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Building upon the concept of utilizing quasi-parabolic approximations to determine plasma fre-
quency profiles from ionograms, we present a refined multi-quasi-parabolic method for modeling the
E and F layers. While a recent study [AIP Advances 14, 065034 (2024)] [1] introduced an approach
in this direction, we identified several inaccuracies in its mathematical treatment and numerical
results. By addressing these issues, we offer a clearer exposition and a more robust algorithm. Our
method assumes a parabolic profile for the E layer and approximates the F layer with a series of
concatenated quasi-parabolic segments, ensuring continuity and smoothness by matching deriva-
tives at the junctions. Applied to daylight ionograms from the Jicamarca Observatory in Lima, our
inversion algorithm demonstrates excellent agreement between the synthetic ionograms generated
from our predicted plasma frequency profiles and the original measured data.

I. INTRODUCTION

Most of our knowledge about the ionosphere comes
from ionogram records. These h′(f) records give the ap-
parent or virtual heights of reflection h′(f) of a verti-
cally transmitted radio wave, as a function of the wave
frequency f . This paper aims to retrieve the electronic
density profile from measured ionograms.

The analysis of ionograms consists basically of con-
verting an observed h′(f) curve, which gives the virtual
height of reflection h′ as a function of the wave frequency
f , into an N(h) curve giving the variation of the electron
density N with height h. These two curves are related
by

h′(f) =

∫ hr

0

µ′ dh, (1)

where the group refractive index µ′ is a complicated func-
tion of f , N , and the strength and direction of the mag-
netic field. The height of reflection, hr for the frequency
f depends on f , N , and (for the extraordinary rays only)
the strength of the magnetic field.

Previous efforts to solve this ill-posed problem have in-
cluded lamination techniques, least-squares polynomial
approximations, and ray tracing methods. Since there is
no analytic solution to Eq. (1)—that is, no direct ex-
pression for N(h) in terms of h′(f)—researchers have
explored various numerical and approximation strate-
gies. The lamination technique proposed by Reilly [4]
involves assuming various N(h) model curves, passing
them through a forward model to generate corresponding
ionograms, and then comparing the resulting h′(f) curves
with those observed experimentally. In contrast, Reinisch
et al. [3, 5] utilized Chebyshev polynomial methods to ap-
proximate the F layer, aiming for a more efficient process
in ionogram analysis. However, their software is propri-
etary, making it difficult to replicate and improve upon
their work. More recently, Ankita et al. [6] introduced a
different approach by using electromagnetic wave prop-
agation simulations based on Hamiltonian formulations
for ray tracing.

In this study, we build upon the concepts introduced
by Niu et al. [1], who proposed using multivariate quasi-
parabolic layers to develop an inversion algorithm for
approximating the plasma frequency profiles of the E
and F ionospheric layers. While their underlying idea
holds potential, we have identified several mathemati-
cal errors, mislabeled equations, and inconsistencies in
their manuscript that make the methodology challeng-
ing to follow and replicate. To address these issues,
we offer a clearer and more accurate exposition of the
intended approach, providing detailed computations for
transparency and understanding. This work is intended
to be pedagogical, aiming to enhance comprehension
of the inversion process. Additionally, recognizing the
scarcity of open-source software for ionogram inversion,
we are releasing our code to the community to facilitate
further research and application.
An introduction for the QP layers and a treatment of

how to use them to reconstruct the electron density pro-
file is presented in Sec. II. In Sec. III we present a de-
tailed inversion algorithm using ideas from the previous
section. In Sec. IV we describe the forward model, a se-
ries of detailed calculations to obtain the virtual heights
given a plasma frequency profile. Finally, in Sec. V we
show some results of the predicted profiles based on a
given ionograms.

II. MODEL: QP LAYERS

The quasi-parabolic model of the ionosphere is useful
for representing electron density variations in layers such
as the E and F regions; it was introduced by Forsterling
et al. [8]. The electron density Ne as a function of the
radial distance r from the Earth’s center is described by:

Ne =

Nm

[
1−

(
r−rm
ym

)2
]
, for rb < r < rm + ym

0, otherwise

where:
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• Ne: Electron density, which attains a maximum
value Nm at the center of the ionospheric layer.

