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Abstract

We consider the simulation of isentropic flow in pipelines and pipe networks. Standard
operating conditions in pipe networks suggest an emphasis to simulate lowMach and high friction
regimes – however, the system is stiff in these regimes and conventional explicit approximation
techniques prove quite costly and often impractical. To combat these inefficiencies, we develop a
novel asymptotic-preserving scheme that is uniformly consistent and stable for all Mach regimes.
The proposed method for a single pipeline follows the flux splitting suggested in [Haack et al.,
Commun. Comput. Phys., 12 (2012), pp. 955–980], in which the flux is separated into stiff and
non-stiff portions then discretized in time using an implicit-explicit approach. The non-stiff part
is advanced in time by an explicit hyperbolic solver; we opt for the second-order central-upwind
finite volume scheme. The stiff portion is advanced in time implicitly using an approach based
on Rosenbrock-type Runge-Kutta methods, which ultimately reduces this implicit stage to a
discretization of a linear elliptic equation.

To extend to full pipe networks, the scheme on a single pipeline is paired with coupling
conditions defined at pipe-to-pipe intersections to ensure a mathematically well-posed problem.
We show that the coupling conditions remain well-posed in the low Mach/high friction limit –
which, when used to define the ghost cells of each pipeline, results in a method that is accurate
across these intersections in all regimes. The proposed method is tested on several numerical
examples and produces accurate, non-oscillatory results with run times independent of the Mach
number.

Keywords: Isentropic Euler equations, pipe networks, non-conservative hyperbolic systems of non-
linear PDEs, asypmtotic-preserving scheme, all-speed scheme, central-upwind scheme, flux splitting,
implicit-explicit approach, low Mach limit on pipe networks.

AMS subject classification: 35B40, 35L65, 35R02, 65M08, 76M12.

1 Introduction

This paper focuses on the development of a novel numerical method for gas flow in pipelines and
pipe networks. To describe the gas transport, we use the isothermal/isentropic Euler equations
with a source to account for the friction along the pipe walls:
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ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p

)
x
= − κ

2D
ρu|u|,

(1.1)

where x is the (one-dimensional) spatial variable, t denotes time, ρ is the fluid density, u denotes
the fluid velocity, p = ργ is the pressure under the isentropic assumption, in which γ is the ratio
of specific heats, and κ denotes the Fanning friction coefficient. In the one-dimensional approach,
which is quite common when modeling gas flows in pipes due to the ratio of pipe length L and
cross section D; see e.g. [14, 67]; the unknowns ρ and u are averaged over the (assumed constant)
cross section.

The standard operating conditions hold the gas flow at moderate velocities; see e.g. [16] where
they note a reference Mach number around 0.001; and thus we must account for the low Mach
number or high friction regimes of (1.1). However, the limiting solution as this parameter goes
to zero brings about a number of difficulties – the most notable of which is that the underlying
system becomes very stiff. This makes designing efficient and accurate methods to approximate
the solution quite challenging. For example, conventional explicit schemes applied to system (1.1)
would greatly over-resolve the solution in time, as the wave speeds of the system are proportional
to the inverse of the reference Mach number – further implying that the CFL stability restriction
is proportional to this small parameter; see, e.g., [35, 36, 69]. Hence, explicit schemes may prove
quite computationally expensive, especially in the low Mach/high friction limit.

One alternative to avoid this over-resolution issue are asymptotic-preserving (AP) schemes. By
the definition in [48, 49], a scheme is AP if the discretization of the continuous system remains
consistent and stable regardless of the value taken for the underlying singular parameter (denoted
by ε in this paper). Furthermore, AP schemes allow for the space and time discretization to be
independent of ε; i.e., the CFL condition for stability does not depend on the small parameter in
the system.

Due to the potential speed up when discretizing with AP methods, they have attracted a
lot of attention in the numerical and engineering community. AP schemes have been extensively
studied for the kinetic equations; see, e.g., [45, 46, 50, 51, 54, 68, 78] and references therein. More
recently, AP methods for the kinetic equations have been further extended to use AP Monte
Carlo methods to reduce numerical diffusion effects [30, 31], and to use AP neural networks to
solve the underlying PDE system [52, 53]. There has also been extensive development of AP
methods in the low Mach limit of the isentropic Euler, compressible Euler, and Navier-Stokes
systems in [2–4,9,12,20–22,37,55,56,58,66,70,77], and in the low Froude limit of the shallow water
equations in [8, 13,17,24,47,59,63,72,75,76].

The number of studies significantly shrinks, though, when it comes to the consideration of
nonlinear friction terms that remain in the limiting solution. When this nonlinear friction term,
such as that in (1.1), remains in the low Mach/Froude limit, it adds the difficulty that this source
must be discretized implicitly in some manner. If discretized naively, this requires some a nonlinear
solve, which would preferably be avoided. To our knowledge, only the work in [17,27] consider some
nonlinear friction term, in which only [17] avoids a nonlinear solve via their proposed semi-implicit
hybrid finite volume/finite element method.

Furthermore, the number of studies of AP schemes in the extension to pipe networks is also
quite limited. To our knowledge, there are only two such developments. In [28], they present an
AP hybrid-DG method on networks for the linear convection-diffusion equation. The work in [27]
proposes a finite element AP method applied to the barotropic Euler equations with a nonlinear
friction term on pipe networks. However, the aformentioned method does opt for an implicit time
discretization reliant on a nonlinear solver.
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In this paper, we propose an AP scheme for the isentropic Euler equations with a nonlinear
friction source on pipe networks. The method on a single pipeline uses hyperbolic flux splitting
proposed in [37, 63] to split the stiff and non-stiff parts of the system, which are then treated
through an implicit-explicit approach. The non-stiff portion of the system is advanced in time
explicitly and discretized in space using the second-order central-upwind (CU) finite volume scheme
developed in [60,61]. The stiff part of the system is advanced in time implicitly using an approach
related to Rosenbrock-type Runge-Kutta methods seen in, e.g., [73, 79], which ultimately reduces
this implicit stage to an elliptic equation that can then be solved linearly after discretizing in
space via standard central-difference. The proposed scheme for a single pipeline is extended to
pipe networks by defining coupling conditions, such as those in [6, 7], at pipe-to-pipe intersections
to ensure a mathematically well-posed problem. We show that the coupling conditions remain
well-posed in the low Mach/high friction regimes, and use them to define the ghost cell values of
each pipeline. The resulting method is tested on several numerical examples of pipe networks and
produces accurate and non-oscillatory results, in addition to running significantly faster than the
analogous fully explicit scheme in the low Mach/high friction limit.

This paper is organized as follows. In §2, we discuss the asymptotics of the isentropic Euler
equations (1.1) on pipe networks and associated numerical difficulties. We then develop an AP
scheme for the underlying system in §3. We present the performance of the proposed scheme on
three examples in §4, and make some concluding remarks in §5.

2 Dimensional Analysis

To look at the asymptotics of (1.1), we non-dimensionalize the system by introducing characteristic
time t0, characteristic density ρ0, characteristic velocity w0, and characteristic pressure p0, along
with using the pipe length L as the characteristic length. Therefore, the dimensionless quantities
for system (1.1) read

x̂ =
x

L
, t̂ =

t

t0
, ρ̂ =

ρ

ρ0
, û =

u

w0
, p̂ =

p

p0
.

