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Abstract 

Machine Learning (ML) is increasingly employed to inform and support policymaking interventions. 

This methodological article cautions practitioners about common but often overlooked pitfalls 

associated with the uncritical application of supervised ML algorithms to panel data. Ignoring the 

cross-sectional and longitudinal structure of this data can lead to hard-to-detect data leakage, 

inflated out-of-sample performance, and an inadvertent overestimation of the real-world usefulness 

and applicability of ML models. After clarifying these issues, we provide practical guidelines and 

best practices for applied researchers to ensure the correct implementation of supervised ML in panel 

data environments, emphasizing the need to define ex ante the primary goal of the analysis and align 

the ML pipeline accordingly. An empirical application based on over 3,000 US counties from 2000 

to 2019 illustrates the practical relevance of these points across nearly 500 models for both 

classification and regression tasks. 

JEL-Codes: C33, C53. 

Keywords: machine learning, prediction policy problems, panel data, data leakage.

mailto:augusto.cerqua@uniroma1.it
mailto:marco.letta@uniroma1.it
mailto:gabriele.pinto@uniroma1.it


1 

 

1. Introduction 

In recent years, economics and other social sciences have enthusiastically embraced the use of 

Machine Learning (ML) to address “prediction policy problems” (Kleinberg et al., 2015).1 Many 

scholars have started to apply supervised ML algorithms to rich panel data to analyze and support ex 

ante policy targeting and design. Topics covered include enhancing investments in energy, increasing 

the efficiency of workplace inspections and tax audits, as well as improving targeting at both local 

(e.g., bankruptcy, corruption) and national levels (e.g., financial crises, asylum seeker flows) 

(Antulov-Fantulin et al., 2021; Ash et al., 2024; Battaglini et al., 2024; Boss et al., 2024; Bluwstein 

et al., 2023; Christensen et al., 2024; de Blasio et al., 2022; Jarvis et al., 2022; Johnson et al., 2023). 

The overall idea underlying papers in this new tradition is simple and compelling: to leverage 

increasingly available rich panel datasets for accurately predicting complex social phenomena on 

new, previously unseen data, thus offering policymakers predictions that can be used to refine policies 

and shape outcomes in the desired direction (Kleinberg et al., 2015). In practice, the main purpose of 

most of these studies is to identify the areas or units most susceptible to a given hard-to-detect 

phenomenon. Accordingly, the ML algorithms are asked to find recurrent patterns in data and predict 

where the phenomenon under analysis is most likely to occur. By pinpointing the hotspots or ‘red 

flags’ (e.g., high-risk areas), these models can help policymakers to allocate resources in a cost-

efficient way, ensuring that policy efforts are concentrated where they are needed most and allowing 

for proactive rather than reactive measures. 

Although we believe that the insights provided by this new and active research area are valuable and 

that ML has much to offer in improving policy targeting and design, we deem it important to raise 

awareness about common mistakes associated with the default application of supervised ML to panel 

data, such as the use of contemporaneous covariates, i.e., covariates observed at time t, as predictors 

to forecast outcomes at time t, or the split of the observations into training and testing sets in a way 

that does not make them completely disjoint. Such modelling choices can potentially lead to severe 

data leakage and overly optimistic measures of out-of-sample performance, which, in turn, can result 

in misleading policy prescriptions and overconfidence in the actual ML’s ability to support policy 

efforts. Data leakage is the unintended use of information during model training and validation that 

would not be expected to be available at the prediction stage and has been deemed ‘one of the top ten 

 
1 This article is primarily intended for users of ML in genuine prediction settings. Another strand of literature has adapted 

and developed ML techniques for causal inference, i.e., to estimate treatment effects rather than predict outcomes (e.g., 

Wager & Athey, 2018; Chernozhukov et al., 2018), giving rise to the subfield of causal machine learning. Many of the 

issues discussed here are also relevant for causal machine learning techniques when used in conjunction with panel data. 
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data mining mistakes’ (Kaufman et al., 2012).  

The perils of data leakage associated with the use of ML have recently come under intense scrutiny 

across many different scientific fields, including, among others, biology, medicine, computer 

security, peace studies, nutrition, and satellite imaging (Apicella et al., 2024; Bernett et al., 2024; 

Kapoor & Narayanan, 2023; Rosenblatt et al., 2024). Data leakage has even been pointed out as one 

of the main culprits of the reproducibility crisis in machine-learning-based science (Kapoor & 

Narayanan, 2023), potentially contributing to producing 'illusions of understanding' in AI-driven 

scientific research (Messeri & Crockett, 2024). In the social sciences, these issues are rarely 

discussed, despite the fact that empirical analyses increasingly rely on panel data, which is 

particularly susceptible to data leakage. 

We fill this gap by adopting a perspective centered around data leakage issues that specifically pertain 

to panel data. We start by clarifying the conceptual and practical pitfalls associated with the uncritical 

use of supervised ML with panel data. We then propose empirical guidelines for practitioners to 

ensure the correct implementation of supervised ML techniques in practically relevant panel data 

environments, emphasizing the need to clarify the primary goal ex ante and align the ML analysis 

accordingly. We illustrate these points with an empirical application based on a balanced panel dataset 

of over 3,000 US counties focusing on both a classification and a regression problem. Our target 

reader is the applied economist willing to correctly harness these powerful tools on their panel data 

to inform and target policy interventions. 

For this analysis, we focus on aggregate panel data, also known as ‘time-series cross-sectional data,’ 

as the benchmark case. This type of data involves observations on multiple administrative entities 

(such as regions or countries) across multiple time periods and is increasingly used in studies on 

policy targeting. In addition, by analyzing aggregate panel data we can underline their specific 

challenges related to contamination or leakage issues, due to their spatial dimension, and to the 

possibility of covering the entire population of interest (e.g., all counties within a given state). Despite 

the peculiarities of aggregate panel data, most of the insights discussed below fully apply to 

longitudinal microdata on individuals or firms.  

The rest of this paper is arranged as follows. Section 2 discusses the leakage problem. Section 3 

provides empirical guidelines for applied researchers. Section 4 illustrates the empirical application. 

Section 5 concludes. 
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2. The leakage problem 

The goal of supervised ML is to minimize out-of-sample error when predicting an outcome of interest 

based on a set of inputs, accurately generalizing to unseen data. The standard ML approach involves 

randomly splitting the original sample into two completely disjoint sets—for instance, 80% for 

training (the training set) and 20% for testing (the testing set). This approach adheres to a ‘firewall’ 

principle: none of the data used to generate the prediction function is employed for its evaluation 

(Mullainathan & Spiess, 2017). The out-of-sample performance of the model on unseen data from 

the testing set serves as a reliable measure of its ‘true’ performance on future data.2 This seemingly 

safe reliance on randomization works fine in classic ML tasks where the data do not have either an 

explicit temporal or spatial dimension. But aggregate panel data are different from the typical ML 

datasets employed in other domains, as the observations are not independently distributed. If applied 

to panel data, the above standard procedure is wrong, both conceptually and practically, because it 

will lead to two different types of data leakage: temporal and cross-sectional leakage. Temporal 

leakage occurs when information from the future leaks into the past during the training and validation 

process,3 while cross-sectional leakage refers to information leaks that occur when the same unit 

appears in both the training and testing.  

The entire point of ML is that the out-of-sample performance constitutes a proxy of the real ability of 

the model to predict on data it has never encountered before. The key problem with data leakage is 

that testing set data points are not new to the model at all. In general, the most significant consequence 

of data leakage is the inflation of the model’s out-of-sample performance, which creates the illusion 

that the ML algorithm can accurately predict the target phenomenon. However, due to data leakage, 

the algorithm’s performance will be substantially poorer when making predictions on genuinely 

unseen data. Therefore, data leakage can potentially result in misleading policy recommendations. 

