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Abstract

The a priori error analysis of reduced order models (ROMs) for fluids is relatively scarce. In this
paper, we take a step in this direction and conduct numerical analysis of the recently introduced
time relaxation ROM (TR-ROM), which uses spatial filtering to stabilize ROMs for convection-
dominated flows. Specifically, we prove stability, an a priori error bound, and parameter scalings
for the TR-ROM. Our numerical investigation shows that the theoretical convergence rate and the
parameter scalings with respect to ROM dimension and filter radius are recovered numerically. In
addition, the parameter scaling can be used to extrapolate the time relaxation parameter to other
ROM dimensions and filter radii. Moreover, the parameter scaling with respect to filter radius is
also observed in the predictive regime.
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1. Introduction

The incompressible Navier-Stokes equations (NSE) are

ut + (u · ∇)u− ν∆u+∇p = f , (1)

∇ · u = 0, (2)

where u and p are the velocity and pressure fields, respectively, defined on the spatial domain, Ω,
and the time interval, [0, T ]. f is an external force, and ν is the inverse of the Reynolds number.
Appropriate boundary and initial conditions are needed to close the system.

Fluid flows at high Reynolds numbers exhibit a wide range of spatial and temporal scales that
make their direct numerical simulation (DNS) often impractical [1, 2]. This leads to the need of
alternative computational approaches, such as large eddy simulations (LES), Reynolds-averaged
Navier–Stokes equations (RANS), and numerical regularizations. One type of regularization is the
time relaxation model (TRM) [3, 4], which leverages spatial filtering to increase the numerical
stability. The TRM for a domain Ω ⊂ Rd, d = 2 or 3, and for t > 0 is given as

ut + (u · ∇)u− ν∆u+ χu∗ +∇p = f , (3)

∇ · u = 0, (4)

where the dimensionless parameter χ is called the time relaxation parameter, which is often manu-
ally tuned to adjust the numerical stabilization, and u∗ is a regularization term defined in Section
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2. The goal of u∗ is to drive the unresolved fluctuations of u down to 0. TRM has been investigated
in [5–11] and has been used in various applications [12, 13]. A TRM review can be found in [14].

Although the DNS computational cost is significantly reduced by LES, RANS, and numerical
stabilization, these approaches remain computationally prohibitive in decision-making applications
where multiple forward simulations are needed. In those cases, reduced order models (ROMs)
represent efficient alternatives. ROMs are computational models whose dimension is orders of
magnitude lower than the dimension of full order models (FOMs), i.e., models obtained from
classical numerical discretizations. In the numerical simulation of fluid flows, Galerkin ROMs (G-
ROMs), which use data-driven basis functions in a Galerkin framework, have provided efficient and
accurate approximations of laminar flows, such as the two-dimensional flow past a circular cylinder
at low Reynolds numbers [15, 16]. However, turbulent flows are notoriously hard for the standard
G-ROM. Indeed, to capture the complex dynamics, a large number [17] of ROM basis functions is
required, which yields high-dimensional ROMs that cannot be used in realistic applications. Thus,
computationally efficient, low-dimensional ROMs are used instead. Unfortunately, these ROMs
are inaccurate since the ROM basis functions that were not used to build the G-ROM have an
important role in dissipating the energy from the system [18]. Indeed, without enough dissipation,
the low-dimensional G-ROM generally yields spurious numerical oscillations. Thus, closures and
stabilization strategies are required for the low-dimensional G-ROMs to be stable and accurate [18–
23].

FOM stabilizations and closures are supported by thorough numerical analysis, particularly
when applied alongside traditional methods like the finite element method (FEM) or SEM [1,
24–26]. These references address both fundamental numerical analysis issues, such as stability
and convergence, and practical challenges, like determining appropriate parameter scalings for
stabilization coefficients. These two aspects are closely linked, as insights from numerical analysis
guide the selection of parameter scalings, which inform practical decisions. We emphasize, however,
that despite growing interest in ROM closures and stabilizations, their comprehensive mathematical
and numerical analysis remains an open challenge. Indeed, while some strides have been made in
analyzing ROM closures and stabilizations [27–33], much work is needed to reach the rigor of FOM
analysis.

In this paper, we take a step in this direction by establishing the first rigorous numerical analysis
results, including stability and a priori bounds, for the time relaxation reduced order model (TR-
ROM), which was successfully used in [34] in numerical simulations of turbulent channel flow.
Crucially, we also derive parameter scalings that ensure ROM parameters automatically adjust
with changes in the corresponding FOM and ROM parameters, eliminating the need for manual
tuning often required in existing data-driven ROMs.

This article is organized as follows: In Section 2, we give preliminaries about the SEM, G-ROM,
and ROM filtering. In Section 3, we present the TR-ROM, prove its unconditional stability and an
a priori error bound, and derive novel scalings for the time relaxation parameter. In Section 4, we
show that the theoretical convergence rates and parameter scalings with respect to ROM dimension
and filter radius are numerically recovered for the 2D flow past a cylinder and 2D lid-driven cavity.
In Section 5, we present the conclusions of our theoretical and numerical investigations.

2. Notations and Preliminaries

2.1. Spectral Element Method

This paper will use the following spaces: Lp(Ω), W k,p(Ω), and Hk(Ω) = W k,2(Ω), where k ∈
N, 1 ≤ p ≤ ∞ for domain Ω. The L2(Ω) norm is denoted as ∥ · ∥, with the corresponding inner
product (·, ·). Vector-valued functions are indicated in boldface having d components (d = 2 or 3).
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The Hk(Ω) norm will be denoted by ∥·∥k, with all other norms clearly denoted. For the continuous
vector function u(x, t) defined on the entire time interval (0, T ), we have

∥u∥∞,k := sup
0<t<T

∥u(·, t)∥k , and ∥u∥m,k :=

(∫ T

0
∥u(·, t)∥mk dt

) 1
m

.

The solutions are sought in the following functional spaces:

Velocity space−X := H1
0(Ω) =

{
u ∈ H1

0(Ω) : u |∂Ω= 0
}
,

Pressure space−Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q dΩ = 0

}
,

Divergence− free space−V :=

{
v ∈ X :

∫
Ω
q∇ · v dΩ = 0, ∀q ∈ Q

}
.

Boldface indicates that the space is spanned by vector-valued functions. The dual space of X is
denoted as X′, and the norm of the space is ∥ · ∥−1. Moreover, we define V to be the weakly
divergence-free subspace of X.

The FOM is based on the SEM in the open-source code Nek5000 [35], and uses the PN–
PN−2 velocity-pressure coupling [36]. To this end, let Ω be a polygonal domain and {Ωi}Ki=1 be a
conforming partition of Ω into rectangles or rectangular parallelepipeds. If u is a function defined
in Ω = ∪K

i=1Ωi, the restriction of u to Ωi will be denoted by ui. We set

XN =
{
vN ∈ (C0(Ω))d | (vN )i ∈ (PN (Ωi))

d, (vN )i = 0 in ∂Ω ∩ ∂Ωi, i = 1, . . . ,K
}
,

where PN denotes the space of polynomials of degree less or equal to N with respect to each
variable. The discrete space of pressures QN ⊂ Q is defined as

QN =
{
qN ∈ L2

0(Ω) | (qN )i ∈ PN−2(Ωi), i = 1, . . . ,K
}
.

The discrete velocity belongs to the space

VN = {vN ∈ XN | (∇ · vN , qN ) = 0 ∀qN ∈ QN} .

With the above choice for the space of pressures, the following inf-sup condition is satisfied [37, 38],

inf
qN∈QN

sup
vN∈XN

(qN ,∇ · vN )

∥qN∥∥∇vN∥
≥ βN

1−d
2 , (5)

where β is a constant that does not depend on N .
Let ∆t denote the time step, and tn = n∆t, n = 0, 1, . . . ,M , the time instances. We also use

the notation u(tn) = un and the following discrete norms:

|||u|||∞,k := max
0≤n≤M

∥un∥k , |||u|||m,k :=

(
∆t

M∑
n=0

∥un∥mk

)1/m

.

