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Abstract

This paper proposes and studies two extensions of applying hp-variational physics-informed
neural networks, more precisely the FastVPINNs framework, to convection-dominated
convection-diffusion-reaction problems. First, a term in the spirit of a SUPG stabiliza-
tion is included in the loss functional and a network architecture is proposed that predicts
spatially varying stabilization parameters. Having observed that the selection of the indi-
cator function in hard-constrained Dirichlet boundary conditions has a big impact on the
accuracy of the computed solutions, the second novelty is the proposal of a network archi-
tecture that learns good parameters for a class of indicator functions. Numerical studies
show that both proposals lead to noticeably more accurate results than approaches that
can be found in the literature.

Keywords: steady-state convection-diffusion-reaction problems, FastVPINNs, SUPG
stabilization, hard-constrained Dirichlet boundary conditions, learning of the indicator
function

1 Introduction

Convection-diffusion-reaction (CDR) problems are fundamental models for simulating trans-
port events. CDR problems capture the interaction between a fluid’s bulk motion, or con-
vection, its progressive spreading of properties by random molecular motion, or diffusion,
and the impact from other quantities in coupled systems, which might be modelled as the
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reaction term. They constitute a framework for modelling the transport of variables like
temperature or concentration.

Let Ω ⊂ R2 be a bounded domain with polygonal Lipschitz-continuous boundary ∂Ω.
The Lebesgue and Sobolev spaces on this domain are denoted by Lp(Ω) and W k,p(Ω),
respectively, where, 1 ≤ p ≤ ∞, k ≥ 0. The Hilbert space, equivalent to W k,2(Ω), is denoted
by Hk(Ω). Then, a linear CDR boundary value problem, already in nondimensionalized
form, is given by

−ε∆u(x) + b(x) · ∇u(x) + c(x)u(x) = f(x), in Ω,

u(x) = g(x), on ∂Ω.
(1)

Here, x = (x, y) ∈ Ω, u(x) is the unknown scalar solution and f(x) ∈ L2(Ω) is a known
source function. In addition, ε ∈ R+ is the diffusion coefficient, b ∈ (W 1,∞(Ω))2 is the
convection field, and c ∈ L∞(Ω) is the reaction field. The Dirichlet boundary condition is
prescribed by g(x) ∈ H1/2(∂Ω).

Of particular interest in many applications is the situation that the convective term
dominates the equation. In particular, it is often larger than the diffusive term by several
orders of magnitude, i.e., the CDR problem is said to be convection-dominated when ε ≪
L∥b∥L∞(Ω), where L is the characteristic length of the problem. With the Péclet number,
Pe, defined as

Pe =
L∥b∥L∞(Ω)

ε
,

the convection-dominated regime is often characterized by Pe ≫ 1, in many applications
Pe ≳ 106. In the convection-dominated situation, which is also sometimes called singularly
perturbed, typical solutions of CDR problems possess so-called layers, which are thin regions
where the solution has very steep gradients, e.g., see Roos et al. (2008). It is known from
asymptotic analysis that the layer width is O(ε) or O(

√
ε), depending on the type of the

layer.
Classical discretization techniques for CDR problems, based on finite element, finite

volume, or finite difference methods, face in the convection-dominated regime the difficulty
that the layer width is (much) smaller than the affordable mesh width. Consequently, the
layers, which are the most important features of the solution, cannot be resolved. The
situation that important features of a solution cannot be resolved is typical for multiscale
problems. For convection-dominated CDR problems, the layers are subgrid scales. It is
well known that one has to utilize so-called stabilized discretizations to cope with this dif-
ficulty. In the framework of finite element methods, one of the earliest but still one of
the most popular proposals is the Streamline-Upwind Petrov–Galerkin (SUPG) method
from Hughes and Brooks (1979); Brooks and Hughes (1982). The numerical analysis of
this linear discretization is well understood, see Roos et al. (2008). However, it requires
the choice of a function of stabilization parameters, which is often chosen to be a piece-
wise constant function on the given triangulation. For these parameters, usually proposals
based on a one-dimensional problem with constant coefficients are applied, e.g., see John
and Knobloch (2007). However, numerical solutions with such parameters often exhibit
spurious oscillations in a vicinity of layers. It is shown in John et al. (2011, 2023) that
(in some sense) optimized stabilization parameters might reduce the size of spurious os-
cillations considerably. A more recent approach for determining appropriate stabilization
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parameters is presented in Yadav and Ganesan (2024), which utilizes artificial neural net-
works. Both techniques, the optimization and the use of neural networks, are inherently
nonlinear. The recent review Barrenechea et al. (2024) studied methods that lead to nu-
merical solutions which satisfy discrete maximum principles, i.e., which provide numerical
solutions without unphysical values. It is emphasized in this paper that to achieve this
property in combination with high accuracy, then one has to apply a nonlinear method,
because different approaches have to be applied for the subgrid and for the large scales. As
conclusion, convection-dominated CDR problems are a challenging class of problems from
the numerical point of view and the accurate and physically consistent numerical solution
requires to use nonlinear methods.