To see how leakage due to a random training-testing split can occur with panel data, consider a typical 

longitudinal dataset, such as the one reported in Figure 1, consisting of panel data with T=7 and N=20, 

with each unit (e.g., county) belonging to a larger geographical unit (e.g., state, with G=5 in this case). 

Panel data consist of unit-time observations, where each unit is observed at multiple points in time. 

In the usual tabular form, the rows of the dataset are therefore unit-time observations. Panel A of 

Figure 1 illustrates what happens to the data when applying the random split at the unit-time level. 

 
2 To address the bias-variance trade-off and prevent overfitting, automatic tuning techniques, such as random k-fold cross-

validation (CV), can be applied to the training sample to select optimal hyperparameter values. 

3 As we discuss later, other than through sample splits, temporal leakage can also result from the use of contemporaneous 

predictors (see Section 3). 
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Some rows, i.e., unit-time observations, will end up in the training set, while others will end up in the 

testing set. For many units, the same unit will appear in both training and testing sets. All time periods 

will appear in both the training and testing sets. The ML model will be trained and tuned on the 

training set, and then it will be employed to predict out-of-sample on the held-out unit-time 

observations.  

Figure 1: Training and testing sets under different splitting rules 

 
Notes: This example mirrors a short version of the data from the empirical application described in Section 4, where the 

time variable corresponds to years, the unit variable to counties, and the group variable to states. 

At this stage, however, the model will not really be encountering previously unseen data: it has 
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already ‘seen’ most units and all time periods belonging to the testing set during its training phase 

(e.g., in Panel A, unit 7 ends up in the training set in all time periods but T=5, in which it ends up in 

the testing set). It already ‘knows’ both most or all of the units and their characteristics—especially 

if some of the predictors are time-invariant or slowly changing over time—and any temporal trend of 

the outcome trajectories, because it has been trained on the latest available data already. Possibly 

worse, data at time t+k, with k≥0, in the training set will be employed to predict the outcome at time 

t in the testing set. Lastly, considering the forecasting goal associated with policy targeting, it does 

not make sense to include the latest available time period in the training sample. Therefore, with an 

observation-level random split on panel data, there will be both temporal and cross-sectional leakage, 

leading to a potentially severe overestimation of the authentic ability of the ML model to predict on 

new data points.  

Yet, there are alternative solutions that can be employed: as Figure 1 shows, one can also split at the 

unit or group level or, alternatively, at the time level only. Table 1 below reports the four cases 

depicted in the figure and compares what happens to the observations. With a random split at the unit 

level, some units will appear only in the training set, while the rest of the units will only feature in 

the testing set.4 All time periods will be present in both sets. This type of split—using an 80/20 rule—

is shown in Panel B of Figure 1. This split strategy will lead to temporal leakage, but not cross-

sectional one: the units the ML model will encounter on the testing set will be previously unseen, but 

the algorithm may have already captured common shocks or a general trend in the trajectory of the 

outcome. A variation of this type is the split at the group level, where all units of some groups appear 

in the training set, and all units of other groups feature in the testing set. An example is provided in 

Panel C of Figure 1, where counties are grouped in states. This approach is usually done to remove 

residual cross-sectional leakage, as we will discuss below, but it still suffers from temporal leakage.  

In the fourth case, the researcher can split non-randomly on time: in this case, the first time periods 

will appear in the training set, while the latest will appear in the testing set (see Panel D of Figure 1 

for an example where the first 5 time periods are part of the training set and the last two time periods 

constitutes the testing set).5 All units will be present in both sets. In this scenario, there will be cross-

sectional leakage, but not temporal one: the model will already know all the units it will encounter in 

the testing set, but it has never encountered before data from the latest points in time. 

 

 
4 In practical implementation, this involves sampling blocks of rows, with the blocks defined by unit groups. 

5 This corresponds to sampling data by the values in the ‘Time’ column of the dataset. 
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Table 1: Split strategies for ML with panel data 

Strategy Implication Consequence 

[1] Random split at the 

observation (unit-time) level 

Many units appear in both training and 

testing sets. All the time periods appear in 

both the training and testing sets. 

Temporal and cross-

sectional leakage 

[2] Random split at the unit 

level 

Some units appear in the training set, while 

others feature only in the testing set. All 

time periods are present in both sets. 

Temporal leakage 

[3] Random split at the group 

level 

All units of some groups appear in the 

training set, while all units of other groups 

feature only in the testing set. All time 

periods are present in both sets. 

Temporal leakage 

[4] Non-random split on time 

Earlier time periods appear only in the 

training set, while later periods appear 

exclusively in the testing set. All units are 

present in both sets. 

Cross-sectional 

leakage 

Given that some form of leakage will inevitably always occur when applying ML to panel data, what 

is the best possible splitting strategy? To answer this question, we need to take a step back and 

consider the research goal. We stress that prediction policy problems can be divided into two main—

and very different—types: 
 

A. Cross-sectional prediction policy problems: 

 

- The rationale for cross-sectional prediction6 is to address the challenge that arises when data 

for a specific outcome of interest are available only for a subset of units within a given 

population. For example, one variable might be collected over time only for certain areas (e.g., 

large ones). However, both policymakers and researchers aim to comprehensively understand 

and map the phenomenon across the entire population of units.7 In this scenario, ML can be 

applied to units with available outcome information. The model, trained on a subset of these 

data, can then predict out-of-sample outcomes for the rest of units with observed labels. If the 

 
6 We label this type of out-of-sample prediction problem as ‘cross-sectional’ because, even though we are in a panel 

setting, its main goal is to produce ‘horizontal’ predictions of the outcome for other units—hence, cross-sectionally—

rather than forecasting outcomes for the same units over time. 

7 This is also known as ‘transfer learning’ in data-scarce environments. 
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model performs “well”, it can be used to predict outcomes for units where no outcome data 

exists. This type of prediction task can be seen as using ML algorithms for missing data 

imputation rather than as a genuine policy targeting exercise. 

 

For this cross-sectional prediction policy problem, the most appropriate choice is to split the 

sample at the unit level (split strategy [2]). This approach ensures no cross-sectional 

contamination, albeit at the expense of temporal leakage. The shared temporal information 

between the training and testing sets is not problematic in this context because our goal is not 

to forecast outcomes at future time points; rather, we aim to map the phenomenon cross-

sectionally across units. 

 

B. Sequential forecasting policy problems: 

 

- In this case, both the policymaker and the researcher are interested in machine predictions 

based on historical data that can accurately forecast future outcomes. The final policy goal 

might be the development of an early-warning model or the implementation of preventive 

policies. Here, the split must rigorously be non-random with respect to time (split strategy 

[4]). The model will be trained and tuned using earlier periods and evaluated on future periods. 

Operationally, there will be cross-sectional leakage because all units will appear in both the 

training and testing sets. However, given that the ultimate goal is to produce accurate outcome 

forecasts for the same units at future time points, this cross-sectional leakage is not 

conceptually or methodologically problematic.  

On the other hand, a random split based on unit-time (split strategy [1]) is always problematic, 

whether the goal is cross-sectional prediction or forecasting. In this scenario, both types of leakage 

occur. The real-world utility of the model will be overstated, and the machine predictions will be 

biased. Furthermore, the researcher’s goal remains unclear, leading to a ML strategy that produces 

misleading results. Unfortunately, the discrepancy between evaluated and actual performance on new 

data will most likely remain concealed until the end of the ‘production’ stage—i.e., if and when the 

ML tool is deployed for policy purposes, with all the unintended consequences for the cost, targeting, 

and effectiveness of said policy. 