• r: Radial distance from the Earth’s center.

• rm: Radial distance where the electron density
reaches its peak value Nm.

• rb: Radial distance at the base of the ionospheric
layer, defined as rm − ym.

• ym: Half-thickness of the ionospheric layer, control-
ling the layer’s vertical extent.

• Nm: Maximum electron density at r = rm.

This model confines the electron density within a
parabolic profile, smoothly decaying to zero outside the
bounds rb < r < rm + ym. A very slight modification to
the parabolic model permits the derivation of exact equa-
tions for ray-path parameters. This modified parabolic
ionosphere will be termed the ”quasi-parabolic” or, more
simply, the ”QP” model.

We make a QP layer the basic unit that will be used
to model split sections of the F layer and the entirety of
the E layer. We define a QP layer as

f2
ni = f2

ci

[
1±

(
r − rmi

ymi

)2 (
bi
r

)2
]

(2)

where fni is the plasma frequency dependent on the real
height r and fci is the critical frequency. However these
physical meanings are lost once we consider the QP layer
as a unit, and instead it is more a geometric construction.
It can also be written as

yi = f2
ni = ai ± bi

(
1− rmi

r

)2

(3)

where yi = f2
ni, ai = f2

ci, and bi = ai

(
bi
ymi

)2

. There

will be two kinds of QP layers: QP+
i and QP−

i . There-
fore they will be represented by equations y+i and y−i , cor-
respondingly. Each QP layer is parameterized by three
numbers: ai, bi, and rmi. See Fig 1.

The way we use Eq. (2) to find the real heights, is
solving the equation for a given frequency. That is, per
QP layer, we select a bunch of plasma frequency points
and solve the equation getting their corresponding real
heights.

A. Data

We assume we have the autoscaled ionogram virtual
heights for frequencies fi ∈ [0, fF ] with arbitrary strides
between frequency points, and also the frequency posi-
tion of the E layer critical frequency fE . Big gaps be-
tween frequency data points may cause undesired be-
haviour in the algorithm.

B. E layer

It is well known that the E-layer virtual heights per
frequency f can be modeled as

h′(f) = rb +
1

2
ym

f

fE
ln

(
fE + f

fE − f

)
(4)

Where rb is the height where the ionogram starts. In
the case of E layers, we usually don’t have the complete
trace so it is necessary to search for rb and ym values.
If we were to use a QP model for the E layer instead of
Eq. (4), we would still need to compute the same values
since we take only fE , the E layer critical frequency, for
granted. We use a brute-force approach to find the best
parameters for the E-layer using a simple two for-loop.
For each pair (rbE , ymE) we compare the produced vir-
tual heights h′(f) using the Eq. (4), or with the forward
model in case we use a QP model, versus the original
ionogram. Finally, the probe pair with the least error
difference is the one we take. The metric used for mea-
suring the error we use is the root-mean-squared error.
Because the E layer presents a pronounced steep, we

consider a probe frequency points that are not evenly
distributed in, say, a range [A,B], but more densily dis-
tributed near the upper bound B. We use the following
equation to obtain a suitable distribution of values

xi = A+ (B −A)
1− exp

(
−k i

N

)
1− exp(−k)

. (5)

C. QP layers concatenation for F layer
reconstruction

Next, we approximate the F layer by concatenating
several QP layers by alternating between QP− to QP+

FIG. 1. (Color online) Description of what the concatenation
of QP layers aims to build in a plasma frequency vs real height
plane. The dotted black line would be the plasma frequency
profile.
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and QP+ to QP− layers. We start the F layer with
a QP+ layer. We ensure the continuity of the plasma
frequency profile between QPi and QPi−1 by making its
derivatives equal at ri, the real height corresponding to
last frequency point we considered in the QPi−1 layer.
See Fig. 1.

