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Abstract: This study investigates the correlation between dairy farm characteristics and me-

thane concentrations as derived from satellite observations in Eastern Canada. Utilizing data 

from 11 dairy farms collected between January 2020 and December 2022, we integrated Sen-

tinel-5P satellite methane data with critical farm-level attributes, including herd genetics, feed-

ing practices, and management strategies. Initial analyses revealed significant correlations with 

methane concentrations, leading to the application of Variance Inflation Factor (VIF) and Prin-

cipal Component Analysis (PCA) to address multicollinearity and enhance model stability. 

Subsequently, machine learning models—specifically Random Forest and Neural Networks—

were employed to evaluate feature importance and predict methane emissions. Our findings 

indicate a strong negative correlation between the Estimated Breeding Value (EBV) for protein 

percentage and methane concentrations, suggesting that genetic selection for higher milk pro-

tein content could be an effective strategy for emissions reduction. The integration of atmos-

pheric transport models with satellite data further refined our emission estimates, significantly 

enhancing accuracy and spatial resolution. This research underscores the potential of advanced 

satellite monitoring, machine learning techniques, and atmospheric modeling in improving me-

thane emission assessments within the dairy sector. It emphasizes the critical role of farm-

specific characteristics in developing effective mitigation strategies. Future investigations 

should focus on expanding the dataset and incorporating inversion modeling for more precise 

emission quantification. Balancing ecological impacts with economic viability will be essential 

for fostering sustainable dairy farming practices.  
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1. Introduction 

The escalating threat of climate change has propelled greenhouse gas emissions to the forefront 

of global environmental concerns. Among these, methane has emerged as a particularly potent 

contributor to global warming, with its impact significantly exceeding that of carbon dioxide 

on a per-molecule basis [19, 41]. The urgency to mitigate methane emissions has intensified, 

with atmospheric concentrations rising alarmingly, reflecting a fourfold increase in global 

emissions over recent decades [33, 50]. This surge poses a critical challenge to international 

climate goals, particularly those outlined in the Paris Agreement. 

 

The dairy sector is identified as a substantial source of anthropogenic methane emissions, sig-

nificantly contributing to the agricultural sector's greenhouse gas footprint [2, 48]. The impact 

of methane from dairy production is particularly concerning due to its global warming poten-

tial—approximately 28 times that of carbon dioxide over a 100-year period [42, 12]. This ne-

cessitates targeted mitigation strategies within the industry. Primary methane sources in dairy 

farming include enteric fermentation and manure management practices [15, 43, 47]. The bio-

logical complexities underlying these emissions present both challenges and opportunities for 

mitigation. Understanding and addressing these sources are essential not only for climate 
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change mitigation but also for promoting sustainable agricultural practices that meet global 

food demands while minimizing environmental impact. 

 

The intricate relationship between dairy farm characteristics and methane emissions demands 

a multifaceted mitigation approach. Factors such as herd genetics, feeding strategies, and man-

agement practices significantly influence methane output, yet the relative importance and in-

teractions among these factors remain poorly understood, hindering the development of effec-

tive, targeted mitigation strategies. Recent advancements in satellite technology and data ana-

lytics have opened new avenues for monitoring and quantifying methane emissions at unprec-

edented scales. The launch of the Sentinel-5P satellite, equipped with the Tropospheric Moni-

toring Instrument (TROPOMI), has revolutionized our capacity to detect and measure atmos-

pheric methane concentrations with high spatial and temporal resolution [17, 45]. This tech-

nology offers a unique opportunity to bridge the gap between farm-level practices and regional 

methane concentrations, potentially unveiling patterns previously obscured by the limitations 

of ground-based measurements. 

 

The integration of satellite data with ground-based measurements and atmospheric transport 

models represents a significant advancement in creating comprehensive methane emission es-

timates [50, 51]. This approach enhances our understanding of methane dynamics across vari-

ous spatial scales and provides a powerful tool for validating and refining emission inventories. 