The preceding discussion is centered around the random split, dividing the original sample into two 

distinct sets. However, the same principles apply when considering traditional cross-validation for 
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hyperparameter tuning and model selection on the training set.8 Let us focus on temporal leakage as 

our benchmark. When we ignore the temporal dimension of panel data and perform random k-fold 

CV (as is automatically, but implicitly, done in most user-friendly ML packages9), we end up training 

the model on k–1 folds that include future time periods. Subsequently, we test its performance on the 

left-out kth fold, which contains past time periods. Unfortunately, this approach does not optimize 

hyperparameters for forecasting, potentially leading to suboptimal model selection, as the model will 

not be specifically trained to forecast future observations, but also past ones. These issues related to 

information leakage across the temporal dimension are not novel and have been known for decades 

in time series analysis. Concepts such as time-series cross-validation (Hyndman & Athanasopoulos, 

2018) were specifically developed to address these challenges. However, it appears that most 

practitioners of ML in the social sciences have so far overlooked these insights. There are signs of 

growing awareness among economists that we should think more carefully before applying standard 

ML routines to panel data.10 In a recent review of causal panel data methods, Arkhangelsky and 

Imbens (2024) warn that the panel dimension creates additional challenges in implementing cross-

validation routines. Given the increasing use of ML on panel data, we find it crucial to emphasize 

these concepts.11 

Finally, a consideration on cross-sectional prediction problems in scenarios where spatial dimensions 

play a significant role, such as when working with aggregate panel data. For instance, when strong 

spatial autocorrelation exists among units (as is often the case with aggregate data), we encounter a 

subtle form of contamination. Even if the same unit never appears in both training and testing sets, if 

units closely spatially autocorrelated with that unit do appear, spatial leakage occurs. Essentially, the 

 
8 See here for a detailed discussion on possible cross-validation strategies in predictive settings with temporal and/or 

spatial autocorrelation in the data. Concerning causal ML methods, instead, we are not aware of any discussion of data 

leakage issues when applying cross-validation strategies, such as cross-fitting in the context of double machine learning 

(Chernozukhov et al., 2018), on panel data. This emerges as an interesting and important area for future research. 

9 There are a few well-known exceptions to random cross-validation, such as the createTimeSlices function in the popular 

R package caret, or the TimeSeriesSplit function in the scikit-learn Python library. However, these functions are only 

suitable for time series, not for panel data. The only routines for panel data cross-validation we are aware of at this time 

are two new packages for R and Python, respectively, which can be found here and here. 

10 See, for instance, the panel cross-validation approach proposed by Cerqua et al. (2024). 

11 Furthermore, and distinct from leakage issues, there is also a compelling case for preserving the temporal structure of 

the data so that the ML models can implicitly account for the time dimension. Supervised ML models (XGBoost, random 

forest, etc.) usually employed in recent literature, in fact, do not explicitly incorporate the temporal (and spatial) dimension 

of longitudinal data. While there are deep learning algorithms, such as the class of models called Recurrent Neural 

Networks, that are designed to model and learn sequential data, such as language processing and time series, they are 

seldom used in conjunction with panel data. This is because, like most time series forecasting techniques, they typically 

require a substantial number of time periods to obtain accurate predictions. In any case, when applied on tabular data, 

some supervised ML algorithms, such as tree-based methods, still consistently outperform deep learning techniques 

(Grinstazjn et al., 2022). 

https://aml4td.org/chapters/resampling.html#sec-time-series-resampling
https://github.com/FMenchetti/MachineControl
%22https:/github.com/4Freye/panelsplit
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algorithm has not directly “seen” that specific unit, but it “knows” very similar ones encountered 

during training. To mitigate this issue, consider applying the random split not at the individual unit 

level, but at a higher level of clustering (split strategy [3]). For example, if the unit is a county, split 

at the state level. By stratifying the sample in this way, we reduce the risk of spatial leakage.12  

Having highlighted these common yet often overlooked pitfalls, the next section provides a set of 

practically relevant recommendations for researchers dealing with these challenges in applied 

settings. 

3. Practical guidelines 

Table 2 below summarizes our recommendations for practitioners. Note that these guidelines pertain 

to both classification and regression problems. First and foremost, the researcher should clarify the 

research goal at the outset: which type of prediction policy problem you are working on? Are you 

interested in cross-sectional prediction or forecasting? Depending on the answer to this preliminary 

question, all the subsequent ML analysis on panel data will then be designed accordingly. 

An important step that precedes the sample split and cross-validation stages, which we did not discuss 

earlier, concerns the choices governing the selection of predictors included in the dataset. This choice 

also depends on the overall goal of the project and is particularly important when the objective is 

forecasting for ex ante policy targeting. In case the researcher is interested in forecasting, it is crucial 

that only lagged (or time-invariant) predictors are included in the ML model. In this case, in fact, 

including predictors contemporaneous with the outcome—or even subsequent to it—would be both 

methodologically and practically incorrect. Methodologically, it would result in simultaneity issues, 

which can be seen as a form of temporal leakage originating from the predictors, as the ML model 

would learn any distribution shift or structural break at time t that is common to both the outcome 

and the predictors. In addition, the predictors themselves might be affected by the predicted event. It 

is indeed well-established in forecasting practice that, to forecast future values of a variable, only 

information available at the time the forecast is made can be used, and that the forecasting ability of 

a model must be evaluated by generating forecasts over some past period (with known outcomes) 

only using data known at each forecast origin (Petropoulos et al., 2022). Moreover, it is generally 

beneficial to include lagged outcome values as additional predictors to enhance the forecasting 

accuracy of the ML algorithm. 

 
12 This is the equivalent solution to what is done in causal inference to address potential violations of the stable-unit-

treatment-value assumption in contexts with spatial spillovers. 
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Table 2: Do’s and Don’ts with ML analysis on panel data 

ML Pipeline Step Do’s Don’ts 

1. Research design 

Clarify your research and policy goal at the outset: 

are you interested in a cross-sectional prediction 

problem or a sequential forecasting problem? 

Skip this stage and start the 

empirical analysis without 

having your goal in mind ex 

ante. 

2. Dataset building 

Do not include variables that are a direct 

derivation or transformation of the outcome. Include both 

contemporaneous and lagged 

predictors, regardless of the 

problem’s nature, or variables 

that are a direct derivation of 

the outcome. 

If you are interested in sequential forecasting, all 

predictors should be at least at t – 1. Include 

lagged values of the outcome as additional 

predictors.13   Do not include variables that are a 

direct derivation or transformation of the outcome. 

3. Sample split 

For cross-sectional prediction, split randomly at 

the unit level. If you suspect residual cross-

sectional (e.g., spatial) leakage, consider stratified 

sampling at a higher level of aggregation. 
Apply a random split at the 

observation (unit-time) level. 
For sequential forecasting, split non-randomly on 

time. 

 

4. Cross-validation 

If your goal is cross-sectional prediction, apply 

stratified cross-validation at the unit or group level 

on the training set. 

Apply random k-fold CV. 
If interested in forecasting, apply temporal cross-

validation at the time level on the training set 

(using either an expanding or rolling window 

approach).14 

5. Out-of-sample testing 
Evaluate the out-of-sample performance of the 

model on truly previously unseen data. 

Test the out-of-sample 

performance of the model on 

data it has already 

encountered before. 

On the practical side, if the goal is to provide policymakers with machine predictions that can 

anticipate the unfolding of a given phenomenon, then the applicability of those predictions should 

depend on data promptly available to the policymaker before the outcome materializes. Including 

contemporaneous predictors would mean waiting for those data to be collected, effectively turning 

the forecasting problem into a retrospective one by the time the predictor data become available. 

