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The present document corresponds to the 4th chapter of my thesis, the problem setting is not definitive,
what matters most here are the mathematical results and the methodology of the existence proofs.

Abstract

In this work, we propose a framework and some tools for establishing the existence of solutions to
numerical schemes in the case of the two-phase flow model. These schemes are sharing some key a priori
mathematical properties. It applies to a large variety of continuous models. We propose the definition of a
regularized scheme and show that if solutions exist to this regularization, then the existence of the initial
one is ensured. This perturbation of the scheme facilitates the regularized existence. The main aim is to
handle degenerate systems such as the two-phase Darcy flows in porous media. We illustrate the strength
of our framework on two practical schemes, a finite volume one using the DDFV framework, and the other
based on a Control Volume Finite Element (CVFE) method.

1 Introducing the problem

In the two-phase Darcy flow, we have a coupled system of two degenerated parabolic equations (3; 16). The
study of such systems is of great interest for engineering applications such as nuclear waste management,
enhanced oil and gas recovery, management of geothermal energy, etc. An accountable amount of schemes
have been built in various cases for similar models, with a wide variety of numerical methods. For instance,
one can refer to finite volume-type methods such as Two Point Flux Approximation (24; 13; 4), it has also
been done using finite elements (7; 22; 17), and other kinds of methods, but we do not want to be exhaustive
here. The degeneracy is the main obstacle to proving the existence of a solution to such schemes. Often, the
proof lacks full clarification, since the problem is complex and tricky. The dependence and definition of the
approximate quantities before proving the existence of solutions prevent us from using an a priori maximum
principle. Moreover, the degeneracy forces the energy estimates to be based on the global pressure p (7; 2)
and on a capillary term ξ (see (2.7)) for continuous and discrete solutions. The existence problem due to the
degeneracy of the mobilities has been treated in (19) in the continuous case. The difficulty is circumvented
by regularizing the problem, solving it, and then passing to the limit of the regularized solutions to establish
that they are solutions to the initial system. We propose a standard regularization of the scheme’s result
to demonstrate the existence of solutions for a numerical method applied to degenerate problems.

In Section 1.1, we introduce a quite general type of model to which we can apply our result, the only
hypotheses are concerning:
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• The link between the ”pressure” variables and the ”saturation” ones, depending on the space. It is
designed to take into account not only the capillary pressure and saturating relations but also the
heterogeneity of the porous medium.

• The saturations need to verify a maximum principle, keeping their ”physical” meaning.

• Some ”non-physical” variables ζ, on which we have the energy estimates, with a strong link between
them and the ”pressures”, to mimic the role of the global pressure.

Our result can be especially applied to implicit schemes. Assuming we have a scheme holding a discrete
maximum principle and discrete energy estimates on the non-physical quantity ζ, we define the concept of
regularization of such a scheme in Section 1.2. In Section 1.3, we prove that if there exist solutions to a
regularized scheme it implies the existence of solutions to the regular scheme.

In Section 2, we present the continuous compressible, immiscible, two-phase Darcy flow in porous media
model, which verifies all the hypotheses of our framework (see Section 1.1). Following, we apply our results
to establish the existence of solutions for two schemes. First, we use this strategy on a Discrete Duality
Finite Volume (DDFV) implicit scheme (9). We build a regularized scheme and prove the existence of the
latter solutions, implying the result of the first one. Secondly, one shows that the result also works well in
the case of a Control Volume Finite Element (CVFE) implicit scheme introduced in (15), following the same
path. Both proposed regularizations rely on the ǫ-perturbation of the mobilities and adding a η-capillary
pressure flow with positive transmissibility coefficients.

1.1 Continuous model

In this work, we are concerned with the existence of a solution to a numerical scheme, for a specific type of
model, but we try to open up its scope as much as possible. Starting from a coupled system of degenerate
parabolic equations, we assume the scheme has already been built. We have a maximum principle and some
energy estimates on the solutions. Usually, the degeneracy of the mobilities is a major issue in proving
their existence for the two-phase Darcy flow. We propose a toolbox accompanied by a strategy to prove
the existence of a solution to our scheme quite easily and rigorously, at least in the two-phase flow context.
We point out that the main result does not only focus on these equations and can include other variants.

We carry out the study in a domain Ω of Rd, open and bounded, with d ≥ 1, up to a final time tf (tf can
be equal to +∞). One denotes Qtf = Ω× (0, tf) . We assume that we have the unknowns p = (pαi

)i=1,...,l

(we call them ”pressures”; they will be the principal unknowns) and u = (uαi
)i=1,...,l (which can be called

”saturation”), with an integer l ≥ 2. One calls the αi the ”phases”. For instance, in compressible two-phase
flow, one has α1 = g, α2 = w. Our interest is in the approximation of the degenerate coupled parabolic
equation system as follows

∂tγi − div(Mαi
Λ(∇pαi

+ V i)) = f i, (1.1)

where γi, pαi
, Mαi

, Λ, V αi , f i designate respectively the accumulation term, the principal unknown, the
mobility, the permeability tensor, a potential (usually the gravitation potential), and a source term. The
proposed result will apply to every type of system of equations as long as one has the three following as-
sumptions (1.2)-(1.4).

First, one has a formal relation linking the principal unknowns with the saturations, reducing the number
of principal unknowns to l, given by G, defined almost everywhere on Ω, continuous with respect to (w.r.t.)
the pi, such that

G(x, pα1 , ..., pαi
, , ..., pαl

)

= (G1(x, pα1 , ..., pαl
), ..., Gi(x, pα1 , ..., pαl

), ..., Gl(x, pα1 , ..., pαl
))

= (uα1 , ..., uαi
, ..., uαl

).

(1.2)

It can be called the coupling relation.
Secondly, we want the quantities uαi

to adhere to specific physical bounds of type

uαi
≤ uαi

≤ uαi
, for 1 ≤ i ≤ l. (1.3)
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Those bounds are given by the nature of the quantities described. For instance, if the uαi
are concentrations,

then uαi
= 0 and uαi

= +∞; if we have saturations then, uαi
= 0 and uαi

= 1.

Remark 1. In two-phase flow we have parabolic equations (1.1) where the mobilities Mαi
(uαi

) are positive,
continuously increasing functions with respect to the αi-saturation. The degeneracy issue means that the
mobilities are vanishing with the saturations: Mαi

(uαi
= uαi

) = 0. This degeneracy in multiple cases is an
obstacle to proving the existence of solutions to an implicit numerical scheme. Then, we continuously extend
the mobilities by their extremal values: Mαi

(uαi
) = Mαi

(uαi
) for uαi

≤ uαi
and Mαi

(uαi
) = Mαi

(uαi
) for

uαi
≥ uαi

. This is necessary to treat two-phase flows.

Last, we assume that we have some non-physical quantities (ζi)1,...,l (not directly involved in the state
laws), such that there exists a constant C > 0, functions gi(., .) continuous w.r.t. their second variable, two
one-to-one integer functions σ1, σ2 : J1, lK → J1, lK, with σ1(i) 6= σ2(i) for all i, verifying for almost every x
in Ω

pαi
= ζi + gi(x, uαi

), |gi| ≤ C|pασ1(i)
− pασ2(i)

|,
and Lipschitz continuous w.r.t uαi

independently of x.
(1.4)

In the two-phase flow context, the non-physical quantities will be the global pressure (7), and the functions
gi will be the corrective pressures (see Section 2.1).