The capability to detect and quantify emissions from space offers unprecedented potential for 

identifying and addressing methane hotspots, particularly in dairy farming regions. The advent 

of advanced machine learning techniques further amplifies the potential of satellite-based me-

thane monitoring. These sophisticated algorithms can analyze vast datasets to identify patterns 

and anomalies that may indicate emission sources or trends [40, 24]. Applying machine learn-

ing to satellite data holds promise for enhancing the detection and quantification of methane 

emissions, potentially revealing insights that traditional analytical methods might overlook. 

 

Inversion modeling techniques have emerged as vital tools in translating satellite-observed me-

thane concentrations into actual emission estimates [23]. This methodology allows researchers 

to infer emission strengths and locations from atmospheric measurements, providing valuable 

insights into the relationship between farm practices and regional methane concentrations. The 

synergy between multiple satellite platforms, such as Sentinel-5P and GOSAT, could further 

enhance monitoring capabilities [4, 44]. Continuous satellite monitoring enables the detection 

of long-term methane emission trends, essential for assessing the effectiveness of mitigation 

strategies and policies. This capability is particularly relevant for the dairy sector, where 

changes in farming practices may take time to manifest in observable emission reductions. 

Long-term satellite observations can provide critical data for evaluating various interventions 

and guiding future policy decisions. 

 

The rise of artificial intelligence and machine learning offers new possibilities for analyzing 

emission structures and optimizing mitigation strategies in the dairy industry. By assigning 

varying importance to different farm characteristics, these technologies can potentially identify 

innovative solutions for reducing methane emissions from dairy farms [35, 27]. This data-

driven approach could lead to more targeted and effective interventions tailored to specific 

conditions of individual farms or regions. Despite these advancements, challenges persist in 

accurately attributing methane emissions to specific sources and in developing effective miti-

gation strategies for the dairy sector. The complex interplay among farm management prac-

tices, animal genetics, and environmental factors complicates efforts to pinpoint the most im-

pactful interventions. Moreover, potential trade-offs between methane reduction strategies and 
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other aspects of dairy sustainability—such as animal welfare and economic viability—must be 

carefully considered. 

 

This study aims to address these challenges by exploring the correlation between dairy farm 

factors and satellite-derived methane concentrations in Eastern Canada. By leveraging ad-

vanced data analytics and machine learning techniques, we seek to uncover insights that can 

inform breeding programs, management practices, and policy decisions aimed at reducing the 

dairy sector's environmental impact. Our approach involves a comprehensive analysis of vari-

ous farm characteristics, including herd genetics, feeding practices, and management strategies, 

to identify the most significant factors influencing methane emissions.  

 

2. Related Work  

 

Recent advancements in satellite technology and data analytics have revolutionized the moni-

toring and analysis of methane emissions from the dairy sector. The Mooanalytica research 

group at Dalhousie University has made notable contributions in this field, leveraging satellite 

data to assess methane emissions from Canadian dairy farms and processors.  

 

2.1. Satellite-Based Methane Monitoring 

Satellite data collection has emerged as a reliable and cost-effective method for gathering large-

scale environmental data [20, 21]. The Sentinel-5P satellite, equipped with TROPOMI, has 

proven particularly instrumental in this regard, accurately collecting data on various atmos-

pheric gases, including methane, through advanced spectroscopy methods [45]. Orbiting at an 

altitude of 824 km, Sentinel-5P provides daily global coverage with a spatial resolution of 7 

km × 7 km, ensuring consistent data collection [28, 38]. This technology has been applied in 

numerous studies, particularly in greenhouse gas emissions research, with recent efforts focus-

ing on integrating artificial intelligence for enhanced analysis [22, 25].  

 

2.2. Application to the Canadian Dairy Sector 

Recent studies utilizing Sentinel-5P data have analyzed methane emissions from over 575 dairy 

farms and 384 dairy processors across Canada over an eight-year period, revealing significant 

seasonal and provincial variations in emissions, with autumn emissions peaking and Ontario 

exhibiting the highest overall emissions [7] (Bi and Neethirajan, 2024). Building on this work, 

an AI-driven benchmarking tool for emission reduction in Canadian dairy farms has been de-

veloped, integrating satellite-derived methane emission data with advanced machine learning 

technologies and geospatial analysis [5, 10, 32].  