 
13 Ideally, the choice of the optimal lag structure should also be cross-validated and based on a grid search. 

14 As most existing ready-to-use package routines automatically implement random k-fold CV, this will likely involve a 

preliminary pre-processing step in which researchers manually prepare the temporally-ordered folds to implement a panel 

version of cross-validation which carefully preserves the temporal ordering of the data.  
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Finally, no direct derivations or mechanical transformations of the outcome should be included as 

predictors (e.g., the use of contemporaneous income levels to predict income growth). 

In the next section, we provide an empirical illustration that demonstrates how to detect and quantify 

the degree of data leakage associated with the uncritical application of ML to panel data. 

4. Empirical Application 

To illustrate the practical implications of the issues discussed above, we carry out a comprehensive 

analysis on a panel dataset from the US. Specifically, the analysis is conducted at the county level for 

all US states. We have created a balanced panel of 3,058 counties (out of the 3,143 existing counties) 

from 2000 to 2019.15 We have collected a variety of variables to analyze economic performance 

across the US. The list of variables and their sources is reported in Table A.1 in Appendix A, while 

the descriptive statistics are in Table A.2 in Appendix A.  

This setting is relevant as it utilizes socio-economic data from a widely studied high-income country, 

which could, for example, be employed to forecast areas that might soon enter a recession. This has 

self-evident policy implications and relevance for both the US and the global economy. To this end, 

the timespan of our dataset covers the period of the global financial crisis and the Great Recession.16 

The overall objective of our analysis is to predict or forecast economic outcomes. We carry out two 

separate analyses: a classification and a regression task, to quantify and document data leakage across 

both types of prediction settings. There are two outcomes: 

- for the regression task, we use personal income per capita17; 

- for the classification task, we use a recession dummy that indicates whether a county 

experienced a decrease in personal income per capita in a given year.18 

 
15 We lose a few counties due to boundary changes over the period under analysis and a few others because they lack data 

for at least one of the variables considered. 

16 Cross-sectionally, this type of data could be used, for instance, to impute missing subnational inflation data that are 

collected only for larger or economically more relevant areas. 

17 Personal income includes the total income received by all individuals and entities in a county from all sources (sum of 

wages and salaries, supplements to wages and salaries, proprietors’ income with inventory valuation and capital 

consumption adjustments, rental income of persons with capital consumption adjustment, personal dividend income, 

personal interest income, and personal current transfer receipts, less contributions for government social insurance plus 

the adjustment for residence), which is then divided by the number of individuals (both civilian and military) who reside 

in the county. 

18 Although a recession is generally considered to occur when there is a decline in real GDP for at least two consecutive 

quarters, we cannot adopt such definition for two reasons: i) our panel is at the year level; ii) the U.S. Bureau of Economic 

Analysis provides data on GDP at the county level only from 2017 onwards. 
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There are also two different prediction policy problems, as outlined in our previous discussion: 

i) sequential forecasting; 

ii) cross-sectional prediction. 

Additionally, since we discussed above that temporal leakage in forecasting problems can be 

particularly severe if there are unforeseen changes in the relationships among variables, we also 

explore the forecasting problem with a special focus on a single year of our panel dataset—2009, 

during which the US experienced a drop in per capita income due to the Great Recession. 

This means that we have in total six predictive problems to solve:  

1) Forecasting a binary outcome; 

2) Forecasting a continuous outcome; 

3) Predicting cross-sectionally a binary outcome; 

4) Predicting cross-sectionally a continuous outcome; 

5) Forecasting a binary outcome in a single year (2009); 

6) Forecasting a continuous outcome in a single year (2009). 

To solve these six problems, we use the same set of raw predictors for all models. This ensures that 

any differences in performance that emerge can only be due to different partitioning of the data and 

the selection of the raw predictors. 

For each predictive task (classification and regression), we run several different models featuring 

various combinations of the following parameters:  

1. Use of contemporaneous predictors: in forecasting problems, this is one of the main types 

of data leakage. We alternatively include and remove contemporaneous predictors for the 

different models. For example, when we include contemporaneous predictors, we use 

unemployment in 2014 to predict income per capita in 2014. However, we never include 

contemporaneous predictors that are a direct derivation of the outcome variables (e.g., we do 

not use log income per capita in 2014 as a predictor in the classification task for the same 

year). 

2. Sample split strategy: we compare all the split strategies illustrated in Figure 1 and Table 1: 

[1] random split: a random split of the dataset at the county-year level; [2] county split: we 

randomly split at the county level, assigning counties to either the training or the testing set; 

[3] state split: we randomly split at the state level, and then assign their counties to either the 
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training or the testing set, to reduce potential spatial leakage; [4] time split: a non-random 

split at the year level.19  

3. Inclusion of lagged outcomes: this criterion is only used to assess how performance varies 

across models with and without outcome lags included. 

4. Adjustment of the testing set size:  without adjustments, the different choices in the above 

criteria result in different testing set sizes for the separate models. We alternatively adjust or 

not the testing set size of the different models, and run both the adjusted and unadjusted 

versions of the models to ensure an adequate comparative performance assessment. 

5. Algorithm: we employ two different ML algorithms: Extreme Gradient Boosting (XGBoost) 

and Random Forest. These algorithms are among the most popular ML techniques used by 

applied researchers. Refer to Appendix B for a description of these models. For 

comparability, we also run simpler models, namely a Logit model for the classification 

problem and Ordinary Least Squares (OLS) for the regression task. 

Note that among the above-described parameters, only choices involving points 1) and 2) can be 

sources of data leakage, with 1) being a source of (temporal) leakage only in forecasting problems.  

Taking into account the six different prediction problems and the five modelling criteria just 

described, in total we run 480 different models. Due to the large number of models and to ensure 

better comparability across different configurations, we use default settings for the hyperparameter 

values of the ML algorithms, without cross-validating them. However, remember that when cross-

validation is performed, it should follow the guidelines provided in Section 3. We start by discussing 

temporal leakage in the forecasting problems, and next, we move to cross-sectional leakage. 

4.1 Temporal leakage (Predictive problems 1, 2, 5, 6) 

Figure 2 shows the performance of the various model configurations for the classification (Panel A) 

and regression tasks (Panel B) across all time periods, when the goal is forecast an outcome over time 

and there is a risk of temporal leakage. Remember that temporal leakage in our context can arise from 

two parameters: a) when we include contemporaneous predictors, and b) when we do not split the 

dataset based on time.  As we can see, in models with temporal leakage, the performance, as measured 

by the Area under the Curve (AUC), is significantly higher compared to non-leaked models. For 

instance, focusing on Figure 2 (classification – Panel A); when employing a random forest model, 

the average AUC among leaked models is 0.759, while the average among non-leaked models is 

0.708, a difference of 0.051 points. This is a considerable difference as the AUC ranges from 0 to 1, 

 
19 For the non-random split at the year level we assign all the observations in the years 2016,2017, 2018 and 2019 to the 

testing set. 
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with 0.5 being as good as random guessing. Similar results are observed with XGBoost  (center image 

in Figure 2 Panel A) and Logit models (right image in Figure 2 Panel A). Analogous insights, with 

even larger leakage, apply to the regression task (see Figure 2 Panel B), where performance is 

measured by Mean Squared Error (MSE). The MSE of the leaked models is substantially lower. For 

instance, in the case of XGBoost the leakage ratio—expressed as the ratio between the difference in 

MSE between leaked vs. non-leaked models, over the MSE of the non-leaked models—is over 17%. 

