence with the Cartan
invariant subalgebra (see [10, Proposition 4.1]). Maximal closed root subsystems were classified
in [5] in the finite-dimensional setting, in [30] for affine root systems and in [21] for affine
reflection systems. Reflectable bases for affine reflection systems were studied in [2]. Symmetric
closed subsets of affine root systems and their correspondence with the regular subalgebras
had been studied in [4]. For a general symmetrizable Kac–Moody algebra, in [16], the authors
proved that Dynkin’s results hold and they identified the correct family of subalgebra which
are determined by the combinatorics of their root systems. The embedding problem for rank
2 Kac–Moody Lie algebras was addressed combinatorially in [17].

Affine reflection systems generalize all the above-mentioned root systems (see Section 2.2
for a precise definition). It includes finite root systems, affine root systems, extended affine
root systems to name a few. In this work, we will classify the maximal root subsystems of
an affine reflection system, which, in turn, will provide a more explicit classification of the
maximal subgroups of its Weyl group generated by reflections. One other motivation of this
work is the following result in the finite-dimensional setting: If Ψ is a maximal root subsystem
of a finite reduced root system Φ, then either Ψ is closed in Φ or Ψ∨ is closed in Φ∨ (see
[12, Corollary 2]). We provide a positive answer to this statement for reduced affine reflection
systems in Theorem 5. The proof based on the classification Theorems; Theorem 3 and
Theorem 4, where we classify the maximal root subsystems of an irreducible reduced affine
reflection system depending on the gradient type whereas Theorem 6 classifies the same for
non-redcued affine reflection systems. Moreover, we also explicitly describe when a maximal
root subsystem of an affine reflection system is closed in Table 1 for reduced and Remark 10
for non-reduced. In the last Section, we apply our classification Theorems for affine reflection
systems of nullity at most 2. We explicitly classify the maximal root subsystems of Saito’s
EARS defined in [31, Section 5] using the Hermite normal forms.

The paper is organized as follows: In Section 2 we recall facts about finite root systems,
construction of affine reflection systems and lattices in finite-dimensional real vector spaces
along with the related Hermite normal forms. We also introduce the notion of dual motivated
by [24]. In Section 3 we review the basic facts about the root subsystems and the dual
of them. Section 4 and Section 5 classify the maximal root subsystems of a reduced affine
reflection system where the gradient is not of type B and type B respectively. Section 6 is
devoted to the classification of the maximal root subsystems of a non-reduced affine reflection
system. Finally, Section 7 provides applications of the classification results for affine reflection
systems of nullity at most 2.
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2. Extension datum and affine reflection systems

Throughout this paper we denote by C (resp. R) the field of complex (resp. real) numbers
and by Z (resp. Z+, N) the subset of integers (resp. non-negative, positive integers). For a
subset A of a group G, we denote by 〈A〉 the subgroup of G generated by A.

2.1. Finite root systems. Let I be a finite index set often identified with {1, 2, . . . , n} if
|I| = n. Let V be a Euclidean space with an inner product (·, ·). For the rest of this paper we

denote by Φ̊ a finite root system in V . For α ∈ Φ̊, we can define a reflection sα : V → V given

by sα(v) := v − 2 (v,α)
(α,α)α, v ∈ V. The Weyl group W̊ of Φ̊ is defined to be the subgroup of the

invertible linear maps on V generated by the reflections sα, α ∈ Φ̊. A root system Φ̊ is called
reduced if α/2 /∈ Φ̊ for all α ∈ Φ̊ and called reducible if there exist disjoint subsets Φ̊1, Φ̊2 of Φ̊

such that Φ̊ = Φ̊1 ∪ Φ̊2 and (Φ̊1, Φ̊2) = 0. A root system that is not reduced (resp. reducible)

is called non-reduced (resp. irreducible). If Φ̊ is reduced and irreducible, then at most two

root lengths occur in Φ̊ and all roots of a given length are conjugate under W̊ . We denote the
short (resp. long) roots in Φ̊ by Φ̊s (resp. Φ̊ℓ). If Φ̊ is non-reduced and irreducible, then Φ̊ is
of type BCI and we set

Φ̊s = {±ǫi, i ∈ I}, Φ̊ℓ = {±ǫi ± ǫj : i 6= j, i, j ∈ I}, Φ̊d = {±2ǫi, i ∈ I},

where {ǫi : i ∈ I} is the standard orthonormal basis of V. We define Φ̊nd := Φ̊\Φ̊d. For an

irreducible root system Φ̊, we denote by mΦ̊ or simply by m the lacing number of Φ̊. For more
details about finite root systems, see [6, 19]. Reduced root systems appear as the set of roots
of finite-dimensional semisimple Lie algebras with respect to a Cartan subalgebra [19] and
non-reduced root systems appear in the context of infinite-dimensional Lie algebras [20]. One
can also define locally finite root systems e.g. [22] since they appear naturally in the theory
of affine reflection systems, see Theorem 1.

2.2. Affine reflection systems. Now we introduce the main object of study, the affine
reflection systems. For more details about affine reflection systems, the reader is referred to
[23, 28]. Let X be a finite-dimensional real vector space, (·, ·)X a symmetric bilinear form on
X and ∆ ⊆ X. Define

X0 = {x ∈ X : (x,X)X = 0}, ∆im = {α ∈ ∆ : (α,α)X = 0}, (imaginary roots)

∆re = {α ∈ ∆ :(α,α)X 6= 0}, (real roots).

For α ∈ ∆re and x ∈ X, we define (x, α∨) = 2 (x,α)X
(α,α)X

and sα(x) = x− (x, α∨)Xα.

Definition. We call a triple (X,∆, (·, ·)X ) an affine reflection system if the following hold:

(i) 0 ∈ ∆, ∆ spans X, ∆im ⊆ X0,
(ii) sα(∆) = ∆, ∀α ∈ ∆re,
(iii) (∆, α∨)X ⊆ Z is a finite subset ∀α ∈ ∆re.

The Weyl group W of (X,∆, (·, ·)X ) is defined to be the subgroup of GL(X∗) generated by
the reflections sα, α ∈ ∆re. We set Φ := ∆re for the rest of the paper. We shall sometimes
ignore the imaginary roots and write (X,Φ, (·, ·)X ) or simply Φ to denote an affine reflection
system. Moreover, we shall write (·, ·) instead of (·, ·)X when the underlying vector space X
is clear from the context.
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2.3. Extension datum. It turns out that any reflection system can be constructed from
a root system and an extension datum.

Definition. Let Φ̊ be a locally finite root system in V and Y be a finite-dimensional real
vector space. We call a collection (Λα : α ∈ Φ̊ ∪ {0}), Λα ⊆ Y an extension datum of type

(Φ̊, Y ) if it satisfies the following axioms:

(1) Λβ − (β, α∨)Λα ⊆ Λsα(β), ∀α, β ∈ Φ̊.

(2) 0 ∈ Λα for α ∈ Φ̊nd ∪ {0} and Λα 6= ∅ for α ∈ Φ̊d.
(3) Y = spanR(

⋃
α∈Φ̊∪{0} Λα).

Given an extension datum of type (Φ̊, Y ), we can construct an affine reflection system
(X,∆, (−,−)X ) as follows:

X = V ⊕ Y, ∆ =
⋃

α∈Φ̊∪{0}

α⊕ Λα, (v1 ⊕ y1, v2 ⊕ y2)X = (v1, v2). (2.1)

The following result is the structure Theorem for affine reflection systems [23, Theorem 4.6].

Theorem 1. Let Φ̊ be a locally finite root system and (Λα : α ∈ Φ̊∪{0}) be an extension datum

of type (Φ̊, Y ). The triple (X,∆, (·, ·)X ) constructed in Equation (2.1) is an affine reflection
system with

∆im = Λ0, X0 = Y, ∆re =
⋃

α∈Φ̊

α⊕ Λα.

Moreover, any affine reflection system is isomorphic to an affine reflection system constructed
in this way and (X,∆, (·, ·)X ) is irreducible if and only if the underlying finite root system Φ̊
is irreducible. �

Although most of the results of this paper are valid when we assume that Φ̊ is a locally
finite root system, to avoid technicalities, we shall always assume that if (X,∆, (·, ·)X ) is an

affine reflection system given by Theorem 1, then Φ̊ is a finite root system. We call an affine
reflection system (X,∆, (·, ·)X ) reduced (resp. non-reduced) if the underlying finite root system

Φ̊ is reduced (resp. non-reduced).

Example. (i) If Φ̊ is a finite root system, then Φ̊ ∪ {0} is an affine reflection system of
nullity 0. Conversely, an affine reflection system of nullity 0 if and only if it is a finite
root system union {0}}.

(ii) The affine root system is an affine reflection system of nullity 1. Conversely, an affine
reflection system of nullity 1 if and only if it is an affine root system (see e.g. [29]).

(iii) The set of roots of (untwisted) toroidal Lie algebra g⊗C[t±1
1 , t±1

2 , . . . , t±1
k ] is an affine

reflection system of nullity k.
(iv) More generally, the roots of an extended affine Lie algebra also form an affine reflection

system ([28, Section 3.4]).

2.4. Properties of extension datum. We record some elementary properties of exten-
sion datum. The next Proposition can be found in [28, Exercise 3.16] and [28, Theorem 3.18].