 

2.3 Advanced Analytical Techniques 

The integration of satellite data with machine learning models has significantly enhanced the 

detection and quantification of methane emissions. Studies have demonstrated how advanced 

machine learning techniques applied to satellite data improve the identification of emission 

patterns and anomalies [40, 24]. Inversion modeling techniques have been crucial in translating 

satellite-observed methane concentrations into actual emission estimates [23], while the syn-

ergy between multiple satellite platforms has further bolstered methane monitoring capabilities 

[3, 44]. 

 

2.4 Artificial Intelligence in Emission Analysis 

The rise of artificial intelligence has opened new avenues for emission structure analysis in the 

dairy industry [26]. Recent studies have demonstrated how AI can assign varying importance 

to different farm characteristics, potentially identifying novel solutions for reducing methane 
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emissions [35, 18, 27]. The Mooanalytica group's work exemplifies this approach, providing 

actionable insights for implementing effective emission reduction strategies.  

 

2.5 Challenges and Future Directions 

Despite these advancements, challenges remain in accurately attributing methane emissions to 

specific sources and in developing effective mitigation strategies. The complex interplay be-

tween farm management practices, animal genetics, and environmental factors complicates ef-

forts to identify the most impactful interventions [37].  

 

 

 
 

Figure 1. Schematic representation of the data analysis process, including data collection, fea-

ture analysis, and machine learning modeling to assess the relationship between dairy farm 

characteristics and methane emissions. 

 

3. Materials and Methods  

 

3.1 Data Collection and Integration 

Data were collected from 11 dairy farms located in Atlantic Canada, specifically in Nova Sco-

tia, Prince Edward Island, and New Brunswick. This dataset was obtained through Lactanet, 

which provided comprehensive insights into various operational aspects of these farms. Alt-

hough the data were not collected simultaneously across all farms, the information gathered 

offered valuable insights into the factors influencing methane emissions. A total of 36 factors 

related to dairy farm operations were identified and categorized into four main groups: basic 

information, production performance, reproduction performance, culling performance, and ge-

netics information. Basic information included the Province code, Lactanet herd ID, and the 

date the herd began milk recording. Production performance metrics encompassed average 

milk yield at test date (kg/day), average milk fat yield at test date (kg/day), average milk protein 

yield at test date (kg/day), average somatic cell count (SCC) at test date (x 1000 cells/ml), and 

average milk urea nitrogen at test date (mg/dl). Additionally, MTP predicted rolling 12-month 

herd averages for 305-day milk yield, fat yield, and protein yield were included. Reproduction 

performance factors comprised rolling 12-month herd averages for gestation length (days), dry 
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period length (days), days open (days), calving interval (days), days to first service (days), and 

total number of breeding services per year. Culling performance data included percentages of 

cows culled for voluntary reasons in the last 12 months, involuntary reasons, cows left for 

various reasons, mortality rates, and percentages sold or left for reproduction or health issues. 

Genetics information encompassed the count of animals in the herd with a genetic evaluation, 

EBVs for milk yield, fat yield, protein yield, fat percentage, protein percentage, relative breed-

ing value for SCC linear score, lifetime performance index, and Pro$ index. To complement 

the farm-level data, we utilized Sentinel-5P satellite data to obtain methane column volume 

mixing ratio dry air bias-corrected measurements corresponding to each farm's location during 

the data collection period. This integration allowed us to analyze methane emissions in relation 

to specific farm characteristics.  