Figure 3 focuses on the Great Recession year (2009). As we can see, the difference in performance  

due to temporal leakage can be significantly larger when an unexpected shock occurs. For instance, 

the AUC for the classification task with the Random Forest model drops from 0.69 for the leaked 

models to 0.42 for the non-leaked ones (Figure 3 - Panel A). In contrast, the leakage ratio for the 

regression problem (Figure 3 - Panel B) remains similarly substantial as for the models run across all 

periods. This is not surprising since the decrease in personal income in the recession year was not 

large enough to entail significant differences in the value of the continuous outcome variable. These 

impressive differences for the classification task in 2009 underscore that inflation in performance due 

to temporal leakage is particularly harmful when trying to forecast otherwise difficult-to-anticipate 

events. In fact, structural breaks, such as the Great Recession, are known in the ML field as 

distribution shifts. A distribution shift occurs when the training data distribution differs from the data 

distribution the model encounters during testing. This leads to a sharp drop in out-of-sample 

performance because the input-to-output relationships and patterns the model learned during training 

no longer hold true in the new environment. By definition, distribution shifts are impossible to predict 

as they imply a fundamental and unforecastable change in the data-generating process. Even a well-

performing ML model cannot anticipate the impact of the Great Recession on economic outcomes 

when trained and tuned only on past information. This type of event thus represents a decisive litmus 

test to highlight the problem with leakage issues: if the model performs well on post-break data and 

the prediction error is small, something is probably wrong. Likely, it is not because the model can 

magically predict the future, but because some form of leakage—information from the future—has 

sneaked into the model, either via observations or predictors (or both). Failing to realize this means 

severely overestimating the power of ML models.20 

 
20 More generally, one should be skeptical a priori of extremely good out-of-sample performances in predicting or 

forecasting complex socio-economic outcomes, which are partially characterized by inherently unpredictable 

idiosyncratic patterns that make the irreducible error substantially higher than in most standard ML applications. 



15 

 

Figure 2: Temporal leakage in the forecasting problem (all years) 

      Panel A - Classification 

 

     Panel B - Regression 

 
Notes: Each axis shows the performance, measured in terms of AUC (Panel A) or MSE (Panel B), of different models where we forecast a binary dummy for recession (Panel A) 

or the log of the income per capita (Panel B) with a set of predictors (as described in Appendix A). The models are ordered from the worst to the best performing according to the 

chosen metric. The performance of the model is reported by the square marker. Each model differs according to the criteria specified in the table at the bottom of the axis. The 

different combinations of the parameters are highlighted by the colored rectangles below each marker, where darker colors indicate activation of that parameter. The bottom 

black/grey bar summarizes whether the model is temporally leaked. Specifically, a black rectangle represents a temporally leaked model that includes at least one of the following: 

contemporaneous variables; a non-time determined split. In Tables A.3 and A.4 of Appendix A we report the full results. 
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Figure 3: Temporal leakage in the forecasting problem (focus on the Great Recession, year 2009) 

        Panel A - Classification 

 

            Panel B - Regression 

 
Notes: Each axis shows the performance, measured in terms of AUC (Panel A) or MSE (Panel B), of different models where we forecast a binary dummy for recession (Panel A) 

or the log of the income per capita (Panel B) with a set of predictors (as described in Appendix A). The models are ordered from the worst to the best performing according to the 

chosen metric. The performance of the model is reported by the square marker. Each model differs according to the criteria specified in the table at the bottom of the axis. The 

different combinations of the parameters are highlighted by the colored rectangles below each marker, where darker colors indicate activation of that parameter. The bottom 

black/grey bar summarizes whether the model is temporally leaked. Specifically, a black rectangle represents a temporally leaked model that includes at least one of the following: 

contemporaneous variables; a non-time determined split. In Tables A.5 and A.6 of Appendix A we report the full results.  
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4.2 Cross-Sectional Leakage (Predictive problems 3-4) 

Turning to cross-sectional leakage, which in our case, since we are using aggregate panel data, takes 

the form of spatial leakage—a specific type of cross-sectional leakage. Spatial leakage occurs due to 

the same or similar (spatially autocorrelated) units appearing in both the training and testing sets. To 

assess the varying intensity of this type of leakage, we analyzed how the performance of the models 

changes with different splitting methods. The benchmark leaked model is trained and tested based on 

a random split, where all units (i.e., counties) are likely to appear in both the training and the testing 

sets. For the county split (i.e., unit-level split), we expect less spatial leakage, as counties in the 

training set do not appear in the testing set.  For the state split, we ensure that all the counties in the 

testing set are not in the same state as any county in the training set. In plain words, in the “county” 

split, the model predicts the outcome of a county that it has never seen before, while in the “state” 

split, the model predicts the outcome of a county from a state whose counties the model has never 

seen before. Results are shown in Figure 4 for the classification (Panel A) and regression tasks (Panel 

B). As we can see, in all models except the Logit21, all leaked models tend to overperform the non-

leaked ones, indicating the presence of spatial leakage, although the differences as smaller compared 

to temporal leakage. Interestingly, the worse performances are observed for models using the state 

splits, suggesting the presence of residual spatial leakage at the county level due to spatially 

autocorrelated nearby counties.  

In sum, our empirical application shows that in a typical panel dataset, the data leakage issues we 

discussed in this paper tend to lead to significant overestimation of the performance of ML models 

across all the predictive problems considered. While these issues might not always be as severe as in 

this case study, since the extent of leakage and the degree of out-of-sample performance 

overestimation will vary depending on the application, we suspect that in most datasets, leakage 

issues will be substantial enough to significantly alter the evaluation of the ML models. Furthermore, 

even when leakage is proven to be minimal, it remains conceptually and methodologically 

inappropriate to disregard the unique characteristics of panel data in such applications. 

 
21 Note that the logit model, unlike the other two ML algorithms, has difficulty handling the unbalanced distribution of 

the outcome variable (recession dummy) for the classification task. In these cases, performance metrics like the AUC can 

be uninformative. To understand this problem with logit, check Table A.3, where we also report detailed results on 

sensitivity and specificity across the different classification models. Consequently, the logit results for classification 

should be interpreted with a grain of salt. 
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Figure 4: Cross-sectional leakage (all years) 

       Panel A - Classification 

 

    Panel B - Regression 

 

Notes: Each axis shows the performance, measured in terms of AUC (Panel A) or MSE (Panel B), of different models where we cross-sectionally predict a binary dummy for 

recession (Panel A) or the log of the income per capita (Panel B) with a set of predictors (as described in Appendix A). The models are ordered from the worst to the best performing 

according to the chosen metric. The performance of the model is reported by the square marker. Each model differs according to the criteria specified in the table at the bottom of 

the axis. The different combinations of the parameters are highlighted by the colored rectangles below each marker, where darker colors indicate activation of that parameter. The 

bottom black/grey bar summarizes whether the model is spatially leaked. Specifically, a black rectangle represents spatially leaked model with a training/testing set split not 

determined at the state level. In Tables A.7 and A.8 of Appendix A we report the full results.
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5. Conclusions 

Data leakage in the use of ML is increasingly recognized as a fundamental challenge across many 

scientific fields (Bernett et al., 2024; Kapoor & Narayanan, 2023; Rosenblatt et al., 2024). No such 

widespread awareness has yet emerged in the social sciences, especially concerning longitudinal data. 