Taking w0 = L/t0, substituting these quantities into (1.1), and dropping the hat notation for the
sake of simplicity, we obtain the dimensionless isentropic Euler equations with a friction source
term:

ρt + (ρu)x = 0,

(ρu)t +

(
ρu2 +

1

Ma2
p

)
x

= − κ

2δ
ρu|u|,

where

Ma = w0

√
ρ0
p0

, δ =
D

L
,

are the reference Mach number and the ratio of the cross section to the pipe length, respectively.
We then choose to take the reference Mach number Ma = ε, and follow the suggestions of [16,26,27]
in taking δ = ε2/Cδ, where Cδ is a constant, resulting in the parameterized system

ρt + (ρu)x = 0,

(ρu)t +

(
ρu2 +

1

ε2
p

)
x

= −Cδκ

2ε2
ρu|u|,

(2.1)
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which can otherwise be written in the following vector form

Ut + F (U)x = S(U), F (U) =

(
ρu

ρu2 + p/ε2

)
, S(U) =

(
0

−Cδκ
2ε2

ρu|u|

)
, (2.2)

where U := (ρ, ρu)⊤, F (U) denotes the flux, and S(U) is the source due to friction along the pipe
walls.

Remark 2.1. Note that in the limit ε → 0, it is clear that system (2.1) approaches a state where
the spatial derivative of pressure balances the friction source due to the pipe walls. This follows a
classical limit commonly seen in the modeling of pipelines and pipe networks; see, e.g., [16].

2.1 Continuous Extension to Pipe Networks

To simulate an entire pipe network, we must of course consider appropriate boundary conditions at
each pipe entrance and exit – the most complicated of which are at pipe-to-pipe intersections. These
are obtained by defining some coupling conditions at the pipe-to-pipe intersections or junctions;
see, e.g., [7, 29]. In this section, we briefly describe some suitable condition options that may
be prescribed at pipe junctions. The following coupling conditions presented are commonly used
examples for the mathematical framework of pipeline networks; see, for example, [39, 42, 43] and
references therein.

Let us denote the entrance and exit of pipe k = 1, . . . ,K as x
(k)
i and x

(k)
f , respectively, and

the variables in pipe k as U (k) = (ρ(k), (ρu)(k))⊤. Consider a single junction in which pipes with
indices 1, . . . ,m denote the ingoing pipelines and those with indices m+1, . . . ,K are the outgoing
pipelines, as depicted in Figure 1. Then at the junction, one must have the coupling condition for:

2

1

3

m m+1

m+2

m+3

K

Figure 1: Illustration of a pipe network junction with m ingoing pipelines and K−m outgoing pipelines.

Conservation of momentum:

m∑
k=1

(ρu)(k)(x
(k)
f , t) =

K∑
ℓ=m+1

(ρu)(ℓ)(x
(ℓ)
i , t), (2.3)

paired with one of the following:

(a) Equal pressures (see, e.g., [6, 7]):

p
(
ρ(k)(x

(k)
f , t)

)
= p
(
ρ(ℓ)(x

(ℓ)
i , t)

)
∀k = 1, . . . ,m, ℓ = m+ 1, . . . ,K; (2.4)
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(b) Equal momentums (see, e.g., [19]):(
ρ(k)(u(k))2

)
(x

(k)
f , t) +

1

ε2
p
(
ρ(k)(x

(k)
f , t)

)
=
(
ρ(ℓ)(u(ℓ))2

)
(x

(ℓ)
i , t) +

1

ε2
p
(
ρ(ℓ)(x

(ℓ)
i , t)

)
∀k = 1, . . . ,m, ℓ = m+ 1, . . . ,K;

(2.5)

(c) Geometry or flow-dependent pressure loss (see, e.g., [67, 74]):

1

ε2
p
(
ρ(k)(x

(k)
f , t)

)
=

1

ε2
p
(
ρ(ℓ)(x

(ℓ)
i , t)

)
−hk,ℓ, ∀k = 1, . . . ,m, ℓ = m+1, . . . ,K, (2.6)

where hk,ℓ denotes the pressure loss at the junction.

Notice that the ε-dependence remains in the coupling conditions, as it arose from the non-dimensionalization
of system (1.1).

The isentropic Euler system (2.1) paired with (2.3) and one of (2.4)–(2.5) has been proven a
well-posed problem under the condition that the initial data (i) is not in a vacuum state (ρ(k)(x, t =
0) > 0 ∀k); (ii) has a flow direction that does not change (u(k)(x, t = 0) ≥ 0 ∀k); and (iii) is under
subsonic conditions (u(k)(x, t = 0) ≤ c ∀k) [6, 7, 19]. These coupling conditions are implemented
into the boundary conditions of each pipe k; we present how this is done for the proposed scheme
in §3.5.1 following the rich literature in this field, e.g., [1, 5, 10,15,18,23,33,34,44,64].

2.2 The Low Mach/High Friction Limit

To investigate the asymptotic behavior of system (2.1) inside each pipeline, we take the asymptotic
expansion of variables ρ and u. Note that for simplicity, we removed the superscript (k) introduced
in the previous section for now, as the coupling conditions are only introduced on the boundaries.
Thus, the associated asymptotic expansions of our unknowns are

ρ = ρ(0) + ε2ρ(2) + · · · ,
u = u(0) + ε2u(2) + · · · .

Consequentially, we can obtain the asymptotic expansion for pressure p = ργ using Taylor series:

p =
(
ρ(0)
)γ

+ ε2γ
(
ρ(0)
)γ−1

ρ(2) + · · · . (2.7)

Note that the ε1 terms are skipped since there are noO(ε−1) appearing in system (2.1). Substituting
the expansions of ρ, u, p into system (2.1) and collecting like powers of ε, we obtain the asymptotic
behavior of the isentropic Euler equations with a friction source:

O(ε−2) :
[(

ρ(0)
)γ]

x
= −Cδκ

2
ρ(0)u(0)

∣∣∣u(0)∣∣∣,
O(1) : ρ

(0)
t +

(
ρ(0)u(0)

)
x
= 0,(

ρ(0)u(0)
)
t
+

[
ρ(0)
(
u(0)

)2
+ γ
(
ρ(0)
)γ−1

ρ(2)
]
x

= −Cδκ

2

(
ρ(2)u(0)

∣∣∣u(0)∣∣∣+ ρ(0)u(2)
∣∣∣u(0)∣∣∣+ ρ(0)u(0)

∣∣∣u(2)∣∣∣).
(2.8)

Here, note that the O(ε−2) asymptotic is exactly that discussed in Remark 2.1.
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Similarly, we consider the ε → 0 case on the coupling conditions at the pipe intersections.
It is clear that (i) the condition related to conservation of momentum will remain as it is ε-
independent; and (ii) regardless of your selection of coupling conditions (2.4), (2.5), or (2.6), all
simplify to requiring equal pressures at the junction in the low Mach/high friction limit. Note that
the different limiting equations have already been presented e.g. in [16]. The main aspect here is
on their numerical treatment.