 

3.2 Data Collection Time Frame and Temporal Alignment 

Farm-level data were collected from January 2020 to December 2022, spanning a total duration 

of three years. Data collection occurred monthly to capture seasonal variations that could affect 

methane emissions, such as changes in feed composition or herd management practices. This 

frequency facilitated the assessment of temporal patterns and potential seasonal effects on me-

thane production. To align farm data with satellite observations from Sentinel-5P, we synchro-

nized farm data collection dates with the satellite's overpass times. Sentinel-5P orbits the Earth 

at an altitude of 824 km with a 100-minute cycle, enabling daily data collection over the same 

location with a spatial resolution of 7 × 7 km². Methane concentration data were extracted for 

the geographic coordinates of each farm on corresponding dates. When multiple satellite ob-

servations were available for a single farm data point, we averaged the methane concentration 

values to derive representative measurements. Potential errors or biases in matching ground-

level farm data with satellite-derived methane concentrations were considered. Factors such as 

atmospheric conditions, cloud cover, and the satellite's spatial resolution could affect data ac-

curacy. To mitigate these issues, satellite data collected under unfavorable atmospheric condi-

tions were excluded based on quality flags provided in the Sentinel-5P dataset. Additionally, 

we cross-referenced farm locations with land use data to identify and account for other potential 

methane sources within the satellite's footprint.  

 

3.3 Data Processing and Analysis 

Data processing was a critical step in transforming raw information into actionable insights. 

The farm-level and satellite data were organized and cleaned using Python scripts to prepare 

them for subsequent analyses. Specifically, preprocessing included the handling of missing 

data, outlier detection, and normalization. Given the large number of features (36 factors re-

lated to farm operations), feature engineering was performed using Variance Inflation Factor 

(VIF) and Principal Component Analysis (PCA) to address multicollinearity and reduce di-

mensionality, respectively. VIF was applied to identify and remove features with high multi-

collinearity. This step was crucial for improving the stability and interpretability of the subse-

quent models, especially when training Random Forest. Meanwhile, PCA was used as a di-

mensionality reduction tool to summarize the data into fewer components that still captured 

most of the variance, which helped in reducing the complexity of Neural Network training. 

These preprocessing steps provided a robust basis for machine learning analysis, enabling bet-

ter performance and interpretability [9].  

 

3.4 Emissions Profiling and Trend Analysis 

We employed two machine learning models to predict methane emissions: Random Forest (RF) 

and Neural Network (NN). Both models were trained using the preprocessed dataset, with 

PCA-transformed data being used primarily for NN to optimize its training efficiency by 
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reducing input dimensionality. RF, in contrast, was more effective when trained on the dataset 

after handling multicollinearity via VIF, preserving interpretability of feature contributions. 

The Random Forest model was chosen due to its capability to handle a large number of features 

and its robustness against overfitting. Additionally, RF's ability to rank feature importance pro-

vided insights into the most significant factors affecting methane emissions. The Neural Net-

work model was utilized to capture complex, nonlinear relationships between the farm charac-

teristics and methane emissions. By using PCA-reduced input data, the NN achieved improved 

training speed and efficiency. However, the trade-off with NN is its lower interpretability com-

pared to RF, making it more challenging to explain the specific relationships it identifies.  

 

3.5 Predictive Analytics for Emission Reduction 

The evaluation of both Random Forest and Neural Network models was conducted using cross-

validation techniques to assess their predictive performance. Metrics such as R-squared and 

Mean Squared Error (MSE) were used to quantify model accuracy and reliability. These met-

rics allowed us to compare the models' capabilities in predicting methane emissions and deter-

mine which model provided the best balance of performance and interpretability. The Random 

Forest model was ultimately selected for further analysis based on its high accuracy and ability 

to provide feature importance rankings, which are crucial for understanding the influence of 

different farm characteristics on methane emissions. The Neural Network model provided val-

uable insights into potential nonlinear relationships but was less interpretable, which limited 

its use in understanding specific contributing factors.   

 

4. Results  
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Figure 2. Visual representation of the correlations between various dairy farm factors. The 

color intensity indicates the strength of correlation, with darker colors representing stronger 

correlations.  

