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Abstract

This article presents an ultraweak discontinuous Petrov–Galerkin (DPG) formulation of the
time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a
weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope
ansatz for the vector-valued electric and magnetic field components, factoring out an oscillatory
term of exp(−ikz) with a user-defined wavenumber k, where z is the longitudinal fiber axis and
field propagation direction. The resulting formulation is a modified system of the time-harmonic
Maxwell equations for the vectorial envelope of the propagating field. This envelope is less
oscillatory in the z-direction than the original field, so that it can be more efficiently discretized
and computed, enabling solution of the vectorial DPG Maxwell system for 1000× longer fibers
than previously possible. Different approaches for incorporating a perfectly matched layer for
absorbing the outgoing wave modes at the fiber end are derived and compared numerically. The
resulting formulation is used to solve a 3D Maxwell model of an ytterbium-doped active gain fiber
amplifier, coupled with the heat equation for including thermal effects. The nonlinear model
is then used to simulate thermally-induced transverse mode instability (TMI). The numerical
experiments demonstrate that it is computationally feasible to perform simulations and analysis
of real-length optical fiber laser amplifiers using discretizations of the full vectorial time-harmonic
Maxwell equations. The approach promises a new high-fidelity methodology for analyzing TMI
in high-power fiber laser systems and is extendable to including other nonlinearities.

Keywords: Time-harmonic Maxwell, DPG method, PML, Fiber amplifier, TMI

1 Introduction

Motivation. Optical fibers are electromagnetic waveguides that transmit light very efficiently
(i.e. with low losses) over long distances and are useful for a vast number of applications. Fiber
laser amplifiers are optical fiber devices designed for achieving highly coherent light sources with high
power outputs. The combination of high average powers and extremely high beam qualities make
fiber lasers an important technology in many industrial, defense, and scientific applications [31].
However, the efforts of power-scaling beam combinable fiber amplifiers have encountered roadblocks
in the form of nonlinear effects [1, 31] including the thermally-induced transverse mode instability
(TMI). TMI is characterized by a sudden reduction of quality and stability of the beam emitted by
a fiber laser system once a certain power threshold has been reached; this nonlinearity has revealed
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itself as the one of the strongest limitations for the average power scaling of current fiber laser
systems [32]. Modeling and simulation play a decisive role in understanding the TMI and other
detrimental nonlinear effects, finding mitigation strategies, and informing fiber architectures.

Literature. This paper is an extension of the work done in [38, 27, 23, 28]. Nagaraj et al. [38]
developed a 3D vectorial Maxwell model to simulate passive Raman gain amplification in an op-
tical fiber. Building on that framework, we added the ability to model the more common active
gain amplification through a rare-earth, lanthanide metal dopant in the fiber core region [27]; the
implementation of this fiber amplifier model was then extended to support large-scale numerical
simulations [23, 28].

The model is discretized with the discontinuous Petrov–Galerkin (DPG) finite element method
with optimal test functions [13]. As an ultraweak DPG formulation, the model can make use of
robust automatic hp-adaptive algorithms [9] and advanced solvers for wave propagation [43, 5]. The
computational expense for solving the vectorial Maxwell fiber amplifier model increases slightly more
than linearly with the number of wavelengths (which is proportional to the length of the waveguide)
due to the effect of numerical pollution [24, 33, 34, 3]. An efficient parallel implementation of the
model, using high-order discretization with fast integration techniques [36, 4], is able to simulate
thousands of wavelengths in an optical fiber amplifier [28]. Because of the short wavelength of the
light (O(µm)), however, these computations are limited to fiber lengths of only a few centimeters
when real-length fiber amplifiers are several meters long. Given the exceedingly large number of
wavelengths within a real-length fiber amplifier, it is computationally intractable to resolve the
wavelength scale with a full vectorial Maxwell model.

A common approach for fiber amplifier modeling is thus to reduce the complexity of the Maxwell
equations by introducing additional assumptions or approximations of the physics involved, leading
to simplified but computational efficient models such as coupled-mode-theory [37, 21] or beam
propagation models [19, 44, 48]. However, the variety of assumptions made in their derivations may
limit their ability to accurately capture some of the nonlinear optical phenomena in fiber amplifiers,
which motivates our work on developing Maxwell formulations for optical waveguides that enable
higher-fidelity simulations of fiber laser systems.

Contributions. The main contributions of this paper are: (1) derivation of a vectorial envelope
DPG formulation of the time-harmonic Maxwell equations that can be efficiently discretized and
solved inside a weakly-guiding optical fiber waveguide; (2) derivation and analysis of different ap-
proaches for implementing absorbing boundaries with a stretched coordinate perfectly matched layer
(PML) at the waveguide output; (3) application of the vectorial envelope DPG Maxwell formulation
to a fiber laser amplifier model that includes nonlinear gain and thermal effects via coupling to the
heat equation; and (4) numerical results of the fiber amplifier model showing the three regimes, sta-
ble, transition, and chaotic, of thermally-induced TMI nonlinearity. The contributions made in this
paper enable efficient computations of the propagating electromagnetic fields inside weakly-guiding
multi-mode optical waveguides. To the best of our knowledge, this is the first Maxwell model ca-
pable of solving for the full vectorial electromagnetic field in a real-length fiber laser amplifier and
the first vectorial Maxwell model capable of capturing the onset of the TMI phenomenon.

2 Background

Maxwell equations in a weakly-guiding step-index fiber. A cylindrical step-index glass
optical fiber waveguide, as depicted in Figure 1, consists of a cylindrical fiber core region of radius
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rcore centered in the fiber, surrounded by a homogeneous cladding region of radius rclad.1 Suppose
that the center of the waveguide is aligned with the z-axis, so that x, y are the transverse directions.
The material refractive index of the core (ncore) is slightly larger than that of the cladding (nclad),
i.e.,

n(r) =

{
ncore , r ≤ rcore,
nclad < ncore , rcore < r < rclad,

(1)

where r =
√
x2 + y2, so as to guide the light in the core region via total internal reflection. The

step-index fiber is called weakly-guiding if (ncore − nclad)/ncore ≪ 1.

L

PML

Laser

r

Figure 1: Illustration of a step-index fiber waveguide.

Let Ω := Ωtr × (0, L) denote the fiber domain, where Ωtr := {(x, y) : x2 + y2 < rclad} is the
transverse domain and L is the length of the waveguide. Let Γ := ∂Ω; we define the radial boundary,
i.e. the boundary of the transverse domain, Γtr := ∂Ωtr × (0, L), the fiber input Γin := Ωtr × {0},
and the fiber output Γout := Ωtr × {L}. The following discussion partially utilizes the arguments
in [23, 30, 22].

An optical fiber, primarily comprised of fused silica glass, is a non-magnetic and dielectric
medium [1, 47]. In the absence of free charges, the linear time-harmonic Maxwell equations describ-
ing the electromagnetic field propagating inside the fiber are given by:

∇× E = −iωµ0H, (2)
∇×H = iωεE, (3)

where E and H are the electric and magnetic field vectors, i =
√
−1, ω is the angular frequency, µ0

is the magnetic permeability in vacuum, and ε is the electric permittivity. At the radial boundary
(r = rclad), we assume perfect electrical conductor (PEC) boundary conditions (BCs); that is, the
tangential electrical field vanishes on Γtr. BCs at the fiber input Γin and fiber output Γout will be
specified later. The first-order system (2)–(3) can be reduced to a second-order form to obtain the
curl–curl formulation for the electric field:2

∇×∇× E − ω2µ0εE = 0. (4)

By applying the vector identity ∇×∇×E = ∇(∇ ·E)−∆E, the curl–curl equation (4) can be
simplified to a vectorial Helmholtz equation under the assumption that ∇(∇ · E) = 0:

∆E + ω2µ0εE = 0. (5)
1Note that the cladding is itself coated in one or more layers of polymer to protect the glass fiber.
2One can similarly derive the curl–curl formulation for the magnetic field and then continue with the same

arguments to arrive at an analogous eigenvalue problem for the transverse magnetic field components.
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Remark. (Vectorial Helmholtz formulations.) The assumption ∇(∇ · E) = 0, while common in
optical waveguide modeling, is not necessarily a good assumption. In particular, for the fiber amplifier
problem (see Section 5), when εE = ε0E + P , where ε0 is electric permittivity in vacuum, and
polarization P is used to model background polarization, gain polarization and thermal polarization,
one would have to assume that ∇(∇ · P ) = 0, which is not true in general.