Proposition 1. Let (Λα, α ∈ Φ̊ ∪ {0}) be an extension datum of type (Φ̊, Y ). Then for all

α ∈ Φ̊ we have

Λα = Λw(α), ∀w ∈ W̊, Λα = Λ−α = −Λα.
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In particular, if Φ̊ is irreducible, then an extension datum of type (Φ̊, Y ) consists of at most
4 different subsets, namely Λ0,Λs,Λℓ,Λd defined in the obvious way. By Theorem 1 there
exists an irreducible root system Φ̊ and an extension datum (Λ0,Λs,Λℓ,Λd) of type (Φ̊, Y )
such that (up to isomorphism)

Φ = (0⊕ Λ0) ∪
⋃

α∈Φ̊s

(α⊕ Λs) ∪
⋃

α∈Φ̊ℓ

(α⊕ Λℓ) ∪
⋃

α∈Φ̊d

(α⊕ Λd)

From Definition 2.3(1), the subsets Λs,Λℓ,Λd satisfy:

Λx + 2Λx ⊆ Λx, x ∈ {s, ℓ}, Λs + Λℓ ⊆ Λs, Λℓ +mΛs ⊆ Λℓ,

Λs + Λd ⊆ Λs, Λd + 4Λs ⊆ Λd, Λℓ + Λd ⊆ Λℓ, Λd + 2Λℓ ⊆ Λd,

Λx + Λx ⊆ Λx if Φ̊ contains a triple (α, β, α + β) of type (x, x, x), x ∈ {s, ℓ}.

2.5. Duality. We now define the duality of affine reflection systems for real roots. This
definition is motivated by the definition of dual in [24, Section 1.3] for affine root systems.
Given an affine reflection system (X,∆re, (·, ·)) and α ∈ ∆re, we define the dual of α by
α∨ := 2α

(α,α) .

Definition. Let A = (X,∆re, (−,−)) be a reduced affine reflection system. We define the
dual of A by A∨ := (X∨, (∆∨)re, (−,−)∨) where

X∨ := X, (−,−)∨ = (−,−), and (∆∨)re := {α∨ : α ∈ ∆re}.

Remark 1. Since the radical of the form (−,−) on X is X0, the induced form on the quotient
X/X0 is non-degenerate. This in turn induces a non-degenerate form on the dual (X/X0)∗

via the linear isomorphism

ν : X/X0 → (X/X0)∗, x 7→ ν(x) and ν(x)(y) := (x, y) ∀x, y ∈ X/X0

We can define a bilinear form (−,−)∗ on X∗ induced by the form on (X/X0)∗ and declaring
its radical to be (X0)∗. For a real root α ∈ Φ we can define α∗ to be the unique element of X∗

such that

α∗(α+X0) = 2, α∗(X0) = 0.

Consequently, we can also define the dual A∨ of A by

X∨ := X∗, (−,−)∨ = (−,−)∗, and ∆∨ := {α∗ : α ∈ ∆}.

If α is real, then it is easy to see that we can identify α∗ as the functional x 7→ 2 (x,α)
(α,α) .

Hence we shall always assume the dual of an affine reflection system is defined by Definition
2.5. Note that as in the affine case, this definition does not extend to the non-reduced case
since Λd may not contain zero but it is necessary that 0 ∈ Λ∨

s = Λd/2 (see definition 2.3).

Example. Let Φ be the affine reflection system of type CI and nullity 2 defined by

Λs = Z× Z, Λℓ = {(0, 0), (1, 0), (0, 1)} + 2Z × 2Z.

Then, we have Λ∨
s = (1/2)Λℓ and Λ∨

ℓ = Λs. After scaling, we can assume that Λ∨
s = Λℓ and

Λ∨
ℓ = 2Λs. Note that the condition 〈Λℓ〉 = Λs becomes 2〈Λ∨

s 〉 = Λ∨
ℓ in the dual.
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2.6. Hermite normal form and lattices. A lattice L in a finite-dimensional real vector
space V is a free Z submodule of V. The rank of a lattice r(L) is defined to be r(L) :=
dimR(R ⊗Z L). A full lattice is a lattice L with r(L) = dim(V ). If dimV = n, any lattice L
in V has a Hermite normal basis B = {v1, v2, . . . , vr} such that the r × n matrix with rows
v1, v2, . . . , vr is an upper triangular integer matrix and satisfies the following properties:

(1) The leading coefficient (also called pivot) of a non-zero row is always strictly to the
right of the leading coefficient of the row above,

(2) The elements below the pivot are all zero and the elements above the pivot are all
non-negative and strictly less that the pivot.

For more about lattices and related Hermite normal form, we refer to [9, 26]. We only
recall the facts that are necessary for our purpose. The following can be proved using the
Gram–Schmidt orthogonalization; see also [25, Chapter 1] and [33].

Proposition 2. Let L be a lattice in Rn of rank r and B = {v1, v2, . . . , vr} be a basis of L.
Let MB be the r × n matrix whose i-th row is vi i = 1, 2, . . . , r. Then

r∏

i=1

‖v∗i ‖ =
√
det(MB(MB)t) ,

where {v∗1 , v
∗
2 , . . . , v

∗
r} is the orthogonal basis of the R-subspace spanned by B obtained by

applying the Gram–Schmidt orthogonalization to B.

Since any two bases of a lattice are related by a unimodular matrix, the right hand side of
the above equality is independent of the basis chosen. We denote by d(L) the determinant of
L which is the common value given by Proposition 2. Note that d(L) = |det(MB)| if L is a
full rank lattice. The next Theorem holds in much more generality (see [11, Chapter 12]).

Theorem 2. Let A be a free abelian group of finite rank n and B 6= 0 be a subgroup of A.
Then there exists a Z-basis {a1, a2 . . . , an} of A, and integers d1, . . . , dr with 1 ≤ r ≤ n, 1 ≤
d1 | d2 | · · · | dr, such that {d1a1, d2a2, . . . , drar} is a Z-basis for B. In particular, B is a free
abelian group of rank r ≤ n.

Corollary 1. If L1 ⊆ L2 are lattices in Rn, then d(L2) | d(L1).

Proof. Follows from Proposition 2 and Theorem 2. �

Remark 2. Let L be a lattice and L′ be a full rank sublattice of L. Then L = L′ if and only if
d(L) = d(L′). Moreover, two different sublattices of same determinant are incomparable with
respect to “ ⊆ ” relation.

We end this Section with a couple of Lemmas. The proof of the first Lemma is easy and we
skip the details. The second Lemma plays a crucial role in the main Theorem. For a subgroup
H of a group G, if A is a union of cosets of H in G, we say S is a union of cosets in A/H to
mean that S is a union of cosets of H in G such that S ⊆ A.

Lemma 1. Let L be a lattice in a finite-dimensional real vector space and M be a maximal
sublattice of L so that d(M)/d(L) = p for some prime p. Then qL ⊆ M for some prime q if
and only if p = q.

Lemma 2. Let Λ be a lattice in a finite-dimensional real vector space V. Assume that

L :=
r⋃

i=0

(ai + 2Λ), L′ :=
k⋃

i=0

(bi + 2Λ), a0 = b0 = 0

are two union of cosets in Λ/2Λ. Let H be a maximal sublattice of Λ such that d(H)/d(Λ) 6= 2
and H ∩ L ⊆ L′. Then L ⊆ L′ and k ≥ r.
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Proof. Let d(H)/d(Λ) = p. For simplicity we identify Λ with Zn and denote the standard basis
vectors of Zn by {e1, e2, . . . , en}. Let {v1, v2, . . . , vn} be the Hermite normal basis of H. Then
there exist k and non-negative integers x1, . . . , xk−1 satisfying xt < p for each t and

vj =





ej + xjek if 1 ≤ j < k,

pek if j = k,

ej if k < j ≤ n.

We shall show that L ⊆ L′ by showing that H ∩ L is a union of r distinct cosets modulo 2Λ.
It is clear that

H ∩ L =
r⋃

i=0

H ∩ (ai + 2Λ).

Fix arbitrary i ∈ {0, 1, · · · , r} and let ai = (aij)j . Since p 6= 2, for each j ≤ k, by Chinese
remainder Theorem there exists a unique solution (modulo 2pZ) of the system of equations
given by

x ≡ 0 (mod p), x ≡ aij (mod 2).

We call this solution xij and define a′i := (a′ij)j where a′ij = xij if j ≤ k and aij otherwise.
Note that we have

a′i =

n∑

j=1
j 6=k

a′ijvj +

(
xik −

∑k−1
j=1 xijxj

p

)
vk ∈ H.

Moreover, since a′i − ai ∈ 2Λ it follows that (a′i +H ∩ 2Λ) ⊆ H ∩L ⊆ L′ for i = 0, 1, . . . , r and
therefore a′i ∈ L′ which implies a′i + 2Λ ∈ L′. Consequently,

L =

r⋃

i=0

(ai + 2Λ) =

r⋃

i=0

(a′i + 2Λ) ⊆ L′.

This completes the proof. �

3. Root subsystems of affine reflection systems

In this section we recall the definitions and elementary properties of root subsystems.
Throughout this article, by root subsystem we shall always mean real root subsystem.

3.1. Let Φ an affine reflection system. A non-empty subset Ψ ⊆ Φ is called a root subsystem
if sα(β) ∈ Ψ for all α, β ∈ Ψ. A root subsystem Ψ is called a maximal root subsystem if
Ψ ⊆ Ψ′ ( Φ implies Ψ = Ψ′ for all root subsystems Ψ′ of Φ. We call a root subsystem closed
if α, β ∈ Ψ and α+ β ∈ Φ implies α+ β ∈ Ψ. Given a root subsystem Ψ, define

Gr(Ψ) := {α ∈ Φ̊ : ∃ y ∈ Λα such that α⊕ y ∈ Ψ},

Yα(Ψ) := {y ∈ Λα : α⊕ y ∈ Ψ}, α ∈ Gr(Ψ).