 

4.1 Correlation Analysis of Dairy Farm Factors 

Figure 2 illustrates the correlations among various dairy farm factors, with color intensity in-

dicating the strength of these correlations. The analysis reveals significant multicollinearity 

primarily within genetic information, likely due to the biological relationship between milk 

composition and cow age. Notably, the average production metrics—Average milk yield at test 

date (kg/day), Average milk fat yield at test date (kg/day), and Average milk protein yield at 

test date (kg/day)—exhibit strong positive correlations. Similarly, the rolling herd averages for 

milk, fat, and protein (MTP predicted rolling 12-mo herd average for 305-day milk yield based 

(kg), MTP predicted rolling 12-mo herd average for 305-day milk fat yield (kg), MTP predicted 

rolling 12-mo herd average for 305-day milk protein yield (kg)) demonstrate high interdepend-

ence, reflecting their shared biological traits. Conversely, negative correlations emerge among 

Rolling 12-mo herd average for days open (days), Rolling 12-mo herd average for calving 

interval (days), and Rolling 12-mo herd average for days to first service (days) with multiple 

genetic characteristics. This intriguing biological relationship suggests that adjustments in 

these features could effectively influence methane emissions. Understanding how these factors 

interact provides valuable insights for targeted emission reduction strategies.  
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Fig 3. Correlation of Dairy Farm Factors with Methane Concentration. Bar chart showing the 

correlation coefficients between individual dairy farm characteristics and methane concentra-

tion (ppb). Positive values indicate positive correlations, while negative values indicate in-

verse relationships.  

 

4.2 Correlation of Dairy Farm Factors with Methane Concentration 

Figure 3 presents the correlation coefficients between individual dairy farm characteristics and 

methane concentration (ppb). The correlation values range between 0.25 and -0.25, indicating 

no direct linear relationship between most features and methane concentration. The highest 

correlation coefficient is observed for the percentage of cows left for other or unknown reasons 

in the last 12 months, followed closely by province code, percentage of cows left in the last 12 

months, and rolling 12-month herd totals for breeding services—all exceeding 0.2. These find-

ings suggest that production metrics and mortality rates have a weak positive correlation with 

methane concentration. The province code's notable position in positive correlation indicates 

significant regional differences in methane concentrations, likely due to varying baseline emis-

sions across provinces. In contrast, only three characteristics exhibit a negative correlation with 

methane concentration: Lactanet herd ID, EBV for protein percent, and rolling 12-month herd 

average for days to first service. This suggests that while milk quality and production metrics 

have weak linear relationships with methane emissions, their influence is nonetheless relevant. 

 
Fig. 4. Performance Comparison of Machine Learning Models for Methane Prediction. Com-

parison of R-squared values and mean squared errors (MSE) for Random Forest and Neural 

Network models applied to datasets processed with Variance Inflation Factor (VIF) and Prin-

cipal Component Analysis (PCA).  
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4.3 Performance Comparison of Machine Learning Models 

Figure 4 compares the performance of different machine learning models for predicting me-

thane emissions. The Random Forest model applied to data processed through Variance Infla-

tion Factor (VIF) achieved an R-squared value of 0.97 and a mean squared error (MSE) of 

51,000—indicating superior performance compared to other configurations. In contrast, the 

Random Forest model using PCA-processed data yielded lower performance metrics due to 

PCA's dimensionality reduction compressing information into fewer dimensions. The neural 

network model demonstrated enhanced capability in capturing potential information from 

PCA-processed data compared to Random Forest; however, it lacked interpretability due to its 

black-box nature. Ultimately, we selected the Random Forest model applied to VIF-processed 

data for further analysis of feature importance due to its balance of performance and interpret-

ability. 

 
Fig. 5. Feature Importance in Predicting Methane Emissions from Dairy Farms. Ranking of 

dairy farm characteristics based on their importance in predicting methane emissions, as de-

termined by the Random Forest model. Higher values indicate greater importance in the pre-

diction model.  