LP modes. Assuming a guided wave propagating forward along the z-direction, the electric field
takes the form:

E(x, y, z) = E(x, y)e−ikz, (6)

where k is the propagation constant with real part Re{k} > 0.3,4 Using ansatz (6) for the Helmholtz
equation (5), we obtain a transverse Helmholtz equation for the field envelope:

(∆t + (ω2µ0ε− k2))E(x, y) = 0, (7)

where ∆t is the transverse part of the Laplace operator. Analysis of the corresponding eigenvalue
problem, (∆t + ζ2)Ψ = 0, where ζ2 ≡ ω2µ0ε − k2, with appropriate boundary conditions, yields a
spectrum of positive eigenvalues ζ2λ, and eigenmodes Ψλ, λ = 1, 2, . . .; guided modes are those for
which the corresponding propagation constant kλ is real-valued; otherwise, the mode is decaying
and called evanescent.

We define the cladding and core wavenumbers

kclad :=
ω

c
nclad and kcore :=

ω

c
ncore, (8)

respectively, where c = 1/
√
ε0µ0 is the speed of causality. Under the weakly-guiding condition, the

wave equation may be posed for the transverse electric field components:

Core:
[
∆t +

(
k2core − k2

)]{ Ex

Ey

}
= 0, (9)

Cladding:
[
∆t −

(
k2 − k2clad

)]{ Ex

Ey

}
= 0. (10)

The corresponding eigenvalue problem with appropriate boundary and core-cladding interface con-
ditions yields transverse core-guided modes ψλ that satisfy

kclad < |kλ| < kcore. (11)

These modes have two possible linear polarizations in the transverse directions: ex and ey.
They are therefore called LP modes. In cylindrical coordinates, they must satisfy the following
characteristic equation involving l-th order Bessel functions Jl and modified Bessel functions Kl

(cf. [30, Eqn. (8.128)]):

(ζrcore)J
′
l (ζrcore)

Jl(ζrcore)
=

(χrcore)K
′
l(χrcore)

Kl(χrcore)
, l = 0, 1, 2, . . . , (12)

3Note that backward traveling waves of the form E(x, y)e+ikz are, in principle, possible as well; they are usually
discussed in the context of resonant cavity problems. This implies that our convention for the time-harmonic Maxwell
equations (2)–(3) was to factor out e+iωt.

4When the wavenumber k is determined through the mode eigenproblem (7), it is also often referred to as the
mode propagation constant.
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as well as

(rcoreζ)
2 + (rcoreχ)

2 = r2core
ω2

c2
(n2core − n2clad) ≡ V 2, (13)

where
ζ2 =

(
k2core − k2

)
, χ2 =

(
k2 − k2clad

)
. (14)

V is called the normalized frequency or V -number, and NA := (n2core − n2clad)
1/2 is the fiber core

numerical aperture.

Table 1: Cutoff frequencies of lowest-order LP modes in a weakly-guiding step-index fiber. The fundamental
mode (LP01) has no cutoff and can propagate at any frequency.

Guided mode LP01 LP11 LP21,LP02 LP31 LP12 · · ·

Cutoff frequency Vc - 2.405 3.832 5.136 5.520 · · ·

Figure 2: Electric field magnitude of the lowest-order transverse core-guided LP modes in a weakly-guiding
step-index fiber. The LP01 mode is the fundamental mode (FM) and has no cutoff frequency. All other
LP modes are higher-order modes (HOMs) that can only propagate above their respective cutoff frequency.
Asymmetric HOMs such as LP11 or LP21 have multiple rotations. In a symmetric (i.e. not birefringent)
step-index fiber, these rotated modes all have the same cutoff frequency.

Given any suitable fiber parameters ncore, nclad, rcore, rclad, and frequency ω, for every l =
0, 1, 2, . . ., there are infinitely many solutions ζ, χ that satisfy (12) but only finitely many of these
may satisfy (13) as well. These are denoted ζlp, χlp, p = 1, 2, . . . , N . We find that only for l = 0,
there exists a solution for any V > 0. This fundamental mode (FM) is the LP01 mode, and it does
not have a cutoff frequency (i.e. a frequency Vc below which the mode cannot propagate). All other
LP modes are higher-order modes (HOMs) that can only propagate if the V -number is larger than
their respective cutoff frequency [47, §12-9]. These cutoff frequencies can be calculated for each
mode and are given in Table 1 for the lowest-order LP modes.

Table 2 shows the fiber parameters used for the numerical experiments throughout this paper.
With a V -number of 4.43, only four core-guided modes can propagate in the fiber: LP01, LP11,
LP21, and LP02. Figure 2 depicts the transverse profile of the (normalized) electric field magnitude
of these LP modes.
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Table 2: Step-index fiber parameters

Symbol Description Value Unit

rcore Core radius 12.7 µm
rclad Cladding radius 127 µm
ncore Refractive index in fiber core 1.4512 -
nclad Refractive index in fiber cladding 1.4500 -
NA Core numerical aperture 0.059 -
λ Wavelength 1 064 nm
V (ω) Normalized frequency 4.43 -

Definitions and notation. For a complex-valued quantity a ∈ C, ā denotes the complex conju-
gate of a. Let (·, ·) and ∥ · ∥ respectively denote the standard L2 inner product (antilinear in the
second argument) and associated norm in the Hilbert space L2(Ω). The notation y ∈ L2(Ω) may
refer to a function y with a single scalar-valued component in L2(Ω) or, if y has multiple components
y = (y1, y2, . . . , yd)

T , each component yi ∈ L2(Ω), i = 1, 2, . . . , d. We define the space

H(curl,Ω) :=
{
q : Ω → C3 : q ∈ L2(Ω),∇× q ∈ L2(Ω)

}
. (15)

Let Th denote a suitable finite element triangulation of Ω with mesh skeleton Γh. The use of
discontinuous test functions necessitates an element-local representation of the H(curl,Ω) space:

H(curl, Th) :=
{
q : Ω → C3 : q|K ∈ H(curl,K) ∀K ∈ Th

}
⊃ H(curl,Ω). (16)

Analogously, the notation ∇h× refers to an element-wise interpretation of the operator ∇×.
Lastly, we must introduce notation related to unknowns defined on the mesh skeleton Γh. In

particular, the trace space on the mesh skeleton is defined through element-wise traces of globally
conforming functions:

H−1/2(curl,Γh) := γtH(curl,Ω), (17)

where, denoting the outward unit normal by n and the tangential component qt := −n× (n× q),

γtq :=
∏

K∈Th

γKt (q|K) =
∏

K∈Th

qt|∂K , q ∈ H(curl, Th). (18)

The mesh skeleton term ⟨·, ·⟩Γh can then be interpreted as a sum of element-wise duality pairings on
element boundaries between the tangential trace qt|∂K ∈ H−1/2(curl, ∂K) and the rotated tangential
trace n× Ět|∂K ∈ H−1/2(div, ∂K):

⟨n× Ě, q⟩Γh :=
∑
K∈Th

⟨n× Ět, qt⟩∂K , (19)

where Ě ∈ H−1/2(curl,Γh) and q ∈ H(curl, Th); see [8, Lem. 2.2] and [11] for details.5

5Instead of the conventional “hat”-notation for traces (such as Ê) used in the DPG method, we use Ě to avoid a
notational conflict with the Fourier transform that is denoted by ·̂ in the next section.