For u,v,w ∈ X, we define the trilinear forms b, b∗ : X×X×X 7→ R as follows:

b(u,v,w) = (u · ∇v,w), (6)

b∗(u,v,w) = (u · ∇v,w) +
1

2
((∇ · u)v,w) =

1

2
(b(u,v,w)− b(u,w,v)). (7)

3



The following approximation properties hold [37, 38]:

inf
vN∈XN

∥u− vN∥ ≤ CN−k−1∥u∥k+1, u ∈ Hk+1(Ω)d, (8)

inf
vN∈XN

∥∇(u− vN )∥ ≤ CN−k∥u∥k+1, u ∈ Hk+1(Ω)d, (9)

inf
qN∈QN

∥p− qN∥ ≤ CN−s−1∥p∥s+1, p ∈ Hs+1(Ω). (10)

We also use the following lemmas:

Lemma 2.1. [39, 40], For u,v,w ∈ X, b∗(u,v,w) can be bounded as follows:

b∗(u,v,w) ≤ C ∥u∥
1
2 ∥∇u∥

1
2 ∥∇v∥ ∥∇w∥ , (11)

b∗(u,v,w) ≤ C ∥∇u∥ ∥∇v∥ ∥∇w∥ , (12)

b∗(u,v,w) ≤ C ∥∇u∥ ∥∇v∥ ∥w∥1/2 ∥∇w∥1/2 . (13)

Lemma 2.2 (Discrete Gronwall Lemma [41]). Let ∆t, H, and an, bn, cn, dn (for integers n ≥ 0) be
finite nonnegative numbers such that

al +∆t
l∑

n=0

bn ≤ ∆t
l∑

n=0

dnan +∆t
l∑

n=0

cn +H for l ≥ 0.

Suppose that ∆tdn < 1 ∀n. Then,

al +∆t
l∑

n=0

bn ≤ exp

(
∆t

l∑
n=0

dn
1−∆tdn

)(
∆t

l∑
n=0

cn +H

)
for l ≥ 0.

Let u be the velocity of the Navier-Stokes equations for a given initial condition, and let uN be
its continuous in time spectral element approximation. Then, the following bound for the error is
proved in [42] (see Remarks 4.2 and 4.3):

∥u(t)− uN (t)∥+ (N)−1∥∇(u(t)− uN (t))∥ ≤ CN−(k+1), t ∈ (0, T ],

assuming u(t) ∈ Hk+1(Ω) (d = 2).
Using standard techniques, one can also prove error bounds for the fully discrete method. In

particular, we will make the following assumption:

Assumption 2.1 (Spectral Element Error). Under sufficient regularity of the true solution, we
assume that the fully discrete approximation of (1)-(2) using SEM in space and [BDF3/EXT3] in
time, un

N ∈ XN for 1 ≤ n ≤ M , satisfies the following asymptotic error estimate:

∥un − un
N∥2 ≤ C(N−2k−2 +∆t6), ∥∇ (un − un

N )∥2 ≤ C(N−2k +∆t6).

Remark 2.1. As discussed in [43], k = 3 is used to ensure that the imaginary eigenvalues associated
with skew-symmetric advection operator are within the stability region of the BDF3/EXT3 time-
stepper.
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2.2. Galerkin Reduced Order Model (G-ROM)

In this section, we introduce the G-ROM. We follow the standard proper orthogonal decompo-
sition (POD) procedure [44, 45] to construct the reduced basis function. To this end, we collect a
set of spectral element (FOM) solutions lifted by the zeroth mode φ0. The POD method seeks a
low-dimensional basis {φ1, . . . ,φr} in L2 that optimally approximates the snapshots, that is, solves
the minimization problem:

min
1

M + 1

M∑
l=0

∥∥∥∥∥∥uN (·, tl)−
r∑

j=1

(
uN (·, tl),φj(·)

)
φj(·)

∥∥∥∥∥∥
2

subject to the conditions (φi,φj) = δij , for 1 ≤ i, j ≤ r, where δij is the Kronecker delta. The
minimization problem can be solved by considering the eigenvalue problem Kzj = λjzj , for j =

1, . . . , r, where K ∈ R(M+1)×(M+1) is the snapshot Gramian matrix using the L2 inner product (see,
e.g., [21, 46] for alternative strategies).

The first r POD basis functions {φi}ri=1 are constructed from the first r eigenmodes of the
Gramian matrix. The G-ROM is then constructed by inserting the POD approximated solution
ur(x) =

∑r
j=1 ur,jφj(x) into the weak form of the NSE: Find ur such that, for all vr ∈ Xr,(

∂ur

∂t
,vr

)
+Re−1 (∇ur,∇vr) +

(
(ur · ∇)ur,vr

)
= 0, (14)

where Xr := span{φi}ri=1 is the ROM space.
It can also be shown that the following error formula holds for the L2-POD basis functions [47]:

1

M + 1

M∑
ℓ=0

∥∥∥∥∥∥uN (·, tℓ)−
r∑

j=1

(
uN (·, tℓ),φj(·)

)
φj(·)

∥∥∥∥∥∥
2

= Λr
L2 :=

R∑
j=r+1

λj , (15)

where R is the rank of the Gramian matrix, K.

Remark 2.2. Because the POD basis functions are a linear combination of the snapshots generated
from the FOM, the POD basis functions satisfy the boundary conditions of the original PDE and
inherit the FOM’s divergence-free properties. In this paper, the FOM is based on a SEM discretiza-
tion, which yields only a weakly divergence-free velocity. More precisely, the POD basis functions
belong to VN , giving Xr ⊂ VN . Thus, to ensure the ROM stability in Lemma 3.1, we equip the
ROM with the skew-symmetric trilinear form b∗ in (7).

Additionally, we make use of the following definitions and lemmas:

Definition 2.1 (ROM L2 Projection). Let Pr : L
2 → Xr such that, ∀ u ∈ L2, Pr(u) is the unique

element of Xr satisfying
(Pr(u),vr) = (u,vr) , ∀ vr ∈ Xr. (16)

Lemma 2.3 (H1
0 POD Projection error). The POD projection error in the H1

0 norm satisfies

1

M + 1

M∑
ℓ=0

∥∥∥∥∥∥uN (·, tℓ)−
r∑

j=1

(
uN (·, tℓ),φj(·)

)
φj(·)

∥∥∥∥∥∥
2

H1
0

= Λr
H1

0
:=

R∑
j=r+1

∥∥φj

∥∥2
H1

0
λj . (17)

Proof. These sharper bounds can be obtained by using the H1
0 inner product and norm instead of

the H1 inner product and norm in [31, Lemma 3.2].
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We list a POD inverse estimate, which will be used in what follows. Let Sr ∈ Rr×r with
(Sr)ij =

(
∇φj ,∇φi

)
be the POD stiffness matrix. Let ∥·∥2 denote the matrix 2-norm. Since this

is traditional notation, in what follows we will use the notation ∥ · ∥2 both for the H2 norm and for
the matrix 2-norm. It will be clear from the context which norm is used.

Lemma 2.4 (POD Inverse Estimates [33]). For all ur ∈ Xr, the following POD inverse estimate
holds:

∥∇ur∥ ≤
√
∥Sr∥2 ∥ur∥ . (18)

The inverse estimate (18) was proved in Lemma 2 and Remark 2 in [48]. The scaling of
√

∥Sr∥2
with respect to r was numerically investigated in Remark 3.3 in [49] and in Remark 3.2 in [27].

Lemma 2.5 (L2 Stability of of ROM L2 Projection [33]). For all u ∈ L2, the ROM projection Pr

satisfies
∥Pr(u)∥ ≤ ∥u∥ . (19)

The following error bound is a slightly modified variation of [31, Lemma 3.3]. This is due to our
different spectral element error Assumption 2.1 and different Lemma 2.3. Furthermore, we assume
a third-order in time discretization (i.e., BDF3/EXT3) as opposed to the first-order backward Euler
method.

Lemma 2.6 (Modified Lemma 3.3 in [31]). For any un ∈ X, n = 0, 1, . . . ,M, its L2 projection,
Pr(u

n), satisfies the following error bounds:

1

M + 1

M∑
n=0

∥un − Pr(u
n)∥2 ≤ C

(
N−2k−2 +∆t6 + Λr

L2

)
, (20)

1

M + 1

M∑
n=0

∥∇ (un − Pr(u
n))∥2 ≤ C

(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

)
. (21)

Proof. The proof of Lemma 2.6 follows a similar approach to that in [31, Lemma 3.3], but here we
use the spectral element Assumption 2.1 in place of the finite element error assumption.

A generalization of Lemma 2.6 is given by Corollary 2.0.1. This allows a modularity of the
projection error to accommodate different discretizations of the FOM.

Corollary 2.0.1. For any un ∈ X, n = 0, 1, . . . ,M, its L2 projection, Pr(u
n) ∈ Xr, satisfies the

following error bounds:

1

M + 1

M∑
n=0

∥un − Pr(u
n)∥2 ≤ C

(
∥un − un

FOM∥2 + Λr
L2

)
, (22)

1

M + 1

M∑
n=0

∥∇ (un − Pr(u
n))∥2 ≤ C

(
∥∇(un − un

FOM )∥2 + ∥Sr∥2 ∥u
n − un

FOM∥2 + Λr
H1

0

)
. (23)

where un
FOM is the solution given by the full order model (e.g. FEM, SEM, etc).