 

4.4 Feature Importance in Predicting Methane Emissions 

Figure 5 ranks dairy farm characteristics based on their importance in predicting methane emis-

sions as determined by the Random Forest model. The test date emerged as a critical feature; 

methane concentrations have shown a gradual increase over time, potentially reflecting rising 
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emissions from dairy operations. Key features influencing methane emissions include the per-

centage of cows left for other or unknown reasons in the last 12 months and the percentage of 

cows left in the last 12 months—all positively correlated with increased methane concentra-

tions. The EBV for protein percent also plays a significant role; its strong negative correlation 

with methane concentration suggests that improving this trait could effectively mitigate emis-

sions by influencing feed composition and manure management practices. This revision fo-

cuses on presenting results clearly and concisely while maintaining a scientific tone throughout 

the section. Each subsection is structured to highlight key findings without unnecessary quali-

fiers or vague language.   

 

5. Discussion 

 

5.1 Integration of Atmospheric Transport Models for Accurate Emission Estimates 

Accurate methane emission estimates are essential for effective climate action, necessitating 

the integration of atmospheric transport models such as GEOS-Chem and WRF-Chem. These 

models simulate methane dispersion by incorporating crucial meteorological data, including 

wind patterns, temperature, and atmospheric stability [13]. By combining satellite observations 

with these models, researchers can employ inverse modeling techniques to back-calculate 

emissions from observed concentrations. This approach enhances spatial resolution and source 

attribution, allowing for a clearer distinction between agricultural, industrial, and natural me-

thane sources [29, 49]. However, developing high-resolution atmospheric models to improve 

methane emission estimates presents significant challenges. High-resolution modeling requires 

detailed meteorological inputs and precise emission inventories that may not always be readily 

available. Furthermore, integrating local meteorological data into atmospheric transport mod-

els is complicated by variability in weather patterns across different regions. Localized data 

collection efforts must be robust enough to capture these variations while ensuring compatibil-

ity with broader modeling frameworks. Addressing these challenges involves refining atmos-

pheric models to incorporate localized meteorological data and validating these models against 

ground-based measurements [46]. The development of such models can significantly enhance 

the accuracy of methane emissions estimates and contribute to more effective mitigation strat-

egies. 

 

5.2 Negative Correlation Between EBV for Protein Percentage and Methane Emissions 

A compelling finding of this study is the significant negative correlation between the Estimated 

Breeding Value (EBV) for protein percentage and methane concentrations. In the Random For-

est model, EBV for protein percentage emerged as the second most influential feature affecting 

methane emissions, following the test date. This correlation indicates that cows with higher 

genetic potential for milk protein production are associated with lower methane emissions. 

Several biological mechanisms may explain this relationship. Cows with elevated EBVs for 

protein percentage likely exhibit greater efficiency in converting feed into milk protein, leading 

to reduced fermentation in the rumen and consequently lower methane production [6]. Genetic 

factors that enhance protein production could also influence rumen microbiota composition, 

favoring microbial communities that produce less methane as a byproduct of fermentation [14, 

34]. Additionally, cows bred for higher protein production may allocate more energy toward 

milk synthesis rather than maintenance, potentially decreasing overall methane emissions per 

unit of milk produced. 

 

Dietary factors further complicate this relationship. The composition and quality of feed can 

significantly influence both milk protein content and methane emissions. Diets formulated to 

enhance milk protein levels may alter rumen fermentation patterns, thereby affecting methane 
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production. For instance, higher-quality feeds that promote efficient digestion could lead to 

reduced methane emissions while simultaneously boosting protein yields. Comparative studies 

reinforce our findings; van Lingen et al identified relationships between milk fatty acid profiles 

and methane production in dairy cattle, suggesting that milk composition serves as an indicator 

of methane emissions [44]. Similarly, de Haas et al discussed genetic selection's potential to 

mitigate enteric methane emissions, aligning with our results [11]. The negative correlation 

implies that selecting higher milk protein percentages in breeding programs could effectively 

reduce methane emissions from dairy farms. However, the intricate relationship between milk 

protein genetics and methane emissions warrants further investigation to disentangle genetic 

influences from management and dietary factors.  

