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ABSTRACT. In this short note the theory for multi-variate asset allocation with
elliptically symmetric distributions of returns, as developed in the authors prior
work, is specialized to the case of returns drawn from a multi-variate Laplace
distribution. This analysis delivers a result closely, but not perfectly, consistent
with the conjecture presented in the author’s article Thinking Differently About
Asset Allocation. The principal differences are due to the introduction of a term
in the dimensionality of the problem, which was omitted from the conjectured
solution, and a re-scaling of the variance due to varying parameterizations of the
univariate Laplace distribution.

1. ASSET ALLOCATION WITH ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

1.1. A Result for Negative Exponential Utility Maximizers. In the authors prior
works[4, 5, 7], a solution for multivariate asset allocation with elliptically symmet-
rical distributions of returns is presented. In terms of a “holding function,” which
is a policy function that maps the conditional moments of a distribution of future
returns known to the trader to the optimal position they should hold in the assets
described by that returns distribution, it is shown to be

(1) ĥt = ĥ(αt,Σt) =
Σ−1
t αt

λΨn
2
(x̂t)

.

This applies for a distribution of returns which may be written f(g2) where

(2) g2 = (rt −αt)
TΣ−1

t (rt −αt)

is the Mahanalobis distance[9] between the return, rt, and it’s central tendency,
αt, scaled by a matrix, Σt, that is proportional to the covariance matrix of returns,
Vt, in a distribution dependent manner. This expression is derived for a maximizer
of negative exponential utility and, in the references, the “scaling function” Ψν(x)
is defined by

(3) Ψν(x) =
1

x

∫∞
0 f(g2)Iν(gx) g

ν+1 dg∫∞
0 f(g2)Iν−1(gx) gν dg

.

Here Iν(·) is the modified Bessel function of the first kind[1]. For n assets, the
critical root, x̂t, is defined to be the solution of

(4) x̂t = x : xΨn
2
(x) =

√
αT

t Σ
−1
t αt.
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Ψν(x) is a monotonic increasing function of its non-negative argument, x, that
acts to “scale down” positions in the presence of “fat tails,” i.e. in situations where
the distribution of returns, f , has significant excess kurtosis. For the Normal dis-
tribution it is equal to unity for all values of it’s argument.

1.2. The Generalized Error Distribution. In the majority of the author’s prior
work, the distribution of returns has been taken to be the Generalized Error distri-
bution, parameterized as

(5) f(rt|αt,Σt, κ) =
1√

πn|Σt|
Γ(1 + n

2 )

Γ(1 + nκ)

{
Γ(3κ)

Γ(κ)

}n
2

e
−
{

Γ(3κ)
Γ(κ)

g2
} 1

2κ

.

The covariance matrix for this distribution exists, and is a scaling of the parameter
matrix Σt:

(6) Vt = V[rt] =
Γ{(n+ 2)κ}Γ(1 + κ)

Γ(3κ)Γ(1 + nκ)
Σt.

Note that both the dimensionality, n, and the kurtosis parameter, κ, affect the scal-
ing between the covariance matrix, Vt, and the matrix, Σt.

This particular parameterization is chosen entirely because it is identical to the
multinormal distribution when κ = 1/2. In that limit the covariance matrix is sim-
ply Σt. Thus it is possible to use this form to perform a composite hypothesis test
for multi-normality of asset returns. Numerical solutions to equation 1 on the pre-
ceding page for the case of a Generalized Error distribution with κ ≈ 0.75, which
is the value supported by the author’s empirical investigations[6], are presented in
references[4] and [5, 7].

1.3. A Multivariate Laplace Distribution. The form of equation 5 also encom-
passes a multivariate Laplace distribution when κ = 1: in that case

(7) f(rt|αt,Σt) =

√
2n

πn|Σt|
Γ(1 + n

2 )

Γ(1 + n)
e−

√
2(rt−αt)TΣ−1

t (rt−αt).

This is not the only manner in which a multivariate generalization to the Laplace
distribution might be defined; however, it is one which possesses elliptical symme-
try. An important feature of this form is that the marginal univariate distributions
are not themselves univariate Laplace distributions[2]. With this form, it is only
the radial coordinate, written g in equation 2 on the preceding page, that has a
marginal Laplace distribution.