2.3 Numerical Difficulties in Low Mach/High Friction regimes

By computing the eigenvalues of the Jacobian ∂F /∂U , one can find that the wave speeds of system
(2.2) are {

u± 1

ε

√
p′(ρ)

}
.

In turn, this implies that if one was to solve system (2.1) using some standard explicit method with
a uniform mesh spatial discretization with cell size ∆x, the corresponding time-step restriction due
to the CFL condition would be

∆tex ≤ ν
∆x

max
x

{
|u|+ 1

ε

√
p′(ρ)

} = O(ε∆x), (2.9)

where 0 < ν ≤ 1 denotes the CFL number. On top of this, explicit schemes typically have
numerical diffusion of O((∆x)p/ε) [37], where p is the order of the method, further implying that
one would need to select ∆x = O(ε1/p) to combat excessive numerical diffusion in the results.
Therefore, to obtain unsmeared results, the time-step restriction for explicit schemes would need
to be ∆tex = O(ε1+1/p). In other words, explicit schemes are quite inefficient in the low Mach and
high friction regimes due to the significant computational cost.

An alternative to avoid the heavy time-step restriction seen in (2.9) would instead be to advance
in time using an implicit method. However, this also could prove quite costly, as the nonlinearity
of system (2.1) implies a dependence on some nonlinear iterative solver of an N × N system of
equations, where N is the number of cells in the spatial discretization.

Thus, we want a scheme that removes this ε-dependence in the time-step restriction, converges
to the asymptotics in (2.8), and maintains the correct coupling conditions in the ε → 0 limit. The
scheme proposed in the following section aims to meet these desired properties on the discrete level.

3 Asymptotic-Preserving Scheme

To form an AP scheme for the system (2.1) on a single pipeline, we follow the hyperbolic flux
splitting idea from [37, 63]. To do so, we separate the slow and fast dynamics into two parts,
resulting in the corresponding split system:

ρt + α(ρu)x + (1− α)(ρu)x = 0,

(ρu)t +

(
ρu2 +

p− a(t)ρ

ε2

)
x

+
a(t)

ε2
ρx = −Cδf

2ε2
ρu|u|.

(3.1)

Equivalently, the split form (3.1) can be written into an updated vector form, which reads

Ut + F̃ (U)x + F̂ (U)x = S(U), (3.2)
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where

F̃ (U) =

 αρu

ρu2 +
p− a(t)ρ

ε2

 , F̂ (U) =

(1− α)ρu

a(t)ρ

ε2

 , (3.3)

are the slow (non-stiff) and fast (stiff) dynamics parts of the fluxes, respectively, and S(U) is
defined in (2.2).

To guarantee the non-stiff subsystem Ut+ F̃ (U)x = 0 is indeed non-stiff and hyperbolic, α and
a(t) must be chosen appropriately to remove the 1/ε2 dependence on the wave speeds. Computed
by finding the eigenvalues of the Jacobian ∂F̃ /∂U , the wave speeds of this subsystem are{

u±
√

(1− α)u2 +
α[p′(ρ)− a(t)]

ε2

}
. (3.4)

Thus, to ensure the eigenvalues of the non-stiff subsystem are real and are O(1) instead of O(ε−2)
as in the original system (2.1), we take

α = εb and a(t) = min
x

p′(ρ), (3.5)

and b ≥ 2. In turn, the new wave speeds in (3.4) now avoid the dissipation and time-step issues
seen in original system (2.1), allowing the slow dynamics to be discretized using any appropriate
hyperbolic solver. We describe the hyberbolic solver we use in §3.2.

Remark 3.1. Note that, in comparison to the work of [37,63], we have less freedom in the selection
of this parameter b arising in (3.5). This is due to the fact that the asymptotic behavior shown in
(2.8) allows for a non-constant ρ(0) when ε → 0, meaning [p′(ρ)− a(t)] is O(1).

3.1 Time Discretization

To discretize the split system (3.2)–(3.3) in a way that relaxes the time-step stability restriction,
we use the implicit-explicit (IMEX) approach; that is, we approximate the non-stiff flux terms
F̃ (U)x explicitly, and use an implicit approximation for the stiff flux terms F̂ (U)x and the friction
source S(U). Since the source term S(U) is nonlinear, we opt for a time discretization related to
Rosenbrock-type Runge-Kutta methods, which will still allow the system to be solved without the
need of nonlinear solvers; see, e.g., [73,79] and references therein. To this end, we use the following
first-order IMEX time discretization:

ρn+1 − ρn

∆t
+ α(ρu)nx + (1− α)(ρu)n+1

x = 0, (3.6)

(ρu)n+1 − (ρu)n

∆t
+

(
ρu2 +

p− anρ

ε2

)n

x

+
an

ε2
ρn+1
x = −Cδκ

2ε2
|un|(ρu)n+1. (3.7)

The influence of the Rosenbrock-type method appears in the discretization of the source of (3.7),
in which only the ρu term is evaluated at time tn+1. For simplicity and notation purposes, let us
define

Rn := (Rρ,n, Rρu,n)⊤ = −F̃ (U)x.

One can then solve equations (3.6)–(3.7) for ρn+1 and (ρu)n+1, respectively, to obtain

ρn+1 = ρn +∆tRρ,n −∆t(1− α)(ρu)n+1
x , (3.8)

(ρu)n+1 =
1

Ψn(x)

[
(ρu)n +∆tRρu,n − an∆t

ε2
ρn+1
x

]
, (3.9)
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where

Ψn(x) := 1 +∆t · Cδκ

2ε2
|un| (3.10)

is always greater than 1. Following then that of [21], we then differentiate (3.9) with respect to x
and substitute this into (3.8) to obtain an elliptic equation for ρn+1 :

ρn+1 − ∆t2

ε2
an(1− α)

(
ρn+1
x

Ψn

)
x

= ρn +∆tRρ,n −∆t(1− α)

[
(ρu)n +∆tRρu,n

Ψn

]
x

. (3.11)

Assuming all values at time tn are known, this implies that the choice of the Rosenbrock-type
method in (3.7) results in just a linear equation for the unknown ρn+1. Furthermore, the time
discretization in (3.7) in combination with an appropriate spatial discretization, such as that further
detailed in §3.2 and §3.3, will result in (3.11) being a linear system that can be solved for ρn+1.
This solution of ρn+1 is then substituted into (3.9) to obtain (ρu)n+1.

3.2 Spatial Discretization of Non-Stiff Flux Terms

We use the Central-Upwind (CU) finite volume scheme to discretize the non-stiff flux terms F̃ (U).
For each pipe in the network, we split the domain into N finite volume cells Cj = [xj− 1

2
, xj+ 1

2
],

where ∆x = xj+ 1
2
− xj− 1

2
. Assume that at time level t = tn, the solution is realized in terms of its

cell averages

U
n
j =

1

∆x

∫
Cj

U(x, tn) dx.