We argue that more effort and critical thinking should be devoted to the preliminary design of ML 

analysis on panel data to avoid data leakage issues that might bias out-of-sample performance upward 

and unintentionally mislead policymakers into overestimating the power and applicability of ML 

techniques. We caution applied researchers against simply importing traditional ML practices into 

their research domain without taking care of the underlying analytical and practical implications. We 

also suggest that each ML paper should clearly report the full ML pipeline and explicitly write how 

they prevented data leakage issues. Given the ongoing ML revolution in economics and other social 

sciences and the growing availability of panel data, these issues deserve attention. 
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Appendix - Supplementary application information 

A. Data and full results 

The analysis is conducted at county level for all US states. We have created a balanced panel of 3,058 

counties (out of the 3,143 existing counties) from 2000 to 2019.22 We have collected a variety of 

variables to analyze economic performance across the US. The list of variables and their sources  is 

reported in Table A.1, while the descriptive statistics are in Table A.2. As described in the main text, 

there are two dependent variables: 

i) one for the regression problem, i.e., personal income per capita growth rate measured as 

the annual percentage change in personal income per capita23; 

ii) one for the classification problem, namely, a recession dummy that indicates whether a 

county experienced a drop in personal income per capita in a given year.24 

Economic variables including personal income per capita, average wage, percentage of income from 

unemployment benefits and workplace employment rate (number of employees divided by the 

resident population from 18 to 65 years old) are all sourced from the U.S. Bureau of Economic 

Analysis (BEA). The rest of the predictors are instead sourced from US Census. Demographic 

information encompasses total population, the percentage of the population under 18 and over 65, as 

well as detailed breakdowns by gender and racial composition (White, Black, Hispanic, and Asian 

percentages of the population). Additionally, it includes birth and death rates per 1,000 inhabitants. 

Lastly, also the mobility aspects is taken into account via the net internal and domestic migration per 

1,000 inhabitants. This diverse set of variables ensures a robust framework for understanding the 

factors influencing economic dynamics at the county level and serves the scope for showcasing the 

data leakage consequences of an erroneous split of the training-test data. 

 
22 We lose a few counties due to boundary changes over the period under analysis and a few others because they lack data 

for at least one of the variables considered. 

23 Personal income includes the total income received by all individuals and entities in a county from all sources (sum of 

wages and salaries, supplements to wages and salaries, proprietors’ income with inventory valuation and capital 

consumption adjustments, rental income of persons with capital consumption adjustment, personal dividend income, 

personal interest income, and personal current transfer receipts, less contributions for government social insurance plus 

the adjustment for residence), which is then divided by the number of individuals (both civilian and military) who reside 

in the county. 

24 Although a recession is generally considered to occur when there is a decline in real GDP for at least two consecutive 

quarters, we cannot adopt such definition for two reasons: i) our panel is at the year level; ii) the U.S. Bureau of Economic 

Analysis provides data on GDP at the county level only from 2017 onwards. 



24 

 

Table A.1: Variable details 

Variable Source 

Personal income per capita growth rate (%) U.S. Bureau of Economic Analysis (BEA) 

Recession dummy U.S. Bureau of Economic Analysis (BEA) 

Personal income per capita U.S. Bureau of Economic Analysis (BEA) 

Average wage U.S. Bureau of Economic Analysis (BEA) 

Income from Unemployment Benefit (%) U.S. Bureau of Economic Analysis (BEA) 

Workplace employment rate (%) U.S. Bureau of Economic Analysis (BEA) 

Population US Census data 

Population under 18 (%) US Census data 

Population over 65 (%) US Census data 

Women (% of population) US Census data 

White (% of population) US Census data 

Black (% of population) US Census data 

Hispanic (% of population) US Census data 

Asian (% of population) US Census data 

Birth (per 1,000 inhabitants) US Census data 

Deaths (per 1,000 inhabitants) US Census data 

Net internal migration (per 1,000 inhabitants) US Census data 

Net domestic migration (per 1,000 inhabitants) US Census data 
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Table A.2: Descriptive statistics 

Variable Mean Std Dev 

Personal income per capita growth rate (%) 3.38 5.66 

Recession dummy 0.15 0.36 

Personal income per capita 34,089 11,280 

Average wage 34,140 9,236 

Income from Unemployment Benefit (%) 46.43 40.02 

Workplace employment rate (%) 86.65 27.59 

Population 98,965 317,471 

Population under 18 (%) 23.53 3.40 

Population over 65 (%) 16.51 4.54 

Women (% of population) 50.13 2.07 

White (% of population) 78.61 19.37 

Black (% of population) 8.75 14.35 

Hispanic (% of population) 8.12 13.13 

Asian (% of population) 3.35 4.89 

Birth (per 1,000 inhabitants) 11.16 3.80 

Deaths (per 1,000 inhabitants) 9.57 3.57 

Net internal migration (per 1,000 inhabitants) 1.00 1.82 

Net domestic migration (per 1,000 inhabitants) -0.99 18.54 

   

N 3,058 

T 20 

N∙T 61,160 
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Table A.3: Temporal leakage in the forecasting classification problem (all years) – Full 

Results 

Model Contemporaneous 

Outcome 

Lags 

Split 

Type AUC 

Adj. Test 

Size Sensitivity Specificity 

Train 

Size 

Test 

Size 

Logit yes yes time 0.335 yes 0.000 0.998 34244 2448 

Logit yes yes time 0.338 no 0.000 1.000 42812 12232 

Logit no yes time 0.357 yes 0.009 0.991 34244 2448 

Logit no yes time 0.361 no 0.000 1.000 42812 12232 

Logit yes no time 0.361 yes 0.997 0.001 34244 2448 

Logit yes no time 0.377 no 0.999 0.000 42812 12232 

Logit no no time 0.392 yes 0.997 0.003 34244 2448 

Logit yes yes random 0.399 no 0.000 1.000 42934 12110 

Logit no no time 0.409 no 0.000 1.000 42812 12232 

Logit yes yes random 0.414 yes 0.079 0.937 34244 2448 

Logit no yes random 0.423 no 0.096 0.911 42934 12110 

Logit no yes random 0.437 yes 0.171 0.877 34244 2448 

Logit yes no random 0.473 no 0.000 0.999 42934 12110 

Logit yes no random 0.487 yes 0.661 0.355 34244 2448 

Logit no no random 0.493 no 0.132 0.878 42934 12110 

Logit no no random 0.508 yes 0.685 0.368 34244 2448 

XGBoost no no random 0.694 no 0.661 0.622 42934 12110 

XGBoost no yes time 0.695 yes 0.674 0.665 34244 2448 

Random forest no no time 0.698 yes 0.680 0.650 34244 2448 

XGBoost no no time 0.698 yes 0.759 0.571 34244 2448 

Random forest no yes time 0.699 yes 0.710 0.619 34244 2448 

XGBoost yes yes time 0.705 yes 0.564 0.793 34244 2448 

Random forest no no random 0.705 no 0.646 0.647 42934 12110 

Random forest no no random 0.711 yes 0.605 0.692 34244 2448 

XGBoost no no random 0.712 yes 0.568 0.743 34244 2448 

XGBoost yes no time 0.713 yes 0.649 0.722 34244 2448 

XGBoost no yes time 0.713 no 0.649 0.701 42812 12232 

XGBoost no yes random 0.714 no 0.587 0.724 42934 12110 

XGBoost no no time 0.715 no 0.632 0.714 42812 12232 

Random forest no no time 0.717 no 0.745 0.593 42812 12232 

Random forest no yes time 0.718 no 0.733 0.608 42812 12232 

XGBoost yes yes time 0.719 no 0.611 0.744 42812 12232 

XGBoost yes no time 0.722 no 0.650 0.706 42812 12232 

Random forest yes no time 0.723 yes 0.689 0.681 34244 2448 

XGBoost no yes random 0.724 yes 0.598 0.736 34244 2448 

Random forest yes yes time 0.734 yes 0.723 0.648 34244 2448 

Random forest yes no time 0.736 no 0.724 0.644 42812 12232 

Random forest yes yes time 0.745 no 0.625 0.748 42812 12232 

Random forest no yes random 0.749 no 0.624 0.743 42934 12110 

Random forest no yes random 0.757 yes 0.661 0.722 34244 2448 

XGBoost yes no random 0.769 no 0.662 0.743 42934 12110 

XGBoost yes yes random 0.787 no 0.756 0.671 42934 12110 

XGBoost yes no random 0.789 yes 0.668 0.780 34244 2448 

Random forest yes no random 0.796 no 0.740 0.714 42934 12110 

Random forest yes no random 0.803 yes 0.764 0.711 34244 2448 

XGBoost yes yes random 0.804 yes 0.629 0.846 34244 2448 

Random forest yes yes random 0.820 no 0.720 0.761 42934 12110 

Random forest yes yes random 0.830 yes 0.757 0.757 34244 2448 

Notes: the table reports the details of the results shown in Figure 2 – Panel A. 
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Table A.4: Temporal leakage in the forecasting regression problem (all years) – Full Results 