6



3 Vectorial Envelope DPG Formulation

Mode beat. The linear waveguide analysis of the previous section showed how guided waves
inside the weakly-guiding step-index fiber fall into a discrete set of LP modes determined by the
waveguide characteristics and frequency of the light. Given a specific fiber configuration, each LP
mode has its own characteristic wavenumber klp. With the fiber parameters from Table 2, the
wavenumbers for the propagating modes are

{k01, k11, k21, k02} ∼= {8.56833, 8.56630, 8.56380, 8.56322} µm−1. (20)

The differences in the modes’ propagation constants lead to a distinctive modal interference pattern
for each pair of modes, referred to as the mode beat. Let ∆klp := k01 − klp. Then,

{∆k11,∆k21,∆k02} ∼= {2.03, 4.53, 5.11} mm−1. (21)

It follows that the corresponding number of wavelengths per mode beat length between the FM and
each HOM respectively is

k01
{∆k11,∆k21,∆k02}

∼= {4220.85, 1891.46, 1676.78}, (22)

which equates to a mode beat length of

2π

∆klp
∼= {3.10, 1.39, 1.23} mm. (23)

The mode beat can be nicely visualized by plotting the irradiance, given by I = |Re{E × H̄}|
where Re{·} denotes the real part of the complex-valued vector, along the longitudinal direction
of the fiber, as shown for various combinations of propagating modes in Figure 3. As indicated by
(22)–(23) and the plots in Figure 3, the mode beat occurs on a length scale approximately three
orders of magnitudes longer (O(mm)) than the wavelength (O(µm)).

Envelope ansatz. The similarity of the LP mode propagation constants in the weakly-guiding
step-index fiber, implying the relatively long mode beat length as compared to the wavelength of
the light, motivates the following envelope ansatz for the time-harmonic Maxwell equations:

E(x, y, z) = E(x, y, z)e−ikz, (24)

H(x, y, z) = H(x, y, z)e−ikz, (25)

where k ≥ 0 is the envelope wavenumber, and E and H are the electric and magnetic field envelopes.
At this point, it is important to emphasize the difference between the guided wave assumption

(6) that postulates a fixed longitudinal wavenumber k for the guided field envelope E(x, y) and
the envelope ansatz (24) that makes no assumptions for the envelope E(x, y, z). In (24)–(25), the
vectorial envelopes E and H are still functions of (x, y, z).

Effectively, the factor e−ikz in the envelope ansatz re-centers E and H in the frequency domain
(via the Fourier transform with respect to z) as compared to E and H such that

Fz→k{E} =: Ê(k) = Ê(k + k) = Fz→k

{
Ee−ikz

}
, (26)

where F is the Fourier transform. This re-centering in the frequency domain is portrayed in Figure 4:
the frequencies of the original field occur within the bandwidth kclad < k < kcore (cf. Figure 4a);
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Mode beat between the LP01 and LP11 modes.

Mode beat between the LP01 and LP21 modes.

Mode beat between the LP01 and LP02 modes.

Figure 3: Irradiance plotted in a longitudinal slice (normal to the y-axis) illustrating the mode beat between
the FM and the HOMs. The modal interference pattern oscillates at a much longer length scale (O(mm))
than the optical wavelength (O(µm)).
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FM

HOMs

(a) Frequency distribution of the original field E (not to scale)

FM

HOMs

(b) Frequency distribution of the vectorial envelope E (not to scale)

Figure 4: The cost of discretization for resolving the frequencies (spatially in z) of the original propagating
field E, illustrated in (a), is proportional to the maximum frequency O(kcore); the envelope ansatz shifts the
frequencies by the envelope wavenumber k, re-centering them nearer the zero frequency (k = 0), as portrayed
in (b), thereby reducing the cost of discretization to the maximum frequency of the envelope which is at
most O(kcore − kclad). In the weakly-guiding fiber, this frequency shift reduces the maximum frequency by
a factor proportional to kcore/(kcore − kclad) = O(1000).

the envelope ansatz shifts the frequencies, re-centering them nearer the zero frequency (k = 0), so
that they occur within the bandwidth of kclad − k < k < kcore − k (cf. Figure 4b).

Finite element discretizations are usually dependent on satisfying the Nyquist stability criterion,
implying that all propagating wave frequencies must be “resolved” to a certain extent in order to
have a stable discretization.6 Typically, this requires a mesh where the element size is on the order
of one wavelength or smaller. By the Nyquist criterion, the cost of discretization is proportional to
the highest frequency (or equivalently the total number of wavelengths).7 Then, by choosing k in
the envelope ansatz (24)–(25) close to the effective wavenumber of the propagating fields E and H,

6The DPG method provides a stable discretization even if the Nyquist stability criterion is not satisfied; however,
accurate solution still requires that the wave is sufficiently resolved [43].

7In fact, the computational cost to obtain an accurate and stable solution may increase even more than linearly
with the frequency due to the effect of numerical pollution [3].
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such that the respective envelopes E and H are re-centered nearer the zero frequency, the numerical
requirements to resolve E and H are significantly reduced.8

The fact that we are considering laser light implies, by definition, that the optical field has a high
degree of spatial (and temporal) coherency, which implies that the field is not broad in frequency
space (k). In particular, the propagating field inside the weakly-guiding step-index fiber is comprised
of guided LP modes that have similar propagation constants (which is why the mode beat length
(2π/∆klp ∼ O(mm)) is several thousand wavelengths). Thus, if the envelope wavenumber k is
chosen to be the same as the FM propagation constant, the HOM field envelopes will oscillate in z
over length scales of their respective mode beat lengths. The cost of discretizing the envelope may
therefore be up to three orders of magnitude lower than a discretization of the original fields.9

Remark. (Slowly varying envelope approximation.) It is worth noting that this approach of in-
troducing the envelope ansatz with a propitiously chosen wavenumber k is somewhat similar to the
classic slowly varying envelope approximation (SVEA) used within the optics field [45, §3.3]. The
key idea is that the envelope (field amplitude) is varying at a rate far slower than some pertinent
frequency. The SVEA uses this fact to neglect specific terms from the optical field governing equa-
tions, resulting in a reduced, yet viable, model. Indeed, many other models use SVEAs, including the
aforementioned coupled-mode-theory TMI models [37, 21]. Nonetheless, it is important to under-
stand that our methodology does not omit nor neglect terms from the governing equations; it is not
an approximation. Rather, as will be seen from our results, the Maxwell envelope ansatz (24)–(25)
focuses the model around the relevant spatial scales of the mode beat lengths.

While the idea of the envelope ansatz (24)–(25) is clearly appealing with regard to the compu-
tational efficiency of a step-index fiber model, it remains to demonstrate that this ansatz yields a
well-posed formulation of the time-harmonic Maxwell problem (2)–(3).