Moreover, for a root subsystem Ψ̊ of Φ̊ we define
̂̊
Ψ := {α⊕Λα : α ∈ Ψ̊}. Note that Ψ̊ is closed

in Φ̊ if and only if
̂̊
Ψ is closed in Φ. The proof of the following Lemma can be found in [21].

Lemma 3. Let Φ an affine reflection system and Ψ be a root subsystem of Φ. Then Gr(Ψ) ⊆ Φ̊

is a root subsystem of Φ̊ ∪ {0}. Moreover, we have

Yβ(Ψ)− (β, α∨)Yα(Ψ) ⊆ Ysα(β)(Ψ), ∀α, β ∈ Gr(Ψ). �
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Given a root subsystem Ψ, we define WΨ be the subgroup of W generated by reflections
sα, α ∈ Ψ. The map Ψ 7→ WΨ is a bijection between the root subsystems of Φ and the
subgroups of W generated by reflections, the inverse map being W ′ 7→ {α ∈ Φ : sα ∈ W ′}.

3.2. If Φ̊ is reduced, we introduce a Z–linear function

p : Gr(Ψ) →
⋃

α∈Φ̊

Λα, α 7→ pα

as follows. By Lemma 3 and [19, Theorem 10.1] we can choose a simple system Π ⊆ Gr(Ψ)
and arbitrary pγ ∈ Yγ(Ψ) for each γ ∈ Π. We extend this Z–linearly and obtain

pβ − (β, α∨)pα = psα(β). (3.1)

Now it is easy to see with Equation (3.1) that pα ∈ Yα(Ψ) for all α ∈ Gr(Ψ). We set
Y ′
α(Ψ) = Yα(Ψ)− pα for α ∈ Gr(Ψ) and observe that 0 ∈ Y ′

α(Ψ) for all α ∈ Gr(Ψ).

For a root subsystem Ψ of an affine reflection system Φ, we reserve the notation Yα(Ψ) (resp.
Y ′
α(Ψ)) or sometime only Yα (resp. Y ′

α) for α ∈ Gr(Ψ) if the underlying Ψ and the map p are
understood. The next Proposition can be found in [21].

Proposition 3. Let Ψ be a root subsystem of an affine reflection system Φ. Then the collec-
tion (Y ′

0 := 0, Y ′
α, α ∈ Gr(Ψ)) is an extension datum. Moreover, the affine reflection system

constructed from (Y ′
α, α ∈ Gr(Ψ) ∪ {0}) and Gr(Ψ) as in (2.1) is isomorphic to Ψ ∪ {0}.

Let Ψ = {α ⊕ Yα(Ψ) : α ∈ Gr(Ψ)} be a root subsystem of Φ. Then the dual Ψ∨ is given
by Ψ∨ = {γ∨ : γ ∈ Ψ}. Since (sα(β))

∨ = sα∨(β∨) holds for all α, β ∈ Ψ, it follows that Ψ
is a (maximal) root subsystem of Φ if and only if Ψ∨ is a (maximal) root subsystem of Φ∨.
Moreover, if p : Gr(Ψ) → Λs is a Z-linear funcion such that pα ∈ Yα(Ψ) for all α ∈ Gr(Ψ),

then p∨γ∨ :=
2pγ
(γ,γ) satisfies p∨γ∨ ∈ Yγ∨(Ψ∨) for all γ∨ ∈ Gr(Ψ)∨.

Now let Φ = Φ1 ⊔Φ2 ⊔ · · · ⊔Φr be the decomposition of Φ into irreducible components. Let
Ψ ⊆ Φ be a subset and let

Ψ = Ψ1 ⊔Ψ2 ⊔ · · · ⊔Ψr, Ψi = Ψ ∩ Φi, i = 1, 2, · · · , r. (3.2)

We end this subsection with the following easy Lemma.

Lemma 4. Let Ψ be a subset of Φ and the decomposition be as in Equation (3.2). Then

(1) Ψ is a root subsystem if and only if Ψi is a root subsystem for all i = 1, 2, · · · , r.
(2) Ψ is a maximal root subsystem if and only if there exists unique i so that Ψi is a

maximal root subsystem of Φi and Ψj = Φj for all j 6= i.

Remark 3. To characterize the maximal root subsystems of an affine reflection system, it
is enough to characterize the maximal root subsystems of an affine reflection system with
irreducible gradient.

3.3. From now on we shall only be interested in the irreducible maximal root subsystems of
Φ. We shall refer this section throughout the article. Let Ψ be an irreducible root subsystem
of a reduced affine reflection system Φ. By Proposition 1 and Proposition 3 we can define
Y ′
x = Y ′

x(Ψ), x ∈ {s, ℓ}. Note that Y ′
x, x ∈ {s, ℓ} satisfies

0 ∈ Y ′
x, Y ′

x = −Y ′
x, Y ′

x + 2Y ′
x ⊆ Y ′

x, (3.3)

Y ′
s + Y ′

ℓ ⊆ Y ′
s , Y ′

ℓ +mY ′
s ⊆ Y ′

ℓ . (3.4)

Thus Y ′
ℓ (resp. Y ′

s) is a union of cosets of 〈Λs〉 modulo 〈mY ′
s〉 (resp. 〈Y ′

ℓ 〉) containing 0.
Moreover, if Gr(Ψ) contains a triple (α, β, α+β) of type (x, x, x), x ∈ {s, ℓ} then we also have

Y ′
x + Y ′

x ⊆ Y ′
x, x ∈ {s, ℓ}. (3.5)
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In this case Y ′
x is an additive subgroup of Y. Conversely, assume that

• Wx, x ∈ {s, ℓ} are subspaces of Y satisfying Equations (3.3) and (3.4),

• Ψ̊ is a root subsystem of Φ̊, p : Ψ̊ → Y is a Z-linear function defined as in Section 3.2
such that pα +Wx ⊆ Λx ∀α ∈ Ψ̊x,

then Ψ := {α⊕ (pα +Wx) : α ∈ Ψ̊x, x ∈ {s, ℓ}} is a root subsystem of Φ.

For a root subsystem Ψ̊ of Φ̊ (including the non-reduced) and a function p : Ψ̊ → Y , we

say that the data Y ′
s , Y

′
ℓ , Y

′
d define a root subsystem if Ψ := {α⊕ (pα + Y ′

α) : α ∈ Ψ̊} is a root
subsystem of Φ where Y ′

α = Y ′
x if α is of type x, x ∈ {s, ℓ, d}. We end this section with a

couple of easy Lemmas without proof.

Lemma 5. Let Φ̊ be a reduced irreducible finite root system. We have Φ̊s (resp. Φ̊ℓ) is a

maximal root subsystem of Φ̊ if and only if Φ̊ is of type G2 or CI (resp. Φ̊ is of type G2 or
BI).

Lemma 6. Let J ⊆ I be a non-empty subset. Then Ψ̊B
J defined below is a maximal root

subsystem of BI ;

Ψ̊B
J := {±ǫi : i ∈ I} ∪ {±ǫi ± ǫj : i, j ∈ J or i, j /∈ J}.

Moreover, any maximal root subsystem Ψ̊ of BI such that Ψ̊ ∩ Φ̊s 6= ∅ is of the form Ψ̊B
J for

some ∅ 6= J ⊆ I. Similar statement holds for root system of type CI .

Remark 4. If Φ̊ is of type G2 or CI , then the maximal root subsystem Φ̊s is not a closed root
subsystem of Φ̊. If Ψ̊ is a maximal root subsystem in BI or CI such that Ψ̊ 6= Φ̊s, Φ̊ℓ, then Ψ̊
is a closed root subsystem.

Mild Assumption: For the rest of the paper we will assume that Λℓ is also a subgroup
in the case when Φ̊ is of type B2 or BC2. Moreover, unless otherwise stated, no irreducible
component of affine reflection systems considered, is of type A1.

4. Reduced affine reflection system where Φ̊ is not of type BI

In this section we shall classify the maximal root subsystems of an irreducible affine reflection
system where Φ̊ is not of type BI . Note that Λs is a subgroup of Y by Section 2.4. The main
result of this section generalizes [30, Prop 2.6.1(1)], and [12, 13] for maximal root subsystems.
We begin with the following Lemma.

Lemma 7. Let Φ be an irreducible reduced affine reflection system such that Φ̊ is not of type
BI . Let Ψ be defined below for some Z-linear function p : Φ̊ → Y so that pα ∈ Yα(Ψ) for all

α ∈ Φ̊. Then Ψ is a maximal root subsystem of Φ.