Here, we do not specify the boundary and initial conditions, but we keep them in mind.
One highlights that the main hypotheses we need to keep to apply our results are (1.2) and (1.4). The

hypothesis, (1.3) justifies the maximum principle wanted in the scheme. The type of equations treated can
differ from the one presented in (1.1) since one verifies the latter hypotheses and the scheme has the right
properties.

1.2 Regularized schemes

Let T be a space discretization of Ω with ♯T degrees of freedom (d.o.f.). We are looking for discrete vectors
pα1,...,αl,T = (pα1,T , ..., pαl,T ) with pαi,T ∈ R

T = R
♯T . First, we assume that a solution (pn−1

α1,...,αl,T
) has

already been computed for the (n− 1)th time-step, we want to calculate an approximated solution for the
next time-step. Our scheme is given, for every d.o.f. A ∈ T and for every phase i, by a solution of the
following equations

Fi,A(pα1,...,αl,T , p
n−1
α1,...,αl,T

) = 0. (1.5)

Thus, we have l× ♯T discrete equations. In the following, we write
Fn

i,A(pα1,...,αl,T ) := Fi,A(pα1,...,αl,T , p
n−1
α1,...,αl,T

), and designate the scheme by F . We want to solveFn(pα1,...,αl,T ) =
0. The scheme considered in the present work are implicit Euler scheme, other times discretizations enter
the proposed framework such as the Crank-Nicolson one.

We assume the scheme has been designed to verify key elements. First, a maximum principle on the
approximated saturations, which are still given by the coupling:

uαi
≤ uk

i,A ≤ uαi
, ∀i ∈ J1, lK, ∀A ∈ T , ∀k ∈ J0, n− 1K. (1.6)

Secondly, one has a priori energy estimates on the discrete non-physical quantities ζ, given by the relation
(1.4), where the constant Cζ is depending on the mesh, time-step, the previous time-step solutions, physical
data of the problem, such that for a given discrete norm ‖.‖T , one has

l∑

i=1

‖ζi,T ‖2T ≤ Cζ . (1.7)

Here we consider any discrete norm, in the following, we will consider discrete norms on discrete gradients.
For nonlinear and complex numerical schemes, it is not evident to prove the existence of a solution to

the scheme in a quick classic fashion. For instance, in the two-phase Darcy flow, degeneracy is a big problem
preventing us from using the classical fixed-point theorems. Then, we propose to introduce a regularization
of the scheme such that it is easier to prove the existence of a solution to the regular one (see for instance
Section 2), as follows in Section 1.3, we show that it gives at least one solution to F .
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Definition 2 (regularized scheme). Let us fix two positive parameters ǫ, η ≥ 0. A regularized scheme of
F , is a ǫ, η-parametrized scheme F ǫ,η, such that

• (P.a) F ǫ,η is continuous with respect to ǫ and η,

• (P.b) F0,0 = F ,

• (P.c) each solution of F0,η, verifies the maximum principle on the approximated saturations,

• (P.d) one has regularized energy estimates, with Cη depending on the mesh, the (n− 1)-solution, the
physical data, but independent of ǫ > 0 (it can depend on η > 0), such that

l∑

i=1

‖ζi,T ‖2T + ǫ

l∑

i=1

‖pαi,T ‖2T + η

l∑

i=1

∥
∥
∥pασ1(i),T − pασ2(i),T

∥
∥
∥

2

T
≤ Cη. (1.8)

• (P.e) for ǫ = 0 and η > 0 regularized energy estimates stands with C depending on the mesh, the
(n− 1)-solution, the physical data, but independent of η > 0, such that

l∑

i=1

‖ζi,T ‖2T ≤ C.

Remark 3. The regularized energy estimate (1.8) is equivalent to

l∑

i=1

‖ζi,T ‖2T + ǫ
l∑

i=1

‖pαi,T ‖2T + η
l−1∑

i=1

∥
∥pαi,T − pαi+1,T

∥
∥
2

T
≤ C, (1.9)

since σ1 and σ2 are two integer functions bijectives and never equal. The constant C can vary. We will
prefer these energy estimates after that since they are easier to handle.

(P.b) makes clear that F ǫ,η is a regularization of F . The fact that we have the ǫ,η-components in (P.d) is
often a key to proving the existence of regularized solutions.

1.3 Existence theorem for F
This part aims to prove that since we are able to show the existence of solutions for every ǫ > 0, η > 0,
no matter the way we prove this existence, it follows there remains not less than one solution to F = F0,0.
We will illustrate that it is easier to show the existence of a regularized scheme in Section 2.

Theorem 4. Assuming we have a solution to the regularized scheme F ǫ,η for every ǫ > 0, η > 0 (we will
call them regularized solutions, and write it pǫ,ηα1,...,αl,T

). Then, there exists a solution to the scheme F .

Proof. One fixes η > 0. Since the regularized energy estimates (2) given by (P.d) are fulfilled, one infers
the uniform bounds w.r.t ǫ > 0:







(ζǫ,ηi,T )ǫ>0 is uniformly bounded for every i in J1, lK,

(
√
ǫpǫ,ηαi,T

)ǫ>0 is uniformly bounded for every i in J1, lK,

(
√
η(pǫ,ηαi,T

− pǫ,ηαi+1,T
))ǫ>0 is uniformly bounded for every i in J1, l − 1K.

We do not specify the norm because of the norm equivalence in finite dimension. Thanks to relation (1.4),
because of Lipschitz assumption on gi, the η fixed and the uniform bound on

√
η(pǫ,ηαi,T

−pǫ,ηαi+1,T
), we obtain

that
(pǫ,ηαi,T

)ǫ>0 is uniformly bounded for every i in J1, lK.

So, taking a sequence (ǫn) of strictly positive real numbers, converging to 0 as n goes to ∞, we have the
sequence (pǫn,ηα1,...,αl,T

)n, uniformly bounded in (RT )l. Because the dimension is finite, it is possible to extract

a converging subsequence towards a limit, reading pηα1,...,αl,T
, which is solution of F0,η because of (P.a) and

the continuity of F .
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The third property (P.c) , implies pηα1,...,αl,T
verifies the maximum principle (1.3), for every η > 0. Using

(P.e) , we have the uniform bounds but this time w.r.t. η > 0 :

(ζηi,T )η>0 is uniformly bounded for every i in J1, lK.

The kept relations at the discrete level (1.4) and (1.2), combined with the maximum principle, Lipschitz-
continuity of gi and the η-energy estimates, gives us that for all 1 ≤ i ≤ l and for all A ∈ T :

|pηαi,A
| ≤ |ζηi,A|+ ‖gi‖∞,[uαi

,uαi
] .

It implies
(pηαi,T

)η>0 is uniformly bounded w.r.t. η, for every i in J1, lK.

Then, taking (ηn) a strictly positive sequence converging to 0, one can extract a convergent subsequence of
(pηn

α1,...,αl,T
), written pα1,...,αl,T . Because of the continuity (P.b) , and the first property of the regularized

scheme (P.a) , pα1,...,αl,T is a solution of the numerical scheme F .

In this proof, we see that the hypotheses on the model (1.2)-(1.4), and those on the scheme and regu-
larized scheme, are made to enable passing to the limit. Moreover, the ǫ-part of the regularization energy
estimates (P.d) will be a crucial element in demonstrating the existence of regularized solutions more easily.

2 Application to two schemes

Both of our applications are built on the same two-phase Darcy flow in porous media model that we will
display in the following subsection 2.1. There are a lot of schemes on those models, but we will focus on
two kinds of complex numerical schemes to demonstrate how our approach handles these problems. In a
first time, we consider a pure finite volume scheme. In a second time, the proposed strategy is applied to a
combined finite volume finite element scheme.