dy±i
dr

∣∣∣∣
r=ri

=
dy∓i−1

dr

∣∣∣∣∣
r=ri

or
dy∓i
dr

∣∣∣∣
r=ri

=
dy±i−1

dr

∣∣∣∣∣
r=ri

,

(6)
From these relations we can get expressions for bi and

rmi, dependent on ai and the parameters of the QPi−1

layer. See Eq. (3)
Let us compute the derivatives for the different types

of QP layers. For y−i

y−i (r) = ai − bi

(
1− rmi

r

)2

(7)

its corresponding derivative is

y−i (r)
′ = −2birmi

r2

(
1− rmi

r

)
(8)

On the other hand, for y+

y+i (r) = ai + bi

(
1− rmi

r

)2

(9)

its derivative is

y+i (r)
′ =

2birmi

r2

(
1− rmi

r

)
(10)

Then, as we mentioned, there will be two cases:
QP− to QP+ or QP+ to QP−. First, for the case of
QP−

i−1 to QP+
i , to find the dependence of parameters bi

and rmi with the ones of QPi−1 and ensure the continu-
ity of the curve, we equate y−i−1(ri)

′ = y+i (ri)
′. ri is the

point where both curves meet, computationally speaking
ri is the last point we took from the curve QP−

i−1. We
find

rmi =
r2i y

−
i−1(ri)

′

2(yi−1(ri)− ai) + riy
−
i−1(ri)

′ (11)

bi =

[
2(yi−1(ri)− ai) + riy

−
i−1(ri)

′]2
4(yi−1(ri)− ai)

(12)

Finally, for the case of QP+
i−1 to QP−

i , we equate

y+i−1(ri)
′ = y−i (ri)

′. (13)

rmi =
r2i y

+
i−1(ri)

′

2(y+i−1(ri)− ai) + riy
+
i−1(ri)

′ (14)

bi = −
[
2(y+i−1(ri)− ai) + riy

+
i−1(ri)

′]2
4(y+i−1(ri)− ai)

(15)

III. ALGORITHM

The general idea is that for each QP layer we will try
different values of fci, each giving a its own set of param-
eters, which at the same time depend on values computed
in the previous QPi−1. Next, for each fci, we use a batch
of N plasma frequency points for which we calculate their
real heights and subsequently their virtual heights using
the forward model. We compare them against the mea-
sured virtual heights and keep the batch with the least
error. Finally, we append the best one and move on onto
the next layer.
A more detailed explanation is as follows: the algo-

rithm starts with the calculation of the E-layer, also
known as QP−

0 layer. Then, we can iteratively compute
the next QPi parameters since we already know the ones
from the QPi−1 layer meaning rmi and bi will be left as
a function of ai = f2

ci. To find fci, we use an exhaustive
search algorithm, which means trying several values of
fci by brute force. If the QPi layer is a QP+ layer, we
will search fci in the range [fL + ϵ, fL + 2.0], and, if, on
the other hand, we are computing a QP− layer, the range
will be [fL − 2.0, fL − ϵ]. For each of these fci values, we
take a batch of N plasma frequency points including fci
and compute their real and virtual heights with the help
of the forward mode and compare them against the real
measurements from the ionogram. The batch produc-
ing the least error is attached to our fp profile array.
Once we are done with the QPi layer, we consider the last
element of the fp profile to be the intersection point
between the QPi and QPi+1 layers. Finally, we repeat
the process. The number of QP layers should be defined
beforehand.

IV. FORWARD MODEL

Each time we add new plasma frequency and real
height data points to our plasma frequency profile curve,
we need to test it against the original ionogram and cal-
culate the error. To achieve this we need a forward model
that can calculate an ionogram given a plasma frequency
profile.

