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Synthesis Method for Obtaining Characteristic
Modes of Multi-Structure Systems

Chenbo Shi, Xin Gu, Shichen Liang, Jin Pan and Le Zuo

Abstract—This paper introduces an efficient method of char-
acteristic mode decomposition for multi-structure systems. Our
approach leverages the translation and rotation matrices associ-
ated with vector spherical wavefunctions, enabling the synthesis
of a total system’s characteristic modes through independent
simulation of each constituent structure. We simplify the compu-
tationally demanding translation problem by dividing it into three
manageable sub-tasks: rotation, z-axis translation, and inverse
rotation, which collectively enhance computational efficiency.
Furthermore, this method facilitates the exploration of structural
orientation effects without incurring additional computational
overhead. To demonstrate the effectiveness of our approach,
we present a series of compelling numerical examples that not
only validate the accuracy of the method but also highlight its
significant advantages.

Index Terms—The theory of characteristic modes, synthesis of
of characteristic modes, transition matrix, scattering matrix, fast
evaluation of characteristic modes.

I. INTRODUCTION

THE theory of characteristic modes is pivotal in an-
tenna analysis and design [1]–[3]. Its derived form—

substructure characteristic modes theory—has gained promi-
nence for revealing the intrinsic electromagnetic properties of
structures within complex environments [4]–[6]. This approach
is increasingly employed in designing antennas for handheld
devices and platform-mounted systems [7]. Recent extensions
have unified various characteristic mode formulations, which
were traditionally based on the method of moments (MoM),
into a more robust scattering-based framework, significantly
enhancing numerical efficiency [8], [9]. Despite these advance-
ments, the computational burdens for systems with multiple
structures, such as antenna arrays, remain substantial.

In the unified framework [8], [9], characteristic modes are
obtained by eigenvalue decomposition of the transition matrix
(T-matrix) or scattering matrix. This matrix serves as an
operator that connects the incident and structural scattering
responses, solely determined by the properties of the structures
within a designated enclosing sphere. This characteristic indi-
cates the possibility to construct the T-matrix for combined
structures from independent structural data, thus facilitating
the rapid computation of characteristic modes for complex
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systems. This paper primarily focuses on optimizing and
exploring this potential.

Although extensive research in fields such as optical scatter-
ing has effectively elucidated and summarized the technique
of deriving the total system’s T-matrix from the individual
structures’ T-matrices [10]–[13], particularly through employ-
ing the two translation properties of spherical wavefunctions
[14], [15], we revisit this established method from a unique
perspective. We have developed a fully matrixized representa-
tion that is not only concise and efficient but also facilitates
easier understanding compared to conventional series repre-
sentations. This is particularly advantageous in scenarios that
require specifying the radiation background for characteristic
mode decomposition, where our approach minimizes repetitive
computations. Following the method outlined in [16], we
decompose the general translation problem into three sub-
steps: rotation, z-axis translation, and inverse rotation, eschew-
ing the direct solutions typically employed in conventional
studies. This significantly curtails computation time, as z-axis
translations are inherently simpler. Moreover, by adjusting the
translation direction using the rotation matrix, we can correlate
problems that have identical translation distances but differ-
ent directions—common in uniformly arranged structures—
thereby enhancing the reuse of the translation matrix and
further boosting computational efficiency.

The integration of the rotation matrix within our method
introduces additional degrees of freedom; notably, it enables
alterations to the structure’s orientation during post-processing,
obviating the need to recompute the T-matrix. This enhance-
ment is crucial for investigating the effects of the structure’s
posture or polarization. To substantiate our approach, we
present a series of illustrative numerical examples that demon-
strate the substantial advantages of our synthesis technique in
deriving characteristic modes. These examples highlight the
potential applications of our method in complex structures and
antenna arrays.

II. UNIFIED THEORY OF CHARACTERISTIC MODES

As a crucial foundation for this paper, this section provides
a concise review of the latest developments in characteristic
mode theory, equipping the reader with the theoretical frame-
work utilized herein.

The unified theory of characteristic modes articulates its
foundational equation through the scattering matrices of struc-
tures [9]:

SS†
bfn = snfn or

1

2

(
SS†

b − 1
)
fn = tnfn. (1)
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Given the relationships S = 1 + 2T and Sb = 1 + 2Tb, (1)
can be reformulated as(

T+T†
b + 2TT†

b

)
fn = tnfn. (2)

Here, fn denotes the expansion coefficients of the 4-type
(outgoing) spherical wavefunctions for the n-th characteristic
radiation field, Tb represents the background’s T-matrix, and
T corresponds to the total system’s T-matrix, encompassing
both the key and background structures.