The following identities are needed for deriving the envelope equations:

∇× (Ee−ikz) = e−ikz(∇× E− ikez × E), (27)

ez × E = (−Ey,Ex, 0)
T , (28)

ez × ez × E = (−Ex,−Ey, 0)
T , (29)

∇× ez × E = (−Ex,z,−Ey,z,Ex,x + Ey,y)
T , (30)

ez ×∇× E = (Ez,x − Ex,z,Ez,y − Ey,z, 0)
T , (31)

where E = (Ex,Ey,Ez)
T , and ez = (0, 0, 1)T is the unit vector in z-direction. The vectorial envelope

formulation is obtained by applying the identities (27)–(31) to the first-order system (2)–(3) with
the envelope ansatz (24)–(25), which yields a modified Maxwell system given by:

∇× E− ikez × E = −iωµ0H, (32)
∇× H− ikez × H = iωεE. (33)

Analogous to (4), a second-order envelope formulation can be derived using the following identity:

∇×∇× (Ee−ikz) = e−ikz(∇×∇× E− ik∇× ez × E− ikez ×∇× E− k2ez × ez × E), (34)

yielding the curl–curl envelope formulation:

∇×∇× E− ik∇× ez × E− ikez ×∇× E− k2ez × ez × E− ω2µ0εE = 0. (35)

In the remainder of the paper, we will limit our discussions to the first-order system (32)–(33).
8Note that if k were chosen not similar to the effective wavenumber, then the envelopes E and H could be just as

oscillatory as the fields E and H, respectively, rendering the ansatz valid but useless.
9In correspondence with the Nyquist criterion, we assume that the cost of discretization increases roughly linearly

with the highest frequency of the envelope.
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Ultraweak DPG formulation. The discontinuous Petrov–Galerkin (DPG) method [13] yields a
pre-asymptotically stable discretization. The built-in stability properties of the method come at the
expense of computing optimal test functions [12]. In practice, this requires the use of discontinuous
test spaces leading to the introduction of new unknowns on the mesh skeleton. For a detailed de-
scription of the method in general, we refer to [13, 20] and references therein; for DPG discretization
of time-harmonic Maxwell problems, see [8, 38, 23].

The envelope operator A : L2(Ω) ⊃ D(A) → L2(Ω) corresponding to the vectorial envelope
Maxwell formulation (32)–(33) is given by:

Au =

[
−iωε (∇×−ikez×)

(∇×−ikez×) iωµ0

] [
E
H

]
, (36)

whereD(A) is the domain of the operator incorporating BCs. The corresponding L2 adjoint operator
A∗ : L2(Ω) ⊃ D(A∗) → L2(Ω) is given by:

A∗v =

[
−iωε (∇×+ikez×)

(∇×+ikez×) iωµ0

] [
F
G

]
, (37)

where the test space V := D(A∗) is equipped with the scaled adjoint graph norm:

∥v∥2V := ∥A∗v∥2 + α2∥v∥2

= the usual terms10 + the envelope terms

= ∥∇ × G− iωεF∥2 + ∥∇ × F+ iωµ0G∥2 + α2(∥F∥2 + ∥G∥2)
+ (∇× G− iωεF, ikez × G) + (ikez × G,∇× G− iωεF) + ∥ikez × G∥2

+ (∇× F+ iωµ0G, ikez × F) + (ikez × F,∇× F+ iωµ0G) + ∥ikez × F∥2,

(38)

and α ≥ 0 is a scaling coefficient.
The ultraweak formulation of the Maxwell envelope problem (32)–(33) is obtained by posing the

problem11 {
u ∈ D(A),
Au = f,

(39)

in variational form, then integrating by parts both equations and passing all derivatives to the test
functions: {

u ∈ L2(Ω),
(u,A∗v) = (f, v), v ∈ V.

(40)

As previously mentioned, in practice the test spaces are broken in the ultraweak DPG formula-
tion to localize the computation of the optimal test functions. This has two important implications:
1) the test norm (38) must be localizable, it thus requires a scaling coefficient α > 0; and 2) ad-
ditional unknowns ǔ = (Ě, Ȟ)T are introduced on the mesh skeleton (see [8, 23] for details). The
broken ultraweak formulation of the vectorial envelope first-order system (32)–(33) is given by:

E,H ∈ L2(Ω), Ě, Ȟ ∈ H−1/2(curl,Γh),

(E,∇h × F) + ⟨n× Ě,F⟩Γh
+ (E, ikez × F) + (H, iωµ0F) = 0, F ∈ H(curl, Th),

(H,∇h × G) + ⟨n× Ȟ,G⟩Γh
+ (H, ikez × G)− (E, iωεG) = 0, G ∈ H(curl, Th),

(41)

with suitable boundary conditions imposed on the tangential electric field Ě.
10Scaled adjoint graph norm for the standard ultraweak Maxwell problem (without the envelope ansatz).
11Note that f = 0 in the waveguide problem in the absence of free charges or impressed currents.
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Waveguide stability analysis. The stability of the ultraweak formulation for the Maxwell
waveguide problem is discussed in [33, 15]. The first paper [33] considers a homogeneous waveguide
with PEC BCs on Γin and Γtr, and a nonlocal Dirichlet-to-Neumann operator that realizes outgoing
waves at Γout.12 The second paper [15] extends the stability result to non-homogeneous waveguides
such as the step-index fiber waveguide.13

The main result of [33, 15] is the dependency of the stability constant on the waveguide length L.
In particular, the boundedness-below constant cb of the time-harmonic Maxwell operator A corre-
sponding to (2)–(3) is shown to depend linearly upon the waveguide length L:

∥Au∥ ≥ c0
L︸︷︷︸

=:cb

∥u∥, (42)

where u = (E,H)T , and constant c0 > 0 does not depend on L.
For the ultraweak formulation with the adjoint graph test norm, the inf–sup constant γ depends

upon boundedness-below constant cb and the scaling coefficient α [13]:

∥Au∥ ≥ cb∥u∥, u ∈ D(A)

∥v∥2V = ∥A∗v∥2 + α2∥v∥2

}
⇒ γ ≥

[
1 +

(
α

cb

)2
]−1/2

. (43)

The (ideal) DPG method inherits the stability of the continuous problem:14,15

∥u− uh∥2︸ ︷︷ ︸
L2-error

+ ∥ǔ− ǔh∥2Ǔ︸ ︷︷ ︸
trace error

≤

[
1 +

(
α

cb

)2
]

︸ ︷︷ ︸
stability constant

{
inf

wh∈Uh

∥u− wh∥2︸ ︷︷ ︸
field BA error

+ inf
w̌h∈Ǔh

∥ǔ− w̌h∥2Ǔ︸ ︷︷ ︸
trace BA error

}
, (44)

where ǔ = (Ě, Ȟ)T , and ∥ · ∥Ǔ denotes an appropriate minimum energy extension norm for the
traces (see [8] for details).

As the waveguide length L increases, the loss of stability can thus be countered by inversely
proportionally scaling coefficient α in the test norm.16 As shown in [33, Fig. 1], choosing the right
scaling coefficient has a significant impact on the accuracy of the method, which helps to reduce
the cost of the discretization in practice.

With the stability of the standard Maxwell waveguide problem established, the stability of the
envelope formulation (32)–(33) follows by a simple argument [33, Lem. 2.2]. Recall that the envelope
operator A, given by (36), is defined as follows:

Au := eikzA(e−ikzu). (45)

Then, using (42),

∥Au∥ = ∥eikzA(e−ikzu)∥ = ∥A(e−ikzu)∥ ≥ cb∥e−ikzu∥ = cb∥u∥, (46)

implying
∥Au∥ ≥ cb∥u∥ ⇔ ∥Au∥ ≥ cb∥u∥. (47)

Therefore, the envelope operator A is bounded below if and only if the original operator A is bounded
below, and the corresponding boundedness-below constants are identical.

12The implementation of absorbing BCs is discussed in the next section.
13A third paper considers impedance BCs on one side of the transverse domain for an acoustic waveguide (necessary

for modeling loss in bent waveguides) [14].
14The practical DPG method only approximates optimal test functions; however, the loss of stability can be

controlled by a Fortin operator [20, 39].
15BA error refers to the best approximation error.
16In practice, the limit for scaling α inversely proportionally is usually determined by round-off errors.
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4 Absorbing Boundary Conditions

The numerical simulation of the fiber waveguide is performed in the truncated computational domain
Ω of finite length L. At the fiber output Γout, where the light exits the optical fiber, it is important to
avoid unrealistic reflections of the wave that may be caused by imposing (artificial) BCs. Absorbing
BCs are designed to eliminate or at least mitigate this issue.

