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ABSTRACT

This work investigates the application of the Newton’s method for the numerical solution of a nonlinear
boundary value problem formulated through an ordinary differential equation (ODE). Nonlinear ODEs
arise in various mathematical modeling contexts, where an exact solution is often unfeasible due to
the intrinsic complexity of these equations. Thus, a numerical approach is employed, using Newton’s
method to solve the system resulting from the discretization of the original problem. The procedure
involves the iterative formulation of the method, which enables the approximation of solutions and
the evaluation of convergence with respect to the problem parameters. The results demonstrate that
Newton’s method provides a robust and efficient solution, highlighting its applicability to complex
boundary value problems and reinforcing its relevance for the numerical analysis of nonlinear systems.
It is concluded that the methodology discussed is suitable for solving a wide range of boundary value
problems, ensuring precision and stability in the results.

Keywords Newton’s method · Boundary value problems · Nonlinear ordinary differential equations · Numerical
solution.

1 Introduction

Ordinary differential equations (ODEs) play a central role in mathematical modeling, being used in fields ranging from
physics and engineering to biology and economics [1, 2]. In particular, boundary value problems for ODEs appear in
various applications, such as the description of heat transfer phenomena, fluid mechanics, and population growth [3].
However, the exact solution of these equations is not always possible, especially when the equation is nonlinear, which
requires numerical methods to obtain approximate solutions [4].

Among numerical methods, Newton’s method has been widely used due to its efficiency and rapid convergence,
especially in nonlinear systems [5]. In the context of nonlinear ODEs, it becomes a powerful tool for solving boundary
value problems by transforming the initial problem into a system of nonlinear equations, whose solution is iteratively
approximated [6]. This approach is particularly relevant in situations where the behavior of the solution is complex and
requires refinement of successive approximations.

The present work aims to apply Newton’s method to solve a nonlinear boundary value problem, based on the formulation
proposed by [4]. The differential equation addressed represents a typical example of a nonlinear problem, and
the boundary conditions impose additional challenges that require robust numerical strategies. Using an interval
discretization and iterative formulations, this study presents an approximate solution to the proposed problem, along
with a detailed analysis of the convergence and accuracy of the results.
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Thus, the objective of this work is to demonstrate the effectiveness of Newton’s method in solving nonlinear boundary
value problems, providing a practical approach and a theoretical basis that can be applied to a wide range of similar
problems. The analysis of the results obtained illustrates the potential of this method in providing stable and reliable
numerical solutions for complex ODEs, reinforcing its applicability and importance in the field of numerical analysis.

2 Newton’s Method

Newton’s method is a highly efficient iterative technique for solving nonlinear equations and finding the roots of such
functions. It is applicable to both single-variable functions and systems with multiple variables. The main idea is to
replace the nonlinear function with a local linear approximation to obtain a better estimate of the root.

2.1 Newton’s Method in One Dimension

For a single-variable function f(x), Newton’s method uses the tangent line to the curve of the function f at an initial
point x0, which should be relatively close to the true root α. The iterative formula to obtain the next approximation
xn+1 is given by:

xn+1 = xn −
f(xn)

f ′(xn)
.

In this case, f ′(xn) represents the derivative of f(x) evaluated at xn. This process approximates each subsequent point
through the tangent, allowing for rapid convergence towards the root α, provided that x0 is sufficiently close to it and
that f ′(xn) ̸= 0 in all iterations.

If x0 is far from α or if f ′(x0) is close to zero, the method may diverge, as illustrated in Figure 1. The method has a
quadratic convergence rate when x0 is chosen appropriately [7].

Figure 1: Failure of the Newton Method due to a poor initial point [7].

2.2 Newton’s Method for Nonlinear Systems

The concept of Newton’s method can be extended to solve systems of nonlinear equations, where we seek simultaneous
solutions for multiple functions of multiple variables. Consider a system with two nonlinear equations:

f1(x1, x2) = 0,

f2(x1, x2) = 0.

Newton’s method for this system begins with an initial estimate (x
(0)
1 , x

(0)
2 ). In each iteration, each function is

approximated by its tangent plane, and the solution of the resulting linear system provides the next approximation of
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the root. The vector formulation to obtain this new estimate is:

J(X(i))∆X(i) = −F(X(i)),

where J(X(i)) is the Jacobian matrix of the system, composed of the partial derivatives of the functions with respect to
the variables. In the case of two variables, the Jacobian matrix is:

J(X(i)) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
.