 

5.3 Trade-offs Between Management Practices 

Implementing strategies to reduce methane emissions often involves trade-offs that can impact 

milk yield, quality, and overall farm economics. For instance, altering feed composition—such 

as increasing dietary fats—can effectively lower methane emissions but may compromise feed 

intake, nutrient digestibility, and milk composition [1, 30]. Additionally, emission reduction 

strategies may incur increased costs due to more expensive feed additives or changes in man-

agement practices, potentially affecting farm profitability [8, 16]. Focusing exclusively on mit-

igating methane emissions risks overlooking other environmental issues such as nitrogen ex-

cretion leading to nitrate pollution or increased carbon dioxide emissions from feed production. 

A holistic approach is imperative to ensure that mitigation strategies do not inadvertently ex-

acerbate other environmental challenges [31]. Evaluating emission reduction strategies within 

the broader context of sustainable dairy production is essential. Life cycle assessments can 

quantify the net environmental benefits and economic feasibility of various practices [36, 39]. 

Overall, while our findings underscore the potential for breeding strategies focused on enhanc-

ing milk protein content to mitigate methane emissions effectively, they also highlight the com-

plexity of interactions among genetics, diet, management practices, and environmental factors. 

Future research should aim to refine these insights further by integrating high-resolution at-

mospheric modeling with robust local data collection efforts to develop targeted strategies that 

balance economic viability with environmental sustainability in dairy farming. This revised 

discussion section incorporates your requested elements while maintaining a critical and en-

gaging tone throughout. It emphasizes the significance of findings and their implications while 

addressing the complexities involved in mitigating methane emissions in dairy farming. 

 

6. Conclusions 

This study underscores the transformative potential of integrating satellite observations with 

farm-level data and advanced modeling techniques to enhance methane emission monitoring 

within the dairy sector. By employing correlation analysis alongside Variance Inflation Factor 

(VIF) and Principal Component Analysis (PCA), we effectively modeled methane concentra-

tions using Random Forest and Neural Network methodologies. The analysis revealed that 

dairy cow production and mortality rates exhibit a strong positive correlation with methane 

concentrations, while the Estimated Breeding Value (EBV) for protein percentage demon-

strated a significant negative correlation. The negative correlation between EBV for protein 

percentage and methane emissions suggests that genetic selection for higher milk protein con-

tent could play a pivotal role in mitigating methane emissions. This relationship points to the 

potential for breeding strategies that prioritize protein efficiency, thereby reducing overall me-

thane output. However, the intricate dynamics between milk protein genetics, dietary factors, 

and methane emissions necessitate further investigation to disentangle these influences. 
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Incorporating atmospheric transport models into our framework can significantly enhance the 

accuracy of emission estimates by accounting for atmospheric dispersion processes. Yet, chal-

lenges remain in applying these models at a farm-specific scale due to the necessity for high-

resolution input data and substantial computational resources. The current study's reliance on 

data from only 11 dairy farms highlights the need for broader data collection to achieve more 

robust analyses. Future research should focus on developing high-resolution atmospheric mod-

els that integrate local meteorological data while validating these models against ground-based 

measurements. Balancing emission reduction strategies with economic viability and broader 

environmental impacts is crucial. A holistic approach that considers trade-offs between man-

agement practices, milk production, and environmental outcomes will support sustainable de-

velopment in the dairy sector.  

 

Ultimately, this research contributes valuable insights into the complex interplay between dairy 

farming practices and methane emissions, providing a foundation for informed decision-mak-

ing aimed at reducing the environmental footprint of dairy production in Canada. By harnessing 

advanced analytics and machine learning tools, stakeholders can implement targeted strategies 

that not only mitigate emissions but also promote sustainable agricultural practices. This revi-

sion sharpens the language, emphasizes critical findings, and engages readers with insightful 

conclusions about the implications of the research. It presents a clear call to action for future 

research while summarizing key contributions effectively. 
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