Impedance BC. The impedance BC relates the tangential electric and magnetic field unknowns
via an impedance relation at Γout. The enforced impedance relation is of the following form:

Ht =
1

Zimp
ez × Et, (48)

where Zimp is the wave impedance which depends on the mode wavenumber and other parameters.
From the envelope ansatz (24)–(25), it is easy to see that the impedance relationship (48) then

also holds for the corresponding envelopes:

Ht =
1

Zimp
ez × Et. (49)

In other words, the impedance BC is easily adapted to the envelope formulation. In the ultraweak
DPG setting (41), the impedance BC (49) is realized using the existing trace unknowns Ě and Ȟ.17

First-order absorbing BCs such as (48) are simple to implement and work sufficiently well for
many use cases [18]. In waveguide problems, they can be used to efficiently model single-mode
propagation. However, in the context of multi-mode propagation, such as the simulation of a
weakly-guiding step-index fiber with a V -number greater than 2.405 (cf. Table 1), or the nonlinear
fiber amplifier problem discussed in the next section, it is not sufficient to impose an impedance BC
through an impedance relation like (48).

Stretched coordinate PML. An effective method for absorbing the propagating wave at the
fiber output is the perfectly matched layer (PML). PMLs, first introduced in [6], are a popular tool
in the finite element simulation of wave propagation phenomena in unbounded domains (see [10, 7,
35] and references therein); more recently, stretched coordinate PMLs have been extended to the
DPG methodology [2, 38, 42].

In the fiber waveguide domain (illustrated in Figure 1), the coordinate stretching is implemented
by defining a (uniaxial) complex stretching map:

R3 ∋ (x, y, z) −→ (x, y, z̃) ∈ C3, (50)

where

z̃ =

{
z , if 0 < z < l,
z − if(z, ω) , if l ≤ z < L,

(51)

and f(z, ω) > 0 is the stretching function.18

The complex coordinate stretching is designed to cause exponential decay of an outgoing (k > 0)
guided wave of the form Ee−ikz. Now suppose the envelope ansatz (24) used wavenumber k ≤ keff

17The functional setting on the impedance boundary is not trivial; see [11] for details.
18For example, f(z, ω) = (C/ω)((z − l)/(L− l))3, where constant C > 0.
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where the original field E propagated with effective wavenumber keff .19 Then, applying the complex
coordinate stretching to the field envelope E yields:

E ∼ e−i(keff−k)z̃ =

{
e−i(keff−k)z , if 0 < z < l,

e−i(keff−k)ze−(keff−k)f , if l ≤ z < L.
(52)

Inside the PML region, the exponential decay factor of the field envelope is proportional to (keff−k)
which may be arbitrarily small (or zero if keff = k). If indeed keff = k (constant envelope), the
complex coordinate stretching has no effect. The PML needs to be carefully designed to work
effectively with the envelope formulation. We consider two different approaches.

PML envelope formulation 1. The first approach follows trivially from (52). If k̃ := keff−k > 0

is bounded away from zero, then the field envelope decays exponentially, |E| ∼ e−k̃f , inside the
PML region. The stretching function f should be scaled proportional to keff/k̃. The stretched
coordinate PML then works as is, assuming that the PML region is long enough in z (typically
several oscillations of the wave).20

Let J denote the (diagonal) Jacobian corresponding to the (uniaxial) complex stretching defined
in (50)–(51), J = diag(1, 1, ∂z̃/∂z). Then, after applying the complex-coordinate stretching to
the envelope formulation (32)–(33) and using Piola transforms for pull-backs to regular Cartesian
coordinates (see [2] for details), the strong form of the pulled-back equations is:

|J |−1J∇× E− ikez × J−TE = −iωµ0J−TH, (53)

|J |−1J∇× H− ikez × J−TH = iωεJ−TE. (54)

Note that due to uniaxial stretching, the Jacobian J has no effect on the rotated components,

ez × J−TE = ez × E. (55)

We multiply both equations (53)–(54) with |J |J−1; the envelope PML operator and the correspond-
ing L2 adjoint operator are then respectively given by

Au =

[
−iω|J |J−1εJ−T (∇×−ik|J |ez×)

(∇×−ik|J |ez×) iω|J |J−1µ0J
−T

] [
E
H

]
(56)

and

A∗v =

[
−iω|J |J−1εJ−T (∇×+ik|J |ez×)

(∇×+ik|J |ez×) iω|J |J−1µ0J−T

] [
F
G

]
. (57)

Let a := iω|J |J−1εJ−T , b := ik|J |, c := iω|J |J−1µ0J
−T , and (FR,GR)

T := (ez × F, ez × G)T .
For the ultraweak formulation, the scaled adjoint graph test norm with the PML, defined analogous
to (38), is now given by:

∥v∥2V = the usual terms21 + the envelope terms

= ∥∇ × G− āF∥2 + ∥∇ × F+ c̄G∥2 + α2(∥F∥2 + ∥G∥2)
+ (∇× G− āF, b̄GR) + (b̄GR,∇× G− āF) + ∥b̄GR∥2

+ (∇× F+ c̄G, b̄FR) + (b̄FR,∇× F+ c̄G) + ∥b̄FR∥2.

(58)

19In the multi-mode step-index fiber waveguide, keff ∈ [kclad, kcore] (cf. Figure 4a).
20Here, the wave propagates as e−ik̃z.
21Adjoint graph norm for ultraweak Maxwell with PML without the envelope ansatz.
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Figure 5: Envelope PML formulation 1: single-mode propagation in a step-index fiber waveguide of about
0.7 mm length (∼ 1000 wavelengths). Using an envelope wavenumber of k = 8.5 µm−1, somewhat smaller
than the effective wavenumber keff = 8.56833 µm−1 of the propagating LP01 mode, the envelope is slowly
varying along the z direction (ca. 125 slower than the original field). Inside the PML region (starting at z =
0.384 mm and stretching about three envelope beats), the slowly oscillating envelope decays exponentially.

In practice, it is critical to guarantee a sufficiently large k̃ for the PML to work. This can be
ensured by properly choosing k in the envelope ansatz (24)–(25). For example, consider the LP
modes in the weakly-guiding step-index fiber. For the previous fiber configuration (Table 2), the
ansatz is chosen based on the mode wavenumbers:

k < keff ∈ {k01, k11, k21, k02} ∼= {8.56833, 8.56630, 8.56380, 8.56322} µm−1. (59)

Suppose we choose k = 8.5 µm−1; then, k̃ = keff − k ∈ {68.33, 66.30, 63.80, 63.22} mm−1, yielding
an envelope beat length of keff/k̃ ∼= {125.40, 125.37, 125.33, 125.32}. That is, the envelope oscillates
in z approximately 125 slower than the original field.

Figure 5 depicts the transverse electric and magnetic field components of the vectorial envelope
for the (x-polarized) LP01 mode along the fiber longitudinal (z-)axis in a fiber of approximately
1000 wavelengths. The envelope, oscillating about 125 more slowly than the original field, decays
exponentially once it enters the PML region (z ≥ l = 0.384 mm). For such a short fiber section,
used here for illustrative purposes, the PML region consists of nearly half the domain (ca. three
beats of the envelope).