2.1 The model

We are interested in the compressible two-phase flow in porous media problem (3; 15; 7). In this model we
have l = 2 phases: a gazeous phase α1 = g and a wetting one α2 = w. The capillary pressure pc : R → R is
an increasing homeomorphism, piecewise C1 on R, with bounded derivatives. Moreover, it verifies pc(0) = 0.
This work can be easily adapted to the heterogeneous medium case where the capillary pressure differs from
one rock type to another. Then, we have the link between phase pressures and saturations (see (1.2)) given
by

G(x, pg, pw) = (sg, sw) =
(
pc

−1(pg − pw), 1− pc
−1(pg − pw)

)
. (2.1)

The system is composed of two parabolic degenerate equations that are derived from the mass conservation
for each phase. It reads







φ∂t(ραsα) + div(ραVα) + ραq
α = 0 in Qtf , ∀α ∈ {g, w},

Vα = −Krα

µα

Λ(∇pα − ραg), ∀α ∈ {g, w}. (2.2)

In the first equation, φ refers to the porosity of the medium, and for each α-phase ρα(pα), sα, q
α, Vα

respectively stand for the density depending only on the phase pressure pα, the saturation, the source term,
the velocity. Each phase velocity is given in the second equation by the diphasic Darcy-Muscat law, where
the mobility Mα(sα) = Krα/µα is the relative permeability over the dynamic viscosity, Λ the permeability
tensor of the medium and g the gravitational acceleration.

The saturations have a physical range (see (1.3)) given by

0 ≤ sα ≤ 1, for α ∈ {g, w}. (2.3)
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The mobilities Mα are continuously increasing with respect to the saturation, positive, and degenerated.
We consider their extensions Mα(u) = 0 for u ≤ 0 and Mα(u) = Mα(1) for u ≥ 1. We will consider in the
following sections the ǫ-regularized mobilities

M ǫ
α(s) = ǫ+Mα(s), ∀s ∈ R. (2.4)

Here are the classical hypotheses on the main data.

• The porosity is bounded almost everywhere on Ω by two strictly positive constant φ0, φ1 > 0. It
writes φ ∈ L∞(Ω) with φ0 ≤ φ(x) ≤ φ1 for a.e. x in Ω.

• The permeability tensor is a symmetric positive-definite matrix, which is essentially bounded. More-
over, it is uniformly elliptic i.e. there exist constants Λ and Λ such that

Λ|v|2 ≤ Λ(x)v · v ≤ Λ|v|2 for all v ∈ R
d and a.e. x ∈ Ω. (2.5)

• The density ρα ∈ C1(R,R) is increasing (with the pressure) and uniformly bounded

0 < ρ0 ≤ ρα(pα) ≤ ρ1,

for some positive constants ρ0, ρ1.

The system is closed by compatible initial conditions on the pressures, with Neumann and Dirichlet bound-
ary conditions: 





ρgVg · n = ρwVw · n = 0 on ΓN × (0, tf ),
pg = pDir

g and pw = pDir
w on ΓDir × (0, tf),

pg(., 0) = pinig and pw(., 0) = piniw in Ω,

where {ΓDir,ΓN} is a partition of the border ∂Ω = ΓDir∪ΓN with |ΓDir| > 0. We write n the outward unit
normal of the Neumann border. We carry out our study in two dimensions. For the sake of simplicity, we
assume we are in the case of a horizontal domain such that we can neglect the gravitational terms; moreover,
there will be no source terms and we will set uniform Dirichlet boundary conditions pDir

g = pDir
w = 0. Adding

these ingredients is not a problem, it only complicates the writing of the formulas without hiding conceptual
difficulties.

The concept of global pressure has been introduced in (7). This non-physical pressure is very useful
in the analysis of the scheme to handle the degeneracy issue. We define the total mobility by M(sg) =
Mw(1− sg) +Mg(sg) ≥ m0 > 0. This artificial pressure p, defined using corrective pressures p̂g, p̂w in the
following way

pg = p+ p̂g(sg), pw = p− p̂w(sg)

where







p̂g(sg) =

∫ sg

0

Mw(1− u)

M(u)
p′c(u) du

p̂w(sg) =

∫ sg

0

Mg(u)

M(u)
p′c(u) du

.

We see that we verify the hypothesis of (1.4), with the same non-physical quantity for pg and pw: the global
pressure p. The corrective pressures are Lipschitz-continuous w.r.t. their respective saturations because the
capillary pressure has a bounded derivative. Moreover, one writes

|p̂g(sg)| =
∣
∣
∣
∣

∫ sg

0

Mw(1− u)

M(u)
p′c(u) du

∣
∣
∣
∣
≤
∣
∣
∣
∣

∫ sg

0

p′c(u) du

∣
∣
∣
∣
≤ |pg − pw|

and similarly |p̂w(sg)| ≤ |pg − pw| .
(2.6)

We will also use the feature of the function ξ in energy estimates, of great help to prove the convergence,
defined by

ξ(sg) =

∫ sg

0

√
Mw(1− u)Mg(u)

M(u)
p′c(u) du. (2.7)

The following nonlinear functions (19) are of great use to show the energy estimates

gα(pα) =

∫ pα

0

1

ρα(b)
db and Hα(pα) = ρα(pα)gα(pα)− pα. (2.8)
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2.2 Positivity-Preserving DDFV scheme for compressible two-phase flow

First, we introduce the Discrete Duality Finite Volumes (DDFV) setting, and then we present the PP-DDFV
scheme (9). We build a regularized scheme and prove the existence of the regularized solutions.

2.2.1 DDFV settings

We study a scheme in a 2D domain Ω ⊂ R
2. First, we describe briefly the three meshes used in the

DDFV-method (10; 1; 20) to set up the useful notations. The description of the different types of meshes
is inspired from (18; 21).

The primal mesh:

The primal interior mesh M, is a collection of open disjoint polygons called primal cells, usually written K
covering Ω (i.e. ∪K∈MK = Ω). We let ∂M be the set of boundary edges, which can be seen as degenerate
cells. M is then defined as the reunion of M and ∂M. For each cell K ∈ M, we fix a point xK called its
center, and we set Xint = {xK ,K ∈ M}, Xext = {xK ,K ∈ ∂M} and we write X = Xint ∪ Xext. The
vertices of M are split between those in the interior and the ones on frontier X∗ = X∗

int ∪ X∗
ext. For two

neighboring primal cells K and L, we assume ∂K ∩ ∂L = K|L is a segment, corresponding to an internal
edge of the mesh if both cells are interior (in Eint) or an exterior edge if one of the cells is in ∂M then the
exterior cell can be confounded with the edge. We set E = Eint ∪ ∂M, the set of all the edges of the primal
mesh. For a cell K, one denotes EK the set of its edges, we distinguish the interior interfaces EK,int, from
the exterior ones EK,ext. One sets the outward unit normal to σ ∈ EK as nσ,K .

The dual mesh:

The dual control volumes are centered on the elements of X∗, written xK∗ for a dual cell K∗. A cell K∗

is built by straightly joining, in the circular sense, the centers of the primal cells sharing the underlined
vertex. When xK∗ is in X∗

ext, we connect xK∗ to the two midpoints of the two exterior primal edges sharing
xK∗ as a vertex. The dual edges σ∗ ∈ E∗ are the segments linking the centers of the adjoining primal cells
and when the two cells are at the border, we take the two segments connecting each center with the vertex.
We denotes M∗, ∂M∗ respectively the dual volumes constructed from X∗

int, X
∗
ext. Then, one write the dual

mesh M∗ = M
∗ ∪ ∂M∗. Like in the primal case, one defines nσ∗,K∗ the outward unit normal to σ∗ ∈ EK∗ ,

for all K∗ ∈ M∗.