(1) If Λℓ 6= mΛs and Ψ is defined by

Ψ = {α⊕ Λs : α ∈ Φ̊s} ∪ {α⊕ (pα + S) : (pα + S) ⊆ Λℓ, α ∈ Φ̊ℓ},

where S is a maximal subgroup (resp. maximal union of cosets) of Λℓ (resp. in

Λs/mΛs) if Φ̊ is not of type CI (resp. is of type CI) containing mΛs.
(2) If 〈Λℓ〉 6= Λs and Ψ is defined by

Ψ = {α⊕ (pα +H) : α ∈ Φ̊s} ∪ {α⊕ Λℓ : α ∈ Φ̊ℓ},

where H is a maximal subgroup of Λs that contains Λℓ.
(3) H is a maximal subgroup of Λs satisfying mΛs +H = Λs and Ψ is defined by

Ψ := {α⊕ (pα +H) : α ∈ Φ̊s} ∪ {α⊕ (pα +H) ∩ Λℓ : α ∈ Φ̊ℓ}.
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Proof. It is easy to check that each Ψ defined above is a root subsystem. We shall only prove
(3) since the proofs of (1) and (2) are easy. Assume that Ψ is given by (3). If Ψ is not maximal
in Φ, then there exists a maximal root subsystem Γ of Φ satisfying Ψ ( Γ ⊆ Φ. If Y ′

s(Γ) 6= Λs,

then Y ′
s(Γ) = H and Equation (3.4) implies that Yβ(Γ) ⊆ (pβ + H) ∩ Λℓ for β ∈ Φ̊ℓ. Thus

Γ ⊆ Ψ, a contradiction. Therefore, Y ′
s(Γ) = Λs. If m 6= 2, then Λℓ is a subgroup of Λs (c.f.

Equation (2.4)) and by second isomorphism Theorem, we have Λℓ/H ∩Λℓ
∼= Λs/H. Therefore

H ∩ Λℓ is a maximal subgroup of Λℓ. If Γ 6= Φ, then

Γ = {α ⊕ Λα : α ∈ Φ̊s} ∪ {α⊕ (pα +H ∩ Λℓ) : α ∈ Ψ̊ℓ}.

But Γ above defines a root subsystem if and only if mΛs ⊆ H ∩ Λℓ if and only if mΛs ⊆ H
which contradicts the assumption. If m = 2, then Γ is of the form (1) for some S and we have

H ∩ (Λℓ − pα) ⊆ S, α ∈ Φ̊ℓ. Now mΛs 6⊆ H, Lemma 1 and the fact 0 ∈ Λℓ − pα ∀α ∈ Φ̊ℓ imply
that all the hypothesis of Lemma 2 are satisfies. Hence we must have Λℓ − pα ⊆ S and thus
Λℓ ⊆ pα +S,∀α ∈ Φ̊ℓ and consequently Γ = Φ. In any case, we have that Ψ is a maximal root
subsystem of Φ. �

Remark 5. (1) If Λℓ is a subgroup of Λs, then we have (pα+H)∩Λℓ = pα+(H∩Λℓ), ∀α ∈ Φ̊ℓ.
(2) Since Λℓ is a union of cosets of Λs modulo mΛs, if m = 2, we have mΛs ⊆ Λℓ + a

for all a ∈ Λℓ. Therefore if mΛs 6⊆ H, then Λℓ + a 6⊆ H for any a ∈ Λℓ. In particular
(pα + H) ∩ Λℓ 6= Λℓ for all α ∈ Φℓ and consequently Yα(Ψ) 6= Λℓ for all α ∈ Φ̊ℓ if Ψ is
defined as in Lemma 7(3).

The next Proposition proves the converse of the above Lemma when Gr(Ψ) is full.

Proposition 4. Let Φ be an irreducible reduced affine reflection system such that Φ̊ is not of
type BI . Let Ψ be a maximal root subsystem of Φ. Then one of the following holds.

(1) Gr(Ψ) is a maximal root subsystem of Φ̊ and Yα(Ψ) = Λα for all α ∈ Gr(Ψ).

(2) Gr(Ψ) = Φ̊ and there exist a Z-linear function p : Gr(Ψ) → Y satisfying pα ∈

Yα(Ψ) ∀α ∈ Φ̊ and Ψ is given by Lemma 7.

Proof. Let Ψ be a maximal root subsystem of Φ. If Gr(Ψ) is proper in Φ̊, then clearly Gr(Ψ) is

a maximal root subsystem of Φ̊ and Yα(Ψ) = Λα ∀α ∈ Gr(Ψ). So assume that Gr(Ψ) = Φ̊. By

Section 3.2 there exists a Z-linear function p : Φ̊ → Y such that pα ∈ Yα(Ψ) for all α ∈ Gr(Ψ).
Since Ψ is irreducible, we define Y ′

s and Y ′
ℓ as in Section 3.3.

First we assume that Y ′
s = Λs. By Section 3.3 we have that Y ′

ℓ is a union of cosets in Λs/mΛs

containing mΛs as one of its cosets. Note that Λℓ 6= mΛs must hold. However, if m = 2 and
A is any union of cosets in Λs/2Λs containing 2Λs, then we must have

A = −A, 0 ∈ A, A+ 2A ⊆ A, A+ 2Λs ⊆ A, Λs + 2A ⊆ Λs.

Hence it follows that Y ′
ℓ is a maximal union of cosets in Λs/mΛs satisfying pα+Y ′

ℓ ⊆ Λℓ, α ∈ Φ̊ℓ.
If m 6= 2, then by Equation (3.5) we have that Y ′

ℓ is a maximal subgroup of Λℓ containing
mΛs. In particular, Ψ is of the form Lemma 7(1).

Now assume that Y ′
s 6= Λs. Recall that Y ′

s is a subgroup of Λs. Let H be a subgroup of Λs

containing Y ′
s . Define Ψ′ by

Ψ′ := {α ⊕ (pα +H) : α ∈ Φ̊s} ∪ {α⊕ (pα +H) ∩ Λℓ : α ∈ Φ̊ℓ}.

We shall show that Ψ′ is a root subsystem of Φ. Assume that for the moment. Since Y ′
ℓ (Ψ) ⊆

Y ′
s(Ψ) ⊆ H, we have that pα+Y ′

ℓ (Ψ) ⊆ (pα+H)∩Λℓ. Hence Ψ
′ satisfies Ψ ⊆ Ψ′ ( Φ. Since Ψ

is a maximal root subsystem of Φ, it follows that Ψ = Ψ′ and H is a maximal subgroup of Λs.
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Now we prove that Ψ′ is a root subsystem of Φ. Let α1 = α ⊕ (pα + h) ∈ Ψ′ and β1 =
β ⊕ (pβ + h1) ∈ Ψ′. Then we have

sα1
(β1) = sα(β)⊕ [(pβ + h1)− (β, α∨)(pα + h)] = sα(β)⊕ [psα(β) + (h1 − (β, α∨)h)].

If β ∈ Φ̊s, then it is clear that sα1
(β1) ∈ Ψ′. Suppose that β ∈ Φ̊ℓ. If α is short, then

(pβ + h1)− (β, α∨)(pα + h) ∈ psα(β) +H. Moreover, we have

(pβ + h1)− (β, α∨)(pα + h) ∈ Λℓ +mΛs ⊆ Λℓ.

Therefore sα1
(β1) ∈ Ψ′. Now assume that α is also a long root. If Λℓ is a subgroup of Y, then

the same argument along with Remark 5 implies that sα1
(β1) ∈ Ψ′. If Λℓ is not a subgroup,

then we have m = 2 and Φ̊ is of type CI . Hence sα1
(β1) 6= β1 if and only if β = ±α. In that

case, we need to show that Cα := (pα +H) ∩ Λℓ satisfies

Cα − 2Cα ⊆ C−α, (or equivalently) C−α + 2Cα ⊆ Cα,

which holds since Λℓ satisfies relations in Section 2.4. This proves that Ψ′ is a root subsystem
of Φ. Summarizing, there exists a maximal subgroup H of Λs such that Ψ is of the form

Ψ = {α⊕ (pα +H) : α ∈ Φ̊s} ∪ {α ⊕ (pα +H) ∩ Λℓ : α ∈ Φ̊ℓ}.

Case 1: We shall first consider the case when mΛs ⊆ H. It is easy to check that Ψ′ defined
below is a root subsystem of Φ which contains Ψ :

Ψ′ := {α⊕ (pα + Λs) : α ∈ Φ̊s} ∪ {α⊕ (pα +H) ∩ Λℓ : α ∈ Φ̊ℓ},

Hence Ψ′ = Φ and we have (pα +H) ∩ Λℓ = Λℓ for all α ∈ Φ̊ℓ and so Ψ is of the form

Ψ = {α⊕ (pα +H) : α ∈ Φ̊s} ∪ {α⊕ Λℓ : α ∈ Φ̊ℓ}.

Therefore we have H+Λℓ = H by Equation (3.4) and thus Λℓ ⊆ H. Note that 〈Λℓ〉 6= Λs must
hold and so Ψ is of the form Lemma 7(2).

Case 2: Now assume that mΛs 6⊆ H. Indeed H satisfies 〈Λℓ〉+H = Λs otherwise Ψ
′′ defined

below is a proper root subsystem of Φ which strictly contains Ψ :

Ψ′′ := {α⊕ (pα + 〈Λℓ〉+H) : α ∈ Φ̊s} ∪ {α⊕ Λℓ : α ∈ Φ̊ℓ}.

In particular, Ψ is of the form Lemma 7(3). This completes the proof. �

We are now ready to prove the main result of this section.

Theorem 3. Let Φ be an irreducible reduced affine reflection system such that Φ̊ is not of type
BI . A subset Ψ of Φ is a maximal root subsystem of Φ if and only if one of the following holds.

(1) Ψ is defined as in Lemma 7.
(2) Ψ is defined as in Proposition 4(1) and one of the following holds:

(a) Gr(Ψ) 6= Φ̊s, Φ̊ℓ.