In recent times, deep learning based methods are increasingly being used in applied
mathematics problems, such as solving boundary value problems with partial differential
equations (PDEs). Collectively termed scientific machine learning (SciML), Cuomo et al.
(2022); Baker et al. (2019); Psaros et al. (2023), such methods act in conjunction with or
entirely replace classical approaches. The field of SciML has witnessed a surge in devel-
opment, leading to a growing number of accessible SciML libraries, e.g., Lu et al. (2021a);
NVIDIA Modulus. The application of such methods has grown exponentially since the
introduction of physics-informed neural networks (PINNs) in Lagaris et al. (1998); Raissi
et al. (2019). In addition to the typical data-driven loss functional used in neural networks,
a PINN incorporates an additional loss term to minimize the residual of the underlying PDE
and to enforce the physics-based constraints. The abilities to obtain gradients conveniently
with automatic differentiation and to train the same neural network for both forward and
inverse modelling are some characteristics that make PINNs an interesting alternative of
classical methods, Abueidda et al. (2021); Lu et al. (2021b).

Variational PINNs (VPINNs) are an extension of PINNs that use a weak form of the
PDE in the loss functional, see Kharazmi et al. (2019); Khodayi-Mehr and Zavlanos (2020).
VPINNs use, as PINNs, a neural network for approximating the solution. The test functions
belong to a polynomial function space, which is analogous to the Petrov–Galerkin framework
in finite element methods. Usually, the domain Ω is decomposed into subdomains (elements)
and the support of each test function is just one subdomain, defining a so-called hp-VPINN.
Similar to finite element methods, the accuracy of hp-VPINNs has been shown, for certain
problems, to increase by further domain decomposition (h-refinement) or by increasing the
order of the polynomial space (p-refinement), see Kharazmi et al. (2021).

However, the standard use of hp-VPINNs shows some bottlenecks and limitations. A
bottleneck is the high computational expense of the training, e.g., as reported in Frerichs-
Mihov et al. (2024a), which increases in direct proportion to the number of elements. Fur-
thermore, many current hp-VPINNs implementations face difficulties with complex geome-
tries, which include skewed quadrilateral elements, which are prevalent in real-world sce-
narios. To overcome these issues, FastVPINNs, as introduced in Anandh et al. (2024b,a);
Ghose et al. (2024), employs a tensor-based method for loss functional computations, cou-
pled with the implementation on GPUs, leading to a remarkable reduction in training time
of order O(100) compared to conventional hp-VPINNs. Additionally, FastVPINNs use bi-
linear transformations, allowing to simulate problems on complex geometries with skewed
quadrilateral elements.
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Despite all the positive aspects of PINNs and hp-VPINNs, it has been observed in Kr-
ishnapriyan et al. (2021) that these approaches face difficulties when applied to singularly
perturbed problems, like convection-dominated CDR problems. Many contributions that
study PINNs or (hp-)VPINNs for CD(R) problems consider either the (much more) simpler
one-dimensional case or only a mildly convection-dominated regime, see the introduction of
Frerichs-Mihov et al. (2024a) for a survey of corresponding works. The choice of examples
for the current paper is guided by Frerichs-Mihov et al. (2024a,b); Matthaiou et al. (2024),
where strongly convection-dominated problems are studied. The emphasis of these papers
was on using loss functionals that are alternative to the standard residual loss, the selec-
tion of collocation points in PINNs, and on approaches that preserve given bounds of the
solution. For two examples studied in Frerichs-Mihov et al. (2024a,b) the obtained results
were characterized as nonsatisfactory.