The diamond mesh:

For σ = K|L (K or L can be in ∂M) with vertices xK∗ and xL∗ , we define the quadrilateral diamond Dσ,σ∗

(σ = K|L, σ∗ = K∗|L∗), whose vertices are xK , xK∗ , xL and xL∗ . The diamond is built by connecting
precedent points in the same order. When σ ∈ ∂M, the diamond degenerates into a triangle. One denotes
D a diamond cell and D the diamond mesh. Notice that D does not necessarily have a convex shape, it
depends on the location of the vertices of σ. One defines αD the angle between the interfaces i.e. the angle
between (xK , xL) and (xK∗ , xL∗).

Boundary conditions: We make the assumption that ΓDir∩ΓN is a set of vertices of the primal mesh,
then, the centers of the primal boundary cells are exclusively in ΓDir or ΓN . Thus, we divide ∂M between
∂MDir = {K ∈ ∂M, xK ∈ ΓDir} and ∂MN = {K ∈ ∂M, xK ∈ ΓN\ΓDir}. As for the primal mesh, one sets
∂M∗

Dir = {K∗ ∈ ∂M∗, xK∗ ∈ ΓDir} and ∂M∗
N = {K ∈ ∂M∗, xK∗ ∈ ΓN\ΓDir}. We also define MN =

M ∪ ∂MN and M∗
N = M

∗ ∪ ∂M∗
N , since we will have homogeneous Dirichlet boundary conditions on

pressures in our scheme and we will look after those such discrete solutions.

We denote T =
(
M,M∗

)
the DDFV mesh. For any A in M, M∗ or D, mA, dA stands respectively for

the d-Lebesgue measure and the diameter of the cell. Similarly for σ̃ ∈ E , E∗, mσ̃ is the (d − 1)-Lebesgue

measure, or its length. The diamond measure can be computed via : mD =
1

2
mσmσ∗ sin(αD).
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2.2.2 Discrete operators and functions

One defines the discrete spaces RTDir , RT and R
T
Dir. We have

uTDir
=
(

(uK)K∈MN
, (uK∗)K∗∈M∗

N

)

∈ R
TDir ,

uT =
(

(uK)K∈M
, (uK∗)K∗∈M∗

)

∈ R
T ,

and R
T
Dir is composed of the elements uT of RT such that uA = 0 for every A ∈ ∂MDir ∪ ∂M∗

Dir. We
have a linear injection R

TDir → R
T
Dir ⊂ R

T . In the following, uT will refer to an element of RTDir or RT
Dir,

depending on the context. If f : R → R is a nonlinear function, we denote by f(uT ) the vector:

f(uT ) =
(

(f(uK))K∈M
, (f(uK∗))K∗∈M∗

)

∈ R
T .

For any g in R
T , one writes

δABg = gB − gA, ∀A,B ∈ M ∪M∗. (2.9)

Following, (R2)D stands for the set of vector fields, composed of piecewise constants on diamonds, of the
form: ζD = (ζD)D∈D. In the DDFV approach, the discrete gradient operator is a linear mapping from R

T

(or RRDir ) to (R2)D, its purpose is to mimic a gradient (10; 1). It is defined for every uT ∈ R
T by:

∇DuT =
∑

D∈D

∇DuT 1D,

with ∇DuT =
1

sin(αD)

(
δKLu

mσ∗

nσ,K +
δK∗L∗u

mσ

nσ∗,K∗

)

, ∀D ∈ D,

where 1D is the characteristic function of D. If D has an edge on the boundary, the value uL is assumed to
be known and imposed from the boundary conditions (Dirichlet or Neumann).

The permeability or stiffness tensor is approximated on the diamond using its mean value on D

ΛD =
1

mD

∫

D

Λ(x) dx. (2.10)

Now, we can give the transmissibility coefficients :

τKL =
mσ

mσ∗

〈ΛDnKL,nKL〉
sin(αD)

> 0, τK∗L∗ =
mσ∗

mσ

〈ΛDnK∗L∗ ,nK∗L∗〉
sin(αD)

> 0,

ηD =
〈ΛDnKL,nK∗L∗〉

sin(αD)
.

(2.11)

We equip the finite-dimensional space R
T (or R

TDir ) with the Lp-semi-norm |.|p,T (which is a norm on
R

TDir), as follow, for uT ∈ R
T

|uT |p,T =




1

2

∑

K∈M

mK |uK |p + 1

2

∑

K∗∈M∗

mK∗ |uK∗ |p




1

p
with 1 ≤ p < +∞.

One can define two norms on R
TDir , using the DDFV gradient, such as

‖uT ‖2T ,D =
∑

D∈D

mD

∥
∥∇DuT

∥
∥
2
,

‖uT ‖2T ,τ =
∑

D∈D

τKL(δKLu)
2 + τK∗L∗(δK∗L∗u)2.

We are able to show, since we have the permeability verifying (2.5), that ‖.‖T ,D and ‖.‖T ,τ are two equivalent

norms. Moreover, there exists C > 0 depending only on the mesh regularity, for all uT in R
TDir such that

|uT |1,T ≤ C ‖uT ‖T ,τ . (2.12)
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2.2.3 Presentation of the scheme

We introduce the implicit PP-DDFV finite volume method (see (9; 8)) (2.13)-(2.21). We split the time
interval into subintervals [tn, tn+1[ such that 0 = t0 < t1 < ... < tN = tf . One denotes δt = tn+1 − tn, it
could be taken uniform, but it does not impact the main result. We assume that pnT in R

TDir is verifying
(2.3). We take the notation |g| = 0, |w| = 1. For simplicity, we omit the implicit time n+1 superscript. We
are looking for pT in R

TDir solution to the regularized scheme, given by F ǫ,η as follow, with ǫ ≥ 0, η ≥ 0

- For K ∈ M,
F ǫ,η

α,K(pT , p
n
T )

= mKφK

(
ρα(pα,K)Z(sα,K)− ρα(p

n
α,K)snα,K

)

− δt
∑

σ=K|L∈EK

ρα,KLV
α,ǫ
KL − δtη(−1)|α|

∑

σ=K|L∈EK

ρα,KLpc,KL.
(2.13)

- For K∗ ∈ M
∗ \M∗

Dir ,

F ǫ,η
α,K∗(pT , p

n
T )

= mK∗φK∗

(
ρα(pα,K∗)Z(sα,K∗)− ρα(p

n
α,K∗)snα,K∗

)

− δt
∑

σ∗=K∗|L∗∈EK∗

ρα,K∗L∗V α,ǫ
K∗L∗ − δtη(−1)|α|

∑

σ=K∗|L∗∈E∗
K

ρα,K∗L∗pc,K∗L∗ .
(2.14)

- For K ∈ ∂MN (K = K|L with L ∈ M),

F ǫ,η
α,K(pT , p

n
T ) = −δt

(

ρα,KLV
α,ǫ
KL − η(−1)|α|pc,KL

)

. (2.15)

Remark 5. The Dirichlet boundary conditions are fixed by choosing to search solution in R
TDir . If we are

looking for a solution in R
T , then we have to fix it by adding in F ǫ,η the term, for A ∈ ∂MDir ∪M

∗
Dir,

F ǫ,η
α,A(pT , p

n
T ) = 0.