(b) Gr(Ψ) = Φ̊s and Λℓ = mΛs.

(c) Gr(Ψ) = Φ̊ℓ and 〈Λℓ〉 = Λs.

Proof. (1) follows from Lemma 7 and Proposition 4. The forward direction of (2) follows
from Lemma 7. To prove the converse, assume that Ψ be defined by Proposition 4(1). If

Gr(Ψ) 6= Φ̊s, Φ̊ℓ, then Gr(Ψ) contains both short and long roots. Hence any root subsystem
Γ containing Ψ must satisfy Γ = Φ by Proposition 4(2), Lemma 7 and Remark 5(2) and thus
proving (a). Similar arguments apply to (b) and (c). �
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Corollary 2. If Φ̊s is a maximal root subsystem of Φ̊, then the lift
̂̊
Φs is a maximal root

subsystem if and only if Λℓ = mΛs. Similarly, If Φ̊ℓ is a maximal root subsystem of Φ̊, then

the lift
̂̊
Φℓ is a maximal root subsystem if and only if 〈Λℓ〉 = Λs.

5. Reduced affine reflection systems where Φ̊ is of type BI

In this section we shall assume the case where Φ̊ is of type BI . Recall that Λℓ is a subgroup
of Y but Λs may not be a subgroup. We begin with the following Lemma.

Lemma 8. Let Φ be an irreducible affine reflection system such that Φ̊ is of type BI . Let Ψ
be defined below for some Z-linear function p : Φ̊ → Y so that pα ∈ Yα(Ψ) for all α ∈ Φ̊. Then
Ψ is a maximal root subsystem of Φ.

(1) Λs 6= Λℓ and Ψ is given by

Ψ = {α⊕ (pα + S) : pα + S ⊆ Λs, α ∈ Φ̊s} ∪ {α⊕ Λℓ : α ∈ Φ̊ℓ},

where S is a maximal union of cosets in 〈Λs〉/Λℓ and S ⊆ Λs if Λs is a subgroup of Y .
(2) Λℓ 6= 〈2Λs〉 and Ψ is given by

Ψ = {α⊕ Λs : α ∈ Φ̊s} ∪ {α⊕ (pα +H) : α ∈ Φ̊ℓ},

where H is a maximal subgroup of Λℓ such that 2Λs ⊆ H.
(3) Ψ is given by

Ψ = {α⊕ (pα + S) : pα + S ⊆ Λs, α ∈ Φ̊s} ∪ {α ⊕ (pα +H) : α ∈ Φ̊ℓ}

where H is a maximal subgroup of Λℓ satisfying H + 〈2Λs〉 = Λℓ and S is maximal
among the subsets of 〈Λs〉

• S is a union of cosets in 〈Λs〉/H and H ⊆ S,
• 2S ⊆ H.

Moreover, S is a subgroup of Λs if Λs is a group.

Example. If Ψ is given by Lemma 8(3), then S need not be a subgroup of 〈Λs〉. Let Λℓ =

2Z×2Z,Λs = {(0, 0), (1, 0), (0, 1)}+Λℓ . Then H and S given below (with pα = 0 for all α ∈ Φ̊)
satisfy all the required properties:

H = 2Z× 4Z, S = Λℓ ∪ ({(1, 0), (1, 2)} +H).

We shall classify S for rank 2 in Section 7.2. Also note that any S given by Lemma 8(3)
satisfies S = −S and is a proper subset of Λs since 2Λs 6⊆ H.

Proof. Only the proof of (3) is non-trivial and the proof of the first part of (3) is similar to
Lemma 7(3) using the fact that any maximal root subsystem that contains (3) is of the form
(1). Now assume that Λs is a group. Since S is maximal, it follows that S is precisely the
union of those cosets a+H such that 2a ∈ H. Moreover, for any two cosets a+H, b+H ⊆ S,
their sum satisfies 2(a + b) + H ⊆ H. Therefore, S is closed under addition and thus S is a
subgroup of Λs. �

Remark 6. Note that if Ψ is given by Lemma 8(1), (2) and (3), then the dual Ψ∨ is given by
Lemma 7(1), (2) and (3) respectively.

The next Proposition provides the necessary conditions a maximal root subsystem must
satisfy. It in turn proves the converse of Lemma 8 when Gr(Ψ) = Φ̊.

Proposition 5. Let Φ be an irreducible affine reflection system such that Φ̊ is of type BI . Let
Ψ be a maximal root subsystem of Φ. Then exactly one of the following holds.
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(1) Gr(Ψ) is a maximal root subsystem of Φ̊ and Yα(Ψ) = Λα ∀α ∈ Gr(Ψ).

(2) Gr(Ψ) = Φ̊, there exist a Z-linear function p : Gr(Ψ) → Y satisfying pα ∈ Yα(Ψ), ∀α ∈
Gr(Ψ) and Ψ is given by Lemma 8.

Proof. Let Ψ be a maximal root subsystem of Φ. If Gr(Ψ) is proper in Φ̊, then obviously Gr(Ψ)

is a maximal root subsystem of Φ̊ and Yα(Ψ) = Λα ∀α ∈ Gr(Ψ). So assume that Gr(Ψ) = Φ̊.

We define a Z-linear function p : Φ̊ → Λs and Y ′
s , Y

′
ℓ as in Section 3.3. Note that Y ′

ℓ is always
a subgroup of Λℓ.

First assume that Y ′
ℓ = Λℓ. We have that Y ′

s is a union of cosets in 〈Λs〉/Λℓ containing Λℓ

and hence Λℓ 6= Λs. Now Ψ′ defined below is a root subsystem which satisfies Ψ ⊆ Ψ′ :

Ψ′ := {α ⊕ S : α ∈ Φ̊s} ∪ {α⊕ Λℓ : α ∈ Φ̊ℓ},

where S is a maximal union of cosets in Λs/Λℓ so that Λℓ ⊆ S. Therefore Ψ = Ψ′. In addition
this case occurs only if Λℓ 6= Λs and thus Ψ is of the form Lemma 8(1).

Now assume that Y ′
ℓ = H, a proper subgroup of Λℓ. Define a root subsystem Ψ′ containing Ψ

by
Ψ′ := {α ⊕ Λs : α ∈ Φ̊s} ∪ {α⊕ (pα +H + 〈2Λs〉) : α ∈ Φ̊ℓ}.

Case 1: If Ψ′ = Ψ, then we have 2Λs ⊆ H and H is a maximal subgroup of Λℓ. Hence we
must have Λℓ 6= 〈2Λs〉. In particular, Ψ is of the form Lemma 8(2).

Case 2: If Ψ′ = Φ, then the subgroup H satisfies H + 〈2Λs〉 = Λℓ. We claim that H is a
maximal subgroup of Λℓ satisfying Lemma 8(3). If possible assume that there exists a proper
subgroup H ′ of Λℓ such that H ( H ′. Since Y ′

s(Ψ) is a union of cosets in 〈Λs〉/H containing H,
(c.f. Equation (3.4)),we can write Y ′

s(Ψ) = ∪x∈A(x+H) for some A ⊆ 〈Λs〉 such that 0 ∈ A.
Moreover, 2Y ′

s ⊆ H implies that 2x ∈ H for all x ∈ A. Now we define Y ′′
s = ∪x∈A(x+H ′). Note

that we must have pα+Y ′′
s ⊆ Λs, ∀α ∈ Φ̊s since pα+Y ′

s(Ψ) ⊆ Λs, ∀α ∈ Φ̊s and Λs+Λℓ ⊆ Λs.
Now 2x ∈ H ⊆ H ′ for all x ∈ A implies

2Y ′′
s = ∪(2x+ 2H ′) ⊆ ∪(2x+H ′) = H ′. (5.1)

Therefore Y ′′
s + 2Y ′′

s ⊆ Y ′′
s . Now define Ψ′′ by

Ψ′′ = {α⊕ (pα + Y ′′
s ) : α ∈ Φ̊s} ∪ {α⊕ (pα +H ′) : α ∈ Φ̊ℓ}.

Clearly Ψ ( Ψ′′ ( Φ and the following relations show that (the other relations are easy to
verify) Ψ′′ is a root subsystem of Φ :

Y ′′
s + 2Y ′′

s ⊆ Y ′′
s , Y ′′

s +H ′ ⊆ Y ′′
s , H ′ + 2Y ′′

s ⊆ H ′ +H ′ ⊆ H ′ (by Equation(5.1))

which contradicts the fact that Ψ is maximal and the claim follows. Now it is clear that Ψ is
of the form Lemma 8(3). This completes the proof. �

We are now ready to prove the main result of this section.

Theorem 4. Let Φ be an irreducible affine reflection system such that Φ̊ is of type BI . A
subset Ψ of Φ is a maximal root subsystem of Φ if and only if one of the following holds.

(1) Ψ is defined by Proposition 5(2).

(2) Gr(Ψ) is a maximal root subsystem of Φ̊ and one of the following holds:

(a) Gr(Ψ) = Φ̊ℓ and Λℓ = Λs.

(b) Gr(Ψ) 6= Φ̊ℓ

Proof. (1) follows from the proof of Lemma 8 and Proposition 5 and 2(a) follows from Lemma

8(1). If Gr(Ψ) 6= Φ̊ℓ, then Gr(Ψ) contains both long and short roots by Lemma 5. The proof
of 2(b) now follows from Proposition 5. �
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5.1. Summary for the reduced case. Table 1 summarizes the closeness property of root
subsystems that appeared in Section 4 and Section 5. Recall the definition of Ψ∨ in Section
3.2. Note that if Ψ or Ψ∨ is (real) closed in Φ or Φ∨, then they are maximal closed root
subsystem of Φ or Φ∨ respectively and thus they appear in [21, Theorem 3]. We investigate
the properties of Ψ case by case.