Then we approximate the contribution of the non-stiff flux terms R := −F̃ (U)x in each cell using

Rn
j = −

F̃
n

j+ 1
2
− F̃

n

j− 1
2

∆x
, (3.12)

where F̃
n

j± 1
2
are computed using the CU fluxes; see, e.g., [38, 60,61]:

F̃
n

j+ 1
2
=

s+
j+ 1

2

F̃

(
U−

j+ 1
2

)
− s−

j+ 1
2

F̃

(
U+

j+ 1
2

)
s+
j+ 1

2

− s−
j+ 1

2

+
s+
j+ 1

2

s−
j+ 1

2

s+
j+ 1

2

− s−
j+ 1

2

(
U+

j+ 1
2

−U−
j+ 1

2

)
. (3.13)

Here, U±
j+ 1

2

are one-sided point values of U at the cell interface, computed at time t = tn using the

piecewise linear reconstruction

Ũn(x) :=U
n
j + (Ux)

n
j (x− xj), x ∈ Cj .

Therefore, the values of the reconstruction at the interface xj+ 1
2
are

U−
j+ 1

2

=U
n
j +

∆x

2
(Ux)

n
j , U+

j+ 1
2

=U
n
j+1 −

∆x

2
(Ux)

n
j+1, (3.14)

where the slopes (Ux)
n
j are computed using a nonlinear limiter to avoid oscillations. In this paper,

we use the generalized minmod limiter (see, e.g., [62, 65,71]):

(Ux)
n
j = minmod

(
θ
U

n
j+1 −U

n
j

∆x
,
U

n
j+1 −U

n
j−1

2∆x
, θ

U
n
j −U

n
j−1

∆x

)
,
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where the minmod function is

minmod(z1, z2, . . .) =


min(z1, z2, · · · ) if zi > 0, ∀i,
max(z1, z2, · · · ) if zi < 0, ∀i,
0 otherwise,

and is applied component-wise. Lastly, s±
j+ 1

2

of (3.13) denote the one-sided speeds of propagation,

estimated at time t = tn using the largest and smallest eigenvalues of the Jacobian ∂F̃ /∂U seen in
(3.4):

s+
j+ 1

2

=max

u−
j+ 1

2

+

√
(1− α)

(
u−
j+ 1

2

)2

+
α

ε2

[
p′
(
ρ−
j+ 1

2

)
− an

]
,

u+
j+ 1

2

+

√
(1− α)

(
u+
j+ 1

2

)2

+
α

ε2

[
p′
(
ρ+
j+ 1

2

)
− an

]
, 0

 ,

s−
j+ 1

2

=min

u−
j+ 1

2

−

√
(1− α)

(
u−
j+ 1

2

)2

+
α

ε2

[
p′
(
ρ−
j+ 1

2

)
− an

]
,

u+
j+ 1

2

−

√
(1− α)

(
u+
j+ 1

2

)2

+
α

ε2

[
p′
(
ρ+
j+ 1

2

)
− an

]
, 0

 .

(3.15)

3.3 Fully Discrete Method

To obtain the fully discrete AP scheme for cell Cj , we take the elliptic equation for ρn+1 in (3.11)

and the equation for (ρu)n+1 in (3.9) and (i) compute non-stiff flux terms Rn = −F̃ (U)x using
the CU numerical fluxes described in §3.2; (ii) discretize the first spatial derivative terms using
standard second-order central difference; and (iii) use a standard finite difference approximation
for second derivatives on the term

(
ρn+1
x /Ψn

)
x
. Thus, the fully discrete AP scheme for ρn+1

j reads

ρn+1
j − ∆t2

∆x2ε2
an(1− α)

[
ϕn
j+ 1

2

ρn+1
j+1 −

(
ϕn
j+ 1

2

+ ϕn
j− 1

2

)
ρn+1
j + ϕn

j− 1
2

ρn+1
j−1

]
= ρnj +∆tRρ,n

j −∆t(1− α)Dx

[
1

Ψn
j

(
(ρu)nj +∆tRρu,n

j

)]
,

(3.16)

where Rn
j = (Rρ,n

j ,Rρu,n
j )⊤ is defined in (3.12)–(3.13), Ψn

j = Ψn(xj) from (3.10),

Dxξj =
ξj+1 − ξj−1

2∆x

is the discrete central difference operator, and

ϕn
j+ 1

2

=
1

2

[
1

Ψn
j

+
1

Ψn
j+1

]

is used for the evaluation of 1/Ψn
j+ 1

2

to keep the second-order spatial approximation in the elliptic

solve. Note that the definition of Ψn
j in (3.10) results in 0 < ϕn

j+ 1
2

≤ 1, in turn implying that the
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corresponding matrix to be formed on the right hand side of (3.16) is non-singular (by Gershgorin
Theorem).

After solving the linear system in (3.16) for
{
ρn+1
j

}
, it can be directly substituted into the

spatially discretized version of (3.9) to obtain the fully discrete approximation for (ρu)n+1
j :

(ρu)n+1
j =

1

Ψn
j

[
(ρu)nj +∆tRρu,n

j − an∆t

ε2
Dxρ

n+1
j

]
. (3.17)

3.4 Numerical Diffusion and Stability

In this section, we describe how the proposed method addresses the numerical difficulties of explicit
schemes previously discussed in §2.3.

The stability of the proposed AP scheme is ensured by Lemma 3.1 of [37], which states that if
each piece (the implicit and explicit portions) of the split method is stable, then the full method is
also stable. For the fast (stiff) dynamics, one can show that implicit discretization in time, seen in
(3.6)–(3.7), is stable for all ρn and un. Thus, stability of the proposed AP scheme is controlled by
the time discretization of the slow (non-stiff) dynamics. The CFL condition for the slow dynamics
can be found using the eigenvalues from (3.4), resulting in the following time-step restriction:

∆tAP ≤ ν
∆x

max
x

{
|u|+

√
(1− α)u2 +

α

ε2
[p′(ρ)− a(t)]

} , (3.18)

in which, due to the selection of α and a(t) made in (3.5), the denominator is independent of ε.
To ensure ∆tAP is completely ε-independent, we must also confirm the numerical diffusion of

the proposed scheme does not have a ε−1 dependence or worse. To do this, we analyze the leading
order of numerical diffusion of the CU spatial discretization described in §3.2, and substitute this
into the full discretization in equations (3.16)–(3.17). We start by rewriting the CU flux in (3.13)
in the form

F̃
n

j+ 1
2
=

F̃ (U
n
j ) + F̃ (U

n
j+1)

2
+Dn

j+ 1
2

,

where

Dn
j+ 1

2

=
s+
j+ 1

2

2

(
s+
j+ 1

2

− s−
j+ 1

2

)[2F̃ (U−
j+ 1

2

)− F̃ (U
n
j )− F̃ (U

n
j+1)

]

−
s−
j+ 1

2

2

(
s+
j+ 1

2

− s−
j+ 1

2

)[2F̃ (U+
j+ 1

2

)− F̃ (U
n
j )− F̃ (U

n
j+1)