The first contribution of this paper consists in proposing alternative loss functionals,
compared with the standard residual loss, for convection-dominated problems. A term in
the spirit of the SUPG stabilization is introduced, which contains a stabilization parameter.
In addition, the effect of including a regularization with respect to the weights of the neural
network is studied. A first main novelty is the proposal of a FastVPINNs architecture
that learns spatially varying stabilization parameters. It is shown that this approach leads
to noticeable improvements of the accuracy of the numerical solutions. The second main
contribution is on the realization of hard-constrained Dirichlet boundary conditions, more
precisely, on the definition of the indicator function that separates the extension of the
boundary conditions and the function that is learnt by the network. Also for this task,
a FastVPINNs architecture is proposed that learns the parameters for a class of indicator
functions. The adaptively chosen parameters lead to a considerable increase of the accuracy
compared with manually chosen parameters.

The paper is organized as follows. Section 2 describes the general setup of the FastVPINNs
framework. The loss functionals are introduced in Section 3. Numerical studies with con-
stant stabilization parameters and with manually chosen indicator functions are presented
in Section 4. The two main novelties, the FastVPINNs architectures for spatially vary-
ing stabilization parameters and for the adaptive choice of the parameters in the indicator
function, are introduced and studied in Section 5. Finally, Section 6 summarizes the main
results of this paper.

2 Setup of the FastVPINNs Framework

This section starts by introducing the variational form of the CDR problem (1). Then, the
fast hp-VPINNs are described.

Let

V :=
{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
,

then the variational form is obtained in the usual way by multiplying equation (1) with an
arbitrary test function v ∈ V , integrating over Ω, and then utilizing integration by parts on
the second order derivative term, e.g., see Ganesan and Tobiska (2017). Given an extension
uext ∈ H1(Ω) of the boundary condition into Ω. Then, the variational form of (1) reads as
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follows: Find u ∈ H1(Ω) such that u− uext ∈ V and

a(u, v) = f(v) ∀ v ∈ V,

where the bilinear form a(·, ·) H1(Ω)× V → R is defined as

a(u, v) :=

∫
Ω
ε∇u · ∇v dx+

∫
Ω
b · ∇u v dx+

∫
Ω
cu v dx,

f(v) :=

∫
Ω
f v dx.

(2)

For defining a hp-VPINN, the domain Ω is then divided into an array of non-overlapping
cells, labeled as Kk, where k = 1, 2, . . . , Nelem, such that their union

⋃Nelem
k=1 Kk = Ω. Let

Vh be a finite-dimensional subspace of V , spanned by Ntest basis functions. As a result, the
discretized form of (2) can be written as follows: Find uh such that uh − uext,h ∈ Vh and

ah(uh, vh) = fh(vh) ∀ vh ∈ Vh, (3)

where uext,h is an appropriate discrete extension of the Dirichlet boundary condition and

ah(uh, vh) :=

Nelem∑
k=1

∫
Kk

ε∇uh · ∇vh dx+

Nelem∑
k=1

∫
Kk

b · ∇uh vh dx

+

Nelem∑
k=1

∫
Kk

cuh vh dx,

fh(vh) :=

Nelem∑
k=1

∫
Kk

f vh dx.

These integrals are approximated by employing numerical quadrature:

∫
Kk

ε∇uh · ∇vh dx ≈
Nquad∑
q=1

wq ε∇uh(xq) · ∇vh(xq) ,

∫
Kk

b · ∇uh vh dx ≈
Nquad∑
q=1

wq b · ∇uh(xq) vh(xq) ,

∫
Kk

cuh vh dx ≈
Nquad∑
q=1

wq cuh(xq) vh(xq) ,

∫
Kk

f vh dx ≈
Nquad∑
q=1

wq f(xq) vh(xq) .

Here, Nquad is the number of quadrature points in a cell, {xq} is the set of quadrature
nodes, and {wq} is the set of weights (which include the area of Kk).
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The hp-VPINN framework (Kharazmi et al., 2021) utilizes specific test functions vk,
where k ranges from 1 to Nelem, which are localized and defined within individual non-
overlapping cells

vk =

{
vp ̸= 0, in Kk,

0, elsewhere.