We approximate the porosity by its mean value on the control volume:

φA =
1

mA

∫

A

φ(x) dx. (2.16)

One denotes Z the continuous piecewise affine function, to force the maximum principle in the discrete
equations:

Z(s) =







0 if s < 0
s if s ∈ [0, 1],
1 if s > 1.

(2.17)

We have the projected α-phase velocity V α,ǫ
KL (resp. V α,ǫ

K∗L∗) and capillary flow pc,KL (resp. pc,K∗L∗) at the
interface σ = K|L (resp. σ∗ = K∗|L∗) given by

V α,ǫ
KL := Mup,ǫ

α,KLτKLδKLpα +
√

Mmin,ǫ
α,KL

√

Mup,ǫ
α,K∗L∗ηDδK∗L∗pα,

pc,KL = τKLδKL(pg − pw),

V α,ǫ
K∗L∗ := Mup,ǫ

α,K∗L∗τK∗L∗δK∗L∗pα +
√

Mmin,ǫ
α,K∗L∗

√

Mup,ǫ
α,KLηDδKLpα,

pc,K∗L∗ = τK∗L∗δK∗L∗(pg − pw).

(2.18)

We choose the discrete mobilities (see (2.4)) as

Mup,ǫ
α,AB :=







M ǫ
α(sα,B) , if δABpα ≥ 0

M ǫ
α(sα,A) , otherwise

and Mmin,ǫ
α,AB := min (M ǫ

α(sα,A),M
ǫ
α(sα,B)) .

(2.19)
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Moreover, we keep the relation (2.1) at the discrete level for all A ∈ T

(sg,A, sw,A) = G(xA, pg,A, pw,A) =
(
pc

−1(pg,A − pw,A), 1− pc
−1(pg,A − pw,A)

)
. (2.20)

One approximates the density of the α-phase with an integral formula (see (15; 19; 24)). We have for all
A, B in M ∪M∗

1

ρα,AB

:=







1

pα,B − pα,A

∫ pα,B

pα,A

1

ρ(z)
dz if pα,A 6= pα,B

1

ρα(pα,A)
otherwise

. (2.21)

2.2.4 Regularized PP-DDFV scheme

The objective is to demonstrate that the regularized scheme of the one studied in (9) admits a solution.
The continuity of all the terms makes (P.a) and (P.b) obvious. Let us show (P.c) .

Lemma 6 (Maximum principle of the 0, η-saturation). Let pg,w,T = (pg,T , pw,T ) be a solution to F 0,η(pT , p
n
T ) =

0 with η ≥ 0. Then, for α ∈ {g, w}, the discrete saturation of the α-phase obeys its physical bounds i.e.,

0 ≤ sα,A ≤ 1, ∀A ∈ T . (2.22)

Proof. The proof is the same as in the proof of Lemma in (9), and we will show how to handle the η-
regularizing term. We take α = g, without loss of generality. We assume that for n in J1, N − 1K, the
property is true (png,T , p

n
w,T ), then we take A ∈ T such that sg,A = minB∈T sg,B. We treat the case

A = K ∈ M, we treat the other cases likewise. One has

mKφK

(
ρg(pg,K)Z(sg,K)− ρg(p

n
g,K)sng,K

)
(sg,K)−

︸ ︷︷ ︸

=ACC
g

K

−δtCONV g
K − ηδtPCg

K = 0.

It is already established that ACCg
K ≤ 0 and CONV g

K ≥ 0 (see (9)). Now, we look at the η capillary
pressure flow

ηδtPCg
K = ηδt

∑

σ=K|L∈EK

ρg,KLτKLδKLpc (sg,K)−
︸ ︷︷ ︸

≥0

.

Since pc is strictly increasing w.r.t sg, we have

δKLpc(sg,K)− = (pc(sg,L)− pc(sg,K)) (sg,K)− ≥ 0.

Then PCg
K ≥ 0. It implies that sg,A ≤ 0 for all A ∈ T .

If we reason on α = w, we have for sw,K = minB∈T sw,B

mKφK

(
ρw(pw,K)Z(sw,K)− ρw(p

n
w,K)snw,K

)
(sw,K)−

︸ ︷︷ ︸

=ACCw
K

−δtCONV w
K + ηδtPCw

K = 0.

Similarly, there holds ACCw
K ≤ 0 and CONV w

K ≥ 0. We have for the η term

ηδtPCw
K = ηδt

∑

σ=K|L∈EK

ρw,KLτKLδKLpc (sw,K)−
︸ ︷︷ ︸

≥0

.

Since pc is strictly increasing w.r.t sg, one deduces

δKLpc(sw,K)− = (pc(1 − sw,L)− pc(1− sw,K)) (sg,K)− ≤ 0.

Finally PCw
K ≤ 0. We conclude that sw,A ≥ 0 for all A ∈ T . Then, the item (P.c) for the proposed

regularized scheme is fulfilled.
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Let us now check the validity of the last hypothesis (P.d) . This is the most demanding point in
calculations. Let us set-up notations (see (2.8) for gα)

g(pg,w,T ) = (gg(pg,T ), gw(pw,T )),

F ǫ,η(pg,w,T , p
n
g,w,T ) = (F ǫ,η

g (pg,w,T , p
n
g,w,), F

ǫ,η
w (pg,w,T , p

n
g,w,T )),

where

gα(pα,T ) =
(
(gα(pα,K)K∈MN

, (gα(pα,K∗)K∗∈M∗
N

)
,

F ǫ,η
α (pg,w,T , p

n
g,w,T ) =

(

(F ǫ,η
α,K(pg,w,T , p

n
g,w,T ))K∈MN

, (F ǫ,η
α,K∗(pg,w,T , p

n
g,w,T ))K∗∈M∗

N

)

.

We compute
〈F ǫ,η(pg,w,T , p

n
g,w,T ), g(pg,w,T )〉 = γ1 + γ2 + γ3, (2.23)

where, treating the accumulation term as in (19) and (9), using the function Hα(pα), we have

γ1 =
∑

α∈{g,w}

(
∑

K∈M

mKφK(ρα(pα,K)Z(sα,K)− ρα(p
n
α,K)snα,K)gα(pα,K)

+
∑

K∗∈M∗
N

mK∗φK∗(ρα(pα,K∗)Z(sα,K∗)− ρα(p
n
α,K∗)snα,K∗)gα(pα,K∗)





≥
∑

K∈M

mKφK

∑

α∈{g,w}

(Hα(pα,K)Z(sα,K)−Hα(p
n
α,K)snα,K)

+
∑

K∈M

mKφKpc(sg,K)(Z(sg,K)− sng,K)

+
∑

K∗∈M∗
N

mK∗φK∗

∑

α∈{g,w}

(Hα(pα,K∗)Z(sα,K∗)−Hα(p
n
α,K∗)snα,K∗).

+
∑

K∗∈M∗
N

mK∗φK∗pc(sg,K∗)(Z(sg,K∗)− sng,K∗).

(2.24)

It follows, using (2.12), that

γ1 ≥ 2φ0




∑

α∈{g,w}

|Hα(pα,T )Z(sα,T )|1,T





︸ ︷︷ ︸

≥0

− 2φ1




∑

α∈{g,w}

|Hα(p
n
α,T )|1,T





︸ ︷︷ ︸

=Cn

− 2φ1|pc,T |1,T
≥ −Cn − 2φ1C ‖pc,T ‖T ,τ

= −Cn − Cγ1 ‖pg,T − pw,T ‖T ,τ
.