]
+

s+
j+ 1

2

s−
j+ 1

2

s+
j+ 1

2

− s−
j+ 1

2

(
U+

j+ 1
2

−U−
j+ 1

2

)
,

(3.19)
is the numerical diffusion term of the CU discretization, with Dn

j+ 1
2

:= (Dρ,n

j+ 1
2

,Dρu,n

j+ 1
2

)⊤ to denote

the different components. Here, s±
j+ 1

2

are defined in (3.15) and U±
j+ 1

2

are defined in (3.14). To

compute the leading order of the numerical diffusion in (3.19), we introduce the following asymptotic
expansions:

ρnj = ρ
(0),n
j + ε2ρ

(1),n
j + · · · ,

ρ±
j+ 1

2

= ρ
(0),±
j+ 1

2

+ ε2ρ
(1),±
j+ 1

2

+ · · · .
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The asymptotic expansion of unj and u±
j+ 1

2

follows analogously, and the discrete asymptotic expan-

sion of the pressure term follows the same form as that in equation (2.7). In addition, we expand
an in a way that follows its definition in (3.5):

an = min
x

γ
(
ρ
(0),n
j

)γ−1
+ ε2a(2),n + · · · ,

where a(2),n is a constant in space at time tn. Using these expansions, we can obtain the leading
order of the numerical diffusion (3.19) for ρ:

Dρ,n

j+ 1
2

=
αs+

j+ 1
2

2

(
s+
j+ 1

2

− s−
j+ 1

2

)[2ρ(0),−
j+ 1

2

u
(0),−
j+ 1

2

− ρ
(0),n
j u

(0),n
j − ρ

(0),n
j+1 u

(0),n
j+1

]

−
αs−

j+ 1
2

2

(
s+
j+ 1

2

− s−
j+ 1

2

)[2ρ(0),+
j+ 1

2

u
(0),+

j+ 1
2

− ρ
(0),n
j u

(0),n
j − ρ

(0),n
j+1 u

(0),n
j+1

]

+
s+
j+ 1

2

s−
j+ 1

2

s+
j+ 1

2

− s−
j+ 1

2

(
ρ
(0),+

j+ 1
2

− ρ
(0),−
j+ 1

2

)
.

(3.20)

Since α = εb, b ≥ 2 from (3.5), this is O(1) by the last term of (3.20), as ρ is generally not constant
in space. Similarly, one can compute the leading order of numerical diffusion (3.19) for ρu, which
comes from the O(ε−2) portion of the flux F̃ (U) seen in equation (3.2). However, since an and
its expansion are related to p′(ρ) and p(ρ) = ργ , it is clear that the expansions to compute the
diffusion will not result in any cancellation of the ε−2 term. Thus, Dρu,n

j+ 1
2

= O(ε−2).

Finally, substituting the CU fluxes into (3.12), we can obtain the following approximations to
Rn

j :

Rρ,n
j = −DxF̃

ρ(Un
j ) +O(∆x2), (3.21)

Rρu,n
j = −DxF̃

ρu(Un
j ) +O

(
∆x2

ε2

)
, (3.22)

where F̃ := (F̃ ρ, F̃ ρu)⊤ and Dx again represents the central difference operator. Here, the O(∆x2)
term in (3.21) and the O(ε−2∆x2) term in (3.22) come from the leading orders from the diffusion
Dρ,n

j+ 1
2

and Dρu,n

j+ 1
2

, respectively, and the ∆x2 piece arises since these diffusion terms are introduced

via the second-order CU discretization.
Normally, this O(ε−2∆x2) diffusion term is concerning. However, if we substitute (3.22) into

the fully discrete AP scheme seen (3.16) and (3.17), we see that this O(ε−2∆x2) diffusion term is
always paired with a division by Ψn

j . Then, since Ψ
n
j defined in (3.10) is O(ε−2), the dependence of

ε in the leading order diffusion term cancels. This ε-independence within the numerical diffusion,
in combination with the denominator of (3.18) being independent of ε, implies that the time-step
restriction of the proposed AP scheme is indeed independent of ε. Furthermore, it is sufficient to
take ∆tAP = O(∆x) (as opposed to the O(ε∆x) restriction on explicit schemes) to enforce stability.
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3.5 Boundary Conditions on Pipe Networks

3.5.1 Coupling Conditions at Pipe Intersections

The algorithm described in §3.1–§3.3 is applied to every pipe within the network of interest. To
extend to a full network, we must implement coupling conditions (2.3), with one choice of (2.4), (2.5)
or (2.6), on the boundaries of each pipe that meets at the intersections. To obtain the boundary
values corresponding to the junction, we solve the so-called half-Riemann problem: Assume a set of
coupling conditions from §2.1 and given constant initial data (U0)(k) for each pipe k. We then seek
the values U∗ satisfying the coupling conditions such that the half-Riemann problem [32,41,41]

U
(k)
t + F (U (k))x = 0,

U(x, 0) =

{
U∗, if x ≤ 0,

(U0)(k), if x > 0,

(3.23)

admits a self-similar solution in which all generated waves have non-negative speeds. Here, U and
F (U) are defined in (2.2). Then, if considering coupling conditions (2.3) and (2.4), this amounts
to solving the following nonlinear system for (ρ∗)(k):

K∑
k=1

L−
2

(
(ρ∗)(k); (ρn)(k), L+

1

(
(ρn)(k); (U0)(k)

))
= 0,

p
(
(ρ∗)(k)

)
= p
(
(ρ∗)(ℓ)

)
, k ̸= ℓ,

(3.24)

where the known states are (U0)(k) and (Un)(k), and the functions L±
1,2 denote the forward and

reversed 1-Lax curve and 2-Lax curve for the isothermal Euler equations in equation (2.1) with
p = ργ (see similarly, [19]):

L+
1 (ρ; ρ̂, q̂) =


ρ

ρ̂
q̂ − 2

γ − 1
ρ · 1

ε

(√
p′(ρ)−

√
p′(ρ̂)

)
, if ρ < ρ̂,

ρ

ρ̂
q̂ − 1

ε

√
ρ

ρ̂
(ρ− ρ̂)[p(ρ)− p(ρ̂)], if ρ > ρ̂,

L−
2 (ρ; ρ̂, q̂) =


ρ

ρ̂
q̂ − 2

γ − 1
ρ · 1

ε

(√
p′(ρ̂)−

√
p′(ρ)

)
, if ρ < ρ̂.

ρ

ρ̂
q̂ +

1

ε

√
ρ

ρ̂
(ρ− ρ̂)[p(ρ)− p(ρ̂)], if ρ > ρ̂,

(3.25)

The construction of system (3.24) would follow analogously if instead using the coupling conditions
in (2.5) or (2.6).

The known states (Un)(k) seen in (3.24) are selected by taking the cell value nearest the junction
at time t = tn; i.e., we take (Un)(k) = (Un

N )(k) for ingoing pipelines and (Un)(k) = (Un
1 )

(k) for
outgoing pipelines. The nonlinear system (3.24) is solved via Newton’s method with initial guess
U∗ = (Un)(k), in which the Jacobian within the Newton iteration is invertible if the initial guess
is subsonic [19]. Note the 1/ε dependence in the 1-Lax curve and 2-Lax curve only arises due
to considering the non-dimensionalized system (2.2), and does not destroy the nonlinear solve of
(3.24). This is further verified in Lemma 3.2. For the numerical experiments conducted in this
paper, we observed convergence to a tolerance of 10−8 within ∼2–3 Newton iterations.
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Once (ρ∗)(k) is computed, we can directly calculate (ρ∗u∗)(k) using

(ρ∗u∗)(k) = L−
2

(
(ρ∗)(k); (ρn)(k), L+

1

(
(ρn)(k); (U0)(k)

))
.