We also assume the following bounds, analogous to those in [49]:
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Assumption 2.2. For any un ∈ X, where n = 0, 1, . . . ,M , its L2 projection, Pr(u
n) ∈ Xr,

satisfies the following error estimates:

∥un − Pr(u
n)∥2 ≤ C

(
N−2k−2 +∆t6 + Λr

L2

)
, (24)

∥∇ (un − Pr(u
n))∥2 ≤ C

(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

)
. (25)

Remark 2.3 (See also Remark 3.1 in [50].). The pointwise in time error bounds in Assumption 2.2
are needed in the proof of Theorem 3.1. Specifically, we use those bounds to prove inequalities (49)
and (51). We emphasize that using instead the average error bounds in Lemma 2.6 in the proof of
Theorem 3.1 would yield suboptimal error bounds (see also [50, Remark 3.1 and Lemma 4.2]).

Assumption 2.2 and its important effect on the optimality of a priori error bounds was carefully
discussed in [51] (see also [31, Remark 3.2]). In particular, it was shown in [51] that using both
the snapshots and the snapshot difference quotients to construct the ROM basis yields optimal error
bounds without making Assumption 2.2. This result was further improved in [52, 53], where optimal
error bounds were proven using only the snapshot difference quotients and the snapshot at the initial
time or the mean value of the snapshots. Further improvements were recently presented in [54].

For simplicity, in this paper we do not include the snapshot difference quotients, and instead
assume the pointwise in time error bounds in Assumption 2.2.

2.3. ROM filtering

We formally introduce the time relaxation term u∗ = u − ū, where ū denotes the spatially
averaged representation of u. Analogous to what was done for the continuous differential filter G
[55, 56] and discrete differential filter Gh [57], we define the ROM differential filter as follows: For
u ∈ X and a given filter width δ > 0, we let Gr : X → X be defined by Gr(u) := ūr, where ūr ∈ X
is the unique solution of the following variational problem:

δ2 (∇ūr,∇vr) + (ūr,vr) = (u,vr), ∀ vr ∈ Xr. (26)

We note that, when the ROM basis is generated by using the POD strategy, the ROM basis
functions (and, thus, the ROM solution) inherit the weakly divergence-free property from the
FOM. Leveraging this fact, we do not need to use a Stokes filter, which has been used for weekly
preservation of incompressibility [58, 59], and utilize instead Gr as defined in equation (26).

Lemma 2.7. (ROM Filtering Error Estimate [33]) For un ∈ X, n = 0, 1, . . . ,M, the ROM filter
Gr satisfies

δ2 ∥∇ (un −Gr(u
n))∥2 + ∥(un −Gr(u

n))∥2 ≤ C
(
N−2k−2 +∆t6 + Λr

L2

)
+ Cδ4

+ Cδ2
(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

)
. (27)

Remark 2.4. The proof of Lemma 2.7 follows along the same lines as the proof of Lemma 4.3
in [33]. The main difference is that one needs to use SEM estimates (Assumption 2.1) instead of
FEM estimates. Furthermore, as pointed out in [33, Remark 4.1], since the H1 stability of the
L2 projection is not available in a ROM setting, the better δ scalings of the H1 seminorm of the
filtering error in [60] cannot be extended to the ROM setting in a straightforward manner.

It is easy to check that Gr is symmetric and semi-positive definite. The operator is also compact
and ∥Gr∥ ≤ 1. Its associated eigenvalues satisfy 0 ≤ λj ≤ 1. It is also easy to check that (I −Gr)
is symmetric, semi-positive definite, and compact. Moreover, its eigenvalues are 0 ≤ 1− λj ≤ 1 so
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that ∥(I −Gr)∥ ≤ 1. Finally, it is easy to check that Gru = u implies u = 0, so that λj = 1 is
not an eigenvalue of Gr, and then (I −Gr) is strictly positive definite. This allows us to define the
norm:

∥ϕ∥∗ =
√
((I −Gr)ϕ,ϕ). (28)

More details on this can be found in [8, Lemma 2.1].

3. Stability and Error Bounds

In this section, we formally introduce our fully discrete TR-ROM. First, in Lemma 3.1, we
prove unconditional stability of the new TR-TOM. Then, in Theorem 3.1, we prove an a priori
error bound for the TR-ROM. Finally, in Section 3.1, we leverage the error bound in Theorem 3.1
to prove parameter scalings for the TR-ROM relaxation parameter, χ.

The fully discrete formulation of the TR-ROM is as follows: For n = 0, 1, . . . ,M − 2,M − 1,
find un+1

r ∈ Xr satisfying

1

∆t
(un+1

r − un
r ,vr) + b∗(un+1

r ,un+1
r ,vr) + ν(∇un+1

r ,∇vr)

+ χ
(
(I −Gr)u

n+1
r ,vr

)
= (f(tn+1),vr), ∀ vr ∈ Xr. (29)

We assume that u0
r is the L2 projection of u0 into Xr i.e., u0

r = Pr(u
0).

To prove the TR-ROM’s unconditional stability in Lemma 3.1, we adapt the approach in [5,
10, 61, 62] to the ROM setting.

Lemma 3.1. The solution to the TR-ROM given by (29) is unconditionally stable: For any ∆t > 0,
the solution satisfies:

||uM
r ||2 + ν|||∇un+1

r |||22,0 + 2χ∆t
M−1∑
n=0

||un+1
r ||2∗ ≤ Cs,r := ||u0||2 + ∆t

ν

M−1∑
n=0

||fn+1||2−1. (30)

Proof. Choosing vr = un+1
r in (29) yields(

un+1
r − un

r

∆t
,un+1

r

)
+ ν

(
∇un+1

r ,∇un+1
r

)
+ χ

(
(I −Gr)u

n+1
r ,un+1

r

)
= (fn+1,un+1

r )

since the skew-symmetric nonlinear term vanishes. After using Cauchy-Schwarz and Young’s in-
equalities, the dual norm of f , and (28), we have

1

2∆t

(
∥un+1

r ∥2 − ∥un
r ∥2
)
+ ν∥∇un+1

r ∥2 + χ
∥∥un+1

r

∥∥2
∗ ≤

∥∥f(tn+1)
∥∥
−1

∥∥∇un+1
r

∥∥
≤ ν

2
∥∇un+1

r ∥2 + ν−1

2
∥f(tn+1)∥2−1.

Rearranging some terms and multiplying by 2∆t, we obtain(
∥un+1

r ∥2 − ∥un
r ∥2
)
+ ν∆t∥∇un+1

r ∥2 + 2χ∆t
∥∥un+1

r

∥∥2
∗ ≤

∆t

ν
∥f(tn+1)∥2−1.

Because u0
r is the L2 projection of u0 ontoXr, summing over time steps yields the following stability

bound:
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∥uM
r ∥2 + ν

(
∆t

M−1∑
n=0

∥∇un+1
r ∥2

)
+ 2χ

(
∆t

M−1∑
n=0

∥∥un+1
r

∥∥2
∗

)

≤ ∥u0∥2 + ν−1

(
∆t

M−1∑
n=0

∥f(tn+1)∥2−1

)
. (31)

To prove the a priori error bound in Theorem 3.1, we extend the strategy in [5, 10, 62] to the
ROM setting.

Theorem 3.1. Let ur be the solution of the TR-ROM (29), with u being the true solution of NSE
(1)-(2), and let en = un − un

r . Under the SE Assumption 2.1, ROM projection Assumption 2.2,
and for sufficiently small ∆t, we have:

|||e|||2∞,0 + ν|||∇en+1|||22,0 + 2χ∆t

M−1∑
n=0

∥∥en+1
∥∥2
∗ ≤ CK

(
ν−1(N−2s−2 +∆t2 + χ2δ4)

+ ν−1χ2
(
N−2k−2 +∆t6 + Λr

L2

)
+ ν−1

(
A(N,∆t, Sr,Λ

r
L2 ,Λ

r
H1

0
) +

√
Λr
L2

√
Λr
H1

0

)
+

(
ν +

χ2δ2 + Cs,r

ν

)(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

))
, (32)

where K depends exponentially on ν−3, C depends on u, ∇u, ∆u, ut, utt, p, C(Ω), but not on ∆t,
N , ∥Sr∥2, ν, δ or χ, and A is defined in (50).