Here, vp represents a polynomial function of degree p. This selection of test and solution
spaces resembles a Petrov–Galerkin finite element method.

By utilizing these functions, we define the cell-wise residual of the variational form (3)
with uNN(x; θW , θb) by

Wk(θW , θb) =

Nquad∑
q=1

wq

[
ε∇uNN(xkq) · ∇vk(xkq) + b · ∇uNN(xkq) vk(xkq)

+ c uNN(xkq) vk(xkq)− f(xkq) vk(xkq)
]
.

(4)

Now, the variational loss is given by

Lvar(θW , θb) =
1

Nelem

Nelem∑
k=1

|Wk(θW , θb)|2 . (5)

There are two conceptually different ways of incorporating Dirichlet boundary conditions
in the framework of hp-VPINNs. First, these boundary conditions can be learnt. To this
end, a term is included in the loss functional that measures the difference between the pre-
scribed boundary values and the values of the neural network solution uNN(x; θW , θb) taken
at the boundary. In this approach, the Dirichlet boundary conditions are satisfied usually
only approximately. This is, in our opinion, not appropriate in the case of convection-
dominated CDR problems. First, conditions posed on the inlet boundary (b · n)(x) < 0,
x ∈ ∂Ω, where n is the outward pointing unit normal vector at ∂Ω, are transported in the
domain and thus are essential for determining the correct form of the solution inside the
domain. And second, boundary layers, which are an essential feature of the solution, might
not be present in uNN(x; θW , θb) if the boundary condition is only approximately satisfied.
In addition, one has to choose a weight for the boundary term that relates the importance
of this term to other terms in the loss functional. For these reasons, we decided to pursue
the alternative approach of using a hard-constrained imposition of the boundary conditions
in the hp-VPINNs. With this approach, the boundary conditions, which are given data of
the problem, are satisfied exactly.

The ansatz function for using hard-constrained boundary conditions, see Lu et al.
(2021b), is

uhardNN (x; θW , θb) = j(x) + h(x)uNN(x; θW , θb), (6)

Here, j(x) is a continuous function in Ω that satisfies j(x) = g(x) for x ∈ ∂Ω and h(x) is
an indicator function satisfying

h(x) =

{
0, x ∈ ∂Ω,

> 0, elsewhere.
(7)
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Figure 1: Tensor-based loss computation schematic for FastVPINNs

For example, the indicator function used in Frerichs-Mihov et al. (2024a) has the form

h(x) =
(
1− e−κx

) (
1− e−κy

) (
1− e−κ(1−x)

)(
1− e−κ(1−y)

)
, (8)

where κ depends on the diffusion coefficient ε, but not on the shape of the solution close
to the boundary. The current paper employs different indicator functions for different
examples, which are detailed in the respective numerical sections. In addition, we study
a method where the parameters for a function of type (8) are obtained from the neural
network, in Section 5. Now, the representation (6) is inserted in (4) to get the residual
Whard

k (θW , θb), which then can be substituted in (5) to define the cost functional of the
neural network by

Lhard
var (θW , θb) =

1

Nelem

Nelem∑
k=1

∣∣∣Whard
k (θW , θb)

∣∣∣2 . (9)

FastVPINNs computes the variational loss (9) by stacking the test functions and their
gradients into a three-dimensional tensor and reshaping the neural network gradients into
a matrix, see Figure 1, thus enabling the calculation of the final residual vector for all
elements in a single operation using BLAS routines available in TensorFlow Abadi et al.
(2015). This approach has two main advantages: using BLAS operations on the GPU allows
for efficient and fast calculations, and stacking the gradients and performing tensor-based
operations enable the loss for the entire domain to be computed in a single calculation,
reducing the training time’s dependency on the number of elements, which is a major
challenge in conventional hp-VPINNs frameworks. Additionally, FastVPINNs can handle
complex geometries, making this method suitable for a wide range of problems. For further
details on the implementation of the FastVPINNs framework, see Anandh et al. (2024a).

3 Loss Functional

The main topic of Frerichs-Mihov et al. (2024a) is the investigation of different loss function-
als for PINNs and hp-VPINNs applied to the numerical solution of convection-dominated
CDR problems. The motivation for studying different loss functionals stems from the ob-
servation that the standard residual is not an appropriate choice for performing parameter
optimization in stabilized finite element methods, see John et al. (2011). It was observed
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in Frerichs-Mihov et al. (2024a) that it was possible to obtain more accurate solutions with
loss functionals that are different to the standard residual loss.