The results of the nonlinear solve (ρ∗)(k) and (ρ∗u∗)(k) are then prescribed as the ghost cell values
in the spatial discretization described in §3.2.

Lemma 3.2. In the limiting case ε → 0, the nonlinear system (3.24) with Lax curve definitions
(3.25) remains a well-posed problem.

Proof. Since the second condition of (3.24) is ε-independent, we only need to focus on the first
condition. For brevity, let us first rewrite the Lax-curve definitions in (3.25) as

L+
1 (ρ; ρ̂, q̂) =


ρ

ρ̂
q̂ − 1

ε
g(ρ, ρ̂), if ρ < ρ̂,

ρ

ρ̂
q̂ − 1

ε
h(ρ, ρ̂), if ρ > ρ̂,

and L−
2 (ρ; ρ̂, q̂) =


ρ

ρ̂
q̂ +

1

ε
g(ρ, ρ̂), if ρ < ρ̂,

ρ

ρ̂
q̂ +

1

ε
h(ρ, ρ̂), if ρ > ρ̂,

where g(ρ, ρ̂) and h(ρ, ρ̂) are taken such that these are equivalent to (3.25). In this proof, we will
only consider the case in which ρ > ρ̂ for both L+

1 and L−
2 , and the proofs for the other three

pairings follow analogously. Following this assumption, then the Lax curves for this case read

L+
1 (ρ; ρ̂, q̂) =

ρ

ρ̂
q̂ − 1

ε
h(ρ, ρ̂) and L−

2 (ρ; ρ̂, q̂) =
ρ

ρ̂
q̂ +

1

ε
h(ρ, ρ̂).

Note that in the context of the nonlinear system (3.24), the case in which ρ > ρ̂ for both L+
1 and

L−
2 is equivalent to having (ρ0)(k) < (ρn)(k) and (ρn)(k) < (ρ∗)(k). We can then use this specific

case of the Lax curves and substitute directly into (3.24) to obtain the nonlinear system:

K∑
k=1

(ρ∗)(k)

(ρn)(k)

[
(ρn)(k)

(ρ0)(k)
(q0)(k) − 1

ε
h
(
(ρn)(k), (ρ0)(k)

)]
+

1

ε
h
(
(ρ∗)(k), (ρn)(k)

)
= 0,

p
(
(ρ∗)(k)

)
= p
(
(ρ∗)(ℓ)

)
, k ̸= ℓ.

(3.26)

This system with ε > 0 has already been proven to be a well-posed system in [19]. We then multiply
the first equation of (3.26) by ε and take the limit ε → 0 to obtain an equivalent nonlinear system
in which we wish to solve for (ρ∗)(k), which reads

K∑
k=1

h
(
(ρ∗)(k), (ρn)(k)

)
− (ρ∗)(k)

(ρn)(k)
h
(
(ρn)(k), (ρ0)(k)

)
= 0,

p
(
(ρ∗)(k)

)
= p
(
(ρ∗)(ℓ)

)
, k ̸= ℓ.

(3.27)

This is equivalent to that of (3.26) with (q0)(k) being taken as zero. Therefore, this is also already
proven as a well-posed problem by the work in [19]. Hence, the system (3.24) is well-posed in the
limiting case ε → 0.

Remark 3.3. As stated in §2.2, the other coupling conditions (2.5) and (2.6) reduce to the pressure
balance coupling condition in (2.4) in the limiting case ε → 0. Thus, Lemma 3.2 is additionally
valid for coupling conditions (2.5) and (2.6), as their corresponding nonlinear systems would also
reduce to (3.27) in the low Mach/high friction limit.
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Remark 3.4. There exists also other approaches to discretize the coupling conditions. Here,
we mention the possibility to do so fully implicit in time [57], using a finite–element based ap-
proaches [25], linearization approaches [5, 11], or central scheme type discretizations [40]. As the
previous Lemma shows the treatment using half-Riemann problems is, however, sufficient to guar-
antee here the asymptotic preserving property of the scheme. We therefore do not investigate those
alternative approaches.

3.5.2 Additional Boundary Condition Requirements

In addition to defining the ghost cell values for ρ and ρu at the single point where the pipes meet,
the algorithm described in §3.1–§3.3 requires defined values for (i) the reconstructed values on both

sides of the cell interfaces x
(k)
1
2

and x
(k)

N+ 1
2

; and (ii) the central difference derivative of numerical

fluxes near pipeline boundaries.

The requirement for reconstructed values at the domain boundaries x
(k)
1
2

and x
(k)

N+ 1
2

of each

pipeline is standard and are directly needed within the numerical flux evaluations; see (3.13).
These evaluations are trivial at the inlets and outlets of the pipe network, as they typically involve
Dirichlet or Neumann boundary conditions. Again the difficulty lies at the junctions of the network.
Since we do not have enough information to form a piecewise-linear reconstruction (via equation
(3.14)) of the ghost cells sitting at the junctions, we instead opt for the first-order reconstruction;
that is, at pipe intersections, we take

(U±
N+ 1

2

)(k) = U∗ and (U±
1
2

)(k) = U∗,

for ingoing and outgoing pipelines, respectively. Here, U∗ denotes the solution to nonlinear system
(3.24).

The other boundary condition issue lies in the central difference within the fully discrete method
to calculate ρn+1

j . As seen in (3.16), we require a central difference of Rρu,n
j , which by (3.12) implies

the need to evaluate the unknowns F̃
n

− 1
2
and F̃

n

N+ 3
2
for each pipe. This would require even more

ghost cell evaluations than the reconstructions on the boundaries. Thus, we instead assume a
zero-extrapolation of Rρu,n

j for cells C0 and CN+1 and use the extrapolated values in the central
difference seen in (3.16); that is, we use

Dx

[
Rρu,n

1

Ψn
1

]
=

1

∆x

[
Rρu,n

2

Ψn
2

− Rρu,n
1

Ψn
0

]
and Dx

[
Rρu,n

N

Ψn
N

]
=

1

∆x

[
Rρu,n

N

Ψn
N+1

−
Rρu,n

N−1

Ψn
N−1

]
.

Both this and the first-order reconstructions at pipe intersections imply a first-order method at the
junctions, and thus everywhere in the domain. In the near future, we intend to expand upon this,
the first-order time discretization, and the piecewise-constant initial data within the half-Riemann
problem (3.23) to enhance the proposed scheme to be fully second-order accurate.