Proof. First, in (33) we introduce a weak formulation of the NSE: Find (u, p) ∈ X ×Q satisfying
for all vr ∈ Xr(

un+1 − un

∆t
,vr

)
+ b∗(u,u,vr) + ν(∇u,∇vr)+χ((I −Gr)u

n+1,vr)

= χ((I −Gr)u
n+1,vr) + (p,∇ · vr) +

(
un+1 − un

∆t
− ut,vr

)
+ (f ,vr). (33)

We split the error in the usual way as en = ηn+ϕn
r , where η = u−Pr(u) and ϕr = Pr(u)−ur ∈

Xr, with Pr(u) being the L2 projection of u in Xr. Subtract equation (29) from the weak form of
the NSE (33) evaluated at tn+1 to obtain

1

∆t
(en+1 − en,vr) + b∗(un+1,un+1,vr)− b∗(un+1

r ,un+1
r ,vr) + ν(∇en+1,∇vr)

+χ((I −Gr)e
n+1,vr) =

(
1

∆t
(un+1 − un)− un+1

t ,vr

)
+χ((I −Gr)u

n+1,vr)

+(pn+1,∇ · vr), ∀vr ∈ Xr.

Note that the nonlinear terms can be rewritten as

b∗(un+1,un+1,vr)− b∗(un+1
r ,un+1

r ,vr) = b∗(en+1,un+1,vr)− b∗(un+1
r , en+1,vr) =

b∗(ηn+1,un+1,vr)− b∗(ϕn+1
r ,un+1,vr) + b∗(un+1

r ,ηn+1,vr)− b∗(un+1
r ,ϕn+1

r ,vr).

9



Using the above equality, splitting the error, letting vr = ϕn+1
r , and noting that

b∗(un+1
r ,ϕn+1

r ,ϕn+1
r ) = 0, we obtain

1

2∆t

(
||ϕn+1

r ||2 − ||ϕn
r ||2
)
+ ν||∇ϕn+1

r ||2+χ
∥∥ϕn+1

r

∥∥2
∗ =

1

∆t
(ηn+1 − ηn,ϕn+1

r )

+ν(∇ηn+1,∇ϕn+1
r ) + (un+1

t − 1

∆t
(un+1 − un),ϕn+1

r ) + b∗(ηn+1,un+1,ϕn+1
r )

−b∗(ϕn+1
r ,un+1,ϕn+1

r ) + b∗(un+1
r ,ηn+1,ϕn+1

r ) + (pn+1,∇ · ϕn+1
r )

+χ((I −Gr)η
n+1,ϕn+1

r ) + χ((I −Gr)u
n+1,ϕn+1

r ) (34)

≤ |T1|+ |T2|+ |T3|+ |T4|+ |T5|+ |T6|+ |T7|+ |T8|+ |T9|.

We now bound the above terms. By Definition 2.1, (η,ϕr) = 0, which yields

|T1| =
1

∆t

∣∣(ηn+1 − ηn,ϕn+1
r )

∣∣ = 0. (35)

The next five terms are all bounded using standard methods.

|T2| ≤ ν

16
||∇ϕn+1

r ||2 + Cν||∇ηn+1||2, (36)

|T3| ≤ ν

16
||∇ϕn+1

r ||2 + Cν−1

∥∥∥∥un+1
t − 1

∆t
(un+1 − un)

∥∥∥∥2
≤ ν

16
||∇ϕn+1

r ||2 + Cν−1∆t

∫ tn+1

tn
∥utt∥2 dt, (37)

|T4| = |b∗(ηn+1,un+1,ϕn+1
r )| ≤ C

√
||ηn+1||||∇ηn+1||||∇un+1||||∇ϕn+1

r ||

≤ ν

16
||∇ϕn+1

r ||2 + Cν−1||ηn+1||||∇ηn+1||||∇un+1||2, (38)

|T5| = |b∗(ϕn+1
r ,un+1,ϕn+1

r )| ≤ C

√
||ϕn+1

r ||||∇ϕn+1
r ||||∇un+1||||∇ϕn+1

r ||

≤ ν

16
||∇ϕn+1

r ||2 + Cν−3||∇un+1||4||ϕn+1
r ||2, (39)

|T6| = |b∗(un+1
r ,ηn+1,ϕn+1

r )| ≤ C

√
||un+1

r ||||∇un+1
r ||||∇ηn+1||||∇ϕn+1

r ||

≤ ν

16
||∇ϕn+1

r ||2 + Cν−1||un+1
r ||||∇un+1

r ||||∇ηn+1||2. (40)

For the pressure term, since ϕr ∈ Xr ⊂ VN , (qN ,∇ · ϕn+1
r ) = 0 can be subtracted and then

bounded in the standard way:

|T7| =
∣∣(pn+1 − qN ,∇ · ϕn+1

r

)∣∣ ≤ ν

16

∥∥∇ϕn+1
r

∥∥2 + Cν−1 inf
qN∈QN

∥∥pn+1 − qN
∥∥2 . (41)

For T8, we use the fact that ∥(I −Gr)η∥ ≤ ∥η∥, and Cauchy-Schwarz, Poincare-Friedrichs, and
Young’s inequalities:

|T8| ≤ χ
∥∥ηn+1

∥∥∥∥ϕn+1
r

∥∥ ≤ ν

16

∥∥∇ϕn+1
r

∥∥2 + Cχ2ν−1
∥∥ηn+1

∥∥2 . (42)

For T9, we use again Cauchy-Schwarz, Young’s, and Poincare-Friedrichs inequalities:

|T9| ≤ χ
∥∥(I −Gr)u

n+1
∥∥∥∥ϕn+1

r

∥∥ ≤ ν

16

∥∥∇ϕn+1
r

∥∥2 + Cχ2ν−1
∥∥(I −Gr)u

n+1
∥∥2 . (43)
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Substituting the bounds (35)-(43) into (34), multiplying by 2∆t, summing up from n = 0 to
M − 1, and recalling that ||ϕ0

r || = 0 since u0
r = Pr(u

0), yields:

||ϕM
r ||2 + ν∆t

M−1∑
n=0

||∇ϕn+1
r ||2+2χ∆t

M−1∑
n=0

∥∥ϕn+1
r

∥∥2
∗

≤ C∆t
M−1∑
n=0

ν−3||∇un+1||4||ϕn+1
r ||2 + Cν∆t

M−1∑
n=0

||∇ηn+1||2

+ Cν−1∆t
M−1∑
n=0

∥∥ηn+1
∥∥ ||∇ηn+1||||∇un+1||2 + Cν−1∆t

M−1∑
n=0

inf
qN∈QN

∥∥pn+1 − qh
∥∥2

+ Cν−1∆t
M−1∑
n=0

||un+1
r ||||∇un+1

r ||||∇ηn+1||2 + Cν−1∆t2
∫ T

0
||utt||2dt

+ Cχ2ν−1∆t

M−1∑
n=0

∥∥(I −Gr)u
n+1
∥∥2 + Cχ2ν−1∆t

M−1∑
n=0

∥∥ηn+1
∥∥2. (44)

Next, we continue to bound the error terms on the right-hand side of (44). Using the approximation
properties (10), (20), and (21), we obtain:

Cχ2ν−1∆t
M−1∑
n=0

||ηn+1||2 ≤ Cχ2ν−1
(
N−2k−2 +∆t6 + Λr

L2

)
, (45)

Cν∆t
M−1∑
n=0

||∇ηn+1||2 ≤ Cν
(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

)
, (46)

Cν−1∆t
M−1∑
n=0

inf
pN∈QN

∥∥pn+1 − qN
∥∥2 ≤ Cν−1N−2s−2∆t

M−1∑
n=0

∥p∥2s+1

= Cν−1N−2s−2|||p|||22,s+1 ≤ Cν−1N−2s−2, (47)

Cν−1∆t2
∫ T

0
||utt||2dt = Cν−1∆t2||utt||22,0,≤ Cν−1∆t2. (48)

For the next bound, we use (21) and Assumption 2.2, resulting in:

Cν−1∆t

M−1∑
n=0

||ηn+1||||∇ηn+1||||∇un+1||2 ≤ Cν−1∆t
M−1∑
n=0

||ηn+1||||∇ηn+1||

≤C

ν

(
N−2k−2 +∆t6 + Λr

L2

)1/2 (
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

)1/2
≤C

ν

(
N−2k−1 +∆t3N−k +

√
∥Sr∥2N

−2k−2 +
√

∥Sr∥2N
−k−1∆t3

+
√

1 + ∥Sr∥2N
−k−1∆t3 +

√
1 + ∥Sr∥2∆t6 +N−k

√
Λr
L2 +N−k−1

√
Λr
H1

0

+∆t3
√

Λr
H1

0
+
√

∥Sr∥2N
−k−1

√
Λr
L2 +

√
1 + ∥Sr∥2∆t3

√
Λr
L2 +

√
Λr
L2

√
Λr
H1

0

)
. (49)
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For notational convenience, we denote all but the last term in (49) as

A(N,∆t, Sr,Λ
r
L2 ,Λ

r
H1

0
) = N−2k−1 +∆t3N−k +

√
∥Sr∥2N

−k−1∆t3

+
√
1 + ∥Sr∥2N

−k−1∆t3 +
√

1 + ∥Sr∥2∆t6 +N−k
√

Λr
L2 +

√
∥Sr∥2N

−2k−2

+(Nk−1 +∆t3)
√
Λr
H1

0
+
√
∥Sr∥2N

−k−1
√

Λr
L2 +

√
1 + ∥Sr∥2∆t3

√
Λr
L2 . (50)