Model Contemporaneous Outcome Lags Split Type MSE Adj. Test Size Train Size Test Size 

OLS yes yes time 0.042 yes 34244 2448 

OLS yes yes time 0.044 no 42812 12232 

OLS no yes time 0.044 yes 34244 2448 

Random forest yes yes time 0.045 no 42812 12232 

Random forest yes yes time 0.045 yes 34244 2448 

OLS no yes time 0.046 no 42812 12232 

Random forest no yes time 0.047 no 42812 12232 

Random forest no yes time 0.048 yes 34244 2448 

XGBoost yes yes random 0.048 yes 34244 2448 

OLS yes yes random 0.049 yes 34244 2448 

Random forest yes yes random 0.049 yes 34244 2448 

XGBoost yes yes random 0.049 no 42934 12110 

OLS yes yes random 0.050 no 42934 12110 

XGBoost yes yes time 0.051 no 42812 12232 

XGBoost yes yes time 0.051 yes 34244 2448 

Random forest yes yes random 0.052 no 42934 12110 

Random forest no yes random 0.052 yes 34244 2448 

OLS no yes random 0.053 yes 34244 2448 

Random forest no yes random 0.054 no 42934 12110 

OLS no yes random 0.055 no 42934 12110 

XGBoost no yes random 0.056 yes 34244 2448 

XGBoost no yes random 0.057 no 42934 12110 

XGBoost no yes time 0.060 no 42812 12232 

XGBoost no yes time 0.062 yes 34244 2448 

XGBoost yes no random 0.086 yes 34244 2448 

XGBoost yes no random 0.088 no 42934 12110 

XGBoost no no random 0.091 no 42934 12110 

XGBoost no no random 0.092 yes 34244 2448 

Random forest yes no random 0.107 yes 34244 2448 

Random forest yes no random 0.107 no 42934 12110 

Random forest no no random 0.111 no 42934 12110 

Random forest no no random 0.112 yes 34244 2448 

XGBoost no no time 0.123 yes 34244 2448 

XGBoost yes no time 0.124 yes 34244 2448 

XGBoost yes no time 0.125 no 42812 12232 

XGBoost no no time 0.125 no 42812 12232 

Random forest yes no time 0.128 no 42812 12232 

Random forest yes no time 0.128 yes 34244 2448 

Random forest no no time 0.130 yes 34244 2448 

Random forest no no time 0.130 no 42812 12232 

OLS yes no random 0.153 no 42934 12110 

OLS yes no random 0.154 yes 34244 2448 

OLS yes no time 0.160 yes 34244 2448 

OLS yes no time 0.162 no 42812 12232 

OLS no no random 0.167 no 42934 12110 

OLS no no time 0.168 yes 34244 2448 

OLS no no random 0.169 yes 34244 2448 

OLS no no time 0.172 no 42812 12232 

Notes: The table reports the details of the results shown in Figure 2 – Panel B. 
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Table A.5: Temporal leakage in the forecasting classification problem (focus on the Great 

Recession, year 2009) – Full Results 

Model Contemporaneous 

Outcome 

Lags 

Split 

Type AUC 

Adj. Test 

Size Sensitivity Specificity 

Train 

Size Test Size 

XGBoost no no time 0.393 yes 0.020 1.000 14676 612 

XGBoost yes no time 0.399 yes 0.046 0.968 14676 612 

Random forest no no time 0.409 yes 0.033 0.991 14676 612 

XGBoost no yes time 0.422 yes 0.025 0.995 14676 612 

XGBoost no no time 0.424 no 0.016 0.991 18348 3058 

XGBoost yes yes time 0.429 yes 0.079 0.950 14676 612 

XGBoost yes no time 0.431 no 0.069 0.939 18348 3058 

Random forest no yes time 0.440 yes 0.025 1.000 14676 612 

Random forest no no time 0.441 no 0.021 0.985 18348 3058 

Logit yes yes random 0.449 yes 0.082 0.936 14676 612 

Random forest yes no time 0.462 yes 0.015 0.995 14676 612 

Random forest yes yes time 0.463 yes 0.086 0.950 14676 612 

Logit yes yes random 0.465 no 0.159 0.865 16696 4710 

XGBoost no yes time 0.466 no 0.135 0.905 18348 3058 

Logit no yes random 0.470 yes 0.082 0.944 14676 612 

XGBoost yes yes time 0.472 no 0.074 0.962 18348 3058 

Random forest no yes time 0.479 no 0.149 0.892 18348 3058 

Random forest yes no time 0.485 no 0.267 0.746 18348 3058 

Logit no yes random 0.488 no 0.263 0.787 16696 4710 

Random forest yes yes time 0.496 no 0.157 0.893 18348 3058 

Logit yes no random 0.554 yes 0.545 0.612 14676 612 

Logit yes no random 0.564 no 0.481 0.649 16696 4710 

Logit no no random 0.572 yes 0.545 0.627 14676 612 

Logit no no random 0.582 no 0.537 0.622 16696 4710 

Logit yes yes time 0.584 no 0.548 0.597 18348 3058 

Logit yes yes time 0.588 yes 0.277 0.867 14676 612 

Logit no yes time 0.588 no 0.556 0.594 18348 3058 

Logit no yes time 0.592 yes 0.279 0.867 14676 612 

Logit yes no time 0.638 no 0.640 0.566 18348 3058 

Logit no no time 0.645 no 0.625 0.593 18348 3058 

Logit yes no time 0.656 yes 0.751 0.482 14676 612 

Logit no no time 0.664 yes 0.782 0.459 14676 612 

XGBoost no no random 0.696 no 0.729 0.561 16696 4710 

Random forest no no random 0.713 yes 0.645 0.663 14676 612 

Random forest no no random 0.714 no 0.639 0.687 16696 4710 

XGBoost no no random 0.718 yes 0.627 0.707 14676 612 

XGBoost no yes random 0.745 no 0.674 0.714 16696 4710 

XGBoost no yes random 0.758 yes 0.864 0.532 14676 612 

Random forest no yes random 0.780 no 0.738 0.704 16696 4710 

Random forest no yes random 0.792 yes 0.618 0.837 14676 612 

Random forest yes no random 0.830 yes 0.727 0.787 14676 612 

Random forest yes no random 0.840 no 0.747 0.812 16696 4710 

XGBoost yes no random 0.844 no 0.752 0.814 16696 4710 

XGBoost yes yes random 0.853 yes 0.682 0.884 14676 612 

XGBoost yes yes random 0.854 no 0.711 0.865 16696 4710 

Random forest yes yes random 0.861 no 0.764 0.830 16696 4710 

Random forest yes yes random 0.862 yes 0.709 0.884 14676 612 

XGBoost yes no random 0.865 yes 0.845 0.763 14676 612 

Notes: The table reports the details of the results shown in Figure 3 – Panel A. 
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Table A.6: Temporal leakage in the forecasting regression problem (focus on the Great 

Recession, year 2009) – Full Results 

Model Contemporaneous Outcome Lags Split Type MSE Adj. Test Size Train Size Test Size 