The presence of a background structure Ωb allows (2) to
solve for the characteristic mode of the key structure Ωk within
an environment inclusive of Ωb. This scenario is often referred
to as the “substructure characteristic mode”. The most basic
form occurs when Tb = 0, in which case (2) solves for the
characteristic mode of the structure radiating in free space.

The algebraic connection between (2) and the MoM is de-
rived from pre-assuming wavefunctions based on real spherical
harmonics {cf. [17] for definitions of these wavefunctions}:

T = −PZ−1Pt, Tb = −PbZ
−1
b Pt

b (3)

where P and Pb are matrices that relate the equivalent
electromagnetic currents to their respective radiation fields.
While this paper discards the traditional MoM equations,
(3) remains instrumental for calculating the T-matrix. The
differences of different characteristic mode formulations are
explored in greater detail in [8], [9]—with solutions based on
(2) generally showing superior performance.

III. SYNTHESIS OF THE T-MATRIX FOR
MULTI-STRUCTURE SYSTEMS

In applications involving multiple structures, calculating the
T-matrix of the total system using (3) can be burdensome.
However, it is possible to synthesize the system T-matrix using
individual structure T-matrices, somewhat akin to domain de-
composition methods. The T-matrix maps the 1-type spherical
wavefunction coefficients a of incident waves to the 4-type
coefficients f of radiating (scattering) waves, i.e., f = Ta.
This allows for an understanding of the system’s T-matrix
in relation to its components through a scattering-problem
perspective.

Assuming the system comprises M structures, labeled as
p = 1, 2, · · · ,M (see Fig. 1), the system generates a scat-
tering wave f under an external incident wave a. From the
perspective of the p-th structure (using its local coordinate
system), the contribution to the scattering wave reads

fp = Tpap. (4)

The incident wave ap for the p-th structure comprises a
direct component from a (denoted by apd), and scattering
contributions fq from other structures (q ̸= p). By translating
fq into the p-th local coordinate system, we express it as:

ap = apd +

M∑
q ̸=p

Yt
pqf

q (5)

Fig. 1. Schematic of electromagnetic scattering for a multi-structure system.

where Ypq represents the translation matrix. Substituting this
into (4), we obtain

fp = Tpapd +Tp
M∑
q ̸=p

Yt
pqf

q. (6)

If we further transform (6) into matrix form, we have

f̃ = T̃ãd + T̃Ỹ f̃ . (7)

This leads to
f̃ =

(
1− T̃Ỹ

)−1

T̃ãd (8)

where

f̃ =

 f1

...
fM

 , ãd

 a1d
...

aMd

 , Ỹ =


0 Yt

12 · · · Yt
1M

Yt
21 0 · · · Yt

2M
... · · ·

. . .
...

Yt
M1 Yt

M2 · · · 0


and T̃ = diag

(
T1,T2, · · · ,TM

)
.

For the moment we have successfully represented the radi-
ated fields generated by each structure within their respective
local coordinate systems. To determine the T-matrix for the
total system, we must correlate these localized quantities into
the global coordinate system. This necessitates the introduction
of another translation matrix, Rp, leading to apd = Rt

pa and

f =

M∑
p

Rpf
p.

In matrix form, this can be simplified to

f = R̃f̃ , ãd = R̃t
a (9)

where R̃ = [R1,R2, · · · ,RM ].
By substituting (9) into (8) and comparing with the expres-

sion f = Ta, we can derive the system T-matrix:

T = R̃
(
1− T̃Ỹ

)−1

T̃R̃t
. (10)

Note that details regarding the translation matrices Y and R
will be discussed in the upcoming section.
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Fig. 2. Euler rotation sequence. The coordinate system (x′, y′, z′) is derived
by initially rotating the (x, y, z) system about the z-axis by angle α,
subsequently about the y1-axis by angle β, and finally about the z2-axis by
angle γ.

Through carefully examining each matrix in (10), we can
see that the T-matrix of the total system is synthesized from
the T-matrices of its constituent structures independently, along
with translation matrices that relate solely to positional topol-
ogy. Notably, this approach does not introduce any additional
information about mutual couplings between different struc-
tures; these couplings are inherently captured by the spherical
wavefunctions, which represents a significant advantage of this
theory. In contrast to conventional methods for obtaining the
T-matrix of multiple structures, our formulation (10) is fully
matrixized, easier to implement, and computationally efficient
(see Sec. V for data support of this conclusion).