The following term utilizes the stability result from Lemma 3.1 together with the Cauchy-
Schwarz inequality and Assumption 2.2

Cν−1∆t
M−1∑
n=0

||un+1
r ||||∇un+1

r ||||∇ηn+1||2 ≤ CCs,rν
−1

(
∆t

M−1∑
n=0

∥∥∇ηn+1
∥∥4)1/2

≤ CCs,rν
−1
(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

)
. (51)

Using Lemma 2.7, we have the following bound:

Cχ2ν−1∆t
M−1∑
n=0

∥∥(I −Gr)u
n+1
∥∥2 ≤ Cχ2ν−1

(
N−2k−2 +∆t6 + Λr

L2

)
+ Cν−1χ2δ4

+Cχ2δ2ν−1
(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

)
. (52)

Thus, using the above bounds, (44) becomes

||ϕM
r ||2 + ν∆t

M−1∑
n=0

||∇ϕn+1
r ||2+2χ∆t

M−1∑
n=0

∥∥ϕn+1
r

∥∥2
∗

≤C∆t
M−1∑
n=0

ν−3||∇un+1||4||ϕn+1
r ||2 + Cν−1(N−2s−2 +∆t2 + χ2δ4)

+ Cν−1χ2
(
N−2k−2 +∆t6 + Λr

L2

)
+ Cν−1

(
A+

√
Λr
L2

√
Λr
H1

0

)
+ C

(
ν +

χ2δ2 + Cs,r

ν

)(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

)
. (53)

Hence, by the Gronwall inequality from Lemma 2.2 with ∆t sufficiently small, i.e., dn∆t :=
Cν−3||∇un||4∆t < 1, we obtain the following result:

||ϕM ||2 + ν∆t

M−1∑
n=0

||∇ϕn+1
r ||2 + 2χ∆t

M−1∑
n=0

∥∥ϕn+1
r

∥∥2
∗

≤C exp

(
∆t

M−1∑
n=0

dn
(1−∆t dn)

)(
ν−1(N−2s−2 +∆t2 + χ2δ4)

+ ν−1χ2
(
N−2k−2 +∆t6 + Λr

L2

)
+ ν−1

(
A+

√
Λr
L2

√
Λr
H1

0

)
+

(
ν +

χ2δ2 + Cs,r

ν

)(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

))
. (54)

The triangle inequality finishes the proof.
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3.1. Parameter Scalings

In this subsection, we build upon the error bound proved in Theorem 3.1 to derive parameter
scalings for the time relaxation constant, χ. To discover the optimal choice of parameter χ, we
extend the strategy used in [27] to the ROM setting. To this end, we consider the error bound
given by the result of Theorem 3.1:

|||e|||2∞,0 + ν|||∇en+1|||22,0 + 2χ∆t
M−1∑
n=0

∥∥en+1
∥∥2
∗ ≤ CK

(
ν−1(N−2s−2 +∆t2 + χ2δ4)

+ ν−1χ2
(
N−2k−2 +∆t6 + Λr

L2

)
+ ν−1

(
A+

√
Λr
L2

√
Λr
H1

0

)
+

(
ν +

χ2δ2 + Cs,r

ν

)(
N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0

))
. (55)

First, we note that following the classical approach (see, e.g., [27]) and attempting to minimize
the whole left hand side of (55) would result in only the trivial solution χ = 0. Choosing χ = 0,
however, would result in removing the time-relaxation term, which would yield the standard G-
ROM. This would clearly be an impractical choice since G-ROM is notoriously inaccurate in the
under-resolved regime. Thus, we propose a different strategy and minimize only the time-relaxation
term (i.e., the third term) on the LHS of (55). Our choice is further motivated by [63], where it is
stated that ∥u∥∗ measures the high frequency components of u, which is where spurious oscillations
concentrate in the under-resolved regime. To minimize the time-relaxation term, we drop the other
two terms on the LHS of (55), and divide by χ. To simplify the notation of the RHS of (55), we
define a function F as follows:

F (χ) :=

(
ν−1

(
∆t2 +N−2s−2 +A+

√
Λr
L2Λ

r
H1

0

)
+ (ν + ν−1Cs,r)H

)
χ−1

+ ν−1
(
δ4 + L+ δ2H

)
χ, (56)

where

L := N−2k−2 +∆t6 + Λr
L2 , H := N−2k + ∥Sr∥2N

−2k−2 + (1 + ∥Sr∥2)∆t6 + Λr
H1

0
.

Taking the derivative of F with respect to χ in (56) yields

F ′(χ) =−
(
ν−1

(
∆t2 +N−2s−2 +A+

√
Λr
L2Λ

r
H1

0

)
+ (ν + ν−1Cs,r)H

)
χ−2

+ ν−1
(
δ4 + L+ δ2H

)
. (57)

Since χ > 0, setting F ′ = 0 in (57) results in

ν−1
(
Λr
L2 + δ2Λr

H1
0
+ δ4

)
χ2 =

(
ν−1

(
∆t2 +

√
Λr
L2

√
Λr
H1

0

)
+ (ν + ν−1Cs,r)Λ

r
H1

0

)
. (58)

Solving for χ in (58) gives the optimal parameter scaling for χ:

χ =

√√√√√ν−1

(
∆t2 +N−2s−2 +A+

√
Λr
L2Λ

r
H1

0

)
+ (ν + ν−1Cs,r)H

ν−1 (δ4 + L+ δ2H)
. (59)

Remark 3.1. The χ scaling in (59) is dimensionless since the NSE (1) and the numerical analysis
results (including the error bound (55)) are dimensionless.
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4. Numerical Results

In this section, we perform a numerical investigation of the theoretical results obtained in
Section 3. To this end, we investigate whether the TR-ROM a priori error bound in Theorem 3.1
is recovered numerically. In addition, for the theoretical parameter scaling of the time-relaxation
constant χ (59) derived in Section 3.1, we investigate if the time-relaxation parameter scalings with
respect to the filter radius, δ, and ROM dimension, r, are recovered numerically. The numerical
investigation is performed for two test problems: the 2D flow past a circular cylinder at Reynolds
number Re = 100 (Section 4.2), and the 2D lid-driven cavity at Reynolds number Re = 15, 000
(Section 4.3).

The numerical investigation in this section focuses on the TR-ROM a priori error bound (32)
in Theorem 3.1, which depends on the parameters N , ∆t, χ, and δ, as well as the ROM truncation
errors Λr

L2 =
∑R

j=r+1 λj and Λr
H1

0
=
∑R

j=r+1 ∥∇ϕj∥2λj defined in (15) and (17). In our numerical

investigation, to measure the TR-ROM accuracy, we use the mean squared errors defined below:

εL2 =
1

M + 1

M∑
k=0

∥PRu
k
N − uk

r∥2, εH1
0
=

1

M + 1

M∑
k=0

∥∇(PRu
k
N − uk

r )∥2, (60)

where uk
r is the TR-ROM approximation, and PR is the ROM L2 projection (Definition 2.1) onto the

R-dimensional reduced space. Specifically, we numerically investigate the rates of the convergence
of εL2 and εH1

0
with respect to the ROM truncation errors Λr

L2 and Λr
H1

0
, respectively.

Remark 4.1. The TR-ROM errors in (60) are computed with respect to the projected FOM solution
PRu

k
N because (i) the considered model problems do not have exact solutions, and (ii) the cost for

computing the errors with respect to the projected FOM solution is independent of the number of
FOM degrees of freedom, N . Measuring the error with respect to the FOM solution would require
a post-processing step. The R value is selected so that the error between uk

N and PRu
k
N is small.