(1) If Ψ is of the form Lemma 7(1): Ψ is not closed since a maximal closed root subsystem Ψ

satisfies Yα(Ψ) 6= Λs for any α ∈ Φ̊s.
(2) If Ψ is of the form Lemma 7(2): Since Λℓ ⊆ H we have that (a + H) ∩ Λℓ = Λℓ for all

a ∈ Λℓ. Hence Ψ is closed.
(3) If Ψ is of the form Lemma 7(3): Ψ is closed follows directly from [21, Theorem 3.3.(i)].
(4) If Ψ is of the form Theorem 3(2a): If Φ is of type CI , then Ψ is closed by Remark 4.

Otherwise we have that Φ̊ ∼= Φ̊∨ by Section 2.5 and hence Gr(Ψ) is closed in Φ̊ by [12,
Corollary 2] and thus Ψ is closed.

(5) If Ψ is of the form Theorem 3(2b): Choose α, β ∈ Φ̊s such that α+β ∈ Φ̊ℓ and a ∈ Λℓ ⊆ Λs.
Then α+ β ⊕ a ∈ Φ\Ψ. Hence Ψ is not closed.

(6) If Ψ is of the form Theorem 3(2c): Since the sum of two long roots is a long root, it follows
that Ψ is a closed root subsystem of Φ.

(7) Ψ is of the form Theorem 8(1): Clearly Ψ is closed.
(8) If Ψ is of the form Theorem 8(2): Ψ is not closed. If Ψ is closed, then by [21, Theorem

3.3.(ii)] there exists a maximal subgroup H of Λℓ such that Yα(Ψ) = Λs = pα + Z where
Z is a union of cosets in 〈Λs〉/H maximal with respect to the properties H ⊆ Z, Z =
−Z, (Z + Z) ∩ Λℓ ⊆ H. Since Λs is a union of cosets in 〈Λs〉/Λℓ and Z is a translate
of Λs, we can also write Z as a union of cosets in 〈Λs〉/Λℓ. Since 〈2Λs〉 ⊆ Λℓ, we have
Λℓ ⊆ (Z + Z) and therefore Λℓ ⊆ (Z + Z) ∩ Λℓ ⊆ H ⊆ Λℓ, a contradiction.

(9) If Ψ is of the form Lemma 8(3): Consider Example 5. Note that (2, 2) ∈ (S + S) ∩Λℓ but
(2, 2) /∈ H. In particular, Ψ is not closed by [21, Theorem 3(3)] .

The form of Ψ Φ = CI The form of Ψ∨ Ψ is closed Ψ∨ is closed

X Lemma 8(1)

✗ Lemma 7(2)

X Lemma 8(2)

✗ Lemma 7(1)

X Lemma 8(3) ✗

✗ Lemma 7(3) X

X Theorem 4(2b)

✗ Theorem 3(2a)

X Theorem 4(2a)

✗ Theorem 3(2c)

Theorem 3(2c) ✗ Theorem 3(2b) X ✗

Lemma 7(1) ✗ X

Lemma 7(2) X ✗

Lemma 7(3) X

Theorem 3(2a) X X

Theorem 3(2b) ✗ X

Table 1. Maximal root subsystems of a reduced affine reflection system
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We now have the analogous Theorem to [12, Corollary 2].

Theorem 5. Let Ψ be a maximal root subsystem of a reduced affine reflection system Φ
(including type A1). Then either Ψ is closed in Φ or Ψ∨ is closed in Φ∨.

Proof. Using Lemma 4, we can assume that Φ is irreducible. If Φ̊ is of type A1, the clearly Ψ
is closed in Φ. If Φ̊ is not of type A1, the result follows from Table 1. �

6. Non-reduced affine reflection systems

In this section we shall assume that Φ is an affine reflection system such that Φ̊ is non-
reduced i.e. Φ̊ is of type BCI . In this case, we have

Φ̊s = {±ǫi : i ∈ I}, Φ̊ℓ = {±ǫi ± ǫj : i 6= j ∈ I}, Φ̊d = {±2ǫi : i ∈ I},

By Section 2.4 the following relations hold.

Λℓ + 2Λs ⊆ Λℓ, Λs +Λℓ ⊆ Λs,

Λd + 2Λℓ ⊆ Λd, Λℓ + Λd ⊆ Λℓ,

Λd + 4Λs ⊆ Λd, Λs +Λd ⊆ Λs.

Following [21, 30] we define the following root subsystems of Φ̊. Let J ⊆ I.

AJ :={±2ǫi : i ∈ I} ∪ {±ǫj : j ∈ J} ∪ {±ǫk ± ǫℓ : k, ℓ ∈ J or k, ℓ /∈ J},

BI :={±ǫi : i ∈ I} ∪ {±ǫi ± ǫj : i, j ∈ I}.

Note that A∅ = CI . We also define

ΦB := {±ǫi ⊕ Λs : 1 ≤ i ≤ n} ∪ {±ǫi ± ǫj ⊕ Λℓ : 1 ≤ i 6= j ≤ n} = B̂I ,

ΦC := {±2ǫi ⊕ Λd : 1 ≤ i ≤ n} ∪ {±ǫi ± ǫj ⊕ Λℓ : 1 ≤ i 6= j ≤ n} = Â∅,

Φ̊xy := Φ̊x ∪ Φ̊y, x, y ∈ {s, ℓ, d}.

The next Lemma characterizes the maximal root subsystems of Φ̊.

Lemma 9. Maximal root subsystems of BCn are precisely BI and AJ for some proper subset
J of I.

Proof. It is easy to check that AJ and BI defined above are maximal root subsystems of Φ̊.
Conversely assume that Ψ̊ is a maximal root subsystem of Φ̊. Let IΨ̊ := {i ∈ I : ǫi ∈ Ψ̊}. If

IΨ̊ ( I, then we have that Ψ̊ ⊆ AI
Ψ̊
since sǫi−ǫj(ǫi) = ǫj. It follows that Ψ̊ = AI

Ψ̊
. If IΨ̊ = I,

similar argument proves that Ψ̊ ⊆ BI and hence they are equal. �

Remark 7. The root subsystem ÂJ is a maximal root subsystem of Φ where ∅ 6= J ( I.

Let Ψ be a root subsystem of Φ. By considering Ψ∩ΦB as a root subsystem of ΦB, we can
define a Z-linear function p : Gr(Ψ)∩ Φ̊sℓ → Λs such that pα ∈ Yα(Ψ) for all α ∈ Gr(Ψ)∩ Φ̊sℓ.
Hence Ψ is of the form

Ψ = {α⊕ Yα(Ψ) : α ∈ Φ̊d} ∪ {α⊕ (pα + Y ′
ℓ ) : α ∈ Φ̊ℓ} ∪ {α⊕ (pα + Y ′

s) : α ∈ Φ̊s}. (6.1)

We shall use this fact in this section without any further notice. The next two Lemmas are the
key Lemmas of this section. The first one determines when ΦB is a maximal root subsystem
of Φ. Recall from Definition 2.3 that 0 may not belong to Λd.
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Lemma 10. Let Ψ be a maximal root subsystem of Φ. Then we have that Ψ ∩ ΦB is a root
subsystem of ΦB . Moreover, ΦB is a maximal root subsystem of Φ if and only if Λd is equal to
a coset in Λd/2Λℓ. Otherwise, ΦB is contained in a maximal root subsystem of the form

Ψ′ := {α⊕ Yd : α ∈ Φ̊d} ∪ ΦB,

where Yd ⊆ Λd is a (fixed) maximal union of cosets in Λd/2Λℓ for all α ∈ Φ̊d.

Proof. Note that we have Ψ∩ΦB 6= ∅. The proof of the fact that Ψ∩ΦB is a root subsystem of Φ
is easy and we skip the details. Recall that Λℓ is a group. Define Ψ′ := ΦB∪{α⊕Z ′

d : α ∈ Φ̊d},

where Z ′
d ⊆ Λd is any (fixed) union of cosets in Λd/2Λℓ. For α ∈ Φ̊s, β ∈ Φ̊ℓ, the following

relations show that Ψ′ is a root subsystem of Φ which contains ΦB

Z ′
d ± 4Λα ⊆ Z ′

d + 2Λℓ ⊆ Z ′
d, Z ′

d ± 2Λβ = Z ′
d + 2Λℓ ⊆ Z ′

d, Z ′
d + 2Z ′

d ⊆ Z ′
d + 2Λℓ ⊆ Z ′

d.

Now the proof follows. �

Remark 8. Lemma 6.2 in [21] is not true if we drop the ‘closeness’ of the root subsystem Ψ.

The proof of the following Lemma is similar and hence we skip the details.

Lemma 11. ΦC is a maximal root subsystem of Φ if and only if Λs = Λℓ. If Λs 6= Λℓ, then
ΦC is contained in a maximal root subsystem of the form

Ψ′ := {α⊕ Yα : α ∈ Φ̊s} ∪ ΦC ,

where Yα ⊆ Λs is a maximal union of cosets in Λs/Λℓ for all α ∈ Φ̊s.