Another essential task is to determine the T-matrix of the
background, Tb. This is synthesized using the T-matrices of
the remaining structures after excluding the key structures. The
process is similar to the one described above, with the primary
difference being the removal of matrix blocks associated with
the key structures. If we prioritize computing the background
Tb, the total system T-matrix can then be obtained via the
Schur complement method (cf. appendix A), which eliminates
much of the redundant computation.

IV. TRANSLATION AND ROTATION MATRIX FOR
SPHERICAL WAVEFUNCTIONS

In this section, we explore the methods for computing
the translation matrices Ypq and Rp. Both matrices are
functions related to the electrical translation distance, i.e.,
Ypq = Y(kdpq), Rp = R(krp), with R = Re {Y}.
Here, Y matrix translates 4-type spherical wavefunctions to
1-type, whereas R handles translations among the same type
of spherical wavefunctions. This underpins the use of Ypq in
(5)—to translate the scattering wave (4-type) into the incident
wave (1-type).

Representations for Y(kd) can be found in existing lit-
erature. A notable simplification occurs when d is parallel
to the z-axis, where Y(kd) becomes diagonal in the m-
index (azimuthal angle index). The appendix in [9] provides
an efficient formula that significantly reduces computation
time for these cases. However, when d is not parallel to
the z-axis, the computations become complex and resource-
intensive. To address this, we introduce the rotation matrix
of the wavefunctions, which reorients the translation problem
from a general direction to alignment along the z-axis, thereby
simplifying the computational process.

Any rotation of the coordinate system can be described
using Euler angles (α, β, γ), where α is an azimuthal rotation
about the z-axis, succeeded by a polar rotation β about the

newly oriented y-axis, and another azimuthal rotation γ about
the newly oriented z-axis, as illustrated in Fig. 2. We can
link the spherical wave expansion vectors a/f in the (x, y, z)
coordinate system to a′/f ′ in the (x′, y′, z′) coordinate system
using a rotation matrix D = D(α, β, γ) (cf. appendix B for
its definition) as:

f ′ = Df ,a′ = Da or f = Dtf ′,a = Dta′. (11)

Note that D−1 = Dt.
By aligning the z-axis with d, we transform the general

translation problem into a z-axis translation problem. The
rotation angles α and β correspond to the azimuthal and polar
angles of the spherical coordinates of d, respectively, and
γ = 0. After performing the z-axis translation, we revert to
the original coordinate system through an inverse rotation to
resolve the original translation problem. Therefore, we can
deduce that

Y (kd) = DtYz (kd)D (12)

where Yz (kd) is defined as equation (63) in [9], referring to
translations along the z-axis by distance d.

This approach substantially reduces computational time
(e.g., computation time is reduced from 30s to 1.2s for a 646-
dimensional translation problem, and from 124s to 2.6s for a
1056-dimensional translation problem) because calculating the
rotation matrix takes negligible time. Moreover, the rotation
matrix is frequency-independent and can be pre-stored, which
allows only the translation matrix to be recalculated for
different frequencies. For uniformly arranged arrays, where
the translation distances remain constant, Yz (kd) needs to be
calculated only once. The translation directions are then ad-
justed by altering the rotation matrix in (12), further reducing
computational burdens.

Additionally, the rotation matrix offers another advantage:
obtaining the T-matrix of the structure post-rotation. This
concept is analogous to the previous discussion, and the result
can be succinctly expressed as

T′ = DtTD (13)

where T′ is the transition matrix for the rotated structure.
(13) provides a new degree of freedom to examine the effects
of orientation changes of units within the system, without
requiring additional electromagnetic simulations.

V. NUMERICAL RESULTS: CHARACTERISTIC MODES FOR
MULTI-STRUCTURE SYSTEMS

A. Dipole near a sphere

To demonstrate the advantages of our synthetic approach in
calculating characteristic modes, we analyze the behavior of
modes in a dipole-sphere model, as depicted in Fig. 3. Given
that the sphere’s T-matrix has analytical expressions {cf. §8 of
[17]}, we only perform a full-wave simulation for the dipole.

Figure 4 displays the distribution of the eigentrace |tn| (also
known as the modal significance coefficient) when the sphere’s
diameter 2A = L. These synthetic results align perfectly with
those from full-wave simulations. The eigentraces merge the
modal characteristics of both the dipole and the sphere, as in
this example, they are specified to radiate in free space.
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Fig. 3. Dipole-sphere model composed of perfect electric conductor (PEC).

1 2 3 4 5 6
Frequency (GHz)
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Fig. 4. Eigentraces for the dipole-sphere structure radiating in free space.
Data labeled “Syn” were derived using the synthesis method discussed in
Section III; “Full” represents results from full-wave simulation.