Another way to express the ionospheric virtual height
reflection is

h(f) =

∫ zr

0

dz

n(z)
(16)
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FIG. 2. Close up to the n(z)2 function.

and by looking at the expression of n(z) =
√
1− fp(z)2

f2 ,

plus the condition that fp(zr) = f , we can foresee that
the curve of n(z)2 will look like an inverse function begin-
ning in the coordinate (0, 1) and then converging towards
n(z)2 = 0 at z = zr. If we zoom in on a curve segment,
the ending points would be like the ones in Fig. 2. Using
triangle relations we get

zi+1 − zi
n2(zi)− n2(zi+1)

=
z − zi

n2(zi)− n2(z)
(17)

where n(z) can be extracted from this equation

n2(z) = n2(zi)− (z − zi)

[
n2(zi)− n2(zi+1)

zi+1 − zi

]
(18)

and replace it in Eq. 16. Because the integrand is
an inverse function the biggest contributions will come
from the segment with zi value closer to zr. If we treat
the integral from Eq. 16 by parts (imagine our line of
integration is formed by N points), then there will be two
different contributions, one coming from the last segment
(z1, zr) and another from (z0, z1).

h(f) =

∫ zr

z1

dz

n(z)
+

∫ z1

0

dz

n(z)
(19)

First, we deal with the latter.

=

N−2∑
i=0

∫ zi+1

zi

dz

n(z)

=

N−2∑
i=0

∫ zi+1

zi

1√
n2(zi)− (z − zi)

[
n2(zi)−n2(zi+1)

zi+1−zi

] dz

(20)

Doing a change of variables z′ = z−zi we are left with

=

∫ z1

0

dz

n(z)

=

N−2∑
i=0

∫ zi+1−zi

0

1√
n2(zi)− z′

[
n2(zi)−n2(zi+1)

zi+1−zi

] dz′,

(21)

Then using the result
∫

1√
a−bx

dx = − 2
√
a−bx
b + C to

calculate the integral analytically∫ z1

0

dz

n(z)
=

N−2∑
i=0

2(zi+1 − zi)√
n2(zi) +

√
n2(zi+1)

=

N−2∑
i=0

2∆z

n(zi) + n(zi+1)

(22)

Secondly, we deal with the first integral in Eq. (19).
As the upper limit for the integral is zr, we need to
remember that n(z = zr) = 0, then because of zr =

n2(zi)
n2(zi)−n2(zi+1)

(zi+1 − zi) + zi the integral will be

n2(zi)

∫ zi+1−zi

n2(zi)−n2(zi+1)

0

dz

n(z′)
(23)

already applied the change of variables. The result is∫ zr

zi

dz

n(z)
= 2n(zi)

(zi+1 − zi)

n2(zi)− n2(zi+1)
(24)

with zi = zN−1 and zi+1 = zN . Then, by calculating
both analytically both integrals we can get an accurate
value for the virtual height given a plasma frequency pro-
file.

V. RESULTS

To test our inverse algorithm and forward model, we
used data measured in the Jicamarca Observatory in
Lima, Peru. We concentrate in daylight ionograms as
they present some data points for the E layer. We do not
support ionograms with only the F layer present.
The original measured ionograms will be represented

by magenta dots, the reconstructed plasma frequency
profile in a yellow solid line, and the synthetic ionogram
calculated from the reconstructed plasma frequency pro-
file will be represented by empty black squares. For the
sake of brevity, we present results with an hour of differ-
ence during daylight.
Even though the final reconstructed ionogram does not

perfectly fit the original one, see Fig. 9 , in general shows
good agreement, see Figs. 4 5 6 8. But more importantly,
the results give us a good idea of what the plasma fre-
quency or electron density profile look like.
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To obtain this results, we usually computed between
25 to 30 QP layers with 4 data points per layer. How-
ever, to stabilize the virtual heights of the first produced
synthetic ionogram data points in the F layer, we used a
single data point for the first 10 QP layers. Additionally,
our algorithm is able to complete the missing data points
in the E layer, see for example Fig. 9.

The open-source code and data used for this research

can be found in Github repository InversionAlgorithm.
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FIG. 3.

FIG. 4.

FIG. 5.
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FIG. 6.

FIG. 7.

FIG. 8.
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FIG. 9.
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