2. AN ANALYTIC SOLUTION FOR THE UNIVARIATE LAPLACE DISTRIBUTION

Conventionally, the univariate Laplace distribution is written with the following
parameterization1

(8) f(rt|αt, σt) =
1

2σt
e
−
∣∣∣ rt−αt

σt

∣∣∣
.

1As adapted to support the current context of an active trader.
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This distribution has a mean αt and variance 2σ2
t . A negative exponential utility

maximizer seeks to find the solution to

(9) ĥt = arg min
ht

∫ ∞

−∞

1

2σt
e
−λhtrt−

∣∣∣ rt−αt
σt

∣∣∣
drt,

where λ represents the “price of risk,” or the rate at which a given trader will
exchange expected profits for expected variance in their profits. As discussed in
Giller[7], the integral may be evaluated analytically as

(10) ω(ht) =
e−λhtαt

1− λ2h2tσ
2
t

where |λhtσt| < 1.

Differentiating w.r.t. ht and solving for dω/dht = 0 gives two roots, both of which
are increasing functions of the expected return, αt. However, only one root, which
can be labeled the “positive solution,” also satisfies the condition that sgnht =
sgnαt.

This is the solution that maximizes utility, and so the “holding function”2 for the
Laplace distribution is

(11) h(αt, σt) =

√
1 + α2

t /σ
2
t − 1

λαt
.

In terms of the alpha, this holding function has the Taylor series

(12) h(αt, σt) =
αt

2λσ2
t

− α3
t

8λσ4
t

+O
(
α5
t

)
,

which recovers the solution to the univariate version of Markowitz’s mean-variance
optimization problem[10] for small alpha, but has the limit

(13) lim
αt→±∞

h(αt, σt) = ± 1

λσt
for large alphas.

The author understands that this solution is not well known of in the quantitative
finance community[8]. In prior work, numerical solutions to equations 3 and 4 are
found to exhibit very similar scaling behaviour to that observed in equation 11
for large alphas in the case of a Generalized Error distribution with κ ≈ 0.75,
which seems to be supported by empirical work[6]. Prior to this work, a similar
investigation had not been executed for a multivariate Laplace distribution such as
that of equation 7 on the facing page.

3. THE PRIOR CONJECTURE

Aware of the results of both equation 1 on page 1 and equation 11, the author
conjectured in Giller[3], that all solutions to multivariate optimal trading strategies
take the form3

(14) h(αt, Vt) =
V −1
t αt

2λ
Ω(Zt),

2i.e. The optimal policy function for a negative exponential utility maximizing trader.
3It might be more reasonable to restrict this conjecture to distributions with ellipsoidal symmetry.
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where Zt is the Mahanalobis distance of the alpha from its central tendency, 0,
scaled by the covariance matrix of returns, Vt. i.e.

(15) Zt =

√
αt

TV −1
t αt.

which can be though of as a “Z-score” for the alpha. The function Ω(Zt) takes
the place of 1/Ψn/2(x̂t) in equation 1 for this conjectured generalization of the
result. This Ω(Zt) is a strictly positive decreasing function of it’s argument that
takes the value 1 at the origin and is identically equal to that value for all values
of the argument in the case of the Normal distribution. It plays the similar role of
decreasing traders bets on “big” alphas in markets that have fat tails (leptokurtosis).

3.1. The Univariate Laplace Solution in the Conjectured Form. The result of
equation 11 on the previous page is not immediately in the conjectured form, but
this can be delivered via simple algebraic identities. For the univariate solution let
Zt = |αt/σt|, then

1

αt
=

αt

α2
t

=
αt/σ

2
t

α2
t /σ

2
t

=
αt/σ

2
t

Z2
t

(16)

⇒ h(αt, σt) =
αt/σ

2
t

λ

√
1 + Z2

t − 1

Z2
t

(17)

=
αt/σ

2
t

2λ
Ω(Zt)(18)

where Ω(Zt) = 2

√
1 + Z2

t − 1

Z2
t

(19)

3.2. The Conjectured Multivariate Laplace Solution. The transformation of
equation 11 on the preceding page to the conjectured form as exhibited in equa-
tion 17 then follows immediately from dimensional arguments:

αt/σ
2
t → V −1

t αt(20)

Z2
t → αT

t V
−1
t αt(21)

⇒ h(αt, Vt) =
V −1
t αt

2λ
× 2

√
1 + Z2

t − 1

Z2
t

(22)

4. AN ANALYTIC SOLUTION FOR THE MULTIVARIATE LAPLACE
DISTRIBUTION

Notwithstanding the results presented above, an analytical solution for the multi-
variate Laplace distribution of equation 7 on page 2 will now be developed.