4.1. TR-ROM Computational Implementation

The fully discrete formulation TR-ROM (29) is equivalent to the following system:

1

∆t
(un+1

r − un
r ,vr) + b∗(un+1

r ,un+1
r ,vr) + ν(∇un+1

r ,∇vr)

+ χ
(
un+1
r − ūn+1

r ,vr

)
= (f(tn+1),vr) (61)

ūn+1
r = Gr(u

n+1
r ). (62)

Equations (61)–(62) are equivalent to the following algebraic system:

1

∆t
Mun+1

r + (un+1
r )TBun+1

r + νAun+1
r + χM(un+1

r − un+1
r ) = fn+1

r
(63)

un+1
r = (M + δ2A)−1Mun+1

r , (64)

where Mij = (φi,φj), Aij = (φi,φj), and Bijk = b∗(φj ,φk,φi) are the reduced mass, stiffness,
and advection operators. f

r
is the forcing vector projected onto the reduced space, and δ is the

filter radius. The algebraic system (63)–(64) can be further expressed in a matrix-vector form:[
L −χM
0 I

] [
un+1
r

un+1
r

]
+

[
un+1
r

un+1
r

]T [
B 0
0 0

] [
un+1
r

un+1
r

]
=

[
fn+1
r

(M + δ2A)−1Mun+1
r

]
, (65)
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where L is a linear operator defined as L = 1
∆tM + νA+ χM. The nonlinear system (65) is of size

2r × 2r. However, using the relation, un+1
r = (M + δ2A)−1Mun+1

r , the nonlinear system (65) can
be simplified to the following r × r nonlinear system:

Lun+1
r − χM(M + δ2A)−1Mun+1

r + (un+1
r )TBun+1

r = fn+1
r

, (66)

where the low-dimensional (r × r) matrix (M + δ2A)−1 can be precomputed. We note that here
we assumed that the zeroth mode, φ0, is a zero velocity field, but the conclusion of simplifying the
2r × 2r nonlinear system to size of r × r still holds if one has a nontrivial zeroth mode.

We use the open-source code NekROM [64] to construct and solve the TR-ROM defined in (66)
for the two test problems described below. We mention that, in the current TR-ROM implementa-
tion, the convection term is not in the skew-symmetric form b∗. We note, however, that using the
standard trilinear form b does not have a significant impact on the code’s numerical stability.

4.2. 2D Flow Past a Cylinder

Our first test problem is the 2D flow past a cylinder at Reynolds number Re = 100, which is
a canonical test case for ROMs. The computational domain is Ω = [−2.5D, 17D] × [−5D, 5D],
where D is the cylinder diameter, and the cylinder is centered at [0, 0].

The reduced basis functions {φi}ri=1 are constructed by applying the POD procedure to K =
2001 snapshots {uk := u(x, tk)−φ0}Kk=1. The snapshots are collected in the time interval [500, 520]
(measured in convective time units,D/U , where U is the free-stream velocity), after the von Karman
vortex street is developed, with sampling time ∆ts = 0.01. The zeroth mode, φ0, is set to be the
FOM velocity field at t = 500. TR-ROM is simulated on the same time interval where the snapshots
are collected. Thus, we are in the reproduction regime. As the initial condition for the TR-ROM,
we choose the zero vector.

4.2.1. Rates of Convergence

We first investigate the rates of convergence of εL2 and εH1
0
with respect to Λr

L2 and Λr
H1

0
in the

reproduction regime. To this end, we fix N = 12, s = 0, k = 1, ∆t = 2× 10−3, δ = 0.04, χ = 0.2,
and vary r. Table 1 shows the magnitude of each term on the right-hand side of the theoretical
error estimate (32) with these parameter values. Thus, the theoretical error estimate (32) yields
the following rates of convergence:

εL2 ∼ O(Λr
L2), εH1

0
∼ O(Λr

H1
0
). (67)

Table 1: Magnitude of each term on the right-hand side of the theoretical error estimate (32) with respect to the
number of modes, r. Here N = 12, ∆t = 2× 10−3, δ = 0.04, and χ = 0.2. With these r values, the matrix 2-norm of
the POD stiffness matrix ∥Sr∥2 = O(1) – O(102).

r N−2s−2 ∆t2 χ2δ4 χ2N−2k−2 χ2Λr
L2

√
Λr
L2Λ

r
H1

0
N−2k ∥Sr∥2N−2k−2 Λr

H1
0

2 6.94e-03 4.00e-06 1.02e-07 1.93e-06 2.47e+01 6.04e+03 6.94e-03 1.47e-04 5.91e+04

5 6.94e-03 4.00e-06 1.02e-07 1.93e-06 4.81e+00 2.63e+03 6.94e-03 8.47e-04 5.73e+04

10 6.94e-03 4.00e-06 1.02e-07 1.93e-06 3.05e-02 1.43e+01 6.94e-03 2.30e-03 2.69e+02

20 6.94e-03 4.00e-06 1.02e-07 1.93e-06 4.19e-05 1.35e-02 6.94e-03 9.34e-03 1.73e-01
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The behavior of the TR-ROM approximation errors εL2 and εH1
0
with respect to Λr

L2 and Λr
H1

0
,

respectively, is shown in Figs. 1a–1b. In these plots, the ranges of values for Λr
L2 and Λr

H1
0
correspond

to the chosen range of values for r, i.e., from r = 2 to r = 8. The linear regression in the figures
yields the following TR-ROM approximation error rates of convergence with respect to Λr

L2 and
Λr
H1

0
:

εL2 ∼ O((Λr
L2)

0.9316), εH1
0
∼ O((Λr

H1
0
)0.9753). (68)

Thus, the theoretical rates of convergence (67) are numerically recovered.

(a)

10 1 10 2 10 3
10 -3

10 -2

10 -1

10 0

(b)

10 3 10 4 10 5
10 -1

10 0

10 1

Figure 1: 2D flow past a cylinder at Re = 100, TR-ROM with χ = 0.2 and δ = 0.04. (a) Behavior of the mean
squared L2 error εL2 with respect to Λr

L2 , and (b) behavior of the mean squared H1
0 error εH1

0
with respect to Λr

H1
0
.

4.2.2. Scaling of χ with respect to δ

In Section 3.1, a theoretical formulation for the time-relaxation constant χ (59) is derived. With
N = 12, s = 0, k = 1, and ∆t = 2 × 10−3, the terms ∆t2, N−2s−2, N−2k, ∥Sr∥2N−2k−2, (1 +
∥Sr∥2)∆t6, and A are relatively small. Hence, (59) can be further simplified as follows:

χ =

√√√√√√
(√

Λr
L2Λ

r
H1

0
+ Cs,rΛr

H1
0

)
(
Λr
L2 + δ2Λr

H1
0
+ δ4

) . (69)

Given an r value, Cs,r, Λ
r
L2 ,
√

Λr
L2Λ

r
H1

0
, and Λr

H1
0
are fixed. Hence, (69) indicates that the theoretical

χ, χtheory, scales like either δ
−1 or δ−2, depending on the δ value. That is, there exist two δ values,

δ1 and δ2, such that

χtheory ∼ O(1) ∀ δ < δ1, (70)

χtheory ∼ O(δ−1) ∀ δ1 ≤ δ < δ2, (71)

χtheory ∼ O(δ−2) ∀ δ2 ≤ δ. (72)

We investigate whether the scaling of the effective χ, χeffective, with respect to the filter radius, δ,
follows the scaling indicated by (69).

In Fig. 2, the behavior of χtheory in (69) and χeffective with respect to the filter radius, δ, is
shown for r = 2 and 3. χeffective is found by solving the TR-ROM and is defined to be the largest
χ value that yields an accuracy that is similar to (i.e., within 5% of) the accuracy for the optimal
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Figure 2: 2D flow past a cylinder at Re = 100. Behavior of χtheory (69) and χeffective with respect to the filter radius
δ for r = 2 and 3.

χ, which is defined to be the χ value that yields the smallest εH1
0
. Specifically, for each r value, we

consider 18 δ values from [0.02, 1]. For each δ value, 35 χ values from [0.001, 5] are considered, and
χeffective is selected from the 35 χ values.

The results show that, for both r values, χeffective scales like a constant for δ ≤ δ1, where δ1
varies with the r value. The linear regression in the figure indicates that χeffective scale like δ−1.56

for δ > δ1.
Next, we use two δ values to estimate the ratio between the effective χ and the theoretical χ

(69), and demonstrate that this ratio can be used with χtheory to predict χeffective at other δ values.
To this end, we compute the ratio between χtheory and χeffective at δ = 0.2 and 0.3, and take the
average of the two ratios. The extrapolated χ values at δ = 0.4, 0.5, 0.6, 0.7 are then computed
using χtheory and the average of the two ratios calculated above. From the results shown in Fig. 3,
the extrapolated χ is close to the effective χ, which illustrates the predictive capabilities of the
theoretical parameter scaling for χ in (69).

10 -1 10 0
10 -3

10 -2

10 -1

10 0

10 1

10 2

10 -1 10 0
10 -3

10 -2

10 -1

10 0

10 1

10 2

Figure 3: 2D flow past a cylinder at Re = 100. Behavior of the extrapolated χ with respect to the filter radius, δ, for
r = 2 and 3. Extrapolation is done by using the two values of χtheory (69) and χeffective at δ = 0.2 and δ = 0.3.

4.3. 2D Lid-Driven Cavity

Our next example is the 2D lid-driven cavity (LDC) problem at Re = 15, 000, which is a more
challenging model problem compared to the 2D flow past a cylinder. As demonstrated in [19], the
problem requires more than 60 POD modes for G-ROM to accurately reconstruct the solutions and
QOIs. A detailed description of the FOM setup for this problem can be found in [21].