The advantage of this first PML approach is that it is relatively easy to implement. It uses one
consistent envelope ansatz and PML formulation for the entire domain, and the PML domain can
be discretized in a similar way to the rest of the domain.22 However, using an envelope ansatz with
a wavenumber k that is smaller than the effective wavenumber keff , the corresponding electric and
magnetic field envelopes are more oscillatory (and thus more expensive to discretize) than strictly
necessary. Recall that the minimum mode beat length in this fiber configuration is more than 1000

22Using higher-order elements or a finer mesh resolution inside the PML region can still be advantageous for
optimizing the PML’s performance by reducing numerical errors that can cause artificial reflections of the wave.
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wavelengths (cf. (22)). Ideally then, the envelope should be roughly three orders of magnitude
cheaper to discretize than the original field.

PML envelope formulation 2. Our second approach addresses this inefficiency of the first PML
formulation by choosing different envelope wavenumbers for the domain of interest Ωc := Ωtr× (0, l)
and the PML region ΩPML := Ωtr × (l, L). That is, we want to use k1 ∼= keff in Ωc to minimize
the cost of envelope discretization, and k2 < keff in ΩPML to guarantee exponential decay of the
outgoing wave. By modifying k, each domain effectively solves for a different kind of envelope. In
fact, if using k2 = 0 inside the PML region, we would compute the solution to the PML formulation
of the standard Maxwell problem.

Varying k locally at the interface of Ωc and ΩPML, the following interface problems need to be
solved: 

∇× E1 − ik1ez × E1 = −iωµ0H1, z < l,

∇× E2 − ik2ez × E2 = −iωµ0H2, z > l,

ez × E1e
−ik1z = ez × E2e

−ik2z, z = l,

(60)

and 
∇× H1 − ik1ez × H1 = iωεE1, z < l

∇× H2 − ik2ez × H2 = iωεE2, z > l

ez × H1e
−ik1z = ez × H2e

−ik2z, z = l.

(61)

Multiplying (60) and (61) with test functions F1, F2, and G1, G2, respectively, and integrating by
parts yields: ∫

z<l
E1∇× F1 +

∫
z=l

ez × Ě1F1 −
∫
z<l

ik1ez × E1F1 =

∫
z<l

−iωµ0H1F1, (62)∫
z>l

E2∇× F2 −
∫
z=l

ez × Ě2F2 −
∫
z>l

ik2ez × E2F2 =

∫
z>l

−iωµ0H2F2, (63)

and ∫
z<l

H1∇× G1 +

∫
z=l

ez × Ȟ1G1 −
∫
z<l

ik1ez × H1G1 =

∫
z<l

iωεE1G1, (64)∫
z>l

H2∇× G2 −
∫
z=l

ez × Ȟ2G2 −
∫
z>l

ik2ez × H2G2 =

∫
z>l

iωεE2G2. (65)

The interface conditions can be transferred to the trace unknowns Ě1, Ě2 and Ȟ1, Ȟ2:

ez × Ě1e
−ik1l = ez × Ě2e

−ik2l =: ez × Ě, (66)

ez × Ȟ1e
−ik1l = ez × Ȟ2e

−ik2l =: ez × Ȟ. (67)

Incorporating the interface conditions (66) and (67) into the formulation, we respectively obtain:∫
z<l

E1∇× F1 + eik1l
∫
z=l

ez × ĚF1 −
∫
z<l

ik1ez × E1F1 =

∫
z<l

−iωµ0H1F1, (68)∫
z>l

E2∇× F2 − eik2l
∫
z=l

ez × ĚF2 −
∫
z>l

ik2ez × E2F2 =

∫
z>l

−iωµ0H2F2, (69)
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and ∫
z<l

H1∇× G1 + eik1l
∫
z=l

ez × ȞG1 −
∫
z<l

ik1ez × H1G1 =

∫
z<l

iωεE1G1, (70)∫
z>l

H2∇× G2 − eik2l
∫
z=l

ez × ȞG2 −
∫
z>l

ik2ez × H2G2 =

∫
z>l

iωεE2G2. (71)

Compared with the standard envelope formulation, the only difference is the presence of the expo-
nential factors in front of the trace terms. The stretched coordinate PML is then applied analogously
to the derivation of (53)–(54).

Figure 6: Envelope PML formulation 2: single-mode propagation in a step-index fiber waveguide of about
0.7 mm length (∼ 1000 wavelengths). The envelope wavenumber k1 matches exactly the effective wavenumber
keff = 8.56833 µm−1 of the propagating LP01 mode, thus the envelope is constant in the computational
domain of interest. Inside the PML region (z ≥ 0.384 mm), the envelope is computed for k2 = 8.5 µm−1,
enabling exponential decay of the outgoing wave. An interface condition on the traces is embedded in the
formulation to accommodate the locally varying wavenumber ansatz.

Figure 6 demonstrates the efficacy of this PML envelope formulation for the single-mode prop-
agation in the step-index fiber. Choosing k1 = keff and k2 = 8.5 µm−1 < 8.56833 µm−1 = keff , the
envelope is constant in Ωc and begins oscillating while exponentially decaying in ΩPML. In the multi-
mode propagation case, selecting k1 ∼= keff implies that the envelope oscillates in z corresponding
to the shortest mode beat length.

The approach minimizes the cost of discretization in Ωc. The PML region must still discretize
a few envelope beats (with the length depending on the choice of k2) to absorb the wave. A small
drawback of this second approach is that it is perhaps more difficult to implement than the first.
The changes to the interface terms where k varies locally are easily accomplished; however, the mesh
now needs to be adapted locally to the envelope ansatz because of the different wavenumber ansatz.
In particular, the discretization within the PML needs to be fine enough (element size proportional
to the wavelength of the envelope in ΩPML), i.e. potentially much finer than in Ωc where the element
size in z is proportional to the mode beat.
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Remark. Beyond absorbing BCs, the approach of locally varying k can also be useful for other
scenarios where the effective wavenumbers of the propagating fields vary along the length of the fiber.
For example, if fiber parameters (such as the core refractive index) vary along the z direction due
to the fiber design, heating inside the fiber, or other perturbations, adapting k locally may prove an
effective tool for minimizing the cost of discretizing fiber models with the vectorial Maxwell envelope
formulation.

5 Vectorial Envelope Maxwell Fiber Amplifier Model

This section discusses briefly how the envelope Maxwell formulation, developed in the previous
sections, can be applied to modeling nonlinear laser gain in optical amplifiers. For this purpose, we
consider the 3D vectorial fiber amplifier model developed in [38, 27]. The model assumes that the
signal laser (wavelength λs = 1064 nm) and the pump field (wavelength λp = 976 nm) each satisfy
the time-harmonic Maxwell equations.

Maxwell fiber amplifier model. The amplification of the signal laser occurs through the active
gain process in which an active dopant (e.g. ytterbium) inside the fiber core region absorbs pump
light and is subsequently stimulated by the signal laser to emit photons at the signal frequency.
This process is modeled as a (first-order) complex perturbation to the refractive index through a
weak coupling of the signal and pump Maxwell systems using ion rate equations [41]. The strong
forms of the weakly-coupled Maxwell systems are given by:

∇× Ej = −iωjµ0Hj, (72)
∇×Hj = iωj(ε0Ej + Pj), (73)

where Pj is the induced electric polarization, which characterizes the light-material interactions,
and j ∈ {s,p} refers to either the signal (laser) or pump optical field, respectively. The polarization
term includes the background polarization,

P background
j = ε0(n

2 − 1)Ej, (74)

and the gain polarization,
P active gain
j = iε0

nc

ωj
gj(Is, Ip)Ej, (75)

where n is the optical fiber’s index of refraction, c [m/s] is the speed of causality, Ij [W/m2]
are the optical field irradiances, and gj [1/m] are the active gain functions that model the laser
amplification and pump depletion mediated by the ytterbium dopant in the core region (see [27]
for details). Thermal polarization is implicitly modeled through a temperature dependence of the
material refractive index. Heat deposition inside the fiber amplifier occurs because pump photons
have a higher frequency than signal photons; so some energy is lost in the pump-to-signal light
conversion by the stimulated gain (gj) process, leading to heat deposition along the fiber. This heat
deposition can be modeled as a source term in the heat equation [46]:

Q(Is, Ip) = −
(
gp(Is, Ip)Ip + gs(Is, Ip)Is

)
. (76)

For additional details regarding the Maxwell fiber amplifier model, please refer to [38, 27, 23, 28].
The vectorial Maxwell fiber amplifier model can be discretized and solved with the DPG finite

element method in the ultraweak setting. However, due to the computational expense of resolving
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the wavelength scale of the light (O(µm)), these computations are limited to fiber lengths of only
a few centimeters (tens of thousands of wavelengths) whereas real-length fiber amplifiers are sev-
eral meters long (millions of wavelengths). As will be demonstrated in the next section, applying
the envelope formulation to the Maxwell fiber amplifier model helps mitigate these computational
impediments such that the full lengths of fiber amplifiers can be simulated.