After solving this system for ∆X(i) = (∆x
(i)
1 ,∆x

(i)
2 ), we update the solution:

x
(i+1)
1 = x

(i)
1 +∆x

(i)
1 , x

(i+1)
2 = x

(i)
2 +∆x

(i)
2 .

This process is repeated until the vector F(X(i)) is close to zero or the variations in the variables are sufficiently small,
indicating convergence. For a system with n equations and n variables, the generalized notation is:

J(X)∆X = −F(X),

where J(X) is the n× n Jacobian matrix. The solution update is:

X(i+1) = X(i) +∆X(i).

This extension of Newton’s method to nonlinear systems is powerful, but it requires that the Jacobian matrix be
nonsingular and that the initial solution choice be close to the true value to ensure quadratic convergence [7].

As discussed, Newton’s method involves iteratively solving a system of nonlinear equations using linear approximations.
The process can be described by the following pseudocode:

Algorithm 1: Pseudocode for Newton’s Method for Nonlinear Systems
Input: F : The nonlinear function we want to solve
Input: JF : The function that calculates the Jacobian of F (can be empty)
Input: X0: The initial guess vector for the solution
Input: tol: The tolerance for the stopping criterion
Input: maxit: The maximum number of allowed iterations

1 Function Newton’s Method:
2 X← X0 ;
3 iter ← 1 ;
4 h← 10−6 // Small step for finite differences
5 while iter ≤ maxit do
6 if JF is empty then
7 J ← calculate Jacobian numerically using F , X, and h ;
8 else
9 J ← call function JF with X ;

10 ∆X← −J−1F (X) // Newton step
11 Xn ← X+∆X // Update the solution
12 err ← maximum absolute value of (Xn −X) // Calculate the error
13 if err ≤ tol then
14 return Xn // Convergence achieved
15 else
16 X← Xn ;
17 iter ← iter + 1 ;
18 Error: Newton’s method did not converge ;
19 return Last calculated solution Xn

3 Problem Definition

This study is based on the work of [4], which explores the solution of boundary value problems for nonlinear ordinary
differential equations. These problems are relevant in various applications, from modeling physical phenomena to
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engineering and material science. The complexity of nonlinear problems, particularly in the context of fixed boundary
conditions, requires robust numerical approaches to find reliable approximate solutions.

In this paper, we consider the following boundary value problem involving a nonlinear ordinary differential equation:

y′′ =
1

8
(32 + 2x3 − yy′), 1 ≤ x ≤ 3 (1)

The imposed boundary conditions are:

y(1) = 17, y(3) = 14.333333 (2)

This problem describes the relationship between the dependent variable y, its first derivative y′, and its second derivative
y′′, subject to specific values of y at x = 1 and x = 3. The nonlinear function of the derivative and the function
itself makes the analytical solution unattainable, motivating the application of numerical methods for a satisfactory
approximation.

To solve the problem, we choose to discretize the interval [1, 3] using a step size h = 0.1, which generates a sequence
of uniformly spaced points xi. This approach allows for the formulation of a system of nonlinear equations from the
discretization of the differential equation, which will then be solved iteratively using Newton’s method. The choice of
h = 0.1 is a compromise between accuracy and computational cost, ensuring that the resulting system is sufficiently
detailed to capture the solution’s dynamics while remaining computationally feasible.

4 Numerical Method

The numerical solution of the proposed boundary value problem is carried out using the interval discretization method
and an iterative approximation technique. The steps of the adopted method are detailed below.