3.6 The Discrete Low Mach/High Friction Limit

In this section, we show that in the limit as ε → 0, the method converges to the asymptotic state
in (2.8). Consider the following asymptotic expansions for the discretization of ρ, u and p, which
follow from §2.2:

ρnj = ρ
(0),n
j + ε2ρ

(2),n
j + · · · ,

unj = u
(0),n
j + ε2u

(2),n
j + · · · ,

p(ρnj ) =
(
ρ
(0),n
j

)γ
+ ε2γ

(
ρ
(0),n
j

)γ−1
ρ
(2),n
j + · · · ,

(3.28)
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and analogously at time tn+1. We want to show that as the proposed method advances in time, it
keeps the asymptotic state up to the predicted order of accuracy. To this end, we wish to find a
bound on the asymptotic expansion for the time-advanced solution(

ρ
(0),n+1
j

)γ
+

Cδκ

2
ρ
(0)n+1
j u

(0),n+1
j .

Since the pressure to friction balance in the asymptotic state arises from the momentum equation
in (2.1), we start with a slightly manipulated form of the discrete approximation for (ρu)n+1

j in
(3.17):

ε2

∆t

(
(ρu)nj +∆tRρu,n

j − an∆t

ε2
Dxρ

n+1
j −Ψn

j (ρu)
n+1
j

)
= 0.

Note that the left hand side is effectively the local truncation error multiplied by the O(1) term
ε2Ψn

j . Here, we first substitute in for Rρu,n
j using equation (3.22), resulting in the form

ε2

∆t

(
(ρu)nj −∆tDxF̃

ρu(Un
j )−

an∆t

ε2
Dxρ

n+1
j −Ψn

j (ρu)
n+1
j

)
=

ε2

∆t
· C1

∆t∆x2

ε2
,

where C1 comes from the leading order of diffusion Dρu,n

j+ 1
2

that appears within the O(ε−2∆x2) term

of (3.22). Substituting in F̃ ρu(Un
j ) from (3.3) and Ψn

j from (3.10), we obtain

ε2

[
(ρu)nj − (ρu)n+1

j

∆t
−Dx

(
ρu2
)n
j

]
−Dx

(
p(ρnj )− anρnj

)
− anDxρ

n+1
j − Cδκ

2
(ρu)n+1

j = C1∆x2.

We then apply the asymptotic expansions from (3.28) and take ε → 0, resulting in

Dx

[(
ρ
(0),n
j

)γ]
+

Cδκ

2
ρ
(0)n+1
j u

(0),n+1
j = anDx

(
ρ
(0),n
j − ρ

(0),n+1
j

)
− C1∆x2.

Since Dx represents the second-order central difference operator, then we equivalently have[(
ρ
(0),n
j

)γ]
x
+

Cδκ

2
ρ
(0)n+1
j u

(0),n+1
j = an

(
ρ
(0),n
j − ρ

(0),n+1
j

)
x
+ (C2 − C1)∆x2,

where C2 represents the the leading error coefficient from using central difference. Lastly, applying
Taylor series to the terms at time tn about time tn+1, we obtain[(

ρ
(0),n+1
j

)γ]
x
+

Cδκ

2
ρ
(0)n+1
j u

(0),n+1
j = C3∆t+ (C2 − C1)∆x2.

Here, C3 denotes the leading error term from the Taylor series. Therefore, we can bound the
asymptotic expansion at time tn+1:∥∥∥∥[(ρ(0),n+1

j

)γ]
x
+

Cδκ

2
ρ
(0)n+1
j u

(0),n+1
j

∥∥∥∥ ≤ C(∆t+∆x2),

with C = max {C3, C2 − C1}, hence implying that the proposed method preserves the asymptotic
state up to the order of the scheme.

The limiting scheme is accompanied by the (limiting) coupling conditions (3.24) at the boundary
implemented again using ghost cells. Note again that by the discussion made in §3.5.2, the pipe
entries and exits occurring at intersections would have a bound that is instead first-order in both
space and time.
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4 Numerical Results

In this section, we demonstrate the accuracy and performance of the proposed AP scheme on pipe
networks in several numerical experiments conducted on the isentropic Euler equations in (2.1).
For all examples, we use an adiabatic index value of γ = 5/3, follow the CFL condition in (3.18)
and take the CFL number ν = 0.45, in the source term of (2.1) choose Cδ = 1 and κ = 10−3, take
the minmod parameter θ = 1.3, and set the tolerance for the Newton solve at the junctions to be
10−8.

In this paper, we will only conduct verifications on the two types of T-junctions – the so-called
1-to-2 T-junction, which has one pipe entering and two pipes leaving the junction, and the so-called
2-to-1 T-junction, which has two pipes entering and one pipe leaving the junction. Illustrations of
these are presented in Figure 2. While we only consider the example T-junction networks with all
pipes having the same length, the method is of course not restricted to this and can be extended
to large and more complex pipe networks.

Figure 2: Illustrations of the 1-to-2 T-junction (left), and 2-to-1 T-junction (right).

Example 1 – Convergence Tests

In the first example, we consider a problem with a smooth density and velocity profile to confirm the
convergence rate of the proposed AP method. We consider both the 1-to-2 and 2-to-1 T-junction
setups. For ingoing pipelines, we take the initial conditions

u(x, 0) = 0, ρ(x, 0) =


1.1 x ≤ 0.4

ε

1 + 0.1 sin
( πε
0.8

x
) 0.4

ε
< x <

0.8

ε
,

1 x >
0.8

ε
,

and for outgoing pipes we take the initial conditions ρ(x, 0) = 1, u(x, 0) = 0. We will take each pipe
to have a length of ε−1, as we are more interested in the investigating behavior near the junction
than the inlet/outlet boundaries. These pipe lengths allow for the smooth profile to pass through
the junction before the final time of t = 0.2, but the smooth profile will not reach the inlets/outlets
by final time. At the inlets, we take a Dirichlet boundary condition of ρ = 1.1, and at the outlets
we take Neumann boundary conditions.

Since the exact solution is unknown, we obtain the experimental L1 convergence rates by com-
puting the solution on a number of different meshes, then use the Runge formula

Rate∆x(ρ) = log2

(
∥ρ(x, 1)∆x − ρ(x, 1)2∆x∥1
∥ρ(x, 1)∆x/2 − ρ(x, 1)∆x∥1

)
,

where ρ∆x denotes the density solution computed on a uniform mesh with all cells having width
∆x. The convergence rates for u can be computed analogously. We present the L1 errors and rates
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for ρ and u for the 1-to-2 junction in Table 1 and for the 2-to-1 junction in Table 2, both of which
confirm the expected first order of accuracy when the fluid passes through the junction.

∆x ∥ρ(x, 1)∆x/2 − ρ(x, 1)∆x∥1 Rate∆x(ρ) ∥u(x, 1)∆x/2 − u(x, 1)∆x∥1 Rate∆x(u)

ε = 0.1 1/10 1.43e-02 – 1.39e-01 –
1/20 7.72e-03 0.89 7.57e-02 0.88
1/40 3.89e-03 0.99 3.93e-02 0.94
1/80 1.97e-03 0.98 2.05e-02 0.94
1/160 9.85e-04 1.00 1.05e-02 0.96

ε = 0.01 1/10 8.59e-02 – 1.20e+01 –
1/20 3.08e-02 1.48 3.43e+00 1.81
1/40 9.53e-03 1.69 1.08e+00 1.67
1/80 2.82e-03 1.76 3.08e-01 1.80
1/160 9.65e-04 1.55 9.94e-02 1.63

ε = 0.001 1/10 2.89e-02 – 8.21e+00 –
1/20 9.10e-03 1.67 1.38e+00 2.58
1/40 3.06e-03 1.57 5.28e-01 1.38
1/80 1.01e-03 1.60 2.22e-01 1.25
1/160 3.64e-04 1.47 1.04e-01 1.09

Table 1: Example 1 (1-to-2 T-junction): L1 errors and corresponding experimental convergence rates.