Envelope formulation of the Maxwell fiber amplifier model. Before applying the vectorial
envelope ansatz (24)–(25) to the weakly-coupled Maxwell systems (72)–(73), we make the following
observations.

First, the envelope formulation must be extended to multiple propagating fields. Each Maxwell
system needs to use a different envelope ansatz (i.e. a different envelope wavenumber k) for each
distinct optical field (distinct frequency/wavelength):23

Ej(x, y, z) = Ej(x, y, z)e
−ikjz, (77)

Hj(x, y, z) = Hj(x, y, z)e
−ikjz. (78)

Second, for the envelope formulation to be effective, it is necessary that the nonlinear gain and
heat source do not depend directly on the highly oscillatory components of the field. The irradiances
computed from the original fields are equivalent to the irradiances computed from the respective
vectorial envelopes:

Ij =
∣∣Re

{
Ej × H̄j

}∣∣ = ∣∣∣Re
{
Eje

−ikjz × H̄je
ikjz

}∣∣∣ = ∣∣Re
{
Ej × H̄j

}∣∣ = Ij. (79)

Since the gain function and the heat source each only depend on the fields’ irradiances, (79) implies
that:

gj(Is, Ip) = gj(Is, Ip), (80)
Q(Is, Ip) = Q(Is, Ip). (81)

In other words, the gain and heat source can be computed from the slowly varying envelopes
Ej,Hj instead of the highly oscillatory fields Ej, Hj. The weakly-coupled vectorial envelope Maxwell
systems of the fiber amplifier model are then given by:

∇× Ej − ikjez × Ej = −iωjµ0Hj, (82)

∇× Hj − ikjez × Hj = iωjε0

(
n2Ej + i

nc

ωj
gj(Is, Ip)Ej

)
. (83)

The fiber amplifier envelope model (82)–(83) can be solved via fixed point iteration where
the formulations corresponding to signal and pump fields are each discretized with the ultraweak
DPG method analogous to the linear vectorial envelope Maxwell formulation (32)–(33) presented in
Section 3. The techniques for implementing absorbing BCs presented in Section 4 are also directly
applicable to the nonlinear model; however, note that the PML parameters should be optimized for
the frequency of the light and the particular envelope ansatz used for each Maxwell system.

Remark. The fiber amplifier model presented here assumed a co-pumped configuration, where both
the signal laser and the pump light are injected at the fiber input Γin. The model also supports
counter-pumped configurations (see [23]) where the pump light is injected at the opposite fiber end
Γout; modeling counter-pumped configurations requires minor adjustments to the envelope model and
PML which are not delineated here.

23In this model, we consider two distinct frequencies—signal (ωs) and pump (ωp)—but the envelope formulation
can easily be extended to include additional fields, such as the Stokes wave if modeling Raman gain amplification [38].
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6 Numerical Examples: Fiber Amplifier Simulation

The vectorial envelope formulation of the Maxwell fiber amplifier model is implemented in the hp3D
finite element library24 [29, 25]. Even with the computational efficiency of the envelope formulation,
the Maxwell model is expensive to compute for realistic fiber lengths. A meter-long optical fiber
(millions of optical wavelengths) has thousands of envelope beats that must be resolved accurately by
the discretization. The numerical simulations presented here use high-order (p ≥ 6) isoparametric
elements with curvilinear geometry; the computations are parallelized efficiently over large-scale
CPU manycore compute architectures [26].

The numerical examples in this section compute a co-pumped, cladding-pumped amplifier con-
figuration.25 In each case, the signal laser is seeded into the amplifier with most of its power (> 90%)
in the LP01 mode and the remaining power in the LP11 mode.

Nonlinear gain. The first example illustrates nonlinear gain inside the fiber amplifier (without
heat coupling) for a 1.6 m long fiber. Figure 7 portrays the signal field in various longitudinal slices
of the fiber waveguide (normal to the y-axis) illustrating various length scales. Over the full length
of the amplifier, the optical power of the signal laser increases significantly through the active gain
mechanism, as depicted in the most upper plot of Figure 7 showing the signal irradiance. The
second plot from the top, also showing signal irradiance, captures the length scale of the mode
beat, which is commensurate to the oscillatory behavior of the vectorial envelopes Es and Hs. The
lower two plots depict the x-component of the real part of the electric field Es that can be retrieved
(i.e. post-processed) from the envelope solution via the ansatz (77). Resolving the laser optical
wavelength scale requires a much finer discretization than resolving the envelope, illustrating why
computing the 3D vectorial Maxwell model for a full-length fiber amplifier only becomes feasible
with the envelope formulation.

TMI simulation. Transverse mode instability (TMI) is a thermally-induced nonlinearity. TMI is
characterized by a sudden reduction of the beam quality above a certain power threshold26 because
the various modes of the fiber waveguide start exchanging energy with one another. Specifically,
there is a transition from a stable beam (below the TMI threshold), where the output signal field is
primarily comprised of the FM, to a chaotic energy transfer (above the TMI threshold) between the
fiber’s guided transverse modes. These beam fluctuations happen over millisecond time scales. TMI
remains a major limitation for the average power scaling of highly coherent fiber laser systems. See
[32, 17] for further discussion of TMI and its origins, characteristics, as well as for known mitigation
strategies.

In order to simulate the onset of TMI for a particular fiber amplifier with a fixed signal seed
power, Ps(z = 0), the launched pump power, Pp(z = 0), is increased until some figure-of-merit
indicates the presence of this nonlinearity. We will consider the TMI threshold to have been reached

24https://github.com/Oden-EAG/hp3d
25In the cladding-pumped configuration, the pump light is modeled as a plane wave (i.e. it has no transverse

dependence) over the entire core and cladding region, with the pump decay being modeled as an ordinary differential
equation for the pump irradiance (as is common in other models [37, 16]) instead of solving the computationally
expensive pump Maxwell system. The vectorial envelope Maxwell formulation is then only used for modeling the
signal laser.

26The power threshold depends on the particular fiber laser system, although it is typically anywhere between
100 W to several kilowatts [32].
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Figure 7: Numerical simulation of nonlinear laser gain in a 1.6 m long optical waveguide (laser optical
wavelength of λs = 1064 nm) with the vectorial envelope formulation of the Maxwell fiber amplifier model;
each plot shows a longitudinal slice of the fiber waveguide (normal to the y-axis). The upper two plots
depict the signal irradiance (normalized on a scale of [0, 1]), which oscillates at the length scale of the mode
beat (O(mm)). The lower two plots illustrate the highly oscillatory nature of the electric and magnetic field
components (plots show x-component of Re{Es} normalized on a scale of [−1, 1]), visible at the wavelength
scale (O(µm)).