The reduced basis functions {φi}ri=1 are constructed by applying POD to K = 2001 statistically
steady state snapshots {uk := u(x, tk)− φ0}Kk=1. The snapshots are collected in the time interval
[6000, 6040] with sampling time ∆ts = 0.02. The zeroth mode, φ0, is set to the FOM velocity field
at t = 6000.
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4.3.1. Rates of Convergence

We first investigate the rates of convergence of εL2 and εH1
0
with respect to Λr

L2 and Λr
H1

0
,

respectively. To this end, we fix N = 8, s = 0, k = 1, ∆t = 10−3, δ = 0.004, χ = 0.2, and vary r.
Table 2 shows the magnitude of each term on the right-hand side of the theoretical error estimate
(32) with these choices of parameters. Thus, the theoretical error estimate (55) yields the rates of

Table 2: Magnitude of each term on the right-hand side of the theoretical error estimate (32) with respect to the
number of modes, r. Here N = 8, ∆t = 10−3, δ = 0.06, and χ = 0.05. The matrix 2-norm of the POD stiffness
matrix ∥Sr∥2 = O(103) –O(104) with the considered r values.

r N−2s−2 ∆t2 χ2δ4 χ2N−2k−2 χ2Λr
L2

√
Λr
L2Λ

r
H1

0
N−2k ∥Sr∥2N−2k−2 Λr

H1
0

2 1.56e-02 1.00e-06 3.24e-08 6.10e-07 4.30e-03 2.59e+02 1.56e-02 2.86e-01 3.92e+04

4 1.56e-02 1.00e-06 3.24e-08 6.10e-07 2.26e-03 1.35e+02 1.56e-02 3.39e-01 2.01e+04

8 1.56e-02 1.00e-06 3.24e-08 6.10e-07 1.30e-03 7.72e+01 1.56e-02 3.77e-01 1.14e+04

16 1.56e-02 1.00e-06 3.24e-08 6.10e-07 5.63e-04 3.14e+01 1.56e-02 4.42e-01 4.38e+03

convergence in (67).
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Figure 4: 2D lid-driven cavity at Re = 15, 000, TR-ROM with χ = 0.05 and δ = 0.06. (a) Behavior of the mean
squared L2 error εL2 with respect to Λr

L2 , and (b) behavior of mean squared H1
0 error εH1

0
with respect to Λr

H1
0
. The

ranges of Λr
L2 and Λr

H1
0
for the TR-ROM correspond to r = 8 to r = 16.

The behavior of the TR-ROM approximation errors εL2 with respect to Λr
L2 and εH1

0
with

respect to Λr
H1

0
, respectively, are shown in Figs. 4a–4b. The ranges of Λr

L2 and Λr
H1

0
correspond to

r = 8 to r = 16. The linear regression in the figures indicates the following TR-ROM approximation
error rates of convergence with respect to Λr

L2 and Λr
H1

0
:

εL2 ∼ O((Λr
L2)

1.2352), εH1
0
∼ O((Λr

H1
0
)0.9181). (73)

Thus, the theoretical rates of convergence (67) are numerically recovered.

4.3.2. Scaling of χ with respect to δ

With N = 8, s = 0, k = 1 and ∆t = 10−3, the terms ∆t2, N−2s−2, N−2k, ∥Sr∥2N−2k−2,
(1 + ∥Sr∥2)∆t6, and A are relatively small. Therefore, (69) holds. Next, we investigate whether
the scaling of χeffective with respect to the filter radius, δ, follows the scaling in (69) for r =
4, 8, 12, and 16.

In Fig. 5, the behavior of χtheory in (69) and χeffective with respect to the filter radius, δ, is
shown for r = 4 and 16. The results for r = 8 and 12 are similar. χeffective is found by solving the
TR-ROM for different parameter values. Specifically, for each r value, we consider 28 δ values from
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Figure 5: 2D lid-driven cavity at Re = 15, 000. Behavior of χtheory (69) and χeffective with respect to filter radius, δ,
for r = 4 and 16.

[0.001, 1]. For each δ value, 30 χ values from [0.001, 1] are considered, and χeffective is selected from
the 30 χ values.

Similar to the 2D flow past a cylinder problem, the results show that χeffective scales like a
constant for certain δ ≤ δ1 for all considered r values, where δ1 varies with the r value. The linear
regression in the figure indicates that, for certain δ ≥ δ1, χeffective scales like δ−1.2 for r = 4, and
scales like δ−1.1 for r = 16. Similar scalings are observed in r = 8 and r = 12 cases. In addition,
for δ ≥ 0.07, the filtering is too aggressive such that Grur ≈ 0. Therefore, the relaxation term
(I−Gr)ur is dominated by the unfiltered solution, ur. Hence, we see that χeffective does not change
for δ ≥ 0.07.
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Figure 6: 2D lid-driven cavity at Re = 15, 000. Behavior of the extrapolated χ with respect to the filter radius, δ, for
r = 4 and 16. Extrapolation is done by using the two values of χtheory (69) and χeffective at δ = 0.02 and δ = 0.03.

Next, we use two δ values to estimate the ratio between χeffective and χtheory (69), and demon-
strate that this ratio can be used with χtheory to predict χeffective at other δ values. To this end,
we compute the ratio between χtheory and χeffective at δ = 0.02 and 0.03, and take the average of
the two ratios. The extrapolated χ values at δ = 0.04, 0.05, 0.06, and 0.07 are then computed using
χtheory and the average of the two ratios calculated above. From the results shown in Fig. 6, the
extrapolated χ is close to χeffective, which highlights the predictive capabilities of the theoretical
parameter scalings for χ in (69).

4.3.3. Scaling of χ with respect to r

We also investigate the scaling of χeffective with respect to the number of modes, r. First, we note
that since

√
Λr
L2Λ

r
H1

0
≤ Λr

H1
0
for r ∈ [2, 16] (compare columns 7 and 10 in Table 2) and Cs,r = ∥u0∥2,
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which does not depend on r, the χ in (69) can be further simplified to

χ =

√√√√√ Λr
H1

0(
Λr
L2 + δ2Λr

H1
0
+ δ4

) . (74)

We consider two types of filter radius for studying the scaling of χeffective with respect to r.
First, we consider a constant filter radius, which is independent of r. In this case, χtheory could

scale like
√

Λr
H1

0
/Λr

L2 , a constant related to δ, or
√

Λr
H1

0
, depending on the r value. That is, there

exist two r values, r1 and r2, such that

χtheory ∼ O

√Λr
H1

0

Λr
L2

 ∀ r < r1, (75)

χtheory ∼ O(1) ∀ r1 ≤ r < r2, (76)

χtheory ∼ O
(√

Λr
H1

0

)
∀ r2 ≤ r. (77)
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Figure 7: 2D lid-driven cavity at Re = 15, 000 with constant filter radius. Behavior of χtheory (74) and χeffective with
respect to number of modes r for δ = 0.0005 and 0.1.

We study the scaling of χeffective with respect to r for δ = 0.0005, 0.001 , 0.01, and 0.1. In
Fig. 7, the behavior of χtheory (74) and χeffective with respect to r is shown for δ = 0.0005 and 0.1.

For δ = 0.0005, χtheory scales like
√

Λr
H1

0
/Λr

L2 for the r values considered. Although
√

Λr
H1

0
/Λr

L2 is

a function of r, its dependency on r is weak. Therefore, χtheory behaves like a constant, as shown in
the plot. We find that χeffective also scales like a constant with respect to r. Specifically, χeffective is
100 for almost all r values, except for r = 8 and r = 24. For δ = 0.1, χtheory scales like a constant
for the r values considered. Although χeffective is not behaving like a constant, it fluctuates around
χ = 0.02. Similar behaviors are observed in δ = 0.001 and δ = 0.01 cases. We also note that
χeffective at r = 24 is much smaller compared to other χeffective values for all four δ values. A further
investigation is required to gain a better understanding of this behavior.

The second type of filter we consider is the energy-based filter radius δenergy proposed in [22]:

δenergy(r) =
(
Λh2/3 + (1− Λ)L2/3

)3/2
, where Λ =

r∑
i=1

λi/
R∑
i=1

λi, (78)

L is the characteristic length scale, and h is the mesh size. We emphasize that, in contrast with
the constant δ case, δenergy(r) is a function of r. Substituting (78) into (74), we find that Λr

H1
0
δ2 is
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Figure 8: 2D lid-driven cavity at Re = 15, 000 with the energy filter radius δenergy (78). Behavior of χtheory (74),
χeffective, and extrapolated χ with respect to number of modes, r. Extrapolation uses the first four values of χtheory

(74) and χeffective.

the largest term in the denominator for r = 2 to r = 100. Hence, (74) indicates that χtheory should
scale like δ−1 for r ∈ [0, 100]. In Fig. 8, the behavior of χtheory in (74) and χeffective with respect
to r is shown. With the curve defined as (450 δenergy(r))

−1, we clearly see that χeffective also scales
like δ−1 for the considered r values, just like χtheory.