However, our primary interest lies in scenarios where the
dipole radiates near the sphere, as depicted by the dashed line
in Fig. 5. In this setup, the eigentraces simplify, predominantly
demonstrating the dipole’s radiation against the sphere and
filtering out the direct response of the sphere. With the dipole
aligned vertical to the sphere, the eigentraces alter slightly
compared to when it is parallel to the sphere (referred to as
the “horizontal” configuration), as shown by the solid line in
Fig. 5. Our synthesized results consistently match those of
the full-wave simulations, regardless of the configuration. It’s
notable that recalculating the T-matrix for the vertical dipole
is unnecessary; it can be derived from the horizontal cases
using (13). This allows for easy exploration of other dipole
polarizations, though it is not pursued here.

Figure 6 demonstrates the main-mode radiation patterns for
the two aforementioned configurations, closely matching the
full-wave simulation results. This not only further validates
our method but also uncovers new potential applications. Since
the T-matrix of the sphere is analytical, increasing its diameter
does not significantly add to the computational burden. This
capability enables us to consider ground effects for structures
near the ground (viewing the Earth as a sphere, for instance).
For example, in the configuration shown in Fig. 4, as the
sphere’s diameter increases, the directivity of the horizontal
dipole enhances while the backward radiation diminishes,
aligning with engineering intuition. Conversely, for a vertical
dipole, the maximum radiation initially tilts towards the sphere
before gradually shifting away, as illustrated in Fig. 7.

1 2 3 4 5 6
Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

jt n
j

Syn Full

Vertical
Horizontal

Fig. 5. Eigentraces for the dipole radiating against the sphere structure.
“Vertical” indicates the dipole is perpendicular to the sphere, and “horizontal”
signifies it is parallel to the sphere.

(a) (b)

(c) (d)
Fig. 6. Radiation pattern of the main mode at 1.7 GHz. Panels (a) and (b)
depict the horizontal case, while (c) and (d) show the vertical case. The left
panel in each pair is obtained through full-wave simulation, and the right panel
through synthesis method. In this figure, the sphere diameter is 2A = L.

B. 3-cell uniform array

Another illustrative example, depicted in Fig. 8, considers
a uniform 3-cell array consisting of open circuit metal rings
printed on a substrate. Following the method proposed in
section III, we obtain the eigentraces of the characteristic
modes, as shown in Fig. 9. Here, three distinct eigentraces
cluster near each |tn| = 1, reflecting the mode responses of the
entire array in free space, with each cell directly contributing
to the collective behavior.

Figure 10 showcases the radiation patterns of the first two
modes at 4.1 GHz, illustrating that despite similar resonant
(|tn| = 1) frequencies, their radiation characteristics differ
markedly. The results from our synthetic approach consis-
tently align with those from full-wave simulations in terms
of both eigentraces and radiation patterns. Nevertheless, the
computational demands of these methods vary significantly.
For instance, the full-wave calculation employs equation (2)
to determine the total system T-matrix, utilizing 3420 RWG
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(a) (b)

(c) (d)

(e) (f)
Fig. 7. Radiation patterns. Panels (a), (c), and (e) represent the horizontal
case, while (b), (d), and (f) represent the vertical case. The top panel features
a sphere diameter of 2A = 2L, the middle panel 2A = 4L, and the bottom
panel 2A = 10L. Note that structural changes in the sphere are not depicted
in this figure; the structure illustrated is schematic only.

Fig. 8. A 3-cell uniform array model with structure dimensions provided in
millimeters.

basis functions per cell to compute the impedance matrix and
646 spherical wavefunctions to expand the electromagnetic
field, requiring a total of 83s. In contrast, the synthetic method
completes in only 16s, with 11s dedicated to calculating the
T-matrix of one cell. When the number of cells increases to
five, the full-wave calculation escalates to over 300s, whereas
the synthetic method requires merely 24s.

In a subsequent analysis, we modify the setup in Fig. 8 by
designating the cells on both sides as radiation background.
The resultant eigentraces, displayed as a solid line in Fig.
11, show only two modes resonating within the specified
frequency band. Compared to the eigentrace of a single cell in
free space (dashed line), the main-mode bandwidth of the array

3 4 5 6 7
Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

jt n
j

Syn
Full

Fig. 9. Eigentraces for the 3-cell array radiating in free space.

(a) (b)

(c) (d)
Fig. 10. Radiation patterns at 4.1 GHz. Panels (a) and (b) depict the first
mode, while (c) and (d) depict the second mode. The left panels were obtained
through full-wave simulation, and the right panels were generated using the
synthesis method.