(2.25)

We point out that the constant Cn ≥ 0. One treats γ2 in the same fashion as in (9), appearing a constant
ν > 0, depending on Λ, Λ, and the fixed mesh such that

γ2 = −δt
∑

α∈{g,w}

∑

D∈D

ρα,KLV
α,ǫ
KLδKLgα(pα) + ρα,K∗L∗V α,ǫ

K∗L∗δK∗L∗gα(pα)

≥ δtν
∑

α∈{g,w}

∑

D∈D

Mup,ǫ
α,KLτKL(δKLpα)

2 +Mup,ǫ
α,K∗L∗τK∗L∗(δK∗L∗pα)

2

≥ δtνǫ
∑

α∈{g,w}

∑

D∈D

τKL(δKLpα)
2 + τK∗L∗(δK∗L∗pα)

2 = δtνǫ
∑

α∈{g,w}

‖pα,T ‖2T ,τ
.

(2.26)

We now make use of the following Lemma (coming from the works (15; 13)).
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Lemma 7. For every A,B in M ∪M∗, there holds:

m0

(

(δABp)
2
+ (δABξ)

2
)

≤ Mup
g,AB (δABpg)

2
+Mup

w,AB (δABpw)
2
.

Then, we also deduce

γ2 ≥ δtν

(
∑

D∈D

τKL(δKLp)
2 + τK∗L∗(δK∗L∗p)2

+
∑

D∈D

τKL(δKLξ)
2 + τK∗L∗(δK∗L∗ξ)2

)

= δtν
(

‖pT ‖2T ,τ + ‖ξT ‖2T ,τ

)

.

(2.27)

Finally, the discrete integration-by-parts gives us

γ3 = −ηδt
∑

α∈{g,w}

(−1)|α|
∑

D∈D

ρα,KLpc,KLδKLgα(pα) + ρα,K∗L∗pc,K∗L∗δK∗L∗gα(pα)

= −ηδt
∑

D∈D

pc,KLδKL(pg − pw) + pc,K∗L∗δK∗L∗(pg − pw)

= ηδt
∑

D∈D

τKL(δKLpc)
2 + τK∗L∗(δK∗L∗pc)

2 = ηδt ‖pg,T − pw,T ‖2T ,τ
.

(2.28)

Finally, we obtain using (2.23), (2.25), (2.26), (2.27), (2.28) and the fact that since pT is solution to
F ǫ,η(pg,w,T , p

n
g,w,T ) = 0, γ1 + γ2 + γ3 = 0, we have

0 = 〈F ǫ,η(pg,w,T , p
n
T ), g(pg,w,T )〉

≥ −Cγ1 ‖pg,T − pw,T ‖T ,τ − Cn + δtν
(

‖pT ‖2T ,τ + ‖ξT ‖2T ,τ

)

+ δtνǫ




∑

α∈{g,w}

‖pα,T ‖2T ,τ



+ ηδt ‖pg,T − pw,T ‖2T ,τ
.

(2.29)

As a result, Cγ1 ‖pg,T − pw,T ‖T ,τ
≤ ηδt

2
‖pg,T − pw,T ‖2T ,τ

+
C2

γ1

2ηδt
. Following

Cn +
C2

γ1

2ηδt
≥ δtν

(

‖pT ‖2T ,τ + ‖ξT ‖2T ,τ

)

+ δtνǫ




∑

α∈{g,w}

‖pα,T ‖2T ,τ



+

ηδt

2
‖pg,T − pw,T ‖2T ,τ

.

The result is (P.d) .
For the last point, since (P.c) holds true, taking over the computation (2.24)-(2.25), one obtains

γ1 ≥ −Cn − 2mΩφ1 ‖pc‖[0,1],∞ .

Finally (P.e) is satisfied

Cn + 2mΩφ1 ‖pc‖[0,1],∞ ≥ δtν
(

‖pT ‖2T ,τ + ‖ξT ‖2T ,τ

)

.

2.2.5 Existence

Now, it only remains to prove the existence of a solution to the regularized PP-DDFV scheme for every
ǫ > 0 and η > 0. We will use the important fixed point result (12)
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Lemma 8 (Zeros of vector fields (12)). Assume the continuous function v : Rn → R
n satisfies v(x) ·x ≥ 0,

if |x| = r, for some r > 0. Then there exists a point x ∈ B(0, r) such that v(x) = 0.

For proof of the existence of an approximate solution of a similar model one can refer to (14; 25; 23).
We write n = Card(MN ), m = Card(M∗

N ). One defines the C1-diffeopmorphism, verifying Φ(0) = 0,

Φ : R
n × R

m × R
n × R

m −→ R
n × R

m × R
n × R

m

(a, a∗, b, b∗) 7−→ (gg(a), gg(a
∗), gw(b), gw(b

∗))
.

We write Φ−1(u, u∗, w, w∗) = (pg, p
∗
g, pw, p

∗
w), then we apply Lemma 8 to

v(.) = F ǫ,η(Φ−1(.), png,w,T ). We choose the norm on R
n × R

m × R
n × R

m, given by

‖(u, u∗, w, w∗)‖2 =
∥
∥g−1

g (u, u∗)
∥
∥
2

T ,τ
+
∥
∥g−1

w (w,w∗)
∥
∥
2

T ,τ
.

Thanks, to (2.29), and using that
√

2(a2 + b2) ≥ a+ b for all a, b ≥ 0, we write

〈v(u, u∗, w, w∗), (u, u∗, w, w∗)〉 ≥ − Cγ1

√
2 ‖(u, u∗, w, w∗)‖ − Cn

+ δtνǫ ‖(u, u∗, w, w∗)‖2 .

Taking r ≥ 0, such that δtνǫr2 − Cγ1

√
2r − Cn ≥ 0, one applies Lemma 8, then there exists (u, u∗, w, w∗)

in B‖.‖(0, r) such that v(u, u∗, w, w∗) = 0, meaning that Φ−1(u, u∗, w, w∗) verifies the equation of the
regularized PP-DDFV scheme. Then it admits a solution.

2.3 CVFE scheme for compressible two-phase flow

In this section, we propose a regularization for the Control Volume Finite Element (CVFE) scheme intro-
duced in (15). Then, we show the existence of a solution to this regularized version of the scheme, implying
a solution for the original one. This subsection follows exactly the same structure as in subsection 2.2.

2.3.1 CVFE settings

This method is a vertex centered method. The mesh T is a conforming simplicial partition of the domain
Ω ( in the sense of the finite element see (11)).

In 2D it consists of a triangular mesh, such that for two distinct elements T , T ′, T ∩ T ′ can be either a
common vertex, and edge or the emptyset. One denotes xT barcyenter of T . The set of the vertices of the
mesh is written V . For xK a vertex of T , we write VKT the vertices of T except xK . The vertices of the
mesh will be the degrees of freedom. Moreover, we build a dual mesh around these vertices of T . For a node
xK of V one associates a unique control volume K. Let TK be the set of triangles sharing xK as vertex.
Then, the fraction in the triangle T of cell K is given by the polygon AT

K ⊂ T , whose vertices are xK , xT

and the two midpoint of the segments [xK , xL] for L ∈ VKT . Therefore, the control volume associated to

xK is defined by AK = ∪T∈TK
AT

K . We call A this dual mesh centered on the nodes of the initial mesh.
Due to Dirichlet boundary conditions, we are led to distinguish VDir the vertices located on ΓDir , from the
others Vc

Dir = V\Vc
Dir. For more details on the CVFE setting one can refer to (15; 6; 5).