In the current paper, two alternative loss functionals will be studied.

3.1 SUPG Stabilization Loss

The SUPG finite element method, which is already mentioned in the introduction, adds an
additional term to the standard Galerkin finite element discretization. This term essentially
introduces numerical diffusion in streamline direction. The global SUPG stabilization term
has the form

LSUPG =

∫
Ω
τ(x) (b · ∇u(x) + cu(x)− f(x)) (b · ∇v(x)) dx, (10)

where τ(x) is called stabilization parameter and the diffusive term is neglected in the resid-
ual (the first factor), which is appropriate in the convection-dominated regime. In the
framework of finite elements, (10) is localized by decomposing the integral in a sum of inte-
grals over the mesh cells and then τ(x) is often defined to be a piecewise constant function
on the given triangulation. In the framework of neural networks, the SUPG stabilization
loss functional is given by

LSUPG
τ = Lhard

var + LSUPG , (11)

where Lhard
var is the variational loss defined in (9). Minimizing the loss functional (11) penal-

izes large streamline derivatives. Hence, the additional SUPG loss can be also interpreted
as a physics-informed regularization term, since functions with small residuals but large
streamline derivatives are excluded from the set of possible solutions. It is well known that
regularization techniques might help to prevent overfitting. An architecture of the network
for the loss functional including the SUPG term with prescribed stabilization parameter is
presented in Figure 2.

3.2 L2 Weight Regularization Loss

The training of a neural network requires the solution of a large-scale non-convex opti-
mization problem. For such problems, usually a regularization term is included in the loss
functional. In addition, this term might counteract overfitting and thus it enhances the
generalization capacity of the network. A standard approach consists in adding a L2-type
regularization, so that the loss functional becomes

Lreg
λ = Lhard

var +
λ

N

∑
j

w2
j , (12)

where N is the total number of entries in the weight matrices of the network and {wj}Nj=1

is the set of all weights in the network. The L2 weight decay regularization parameter λ
needs to be tuned.

4 Numerical Studies with Constant Parameters

In this section, we first validate the FastVPINNs code by solving the Eriksson–Johnson
problem, as presented in Sikora et al. (2023), by comparing accuracy and computing times.
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Figure 2: hp-VPINNs architecture for convection-dominated problems with SUPG stabi-
lization, prescribed stabilization parameter, and hard constraints

Subsequently, we address two convection-dominated problems, assessing the performance of
the proposed loss functionals (11) and (12) with constant stabilization and regularization
parameter, respectively, within the framework of hp-VPINNs and we compare the results
and efficiency with those reported in the literature.

All simulations were conducted on a system equipped with an AMD Threadripper CPU
and an NVIDIA A6000 GPU. For neural network training, we utilized TensorFlow 2.0,
specifically employing the tf.float64 datatype to ensure high precision. The network
architecture incorporates tanh activation functions, and we used the Adam optimizer for
the training iterations. We adopted test functions similar to those described in Kharazmi
et al. (2021). These functions are defined as vk = Pk+1−Pk−1, where Pk represents the kth
order Legendre polynomial. For numerical integration, we implemented Gauss–Lobatto–
Legendre quadrature routines as used in Kharazmi et al. (2021).

4.1 Studied Problems

The Eriksson–Johnson Problem (PEJ)

This problem, originally proposed in Eriksson and Johnson (1991), was used in Sikora et al.
(2023) for assessing a PINN for (mildly) convection-dominated problems. It is defined by
Ω = (0, 1)2, b = (1, 0)T , c = 0, and the right-hand side of (1) is chosen such that the
solution has the form

u(x) =
er1(x−1) − er2(x−1)

e−r1 − e−r2
sin(πy) with

r1 =
1 +

√
1 + 4ε2π2

2ε
, r2 =

1−
√
1 + 4ε2π2

2ε
.
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Figure 3: Exact Solution of PEJ for (a) ε = 0.1 , (b) ε = 0.01 and (c) ε = 0.001

Dirichlet conditions were imposed on ∂Ω. Solutions for various values of the diffusion
coefficient are displayed in Figure 3. The smallest value of the diffusion coefficient considered
in Sikora et al. (2023) is ε = 0.001. For small values of the diffusion coefficient, the solution
exhibits a boundary layer at x = 1.