4.1 Step 1: Interval Discretization

The first step consists of discretizing the interval [1, 3], where the value of x varies between 1 and 3. To do this, we
divide the interval into N + 1 = 20 subintervals of equal width, with a step size h = 0.1. This means that the distance
between two consecutive points xi and xi+1 will be 0.1. Each value xi is calculated by:

xi = a+ i× h, i = 0, 1, 2, . . . , 20 (3)

where a = 1 is the lower bound of the interval, and h = 0.1 is the step size. The resulting values of xi for each i are
presented in Table 1, which illustrates the discretization of the interval.

i xi

0 1.0
1 1.1
2 1.2
3 1.3
4 1.4
5 1.5
6 1.6
7 1.7
8 1.8
9 1.9

10 2.0
11 2.1
12 2.2
13 2.3
14 2.4
15 2.5
16 2.6
17 2.7
18 2.8
19 2.9
20 3.0

Table 1: Values of xi for the interval [1, 3] with h = 0.1

4



Newton’s Method Applied to Nonlinear Boundary Value Problems: A Numerical Approach

4.2 Step 2: Definition of Boundary Conditions

The boundary conditions for the problem are provided as values of y at the interval’s endpoints. In this case, we have:

w0 = 17 and w20 = 14.333333

These values are used as starting points for the numerical solution and will be applied in the iteration process.

4.3 Step 3: Initial Approximation

To start the iterative process, an initial approximation w(0) for the values of y at all discretized points xi must be defined.
The initial approximation is given by:

w(0) =



15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666
15.6666



t

(4)

The initial approximation for the values wi, with i = 1, 2, . . . , 19, was obtained from the average of the boundary
values w0 = 17 and w20 = 14.33, as defined by the boundary conditions.

4.4 Step 4: Definition of the Nonlinear System

The nonlinear system that describes the problem consists of 19 equations, which relate the values of wi to their
respective approximations. Each equation in the system F (w) = 0 has the general form:

5



Newton’s Method Applied to Nonlinear Boundary Value Problems: A Numerical Approach

F (w) =



2w1 − w2 + 0.01
(
4 + 0.33275 + w1(w2−17)

1.6

)
− 17 = 0

−w1 + 2w2 − w3 + 0.01
(
4 + 0.432 + w2(w3−w1)

1.6

)
= 0

−w2 + 2w3 − w4 + 0.01
(
4 + 0.5495 + w3(w4−w2)

1.6

)
= 0

−w3 + 2w4 − w5 + 0.01
(
4 + 0.686 + w4(w5−w3)

1.6

)
= 0

−w4 + 2w5 − w6 + 0.01
(
4 + 0.84375 + w5(w6−w4)

1.6

)
= 0

−w5 + 2w6 − w7 + 0.01
(
4 + 1.024 + w6(w7−w5)

1.6

)
= 0

−w6 + 2w7 − w8 + 0.01
(
4 + 1.22825 + w7(w8−w6)

1.6

)
= 0

−w7 + 2w8 − w9 + 0.01
(
4 + 1.458 + w8(w9−w7)

1.6

)
= 0

−w8 + 2w9 − w10 + 0.01
(
4 + 1.71475 + w9(w10−w8)

1.6

)
= 0

−w9 + 2w10 − w11 + 0.01
(
4 + 2 + w10(w11−w9)

1.6

)
= 0

−w10 + 2w11 − w12 + 0.01
(
4 + 2.31525 + w11(w12−w10)

1.6

)
= 0

−w11 + 2w12 − w13 + 0.01
(
4 + 2.662 + w12(w13−w11)

1.6

)
= 0

−w12 + 2w13 − w14 + 0.01
(
4 + 3.04175 + w13(w14−w12)

1.6

)
= 0

−w13 + 2w14 − w15 + 0.01
(
4 + 3.456 + w14(w15−w13)

1.6

)
= 0

−w14 + 2w15 − w16 + 0.01
(
4 + 3.90625 + w15(w16−w14)

1.6

)
= 0

−w15 + 2w16 − w17 + 0.01
(
4 + 4.394 + w16(w17−w15)

1.6

)
= 0

−w16 + 2w17 − w18 + 0.01
(
4 + 4.92075 + w17(w18−w16)

1.6

)
= 0

−w17 + 2w18 − w19 + 0.01
(
4 + 5.488 + w18(w19−w17)

1.6

)
= 0

−w18 + 2w19 + 0.01
(
4 + 6.09725 + w19(14.333333−w18)

1.6

)
− 14.333333 = 0



(5)

This system is derived from the discretization of the original differential equation, considering interactions between
adjacent points wi and the boundary conditions. The objective is to find a numerical solution that satisfies this system
of equations.