2.3.2 Discrete operators and functions

Let VT be the P1 finite elements function space on the mesh T . It is composed of the continuous and
piecewise affine functions per elements:

VT =
{
f ∈ C0(Ω), f|T ∈ P1, ∀T ∈ T

}
.

This function space is in H1(Ω). The shape function basis (ϕA)A∈V are the elements of VT such that
ϕA(xB) = 1 if A = B and ϕA(xB) = 0 otherwise. One has the following the relations

∑

K∈V ϕK = 1 and
∑

K∈V ∇ϕK = 0. One decomposes each element f of VT and its gradient likewise

f =
∑

K∈V

fKϕK , ∇f =
∑

K∈V

fK∇ϕK .
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Considering the space associated to the Dirichlet boundary conditions

V 0
T = {f ∈ V , f(xK) = 0 ∈, ∀K ∈ VDir} .

We have the natural semi-norm on VT

‖f‖2VT
=

∫

Ω

‖∇f‖22 dx.

It became a norm on V 0
T because of the discrete Poincaré inequality (11). We also use the norm, defined

for fT in VT by

|fT |1,T =
∑

K∈V

mAK
|fK |.

Then, the discrete Poincaré’s inequality holds true, i.e. there exist a constant C > 0, such that, for all fT
in VT :

|fT |1,T ≤ C ‖fT ‖VT
. (2.30)

Like for the BP-DDFV scheme, we split the time interval into subintervals [tn, tn+1[ such that 0 = t0 <
t1 < ... < tN = tf , and take δt = tn+1 − tn.

2.3.3 Presentation of the CVFE scheme

We introduce the implicit positivity preserving CVFE method (see (15)) (2.31)-(2.35). The old solution
pnα,w,T belongs to V 0

T , and the deduced saturation is verifying the discrete maximum principle. We keep

the notations |g| = 0, |w| = 1. We are looking for pα,w,T in V 0
T solution to the regularized scheme, given

by F ǫ,η
α as follow, with ǫ ≥ 0, η ≥ 0, for K ∈ Vc

Dir,

F ǫ,η
α,K(pg,w,T , p

n
g,w,T ) =mAK

φK

(
ρα(pα,K)Z(sα,K)− ρα(p

n
α,K)snα,K

)

− δt
∑

T∈TK

∑

L∈VKT

ρα,KLM
ǫ
α(sα,KL)Λ

T
KLδKLpα

− δtη(−1)|α|
∑

T∈TK

∑

L∈V+
KT

ρα,KL|ΛT
KL|δKLpc.

(2.31)

Remark 9. The Dirichlet boundary conditions are fixed by choosing to search solutions in V 0
T . If we are

looking for a solution in VT , then we have to add more equations in F ǫ,η, one for every K ∈ ∂VDir, such
that

F ǫ,η
α,K(pg,w,T , p

n
g,w,T ) = 0. (2.32)

The transmissibility or stiffness coefficients between two neighboring control volumes AK and AL in the
element T are given by

ΛT
KL = −

∫

T

Λ(x)∇ϕK · ∇ϕL dx = ΛT
LK . (2.33)

One sets V+
KT the vertices of T except K such that the stiffness coefficient at the interface σT

KL, Λ
T
KL is

non-negative.
We approximate the porosity by its mean value on the control volume AK as in (2.16). Z is defined

in (2.17). The approximate density is still given by (2.21). The saturation of the α-phase on the interface
σT
KL is chosen in a nonstandard way when the transmissibilities are non-negative

sα,KL :=







{
sα,L , if δKLpα ≥ 0
sα,K , if δKLpα < 0

, if ΛT
KL ≥ 0

minJ∈VT
(sα,J ) , if ΛT

KL < 0
. (2.34)

Moreover, we keep the relation (2.1) at the discrete level for all K ∈ V

(sg,K , sw,K) = G(xK , pg,K , pw,K) =
(
pc

−1(pg,K − pw,K), 1− pc
−1(pg,K − pw,K)

)
. (2.35)
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2.3.4 Regularized CVFE scheme

Next, we show that (2.31)-(2.35) is a regularized scheme of the one studied in (15). To begin with, (P.a) and
(P.b) are obviously true by continuity of all the terms. Let us now show (P.c)

Lemma 10 (Maximum principle of the 0, η-saturation). Let pα,w,T = (pg,T , pw,T ) be a solution to F0,η
α (pT , p

n
T ) =

0 with η ≥ 0. Then, for α ∈ {g, w}, the discrete saturation of the α-phase obeys its physical ranges i.e.

0 ≤ sα,A ≤ 1, ∀A ∈ T . (2.36)

Proof. The proof is the same as in the proof of Lemma 4.1 in (15), we just look at the η-regularizing term.
We take α = g, without loss of generality. We assume that for n in J1, N − 1K, the property is true for
(png,T , p

n
w,T ). Then, we take K ∈ Vc

Dir such that sg,K = minL∈Vc
Dir

sg,L. We treat the case K ∈ Vc
Dir, since

we directly have the property for K ∈ VDir thanks to the Dirichlet boundary conditions and (2.35). One
has

mAK
φK

(
ρg(pg,K)Z(sg,K)− ρg(p

n
g,K)sng,K

)
(sg,K)−

︸ ︷︷ ︸

=ACC
g

K

−δtCONV g
K − ηδtPCg

K = 0.

It is already demonstrated that ACCg
K ≤ 0 and CONV g

K ≥ 0 (see (15)). Now, we look a the η-capillary
pressure flow

ηδtPCg
K = δtη

∑

T∈TK

∑

L∈V+
KT

ρα,KL|ΛT
KL|δKLpc (sg,K)−

︸ ︷︷ ︸

≥0

.

Because pc is strictly increasing w.r.t sg, we deduce

δKLpc(sg,K)− = (pc(sg,L)− pc(sg,K)) (sg,K)− ≥ 0.

Then, PCg
K ≥ 0. It implies that sg,K ≤ 0 for all K ∈ V . Furthermore, we proceed similarly in the case

α = w, and prove as in the proof of Lemma 6, minB∈T sw,B ≥ 0. Because of the relation between the
saturations, we are able to conclude. Thus, one has (P.c) for the proposed regularized CVFE scheme.

It remains to prove (P.d) . Using the nonlinear function (2.8), we set

g(pg,w,T ) =
(
(gg(pg,T ))K∈Vc

Dir
, (gw(pw,T ))K∈Vc

Dir

)
,

F ǫ,η(pg,w,T , p
n
g,w,T ) =

(
(F ǫ,η

g (pg,w,T , p
n
g,w,T ))K∈Vc

Dir
, (F ǫ,η

w (pg,w,T , p
n
g,w,T ))K∈Vc

Dir

)
.

We compute
〈F ǫ,η(pg,w,T , p

n
g,w,T ), g(pg,w,T )〉 = γ1 + γ2 + γ3, (2.37)

where, treating the accumulation term γ1 as in (19; 15), using Hα, we obtain as in (2.25)

γ1 =
∑

α∈{g,w}




∑

K∈Vc
Dir

mAK
φK(ρα(pα,K)Z(sα,K)− ρα(p

n
α,K)snα,K)gα(pα,K)





≥
∑

K∈Vc
Dir

mAK
φK

∑

α∈{g,w}

(Hα(pα,K)Z(sα,K)−Hα(p
n
α,K)snα,K)

+
∑

K∈Vc
Dir

mAK
φKpc(sg,K)(Z(sg,K)− sng,K).