∆x ∥ρ(x, 1)∆x/2 − ρ(x, 1)∆x∥1 Rate∆x(ρ) ∥u(x, 1)∆x/2 − u(x, 1)∆x∥1 Rate∆x(u)

ε = 0.1 1/10 1.49e-02 – 1.41e-01 –
1/20 6.98e-03 1.10 8.33e-02 0.76
1/40 3.35e-03 1.06 4.42e-02 0.91
1/80 1.67e-03 1.01 2.27e-02 0.96
1/160 8.42e-04 0.99 1.14e-02 0.99

ε = 0.01 1/10 9.23e-02 – 1.19e+01 –
1/20 3.84e-02 1.26 3.01e+00 1.98
1/40 1.19e-02 1.69 9.56e-01 1.66
1/80 2.99e-03 1.99 3.12e-01 1.61
1/160 9.44e-04 1.66 1.21e-01 1.37

ε = 0.001 1/10 2.93e-02 – 8.16e+00 –
1/20 9.33e-03 1.65 1.35e+00 2.60
1/40 3.18e-03 1.55 5.12e-01 1.40
1/80 1.07e-03 1.57 2.11e-01 1.27
1/160 4.02e-04 1.42 9.78e-02 1.11

Table 2: Example 1 (2-to-1 T-junction): L1 errors and corresponding experimental convergence rates.

Example 2 – Inlet Discontinuity

For the second example, we look at the evolution of an initial jump discontinuity that starts at
the inlets, resulting in a wave that travels through the junction. For all pipelines, we consider the
initial conditions

ρ(x, 0) = 1, u(x, 0) = 0,

with each pipe having a length of 100. At the inlets, we take a Dirichlet boundary condition of
ρ = 1.3, and prescribe Neumann boundary conditions at the outlets. We look at this initial set up
for both the 1-to-2 and 2-to-1 T-junction networks.
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We use the proposed AP scheme to compute the solution for ε values of 0.1, 0.01, and 0.001 to
the final times of t = 10, t = 1, and t = 0.1, respectively, to capture the behavior of the discontinuity
through the junction. The resulting solutions for ρ and u when taking a spatial mesh of 4000 cells
in each pipeline are presented in Figure 3 for the 1-to-2 T-junction and in Figure 4 for the 2-to-1
T-junction. In these figures, the influence of the friction source term is very clear, as it appears as
if the flow did not yet reach the junction in the ε = 0.001 results. This is however not the case
and is only a result of the strong friction; see Figure 5 where we plot the outgoing pipeline results
for ε = 0.001 at t = 0.1. In addition, we see that in the cases that produce discontinuities in the
solution, there are no spurious oscillations present.

Figure 3: Example 2 (1-to-2 T-junction): Solutions for ρ (left column) and u (right column) for ε = 0.1
at t = 10 (top row), ε = 0.01 at t = 1 (middle row), and ε = 0.001 at t = 0.1 (bottom row).

Example 3 – Comparison with the CU Explicit Scheme

In this example, we test the importance of the ε-independent time-step restriction and compare the
proposed AP scheme against the CU finite volume discretization with a forward Euler time-step.
The forward Euler time-step was selected so that the explicit scheme matches the first-order in
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Figure 4: Example 2 (2-to-1 T-junction): Solutions for ρ (left column) and u (right column) for ε = 0.1
at t = 10 (top row), ε = 0.01 at t = 1 (middle row), and ε = 0.001 at t = 0.1 (bottom row).

Figure 5: Example 2: Results for ρ (left) and u (right) of the outgoing pipeline(s) for the 1-to-2 T-
junction (blue) and the 2-to-1 T-junction (red dotted).
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time, second-order in space accuracy of the proposed AP scheme.
We consider the 1-to-2 T-junction with the same initial and boundary conditions as that of

Example 2, and run both the proposed AP scheme and the related explicit scheme to a final time
t = 10 for the ε values of 0.1, 0.01, and 0.001 on various spatial discretizations. We present the
run times of both schemes in Table 3. In the run times, we see that for ε = 0.1, the run times for
the two methods are on the same order of magnitude. However, the difference becomes drastic as
ε → 0. It is clear in Table 3 that the AP scheme keeps all run times roughly the same for varying ε.
Conversely, the explicit scheme has the expected ε-dependence within the experimental run times
– which, for ε = 0.001, results in simulations that are a daunting 140× slower than that of the AP
scheme.

∆x AP Scheme Run Time Explicit Scheme Run Time

ε = 0.1 1/20 2.44 s 4.05 s
1/40 9.14 s 16.1 s
1/80 37.4 s 65.5 s

ε = 0.01 1/20 2.89 s 46.8 s
1/40 11.0 s 192 s
1/80 44.0 s 782 s

ε = 0.001 1/20 2.91 s 406 s
1/40 11.0 s 1610 s
1/80 43.7 s 6450 s

Table 3: Example 3: Run time comparisons of the proposed AP scheme and CU discretization with
forward Euler time-stepping for various ε and mesh sizes.

5 Conclusion

In this study, we developed a novel asymptotic-preserving method for the isentropic Euler equations
with a friction source on pipe networks. To address the difficulties and stiffness of the system in
low Mach or high friction regimes, we split the flux into pieces that represent the slow and fast
dynamics. This allows for an explicit time-step on the non-stiff (slow) dynamics portion, and, by
using a method based on Rosenbrock-type Runge Kutta schemes, allows for an implicit time-step
for the stiff (fast) dynamics that does not require a nonlinear solver. In turn, we were able to
confirm both experimentally and theoretically that the proposed scheme is AP in the sense that
it provides a consistent and stable solution in the the low Mach and high friction regimes. Most
importantly, the CFL stability restriction is only dependent on mesh size, rather than requiring
dependence on both the mesh and the small limiting parameter ε within the system. This method
within each pipeline is then extended to entire pipe networks, in which coupling conditions must be
used at pipe-to-pipe intersections to ensure a mathematically well-posed problem. We show that,
even in the limiting regime, the coupling conditions remain well-posed. These coupling conditions
are used to set the ghost cell values on each pipeline, thus allowing a seamless coupling of the AP
method across pipe junctions within the network.

Since the AP method is combined with a friction source term and pipe junctions, both the
asymptotic state in the low Mach/high friction regime and the boundary conditions are non-trivial.
Because of this, in addition to a first-order approximation in time, the scheme is currently limited
to first-order. The second-order extension to the proposed method is, to our knowledge, non-trivial,
as it would require, e.g., one-sided reconstructions, adjustments to the half-Riemann problems, and
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approximating fluxes in the ghost cells. In future work, these difficulties are something we plan to
address in hopes of making a fully second-order AP scheme for isentropic flow in pipe networks.
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