4.1. The Scaling Function. For the form of the Generalized Error distribution
given in equation 5 on page 2 the scaling function becomes

(23) Ψν(x) =
1

x

∫∞
0 e−ηg

1
k Iν(gx)g

ν+1 dg∫∞
0 e−ηg

1
k Iν−1(gx)gν dg

where η =

{
Γ(3κ)

Γ(κ)

} 1
2κ

.
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For the specific case of the multivariate Laplace distribution given here, with κ = 1,
this becomes

(24) Ψν(x) =
1

x

∫∞
0 e−

√
2gIν(gx)g

ν+1 dg∫∞
0 e−

√
2gIν−1(gx)gν dg

since η =
√
2.

In equation 24, the integral in the numerator evaluates to

(25)
2ν+

3
2Γ

(
ν + 3

2

)
xν

(
1

2−x2

)ν+ 3
2

√
π

and that in the denominator to

(26)
2ν+

1
2Γ

(
ν + 1

2

)
xν−1

(
1

2−x2

)ν+ 1
2

√
π

.

The condition x < η =
√
2 is neccesary to guarantee convergence of the integrals.

In equation 24 the majority of terms from the integral cancel, leaving a remarkably
simple result

(27) Ψν(x) =
1 + 2ν

2− x2
or Ψn

2
(x) =

1 + n

2− x2
.

4.2. The Critical Root and the Optimal Holding Function. The critical root,
x̂t, is then

(28) x̂t =

√
(n+ 1)2 + 8Z ′

t
2 − (n+ 1)

2Z ′
t

,

where Z ′
t
2 = αtΣ

−1
t αt is the Manahalobis distance in terms of the scaling matrix,

Σ. This gives

(29) h(αt,Σt) =
Σ−1
t αt

λ

√(
n+1
2

)2
+ 2Z ′

t
2 − n+1

2

Z ′
t
2

for the optimal portfolio.
Now, for this parameterization of a multivariate Laplace distribution, the rela-

tionship between the covariance matrix and the scaling matrix, using equation 6 on
page 2, is just

(30) Vt =
n+ 1

2
Σt

which means that we can re-express Z ′
t in terms of the “more traditional” Ma-

hanalobis distance using the covariance matrix, Vt:

(31) Z2
t = αtV

−1
t αt =

2

n+ 1
αtΣ

−1
t αt =

2

n+ 1
Z ′
t
2
.

Substituting this relationship into equation 29 gives

(32) h(αt, Vt) =
V −1
t αt

2λ

√
1 + 4Z2

t /(n+ 1)− 1

Z2
t /(n+ 1)
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or

(33) Ωn(Zt) = 2

√
1 + 4Z2

t /(n+ 1)− 1

2Z2
t /(n+ 1)

.

4.3. Comparison of the Analytic Solution with the Conjectured Form. The
form of equation 29 on the preceding page differs slightly from the conjectured
form of equation 22 on page 4. Most importantly, the dimensionality of the prob-
lem is exhibited through the term (n+1)/2 which becomes unity for the univariate
case and is seen in equation 11 on page 3 but not within the conjectured form. This
is an error in the conjecture.

Secondly, there is a factor of two within the root preceding Z2
t . This, in fact,

arises from the differing parameterization of the Laplace distribution given. The
conventional form, given in equation 8 on page 2 has a variance of 2σ2

t , whereas
the univariate limit of the form given in equation 7 on page 2 is, in fact,

(34) f(rt|αt, σt) =
1√
2σt

e
−
√
2
∣∣∣ rt−αt

σt

∣∣∣
which has a variance of exactly σ2

t . Thus this “error” in the conjecture is largely
trivial.

4.4. The Large Portfolio Limit. The shape of the Ωn(Zt) function for various
values of n is illustrated in figure 1. From the figure can be seen a symmetric profile
that strongly disfavours alphas with high values of Zt in a univariate portfolio, but
that this down-weighting is diffused for larger portfolios.