Now assume that Ψ is a maximal root subsystem of Φ such that Gr(Ψ) = Φ̊. Set ΨB :=
Ψ ∩ ΦB. Then either ΨB = ΦB or ΨB = Ψm

B for some maximal root subsystem of ΦB. If
ΨB 6= ΦB , the next Proposition determines Ψ depending on the form of Ψm

B .

Proposition 6. Let Ψ be a maximal root subsystem of Φ such that Gr(Ψ) = Φ̊ and ΨB 6= ΦB.
Assume that Ψm

B is the maximal root subsystem of ΦB defined as above. If Ψm
B is defined by

(1) Lemma 8(1), then Ψ = Ψm
B ∪ {α⊕ Λd : α ∈ Φ̊d},

(2) Lemma 8(2), then Ψ = Ψm
B ∪ {α⊕ (pα +H)∩Λd : α ∈ Φ̊d} for some Z-linear function

p : Φ̊ℓd → Λℓ, pα ∈ Yα(Ψ),
(3) Lemma 8(3),

(a) and Λd ⊆ H, then Ψ = Ψm
B ∪ {α⊕ Λd : α ∈ Φ̊d},

(b) and Λd 6⊆ H, then there exists a Z-linear function p′ : Φ̊ℓd → Λℓ satisfying p′β = pβ
for β ∈ {ǫi − ǫi+1 : 1 ≤ i < n} so that

Ψ = Ψm
B ∪ {α⊕ (p′α + Y ′

d) : α ∈ Φ̊d},

where Y ′
d = ∪b∈B(b+2H) is a maximal union of cosets in H/2H satisfying an+A ⊆

A, 2an +B ⊆ B, if S = ∪a∈A(a+H) and an = 2pǫn − p′2ǫn .

Remark 9. Note that the maximal root subsystems (1) and (2) defined above are of the form
of Theorem 4.2 and Theorem 4.3 respectively in [21]. Also note that Ψ′ defined in Lemma 11
is of the form Proposition 6(1).

Proof. We shall only prove (3)(b) since the other cases are easy to prove. Let Ψ be a maximal
root subsystem such that Ψm

B is defined by Lemma 8(3) and Λd 6⊆ H. Define a Z-linear

function p′ : Φ̊ℓd → Λℓ by extending p′ǫi−ǫi+1
= pǫi−ǫi+1

for 1 ≤ i < n and p′2ǫn ∈ Y2ǫn arbitrary.

Note that we have 2pǫi − p′2ǫi = 2pǫn − p′2ǫn for all i = 1, 2, . . . , n. Now as in Proposition 4,
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Y ′
d := Yα − p′α, α ∈ Φ̊d is a union of cosets in H/2H so that if Y ′

d = ∪b∈B(b+2H), then 0 ∈ B
and B ⊆ H. Now the set

Ψ′ :=
n⋃

i,j=1
i 6=j

{±ǫi ⊕ (p±ǫi + S)} ∪ {±ǫi ± ǫj ⊕ (p±ǫi±ǫj +H)} ∪ {±2ǫi ⊕ (p′±2ǫi + Y ′
d)}

is a root subsystem if and only if for λ, µ ∈ {±1} and i = 1, 2, . . . , n the following hold:

(p
λǫi

+ S)− λµ(p′2µǫi + Y ′
d) ⊆ (p

−λǫi
+ S), (p′2µǫi + Y ′

d)− 4λµ(p
λǫi

+ S) ⊆ (p′−2µǫi + Y ′
d),

which is true if and only if an +A ⊆ A, 2an +B ⊆ B. Therefore Ψ is of the given form. This
completes the proof. �

Let Ψ be a maximal root subsystem of Φ. If Gr(Ψ) 6= Φ̊, then Gr(Ψ) is a maximal root

subsystem of Φ̊ and thus of the form Lemma 9. Remark 7, Lemma 10 and Lemma 11 describe

precisely when Ĝr(Ψ) is a maximal root subsystem of Φ. If Gr(Ψ) = Φ̊, then it is easy to see
that ΨB := Ψ ∩ ΦB is either ΦB or maximal root subsystem of ΦB. These cases have been
discussed in Lemma 10, Lemma 11 and Proposition 6. Summarizing, we have the classification
Theorem of maximal root subsystems of a non-reduced irreducible affine reflection system.

Theorem 6. Let Φ be the affine reflection system so that Φ̊ is a non-reduced irreducible finite
root system. Let Ψ be a root subsystem of Φ. Then Ψ is a maximal root subsystem of Φ if and
only if one of the following holds:

(1) Ψ = ÂJ for some non-empty proper subset J of I.

(2) Λℓ = Λs and Ψ = ΦC = Â∅.
(3) Λℓ 6= Λs and Ψ = Ψ′ as defined in Lemma 11.

(4) Λd is equal to a single coset in Λd/2Λℓ and Ψ = B̂I .
(5) Λd is a union of more than one cosets in Λd/2Λℓ and Ψ = Ψ′ as defined in Lemma 10.
(6) Ψ is given by Proposition 6.

Proof. Let Ψ be a maximal root subsystem of Φ. Set IΨ := {i ∈ I : ǫi ∈ Gr(Ψ)}. If ∅ 6= IΨ ( I,

then Gr(Ψ) = AIΨ by Lemma 9 and hence Ψ = ÂIΨ. Now assume that IΨ = I. If Gr(Ψ) ( Φ̊,

then Gr(Ψ) = BI by Lemma 9 and thus Ψ = B̂I and Λd = 2Λℓ by Lemma 10. If Gr(Ψ) = Φ̊,
then set ΨB := Ψ ∩ ΦB. If ΨB = ΦB , then Λd 6= 2Λℓ and Ψ = Ψ′ as defined in Lemma 10.
Otherwise, ΨB ( ΦB and thus Ψ is given by Proposition 6. Lastly, we assume that IΨ = ∅,
then we must have Λℓ = Λs and Ψ = ΦC by Lemma 11.

Conversely, each root subsystem defined above is a maximal root subsystem of Φ by Remark
7, Lemma 10, Lemma 11 and Proposition 6. �

Remark 10. If Ψ defined above is a closed root subsystem, then Ψ is of the form [21, Theorem
4]. Therefore, we colclude that Ψ is closed if and only if Ψ is given by (1), (2), (3) of the above
Theorem and Proposition 6(1).

7. Applications

7.1. Maximal root subsystems for nullity 1. It is well known that an affine reflection
system is of nullity 1 if and only if it is an affine root system ([29]). In ([12, 13]), the reflection
subgroups of an untwisted affine root system have been classified. The maximal closed root
subsystems of an affine root system were classified in [30]. The characterization of maximal
root subsystems for twisted affine root systems was open and we complete that here using
our main results. At first we state the result for untwisted case in our language in the next
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Proposition. The proof follows easily from Theorem 3 and Theorem 4 by noting the fact that
we have that Λℓ = Λs and mΛs is a maximal subgroup of Λs.

Proposition 7. Let Ψ be an untwisted affine root system. A subset Ψ of Φ is a maximal root
subsystem of Φ if and only if one of the following holds:

(1) Gr(Ψ) is a maximal root subsystem of Φ̊ such that Gr(Ψ) 6= Φ̊s and Ψ = Ĝr(Ψ).

(2) there exists a Z-linear function p : Φ̊ → Λs, pα ∈ Yα, ∀α ∈ Φ̊
(a) such that Ψ is of the form

Ψ = {α ⊕ Λs : α ∈ Φ̊s} ∪ {α⊕ (pα +mΛs) : α ∈ Φ̊ℓ},

(b) and a prime number q 6= m such that Ψ is of the form

Ψ = {α⊕ (pα + qZ) : α ∈ Φ̊}.

Now assume that Φ is a twisted affine reflection system of nullity 1 i.e. a twisted affine
root system. If Φ̊ is reduced, then we have Λs = Z and Λℓ = mZ. The following Proposition
characterizes the maximal root subsystems of Φ where Φ̊ is reduced.

Proposition 8. Let Φ be an affine root system such that Φ̊ is reduced. A root subsystem Ψ
of Φ is a maximal root subsystem if and only one of the following holds:

(1) Gr(Ψ) is a maximal root subsystem of Φ̊ such that Gr(Ψ) 6= Φ̊ℓ and Ψ = Ĝr(Ψ).

(2) Gr(Ψ) = Φ̊ and if there exists a Z-linear function p : Gr(Ψ) → Z, pα ∈ Yα(Ψ), ∀α ∈ Gr(Ψ)
and of the following holds
(a) Ψ is of the form

Ψ = {α+ (pα +mZ) : α ∈ Φ̊},

(b) there exists a prime q so that gcd(m, q) = 1 and Ψ is of the form

Ψ = {α+ (pα + qZ) : α ∈ Φ̊s} ∪ {α+ (pα +mqZ) : α ∈ Φ̊ℓ},

Proof. Proof follows from Proposition 4 and Proposition 5. �

7.2. Saito’s EARS. An important class of extended affine root systems of nullity 2 was
introduced by Saito in [31, Section 5]. We shall use Theorem 3, Theorem 4 and Theorem 6 to
characterize the maximal root subsystems of Saito’s EARS we describe below.

• For a reduced irreducible finite root system Φ̊ and a, b ∈ Z, the affine reflection system
Φ̊(a,b) is given by

Gr(Φ̊(a,b)) = Φ̊ ∪ {0}, Λs = Z× Z, Λℓ = aZ× bZ.