4.5 Step 5: Calculation of the Jacobian J(w)

The Jacobian J(w) of the nonlinear system is a matrix that describes the partial derivatives of F (w) with respect to
each component wi. This matrix is used in the Newton method to update the solution approximations. The Jacobian
matrix J(w) is structured as follows:

J(w) =



2 + 0.01(w2−17
1.6 ) −1 + 0.05( 18w1) 0 · · · · · · · · · · · · 0

−1− 0.05( 18w2) 2 + 0.01(w3−w1

1.6 ) −1 + 0.05( 18w2) 0 · · · · · · · · · 0
0 a32 a33 a34 0 · · · · · · 0
... 0

. . . . . . . . . 0 · · · 0
...

... 0
. . . . . . . . . 0 0

...
...

... 0
. . . . . . . . . 0

...
...

...
... 0

. . . . . . ai−1j

0 0 0 0 0 0 ai,j−1 aij


The Jacobian matrix is essential to the iterative process, as it is used to calculate the corrections needed for the wi values
in each iteration.
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5 Results

The iterative method was applied successively until the difference between consecutive iterations became sufficiently
small, indicating the solution’s convergence. The convergence criterion was set as ||w(k) − w(k−1)|| ≤ ϵ, where ϵ is a
predefined tolerance value, signifying that the solution achieved satisfactory accuracy. Table 2 displays the w(k) values
for each iteration k, until convergence was reached, with the condition ||w(4) − w(3)|| = 0 demonstrating that the w
values in successive iterations stabilized.

xi wi w(0) w(1) w(2) w(3) w(4)

1.0 w0 17.0000 17.0000 17.0000 17.0000 17.0000
1.1 w1 15.6666 16.7657 16.7605 16.7605 16.7605
1.2 w2 15.6666 16.5183 16.5135 16.5134 16.5134
1.3 w3 15.6666 16.2664 16.2589 16.2589 16.2589
1.4 w4 15.6666 16.0102 15.9974 15.9974 15.9974
1.5 w5 15.6666 15.7504 15.7299 15.7298 15.7298
1.6 w6 15.6666 15.4879 15.4578 15.4577 15.4577
1.7 w7 15.6666 15.2240 15.1830 15.1829 15.1829
1.8 w8 15.6666 14.9609 14.9084 14.9083 14.9083
1.9 w9 15.6666 14.7011 14.6376 14.6375 14.6375
2.0 w10 15.6666 14.4483 14.3751 14.3750 14.3750
2.1 w11 15.6666 14.2070 14.1267 14.1266 14.1266
2.2 w12 15.6666 13.9835 13.8994 13.8993 13.8993
2.3 w13 15.6666 13.7852 13.7019 13.7018 13.7018
2.4 w14 15.6666 13.6220 13.5444 13.5443 13.5443
2.5 w15 15.6666 13.5060 13.4392 13.4391 13.4391
2.6 w16 15.6666 13.4525 13.4010 13.4010 13.4010
2.7 w17 15.6666 13.4804 13.4475 13.4475 13.4475
2.8 w18 15.6666 13.6132 13.5999 13.5999 13.5999
2.9 w19 15.6666 13.8801 13.8843 13.8843 13.8843
3.0 w20 14.3333 14.3333 14.3333 14.3333 14.3333

Table 2: Iteration results for the value of wi

6 Conclusion

After applying the iterative method with the Jacobian matrix, an approximate solution to the boundary value problem
was obtained through successive iterations. The approximate values for wi across the discretized interval are given by
the sequence:
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w =



17.0000,
16.7605,
16.5134,
16.2589,
15.9974,
15.7298,
15.4577,
15.1829,
14.9083,
14.6375,
14.3750,
14.1266,
13.8993,
13.7018,
13.5443,
13.4391,
13.4010,
13.4475,
13.5999,
13.8843,
14.3333



t

(6)

Each value wi represents an approximation of y(xi), with xi = a + i × h and i = 0, 1, 2, . . . , N + 1, where h is
the spacing between discretized points. The Newton method, when applied to the system of discretized differential
equations, effectively converged to a solution for this boundary value problem, as demonstrated by the stabilization of
wi values in the final iterations.

Below, we present a graph illustrating the evolution of the vector w over the iterations. This graph visually demonstrates
how the values wi stabilize, reflecting the convergence of the method to the approximate solution.

Figure 2: Plot of the vector w over the discretized interval.
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