Next, we use four r values to estimate the ratio between χeffective and χtheory (74), and demon-
strate that this ratio can be used with χtheory to predict χeffective at other r values. To this end, we
compute the ratio between χtheory and χeffective at r = 4, 6, 8, and 10, and take the average of the
four ratios. The extrapolated χ values at r = 12, 14, . . . , 36 are then computed using χtheory and
the average of the four ratio calculated above. From the results shown in Fig. 8, the extrapolated
χ is close to χeffective for all r values, except for r = 24. This highlights the predictive capabilities
of the theoretical parameter scalings for χ in (74).

4.4. Parameter Scaling in the Predictive Regime

In this section, we investigate if, in the predictive regime, χeffective still scales like δ
−1, given by the

theoretical parameter scalings for χ in (74). We note that the quantity εH1
0
= 1

M+1

∑M
k=0 ∥∇(PRu

k
N−

uk
r )∥2, which was used to determine χeffective in the reproduction regime (Sections 4.2–4.3), is in

general sensitive because it is based on the instantaneous error. Hence, in the predictive regime,
χeffective determined using εH1

0
could be sensitive to parameters and deteriorate the parameter scal-

ing. Thus, εH1
0
is not a suitable metric for determining χeffective in the predictive regime. Therefore,

to determine χeffective in both the reproduction and predictive regimes, we use an average metric,
i.e., the H1

0 error in the mean field, which is defined as

εavg
H1

0
≡ ∥⟨ur⟩t − ⟨uR⟩t∥2H1

0
, where ⟨ur⟩t :=

M∑
k=0

uk
r , and ⟨uR⟩t :=

M∑
k=0

PRu
k
N . (79)

The model problem is the 2D lid-driven cavity at Re = 15, 000, but with a two times larger time
interval, that is, [6000, 6080]. We consider a larger time interval compared to the previous examples
so that the quantity ⟨uR⟩t is robust with respect to time.

In Fig. 9, the behavior of χeffective in the predictive regime with respect to the filter radius, δ, is
shown for r = 4 and 16, along with χtheory in (69) and χeffective in the reproduction regime. Similar
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Figure 9: Behavior of χeffective in predictive regime with respect to filter radius, δ, for r = 4 and 16, along with χtheory

(69) and χeffective in reproduction regime.

results are obtained for r = 8 and r = 12. To determine χeffective in the reproduction regime, for
each r value, we simulate TR-ROM in the time interval [6000, 6080] with 19 δ values from [0.01, 1],
and 30 χ values from [0.001, 1]. For each δ value, χeffective in the reproduction regime is selected
to be the largest χ value that yields similar accuracy (i.e., within 5%) as that of the optimal χ,
which is defined to be the χ value that yields the smallest εavg

H1
0

in the reproduction regime, with

M = 2001 samples. To determine χeffective in the predictive regime, for each r value, we consider
the same parameter ranges for δ and χ as in the reproduction regime and simulate TR-ROM in a
time interval [6000, 6160], which is twice as large as the time interval in the reproduction regime.
χeffective in the predictive regime is selected similarly, but with M = 4001 samples, where the last
2000 samples are the data in the predictive regime.

The results show that χeffective in the reproduction regime scales like δ−1 for the range 0.01 ≤
δ ≤ 0.06. More importantly, the results show that χeffective in the predictive regime also scales like
δ−1 in the same range as in the reproduction regime. In addition, for a given δ value, we observe
that χeffective in the predictive regime has a similar magnitude as χeffective in the reproduction
regime.

5. Conclusions

In this work, we performed the first numerical analysis of the recently introduced time-relaxation
reduced order model (TR-ROM) [34]. Specifically, we proved unconditional stability in Lemma 3.1
and derived a priori error bounds in Theorem 3.1. In addition, in Section 3.1, we leveraged the a
priori error bounds to derive a formula for the time-relaxation parameter, χtheory, which indicates
the scaling of χ with respect to the reduced space dimension r and filter radius δ. A key feature
of our analysis is the coupling between the full order model (FOM) and the ROM, as our error
bounds include terms related to the FOM discretization, which are critical for developing robust
parameter scalings for the time-relaxation parameter, χ. In this study, we employed the spectral
element method (SEM) as the FOM, making this the first time that error bounds for SEM-based
ROMs have been proven.

In Section 4, we demonstrated that the error convergence rate in Theorem 3.1 and the time-
relaxation parameter χ scalings with respect to δ (69) are recovered numerically in two test prob-
lems: the 2D flow past a cylinder and 2D lid-driven cavity. In addition, we estimated the ratio
between the numerically found χ, denoted as χeffective, and χtheory at two δ values, and demon-
strated that this ratio can be used with χtheory to predict χeffective at other δ values. Furthermore,
for the 2D lid-driven cavity, we demonstrated that the χ scaling with respect to r (74) is recovered
numerically for both constant filter radius and energy-based filter radius [22]. Moreover, we showed
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that χtheory can be also used to predict χeffective at other r values. In Section 4.4, we demonstrated
that the χeffective scaling with respect δ in the reproduction regime is also observed in the predictive
regime. In particular, we showed that χeffective in the predictive regime has a similar magnitude as
χeffective in the reproduction regime for most δ values. This illustrates the practical value of the
new parameter scaling.

For future work, there are several promising research directions to explore. These include
performing numerical analysis (e.g., deriving a priori error bounds) for nonlinear filtering and
data-driven extensions of the new TR-ROM and other regularized ROMs. These a priori error
bounds could then be leveraged to determine new ROM parameter scalings. Finally, these scalings
could be tested in the predictive regime of challenging numerical simulations (e.g., turbulent channel
flow) to determine their range of applicability in practical settings.
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[54] B. Garćıa-Archilla, J. Novo, Pointwise error bounds in POD methods without difference quo-
tients, arXiv preprint, http://arxiv.org/abs/2407.17159 (2024).

[55] M. Germano, Differential filters of elliptic type, Phys. Fluids 29 (6) (1986) 1757–1758.

[56] P. Grisvard, Elliptic Problems in Nonsmooth Domains, SIAM, 2011.

[57] S. Kaya, C. C. Manica, Convergence analysis of the finite element method for a fundamental
model in turbulence, Math. Models Methods Appl. Sci. 22 (11) (2012) 1250033.

[58] J. Connors, Convergence analysis and computational testing of the finite element discretization
of the Navier–Stokes alpha model, Num. Meth. P.D.E.s 26 (6) (2010) 1328–1350.

[59] C. C. Manica, M. Neda, M. Olshanskii, L. G. Rebholz, Enabling numerical accuracy of Navier-
Stokes-α through deconvolution and enhanced stability, ESAIM Math. Model. Numer. Anal.
45 (2) (2011) 277–307.

26

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
http://arxiv.org/abs/2410.02673
http://arxiv.org/abs/2407.17159


[60] A. A. Dunca, M. Neda, L. G. Rebholz, A mathematical and numerical study of a filtering-
based multiscale fluid model with nonlinear eddy viscosity, Comput. Math. Appl. 66 (6) (2013)
917–933.

[61] S. C. Huang, A. Johnson, M. Neda, J. Reyes, H. Tehrani, A generalization of the Smagorinsky
model, Appl. Math. Comput. 469 (2024) 128545.

[62] S. Ingimarson, M. Neda, L. Rebholz, J. Reyes, A. Vu, Improved long time accuracy for pro-
jection methods for Navier-Stokes equations using EMAC formulation, Int. J. Numer. Anal.
Mod. 20 (2) (2023) 176–198.

[63] V. J. Ervin, W. J. Layton, M. Neda, Numerical analysis of filter-based stabilization for evolu-
tion equations, SIAM J. Numer. Anal. 50 (5) (2012) 2307–2335.

[64] K. Kaneko, P. Tsai, P. Fischer, NekROM, https://github.com/Nek5000/NekROM.

27

https://github.com/Nek5000/NekROM

	Introduction
	Notations and Preliminaries
	Spectral Element Method
	Galerkin Reduced Order Model (G-ROM)
	ROM filtering

	Stability and Error Bounds
	Parameter Scalings

	Numerical Results
	TR-ROM Computational Implementation
	2D Flow Past a Cylinder
	Rates of Convergence
	Scaling of  with respect to 

	2D Lid-Driven Cavity
	Rates of Convergence
	Scaling of  with respect to 
	Scaling of  with respect to r

	Parameter Scaling in the Predictive Regime

	Conclusions
	Acknowledgments