We still estimate γ1 as in the previous subsection, using (2.30),

γ1 ≥φ0




∑

α∈{g,w}

|Hα(pα,T )Z(sα,T )|1,T





︸ ︷︷ ︸

≥0

−φ1




∑

α∈{g,w}

|Hα(p
n
α,T )|1,T





︸ ︷︷ ︸

=Cn

− φ1|pc,T |1,T
≥− Cn − φ1C ‖pc,T ‖VT

= −Cn − Cγ1 ‖pg,T − pw,T ‖VT
.

(2.38)
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We point out that the constant Cn is positive. One can deal with γ2, in the same fashion as in Proposition
4.1 (see (15))

γ2 = −δt
∑

α∈{g,w}

∑

K∈Vc
Dir

∑

T∈TK

∑

L∈VKT

ρα,KLM
ǫ
α(sα,KL)Λ

T
KLδKLpαgα(pα,K)

= −δt
∑

α∈{g,w}

∑

K∈V

∑

T∈TK

∑

L∈VKT

ρα,KLM
ǫ
α(sα,KL)Λ

T
KLδKLpαgα(pα,K)

= δt
∑

α∈{g,w}

∑

T∈T

∑

σT
KL

∈ET

ρα,KLM
ǫ
α(sα,KL)Λ

T
KLδKLpαδKLgα(pα)

= δt
∑

α∈{g,w}

∑

T∈T

∑

σT
KL

∈ET

M ǫ
α(sα,KL)Λ

T
KL(δKLpα)

2 ≥ δtǫΛ
∑

α∈{g,w}

‖pα,T ‖2VT
.

(2.39)

A constant ν > 0 appears (15), depending on the fixed mesh and on the permeability bounds Λ, Λ. But,
we also have thanks to Lemma 4.2 and 4.3 (see (15)), where ν is the constant given in Lemma 4.3, that

γ2 ≥ δtm0ν
∑

T∈T

∑

σT
KL

∈ET

ΛT
KL

(
(δKLp)

2 + (δKLξ)
2
)

≥ δtm0νΛ
(

‖pT ‖2VT
+ ‖ξT ‖2VT

)

.

(2.40)

Finally, some computations give us

γ3 = −ηδt
∑

α∈{g,w}

(−1)|α|
∑

K∈Vc
Dir

∑

T∈TK

∑

L∈V+
KT

ρα,KL|ΛT
KL|δKLpcgα(pα,K)

= ηδt
∑

α∈{g,w}

(−1)|α|
∑

T∈T

∑

σT
KL

∈E+
T

ρα,KL|ΛT
KL|δKLpcδKLgα(pα)

= ηδt
∑

T∈T

∑

σT
KL∈E+

T

|ΛT
KL|δKLpc (δKLpg − δKLpw)

= ηδt
∑

T∈T

∑

σT
KL

∈E+
T

|ΛT
KL|(δKLpc)

2

≥ ηδt
∑

T∈T

∑

σT
KL

∈ET

ΛT
KL(δKLpc)

2 ≥ ηδtΛ ‖pc,T ‖2VT
.

(2.41)

Thus, using (2.37), (2.38), (2.39), (2.40), (2.41) and the fact that since pg,w,T is solution to F ǫ,η(pg,w,T , p
n
g,w,T ) =

0, γ1 + γ2 + γ3 = 0, we obtain

0 =〈F ǫ,η(pg,w,T , p
n
g,w,T ), g(pg,w,T )〉

≥ − Cγ1 ‖pg,T − pw,T ‖VT
− Cn + δtνΛ

(

‖pT ‖2VT
+ ‖ξT ‖2VT

)

+ δtνǫΛ
∑

α∈{g,w}

‖pα,T ‖2VT
+ ηδtΛ ‖pg,T − pw,T ‖2VT

.

(2.42)

One claims Cγ1 ‖pg,T − pw,T ‖VT
≤ ηδtΛ

2
‖pg,T − pw,T ‖2VT

+
C2

γ1

2ηδtΛ
. Consequently, there holds

Cn +
C2

γ1

2ηδtΛ
≥δtνΛ

(

‖pT ‖2VT
+ ‖ξT ‖2VT

)

+ δtνǫΛ




∑

α∈{g,w}

‖pα,T ‖2VT





+
ηδtΛ

2
‖pg,T − pw,T ‖2VT

.

As a result, (P.d) is satisfied.
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For the last point, according to the item(P.c) , and taking over the computation (2.3.4)-(2.38), one
obtains

γ1 ≥ −Cn −mΩφ1 ‖pc‖[0,1],∞ .

It follows (P.e)

Cn +mΩφ1 ‖pc‖[0,1],∞ ≥ δtνΛ
(

‖pT ‖2VT
+ ‖ξT ‖2VT

)

.

2.3.5 Existence

Now, it only remains to prove the existence of a solution to the regularized CVFE scheme, for every ǫ > 0
and η > 0. We write n = Card(Vc

Dir). One defines the C1-diffeopmorphism, verifying Φ(0) = 0,

Φ : R
n × R

n −→ R
n × R

n

(a, b) 7−→ (gg(a), gw(b))
.

We write Φ−1(u,w) = (pg, pw), then we apply Lemma 8 to
v(.) = F ǫ,η(Φ−1(.), png,w,T ). We choose the norm on R

n × R
n given by

‖(u,w)‖2 =
∥
∥g−1

g (u)
∥
∥
2

VT

+
∥
∥g−1

w (w)
∥
∥
2

VT

.

Thanks to (2.42), and using that
√

2(a2 + b2) ≥ a+ b for all a, b ≥ 0, lead to

〈v(u,w), (u,w)〉 ≥ −Cγ1

√
2 ‖(u,w)‖ − Cn + δtνǫ ‖(u,w)‖2 .

Taking the radius r ≥ 0, such that δtνǫΛr2 − Cγ1

√
2r − Cn ≥ 0, one applies Lemma 8, then there exists

(u,w) in B‖.‖(0, r) such that v(u,w) = 0, meaning that Φ−1(u,w) = (pg, pw) is a solution to the regularized
CVFE scheme, which finishes the proof.

3 Conclusions

In this paper, we propose a framework to prove rigorously the existence of solutions to some numerical
schemes sharing some structural properties of stability. We try to catch a large variety of continuous
models, which encompass the two-phase Darcy flow in porous media model. We aim for Euler implicit
time-discretization, but it can be applied to other types of schemes. A few key assumptions need to be
fulfilled to use the result: a formal relationship between the unknowns identical to the one of the continuous
model, a maximum principle, and lastly, energy estimates. The key idea is to build regularized versions
of the considered schemes so that proving the existence of solutions to the schemes in question is simpler.
Then, it will imply a solution to the original numerical scheme first studied.

We illustrate the use of this tool in the case of the two-phase Darcy flow. It enables us to handle the
degeneracy, which was an issue to show the existence. First, we treat a Positivity-Preserving DDFV scheme.
In a second time, the method is applied to a CVFE scheme. The idea of both regularizations is, on the
one hand, to ǫ-perturb mobilities for removing the degeneracy impact, and on the other hand, to add a
capillary pressure flow with positive coefficients. These applications illustrate the strength of the proposed
approach and demonstrate its broad applicability and potential for generalization across diverse contexts.

Acknowledgment: the authors would like to thank the FMPL and the Ecole Centrale Nantes for sup-
porting this work.
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