Random forest yes yes random 0.052 no 16696 4710 

OLS yes yes random 0.053 no 16696 4710 

XGBoost yes yes random 0.053 no 16696 4710 

Random forest yes yes random 0.054 yes 14676 612 

XGBoost yes yes random 0.055 yes 14676 612 

Random forest no yes random 0.056 no 16696 4710 

OLS yes yes random 0.058 yes 14676 612 

OLS no yes random 0.058 no 16696 4710 

Random forest no yes random 0.058 yes 14676 612 

OLS yes yes time 0.060 no 18348 3058 

XGBoost no yes random 0.061 no 16696 4710 

OLS no yes random 0.063 yes 14676 612 

OLS yes yes time 0.065 yes 14676 612 

XGBoost no yes random 0.066 yes 14676 612 

XGBoost yes yes time 0.074 yes 14676 612 

XGBoost yes yes time 0.076 no 18348 3058 

Random forest yes yes time 0.086 yes 14676 612 

Random forest yes yes time 0.086 no 18348 3058 

OLS no yes time 0.086 no 18348 3058 

XGBoost yes no random 0.086 no 16696 4710 

OLS no yes time 0.088 yes 14676 612 

XGBoost no no random 0.089 no 16696 4710 

XGBoost yes no random 0.090 yes 14676 612 

Random forest no yes time 0.091 yes 14676 612 

Random forest no yes time 0.092 no 18348 3058 

XGBoost no no random 0.093 yes 14676 612 

XGBoost no no time 0.095 no 18348 3058 

XGBoost no yes time 0.097 yes 14676 612 

XGBoost no yes time 0.097 no 18348 3058 

XGBoost no no time 0.098 yes 14676 612 

XGBoost yes no time 0.099 no 18348 3058 

Random forest yes no random 0.104 no 16696 4710 

Random forest no no random 0.104 no 16696 4710 

XGBoost yes no time 0.105 yes 14676 612 

Random forest no no random 0.108 yes 14676 612 

Random forest yes no random 0.109 yes 14676 612 

Random forest no no time 0.111 no 18348 3058 

Random forest yes no time 0.114 yes 14676 612 

Random forest yes no time 0.114 no 18348 3058 

Random forest no no time 0.114 yes 14676 612 

OLS yes no random 0.143 no 16696 4710 

OLS no no time 0.143 no 18348 3058 

OLS no no time 0.144 yes 14676 612 

OLS no no random 0.148 no 16696 4710 

OLS yes no random 0.150 yes 14676 612 

OLS yes no time 0.152 no 18348 3058 

OLS no no random 0.156 yes 14676 612 

OLS yes no time 0.156 yes 14676 612 

Notes: The table reports the details of the results shown in Figure 3 – Panel B. 
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Table A.7: Cross-Sectional leakage in the classification problem (all years) – Full Results 

Model Split Type AUC Adj. Test Size Sensitivity Specificity Train Size Test Size 

Logit County 0.404 yes 0.000 0.999 34244 2448 

Logit County 0.422 no 0.060 0.945 44028 11016 

Logit Random 0.423 no 0.096 0.911 42934 12110 

Logit Random 0.437 yes 0.171 0.877 34244 2448 

Logit States 0.456 yes 0.112 0.900 34244 2448 

Logit States 0.466 no 0.128 0.899 44208 10836 

XGBoost County 0.686 yes 0.560 0.705 34244 2448 

XGBoost States 0.693 yes 0.529 0.749 34244 2448 

XGBoost States 0.697 no 0.585 0.695 44208 10836 

XGBoost County 0.705 no 0.710 0.580 44028 11016 

Random forest States 0.708 no 0.588 0.717 44208 10836 

Random forest States 0.713 yes 0.620 0.704 34244 2448 

XGBoost Random 0.714 no 0.587 0.724 42934 12110 

XGBoost Random 0.724 yes 0.598 0.736 34244 2448 

Random forest County 0.734 yes 0.721 0.631 34244 2448 

Random forest Random 0.749 no 0.624 0.743 42934 12110 

Random forest Random 0.757 yes 0.661 0.722 34244 2448 

Random forest County 0.758 no 0.687 0.697 44028 11016 

Notes: The table reports the details of the results shown in Figure 4 – Panel A. 

 

Table A.8: Cross-Sectional leakage in the regression problem (all years) – Full Results 

Model Contemporaneous Outcome Lags Split Type MSE Adj. Test Size Train Size Test Size 

Random forest no yes Random 0.052 yes 34244 2448 

Random forest no yes County 0.052 yes 34244 2448 

OLS no yes Random 0.053 yes 34244 2448 

Random forest no yes County 0.053 no 44028 11016 

OLS no yes County 0.054 yes 34244 2448 

Random forest no yes Random 0.054 no 42934 12110 

OLS no yes County 0.055 no 44028 11016 

OLS no yes Random 0.055 no 42934 12110 

XGBoost no yes Random 0.056 yes 34244 2448 

XGBoost no yes County 0.056 yes 34244 2448 

XGBoost no yes random 0.057 no 42934 12110 

XGBoost no yes County 0.058 no 44028 11016 

OLS no yes State 0.062 no 44208 10836 

Random forest no yes State 0.063 no 44208 10836 

OLS no yes State 0.063 yes 34244 2448 

Random forest no yes State 0.065 yes 34244 2448 

XGBoost no yes State 0.072 yes 34244 2448 

XGBoost no yes State 0.072 no 44208 10836 

 Notes: The table reports the details of the results shown in Figure 4 – Panel B 
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B. Machine Learning pipeline 
 
 

- B.1. Machine Learning models 

Below we report a brief description of the models used, see Hastie et al. (2009) for more details. 

- Random Forest is an ensemble learning technique that constructs many decision trees during 

training and aggregates their predictions to increase out-of-sample accuracy by reducing  

overfitting risk. Each tree is built using a random subset of the training data, which helps in 

reducing variance and making the model more robust. Additionally, a second layer of 

randomness is introduced by forcing the trees to select among and split on only a random 

subset of the predictors at each candidate split. The final prediction is determined by averaging 

the outputs of all the trees  for regression tasks and by taking a majority vote for classification 

tasks. We use the following parameters: trees =300 (500 trees for the regression task), 

maximum_depth = None, min_samples_leaf =4, max_features = square-root of N 

predictors,and min_samples_split = 10. 

- Extreme Gradient Boosting (XGBoost) is a tree-based ensemble technique that builds 

models in a sequential manner, where each new model tries to predict the residuals, i.e., the 

errors, of its predecessors. XGBoost improves this approach by optimizing computational 

efficiency through parallelization, using regularization to prevent overfitting, and handling 

missing data. It is widely used in ML applications on structured/tabular data due to its ability 

to handle complex datasets with minimal tuning. We use it with the following parameters: 

learning rate= 0.01, max_depth = 2, min_child_weight =  5, gamma= 1, subsample = 0.5, 

colsample by tree = 0.8 and 500 boost rounds. 

 

- B. 2. Variables used in the models 

In each ML models, we use the following variables as predictors:  

- Group a): Average wage, Income from Unemployment Benefit (%), Workplace employment 

rate (%), Population, Population under 18 (%), Population over 65 (%), Women (% of 

population), White (% of population), Black (% of population), Hispanic (% of population), 

Asian (% of population), Birth (per 1,000 inhabitants), Deaths (per 1,000 inhabitants), Net 

internal migration (per 1,000 inhabitants) and Net domestic migration (per 1,000 

inhabitants). 

- Group b) Personal income per capita growth rate (%), Recession dummy, Personal income 

per capita. 
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Note that when running a model that include contemporaneous predictors, we use all variables in 

Group a) but not those of Group b), since these contains the target variable or a direct transformation 

of it. In all models, all the variables of Group a) and Group b) described enter the model with lag t-1 

and t-2, except for the outcome variable, which enters only when we include the lagged outcome. 

 