21



when our metric (MTMI) achieves 5%. This metric is defined as

MTMI =
〈∑

PHOM
s (L, t)/

(
PFM
s (L, t) +

∑
PHOM
s (L, t)

)〉
t

=
〈∑

PHOM
s (L, t)/P total

s (L, t)
〉
t
,

(84)

where ⟨·⟩t is the time averaging operator. Effectively, this figure-of-merit indicates when the signal
output from the amplifier, on average, has a significant higher-order mode content,

∑
PHOM
s (L, t),

relative to the total output power, P total
s (L, t).
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(a) Below TMI threshold, 1 kW pump
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Figure 8: TMI simulation in a 20 cm long fiber section and a snapshot in time after 25 ms, showing the
signal field’s mode composition and the fiber’s temperature. The (a) stable regime (below TMI threshold)
and the (b) chaotic regime (above TMI threshold) are illustrated.

For TMI simulation, the nonlinear gain model (82)–(83) is coupled with the transient heat
equation using the source term (76). Unlike the gain, which occurs over characteristic length
scales of O(10 cm), capturing the onset of TMI requires simulations that resolve the mode beat
lengths, which are O(mm). The mode interference pattern in the signal irradiance translates into
a thermally-induced periodic grating of the material refractive index. This refractive index grating
affects each guided transverse mode uniquely, and ultimately induces the energy transfer between
the modes, resulting in the TMI.27 Given the exceedingly large number of wavelengths required
to capture sufficiently many mode beats for the TMI to develop, it is extremely challenging to
simulate TMI with a vectorial Maxwell model. To our best knowledge, the results presented here,
using the vectorial envelope formulation, are the first numerical simulations of TMI published for a
3D Maxwell model.

Remark. As the fiber heats (primarily in the core region), the core numerical aperture increases
(known as the thermal lensing effect). This tends to separate the mode propagation constants, causing
a compression in the mode beat lengths. These mode beat compressions need to be taken into account
when discretizing the envelope formulation. Discretizing the envelope in the heated fiber typically
requires more discretization points (in z) than at ambient temperature.

Figure 8 shows the temperature distribution (as a change from the initial ambient temperature)
in a 20 cm section of the fiber amplifier after 25 ms of simulation time has elapsed. Additionally,

27The energy transfer between guided transverse modes is linked to a phase shift between the mode interference
pattern and the refractive index grating [32].
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the optical power of the signal laser (having been seeded with 100 W), and its modal composition,
are depicted along the fiber longitudinal axis.28 Figure 8a illustrates the amplifier, with a launched
pump power of 1.0 kW, operating in the stable regime, below the TMI threshold, where nearly all of
the signal field’s power is found in the LP01 mode (i.e. the FM). However, after the launched pump
power is increased to 1.5 kW, as rendered in Figure 8b, the amplifier is in the chaotic regime, above
the TMI threshold, where energy rapidly transfers between the LP01 and LP11 modes. In both plots,
the temperature curves exhibit small oscillations associated with the mode beating between these
propagating modes. Compare from Figure 8a to Figure 8b how the amplitude of this refractive
index grating is slightly larger at the higher power level, enabling energy exchange between the
transverse modes. Also, note that the respective amount of power in the modes alters the heat
deposition, and thus affects the temperature curve.
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Figure 9: Related to the TMI simulations of Figure 8, the TMI metric (84) is plotted (a) as a function of total
output signal power (Ps(L)). Note that the launched pump power (Pp(0)) is varied in order to produce each
TMI onset curve. These curves represent the onset of the TMI when using three different total signal seed
powers (Ps(0) ∈ {50, 100, 200} W). Near the onset of the TMI threshold, the mode output powers exhibit
periodic energy exchanges (b).

Typically, the onset of TMI is observed in the model by tracking the TMI metric (84) as function
of the total extracted signal power from the amplifier. Without changing anything else, the output
signal power increases as the launched pump power is increased. Figure 9a shows the onset of
the TMI, meaning when MTMI = 5% (depicted as a dashed horizontal line) is surpassed, for the
three distinct scenarios of Ps(0) ∈ {50, 100, 200} W. The increase of the TMI threshold with the
signal seed power is a known (nonlinear) dependency (cf. [32, Fig. 10b]). Indeed, there are many
design, initial condition, and/or configuration changes that can be made to the fiber amplifier that
alter the TMI threshold power, many of which are well-summarized in the TMI review paper [32].
Below the MTMI = 5% threshold, the amplifier is operating in a stable regime, as most applications
would prefer. Once this threshold is surpassed, and up to the initial maxima of the MTMI function,
is the transition regime, where modal power exchanges maintain some periodic structure. With

28The optical power in each transverse mode is computed from the propagating electromagnetic field using L2 pro-
jections onto modes (see [23]). In general, all of the transverse guided HOMs can carry significant power above the
TMI threshold; in this example, nearly all of the energy is in the LP01 and LP11 modes, which is why only those are
shown in the plots.
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a launched pump power of 1.29 kW and a 100 W seed power, Figure 9b illustrates the amplifier
operating in the TMI transition regime, where partial, yet mostly periodic, mode power exchanges
occur over time. Afterwards, at even higher launched pump powers, the MTMI value may actually
drop back down to a place that reflects that the output signal power is, on average, equally shared
by the various modes of the fiber; this is the chaotic regime of the TMI (cf. the three regimes [40,
37, Fig. 4 of both refs.]).

7 Conclusions

In this paper, we proposed a vectorial envelope formulation of the time-harmonic Maxwell equations
applicable to computations of electromagnetic waveguides, and to weakly-guiding fiber waveguides
in particular. To accomplish this envelope formulation, one of the more difficult challenges is
found in dealing with absorbing BCs. In particular, we proposed and demonstrated that the PML
at the fiber output can be efficiently implemented by leveraging the existing trace unknowns in
the ultraweak DPG discretization. Ultimately, we established that by introducing a sagaciously
chosen wavenumber (k), our envelope technique re-focuses the standard time-harmonic Maxwell
equations to a different characteristic spatial scale, more appropriate for the relevant physics. In
this same spatial direction, the solution of the electromagnetic field inside the fiber waveguide
becomes computationally feasible in a much larger domain (in our example, 1000× larger).

To exemplify the success of this method in a complex multiphysics setting, we applied the
vectorial envelope formulation to a coupled 3D Maxwell model of an optical fiber laser amplifier.
By including the active stimulated gain and the appropriate thermal effects in an optical fiber
waveguide capable of supporting multiple transverse modes, the model was able to capture the
onset of the TMI nonlinearity. This was not previously attainable in our past efforts [27, 23, 28] due
to computational constraints imposed by the fact that the standard Maxwell model must resolve
the entire fiber down to the wavelength scale (O(µm)). Therefore, the computational efficiency of
the vectorial envelope methodology makes solution of the 3D Maxwell fiber amplifier model feasible
for full-length (meter-long) optical fibers.

Ongoing work. The current envelope ansatz is designed to model straight fiber configurations
where the fiber longitudinal axis can be aligned with one axis in the Cartesian coordinate system.
In practice, however, fiber amplifiers are typically bent due to spatial and thermal considerations,
which impacts nonlinear phenomena including the TMI. We therefore aim to extend the current
envelope Maxwell formulation to also accommodate circularly coiled fiber configurations.

The vectorial envelope Maxwell fiber amplifier model is a high-fidelity model in the sense that
its derivation requires vastly fewer assumptions than any other models typically used for fiber
amplifier modeling. Given the expense and limitations of obtaining experimental data, this high-
fidelity model can be used for validation of computationally efficient lower-fidelity models. We are
currently working toward publishing a detailed comparison of our Maxwell model with a lower-
fidelity coupled-mode-theory model for TMI simulation.
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