• The affine reflection system B
(2,2)∗
n is given by

Gr(B(2,2)∗
n ) = Bn ∪ {0}, Λs = {(0, 0), (1, 0), (0, 1)} + 2Z× 2Z, Λℓ = 2Z × 2Z.

• The affine reflection system C
(1,1)∗
n is given by

Gr(C(1,1)∗
n ) = Cn ∪ {0}, Λs = Z× Z, Λℓ = {(0, 0), (1, 0), (0, 1)} + 2Z× 2Z.

• The remaining are non-reduced affine reflection systems. They are given by

Gr(BC(2,1)
n ) = BCn ∪ {0}, Λs = Z× Z, Λℓ = Z× Z, Λd = {(1, 0), (1, 1)} + 2Z× 2Z,

Gr(BC(2,4)
n ) = BCn ∪ {0}, Λs = Z× Z, Λℓ = Z× 2Z, Λd = {(1, 0)} + 2Z× 4Z,

Gr(BC(2,2)
n (1)) = BCn ∪ {0}, Λs = Z× Z, Λℓ = Z× Z, Λd = {(1, 0)} + 2Z× 2Z,

Gr(BC(2,1)
n (2)) = BCn ∪ {0}, Λs = Z× Z, Λℓ = Z× 2Z, Λd = {(1, 0)} + 2Z × 2Z.
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7.2.1. Before classifying Saito’s EARS for rank 2, we note that additional properties are
present in rank 2 compared to the general case. We provide detailed explanations of these
additional properties below.

(1) If Ψ is defined by Lemma 7(1), Λℓ is a subgroup and mΛs ( Λℓ ( Λs: Since mΛs is a
maximal subgroup of Λℓ of index 2, it follows that Ψ is of the form

Ψ = {α⊕ Λs : α ∈ Φ̊s} ∪ {α⊕ (pα +mΛs) : α ∈ Φ̊ℓ} (7.1)

Dually, if Φ is of type CI and Ψ is defined by Lemma 8(1) or Φ is not of type CI and Ψ
is defined by Lemma 7(2), Λs is a subgroup and Λℓ 6= Λs, then Ψ is of the form

Ψ = {α⊕ (pα +Λℓ) : α ∈ Φ̊s} ∪ {α⊕ Λℓ : α ∈ Φ̊ℓ} (7.2)

If Λℓ is not a subgroup satisfying 2Λs ( Λℓ ( Λs, then Λℓ is a union of at most three
cosets in Λs/2Λs. In particular, any maximal union of cosets of mΛs in Λℓ containing 0 is
a subgroup of Λs. Therefore, there exists a subgroup H ′ of Λs satisfying mΛs ⊆ H ′ ⊆ Λℓ

such that

Ψ = {α⊕ Λs : α ∈ Φ̊s} ∪ {α⊕ (pα +H ′) : α ∈ Φ̊ℓ} (7.3)

(2) Now we consider the case when Ψ is defined by Lemma 8(3). Recall the set S and the fact
that Λℓ is a subgroup of 〈Λs〉. We identify 〈Λs〉 with Z× Z.

• Case I: Let Λℓ = Λs. By Lemma 1, for any maximal subgroup H of Λℓ, we have
det(H)/det(Λℓ) = 2 if and only if 2Λs ⊆ H. Therefore, it follows that Ψ is of the form

Ψ = {α⊕ (pα +H) : α ∈ Φ̊} (7.4)

for some maximal subgroup H of Λℓ such that det(H)/det(Λℓ) = p 6= 2.
• Case II: Now assume that Λℓ = 2〈Λs〉. Then Λℓ has a Hermite normal basis of the
form ( 2 0

0 2 ) . Therefore, for some prime p, the subgroup H has a Hermite normal basis of
exactly one of the following forms:

(
2p 0
0 2

)
, or

(
2 2x
0 2p

)
for some 0 ≤ x < p.

If H is given by the first form, the coset representatives A of H in 〈Λs〉 is given by
A = {(2r, 0), (2r + 1, 0), (2r, 1), (2r + 1, 1) : 0 ≤ r < p}. An easy computations of when
2a ∈ H for a ∈ A implies that

S ⊆

{⋃p−1
r=0((2r, 0) +H) ∪ ((2r, 1) +H) if p = 2,

H ∪ ((p, 0) +H) ∪ ((p, 1) +H) ∪ ((0, 1) +H) if p 6= 2.
(7.5)

Now assume that H is given by the second form. The coset representatives of H in 〈Λs〉
is given by A = {(0, 2r), (0, 2r+1), (1, 2r), (1, 2r+1) : 0 ≤ r < p}. A simple computation
implies

– (0, 4r) ∈ H if and only if either p = 2 or p 6= 2 and r = 0,
– (0, 4r + 2) ∈ H if and only if p 6= 2 and r = (p− 1)/2,
– (2, 4r) ∈ H if and only if r = x/2 or r = (x+ p)/2,
– (2, 4r + 2) ∈ H if and only if r = (x− 1)/2 or r = (x+ p− 1)/2.

Therefore, we obtain

S ⊆





Λℓ ∪ ((1, 0) +H) ∪ ((1, 2) +H) if p = 2 and x = 0,

Λℓ ∪ ((1, 1) +H) ∪ ((1, 3) +H) if p = 2 and x = 1,

H ∪ ((1, x) +H) ∪ ((1, x + p) +H) ∪ ((0, p) +H) if p 6= 2.

(7.6)
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Λℓ H p Sub cases B′
(
2p 0

0 1

)
Any Any

(
p 0

0 1

)

p = 2 y = 1

(
2 0

0 1

)

y-odd

(
1 y+p

2

0 p

)

y-even

(
1 y

2

0 p

)

(
p px

0 2

)
p 6= 2 Any

(
p 0

0 1

)

p = 2

(
1 x

0 2

)

p 6= 2

(
1 x+ 2y(mod p)

0 p

)

(
2 0
0 1

)
(
2 y
0 p

)

p 6= 2

(
1 x
0 2

)
(
1 x+ 2y
0 2p

)
Any

Table 2. The case 2Λs ( Λℓ ( Λs.

If we denote by S′ the right side of Equation (7.5) and (7.6), then Ψ is of the form

Ψ = {α⊕ (pα + S′) ∩ Λs : α ∈ Φ̊s} ∪ {α⊕ (pα +H) : α ∈ Φ̊ℓ}, (7.7)

If Λs is a group, then in both the cases, S = S′ and S is a subgroup of Λs. More precisely,
Ψ is of the form

Ψ = {α⊕ (pα +H ′) : α ∈ Φ̊s} ∪ {α⊕ (pα +H) : α ∈ Φ̊ℓ}, (7.8)

where H ′ is the subgroup of Λs given by the Hermite normal basis B′ where

B′ =

{(
p 0
0 1

)
if H is of the first form,(

1 x
0 p

)
if H is of the second form.

• Case III: Assume that 〈2Λs〉 ( Λℓ ( Λs. Note that Λs must be a subgroup in this
case. Similar computation as above shows that there exists a subgroup H ′ of Λs which
contains H so that Ψ is of the form

Ψ = {α⊕ (pα +H ′) : α ∈ Φ̊s} ∪ {α⊕ (pα +H) : α ∈ Φ̊s}. (7.9)

More precisely, the Hermite normal basis B′ of H ′ is given by Table 2 (0 ≤ x < 1, 0 ≤
y < p).
In any of the above three cases, for m = 2, Ψ∨ is given by Lemma 7(3) where H is
explicitly given by above.

7.2.2. Classification. We are now in a position to classify the maximal root subsystems of
Saito’s EARS. Table 3 describes the maximal root subsystems of Saito’s EARS with full
gradient. For non-reduced case, the table can be read with the forms obtained in Section 7.2.1
for rank 2.
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Class Λ Form Gradient type Maximal root subsystems

B Lemma 8(2), Eq (7.4)

C Lemma 7(1), Ψ∨ (Ψ in Eq (7.8))

6= B,C Lemma 7(1), Lemma 7(3)

B Eq (7.2), Lemma 8(2), Eq (7.9)

C Eq (7.1), Lemma 7(2), Ψ∨ (Ψ in Eq (7.9))

6= B,C Lemma 7(1), Lemma 7(2), Lemma 7(3)

B Eq (7.2), Lemma 8(2), Eq (7.9)

C Eq (7.1), Lemma 7(2), Ψ∨ (Ψ in Eq (7.9))

6= B,C Lemma 7(1), Lemma 7(2), Lemma 7(3)

B Lemma 8(1), Eq (7.8)

C Lemma 7(2), Ψ∨ (Ψ in Eq (7.4))

6= B,C Lemma 7(2), Lemma 7(3)

B
(2,2)∗
n Lemma 8(1), Ψ in Eq (7.7)

C
(1,1)∗
n Eq (7.3), Ψ∨ (Ψ in Eq (7.7))

BC
(2,1)
n Theorem 6(1,2,5), Proposition 6(2,3)

BC
(2,4)
n Theorem 6(1,3,4), Proposition 6(1,2,3)

BC
(2,2)
n (1) Theorem 6(1,2,4), Proposition 6(2,3)

BC
(2,2)
n (2) Theorem 6(1,3,5), Proposition 6(1,2,3)

Reduced

Λs and
Λℓ

are both
groups

Φ̊(1,1)

Φ̊(1,m)

Φ̊(m,1)

Φ̊(m,m)

One of Λs

and Λℓ is
not a group

Non-reduced

Table 3. Maximal root subsystems of Saito’s EARS
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