FIGURE 1. The Ωn(Zt) function for a multivariate Laplace distribution.
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Although it is tempting to examine the unconditional limit of very large portfo-
lios

(35) lim
n→∞

Ωn(Zt) = 2

this is not, in fact, the correct limit as Zt is, in general, a stochastic quantity and
E[Z2

t ] is o(n) for a portfolio of size n (and exactly that for Normally distributed
asset returns). In contrast

(36) lim
n→∞

Ωn(
√
n) =

√
5− 1.

and, since the maximum value4 of Ω(Zt) is 2 for all n, it is amusing5 to note that

(37) lim
n→∞

Ωn(
√
n)

2
=

1

φ

where φ is the golden ratio.
The limit of equation 37 is restricted to the point Z2

t = n. Replacing this with a
more general expression of Z2

t = ζ2n, where ζ = o(1), gives

(38) lim
n→∞

Ωn(ζ
√
n) =

√
1 + 4ζ2 − 1

ζ2
.

4.5. Asymptotic Behaviour of the Scaling Function. Stepping back from the
infinite limit of the portfolio scaling function, it is informative to examine it’s
asymptotic properties as the arguments become large. This is easy to compute:
equation 33 on the facing page it’s clear that

(39) lim
Z2
t /(n+1)→∞

Ωn(Zt) ∼
2

|Zt|/
√
n+ 1

.

4.6. Elimination of the Lagrange Multiplier. An aspect of the mean-variance
optimization procedure that is problematic for analysts seeking a “complete” so-
lution to the asset allocation problem is the continued presence of the Lagrange
multiplier, λ, in the solution. One way to eliminate this term is to use constraints
to fix it to a value that derives from those constraints.

For example, it is common to write the m.v.o. problem as6

(40) ĥt = arg max
ht

(
hT
t αt − λhT

t V
−1
t ht

∣∣ hT
t 1 = 1

)
.

This refined problem represents mean-variance optimization with a “total net in-
vestment” constraint and the solution, ĥt, represents the proportion of the portfolio

4Note that a factor of two is somewhat arbitrarily inserted into equation 22 on page 4 for consis-
tency with the canonical Markowitz solution. Without that, the maximum value of Ω(Zt) would be
one. The work presented here suggests that it might be a bit more “natural” to replace λ with λ/2 in
the Mean Variance Optimization framework, which would eliminate this factor.

5This value is not regarded as significant by the author.
6With 1 as the “unit” vector 1T = (1 1 . . . 1).
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to invest into each asset. Solution is straightforward, and the specific value of the
Lagrange multiplier is set by the constraint, giving:

(41) ĥt =
V −1
t αt

1TV −1
t αt

.

An important feature of this portfolio is that it is not proportional to expected re-
turns and not inversely proportional to risk. It is not a “gains seeking, risk averse”
allocation at all as it will always be maximally exposed to risk. The only thing
that is affected by the specific values of the alpha and the covariance matrix is the
“direction” in the solution space, Rn, favoured, since equation 41 is a unit-vector
in that space by virtue of the applied constraint.

Applying the same construction to equation 32 on page 5 delivers exactly the
same result, that the optimal portfolio is given by equation 41 and that the chosen
portfolio does not have a scale that is dependent on any risk-reward trade-off, or
moderated by a factor, Ωn(Zt), that arises from the kurtosis of the returns. Thus it
can be seen that an investors insistence of full investment, no matter how small the
return is relative to the risk, is the factor that leads to this result and that choice is
also a choice to ignore the effects of the kurtosis of the distribution of returns on the
optimal portfolio chosen. If the investor wishes to be averse to the higher moments
of the distribution of portfolio returns, they should avoid portfolio constraints that
immunize them to their aversion to such moments.

5. CONCLUSIONS

In this brief note three important results are presented:
(1) a full analytic solution for asset allocation strategy that should be imple-

mented by a negative exponential utility maximizer for a single asset when
the returns of that asset are drawn from a univariate Laplace distribution;

(2) a full analytic solution for an equivalent problem when returns are drawn
from a particular form of the multivariate Laplace distribution; and,

(3) a validation that that the general form of the conjectured general solution
to such multivariate asset allocation problems is not unreasonable, even
though some of the specific details were incorrect.

It is the author’s understanding that neither equation 11 on page 3 nor equation 32
on page 5 are well known in the quantitative finance community and their sincere
belief that they should be. This work illustrates that a failure of repeated mean-
variance optimization, a strategy that is exactly correct when Normally distributed
returns are considered, leads to overallocation to risk when asset returns in the real
world are drawn from a generally more leptokurtotic distribution.
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