3 4 5 6 7
Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

jt n
j

Couple
Single

0.707

Fig. 11. Eigentraces. Lines labeled ”Couple” account for array environment
effects, while ”Single” considers only the unit response. Generally, the 3
dB bandwidth of |tn| reveals the practical working bandwidth, marked by
a horizontal line at 0.707.

cell decreases by approximately 13% when coupling effects
are considered. Notably, the primary radiation lobes of these
two modes have split and no longer radiate directly broadside,
as illustrated in Fig. 12. This observation underscores that
the array’s performance cannot be accurately analyzed or
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(a) (b)

(c) (d)
Fig. 12. (a), (b) are the radiation patterns of mode 1 at 4.2 GHz and (c), (d)
are the patterns of mode 2 at 5.5 GHz. Note that (a) and (c) are the cases
when the cell is alone, while (b) and (d) are when the cell is in the array
environment but with the surrounding cells as background.

synthesized using the characteristic modes of an isolated cell
in free space.

VI. CONCLUSION AND DISCUSSION

This paper introduces a method to accelerate the decom-
position of characteristic modes for structural combinations
by utilizing T-matrices of individual structures. Our numerical
results validate the method’s accuracy and demonstrate its
substantial computational advantages through the example of a
3-cell uniform array. Additionally, the analytical nature of the
T-matrix for spheres allows for straightforward exploration of
the variations in characteristic modes resulting from changes in
the position and orientation of structures near spherical bodies,
such as Earth.

While the T-matrix effectively relates the incident and scat-
tering fields in the external region of any sphere circumscribing
the structure, it does not account for the internal regions.
Therefore, this study posits that different structures can be
encapsulated within distinct, non-intersecting spheres. This re-
alization underscores that further research is needed to develop
methods for accelerating characteristic mode decomposition in
tightly coupled arrays or structures in contact with one another.

APPENDIX A
SCHUR COMPLEMENT METHOD

The Schur complement method is a powerful technique for
solving matrix equations like

AX = B (14)

by utilizing the sub-blocks of the matrices involved.
Consider bifurcating (14) as[

A11 A12

A21 A22

] [
X1

X2

]
=

[
B1

B2

]
(15)

which gives the solution for X2 = A−1
22 {B2 −A21X1}. This

leads to a reduced equation for X1:

ÃX1 = B̃ (16)

where Ã = A11 − A12A
−1
22 A21, B̃ = B1 − A12A

−1
22 B2.

Collapsing these results, we have

X = A−1B =

[
0

A−1
22 B2

]
+

[
1

−A−1
22 A21

]
Ã−1B̃. (17)

In the context of this paper, our objective is to determine

the term
(
1− T̃Ỹ

)−1

R̃t
in (10), where

(
1− T̃Ỹ

)
serves

as A in (17), and A22 contains matrices solely associated
with background structures. In the process of calculating the
background structures’ T-matrix, the term A−1

22 B2 has been
previously determined, necessitating only additional effort to
find Ã−1. Note that the scale of Ã−1 is relatively small,
limited by the remaining structures after excluding the back-
ground structures.

APPENDIX B
ROTATION MATRIX

There are many ways [18], [19] to express the element of
the rotation matrix D (α, β, γ), the most concise is in the form
of matrix products:

Dnn′ = δττ ′δll′

√
εmεm′

4
(−1)

m+m′

×
[
cos (mγ) sin (mγ)
− sin (mγ) cos (mγ)

]
×
[
Al

mm′ (β)
Bl

mm′ (β)

]
×
[
cos (m′α) sin (m′α)
− sin (m′α) cos (m′α)

]
(18)

where the subscript n = τσlm is a composite index [sca].
Note that Dnn′ is a scalar; thus, the appropriate element of
the matrix product in (18) should be selected based on σσ′

index (i.e., e/o, e′/o′). Here, δ represents kronecker delta, εm =
2− δm0,

Al
mm′ (β) = dlmm′ (β) + (−1)

m′
dlm−m′ (β)

Bl
mm′ (β) = dlmm′ (β)− (−1)

m′
dlm−m′ (β)

(19)

and the term dlmm′ are defined as

dlmm′ (β) =

√
(l +m)! (l −m)!

(l +m′)! (l −m′)!

× cosm+m′
(
β

2

)
sinm−m′

(
β

2

)
× P

(m−m′,m+m′)
l−m (cosβ)

(20)

where P
(a,b)
n (x) denotes the Jacobi polynomials, typically

computed using a three-term recurrence relation. Some useful
properties include:

dlmm′(0) = δmm′

dlmm′(π) = (−1)l+m′
δm−m′

D−1 (α, β, γ) = D (−γ,−β,−α) = Dt (α, β, γ)

D (α, β, γ) = D (γ)D (β)D (α) .

(21)
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