Solution with Outflow Boundary Layers (Pout)

This example, proposed in John et al. (1997), features two layers at the outflow boundary,
which, according to an asymptotic analysis, have a width of O(ε). The data for problem
(1) are given by Ω = (0, 1)2, ε = 10−8, b = (2, 3)T , c = 1, and the prescribed solution has
the form:

u(x, y) := xy2 − y2 exp

(
2(x− 1)

ε

)
− x exp

(
3(y − 1)

ε

)
+exp

(
2(x− 1) + 3(y − 1)

ε

)
.

(13)

Dirichlet boundary conditions are imposed on ∂Ω. By construction, the outflow boundary
layers are situated at x = 1 and at y = 1, and there is even a so-called corner singularity at
the right upper corner of the domain. Figure 4(a) depicts the prescribed solution (13).

Parabolic layer problem (Ppara)

The data for problem (1) are given by Ω = (0, 1)2, ε = 10−8, b = (1, 0)T , c = 0, and
f = 1. Homogeneous Dirichlet conditions are prescribed at ∂Ω. The solution exhibits an
exponential layer at the outflow boundary x = 1 and two parabolic boundary layers at the
characteristic boundaries y = 0 and y = 1, as shown in Figure 4 (b).

To obtain a high accuracy solution for this problem to compare with, we employed the
Monotone Upwind-type Algebraically Stabilized (MUAS) method. The MUAS method,
formulated in John and Knobloch (2022), is an algebraically stabilized scheme. It has been
shown in the survey Barrenechea et al. (2024) that algebraically stabilized scheme are cur-
rently the most promising finite element approaches for computing solutions of convection-
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Figure 4: Exact solution for (a) Pout and (b) Ppara

dominated convection-diffusion-reaction problems that satisfy Discrete Maximum Princi-
ples.

4.2 Validation of the FastVPINNs Implementation and Comparison with the
Literature

In this section, we consider the Eriksson–Johnson problem PEJ as studied in Sikora et al.
(2023) and compare the available data with our results. The approach in Sikora et al. (2023)
utilizes a single element with 6400 quadrature points and a weak boundary constraint for
the Dirichlet boundaries. In contrast, our hp-VPINNs method employs an 8 × 8 element
domain with 9 test functions and 100 quadrature points per element, i.e., in total also 6400
quadrature points, and it uses a hard boundary constraint for imposing Dirichlet conditions.
Despite these differences, both approaches share common features in their neural network
architecture and training process. Specifically, both use a neural network with 4 hidden
layers and 20 neurons per hidden layer, employ the Adam optimizer for training with a
learning rate of 0.00125, and run for 40, 000 training epochs. In this study, we have used
ε ∈ {0.1, 0.01, 0.001}, as it was done in Sikora et al. (2023).

The indicator functions for the hard constraints (6) were chosen to be

j(x) = sin(πy) cos
(π
2
x
)
,

h(x) =
(
1− e−κ1x

) (
1− e−κ1y

) (
1− e−κ2(1−x)

)(
1− e−κ1(1−y)

)
with κ1 = 30 and κ2 = 10/ε. That means, for the indicator function h(x) we prescribed
a sharp boundary layer at the boundary x = 1 to account for the corresponding layer
of the solution. This is not necessary at the other parts of the boundary. The standard
loss functional Lhard

var defined in (9), which takes into account the hard constraint boundary
conditions, was used.
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Table 1: Eriksson–Johnson problem PEJ, L
2
err and comparison with the literature

quadrature points ε FastVPINNs Sikora et al. (2023)

6400 0.1 1.400 · 10−3 0.265

6400 0.01 1.440 · 10−2 0.346

6400 0.001 7.000 · 10−4 0.332

Table 2: Eriksson–Johnson problem PEJ, average training time per epoch in s and compar-
ison with the literature

FastVPINNs (CPU) FastVPINNs (GPU) (Sikora et al., 2023, Fig. 14)

0.011 0.0027 0.0375

Tables 1 and 2 present the obtained results. It can be seen that, on the one hand,
the application of FastVPINNs gives results that are more accurate by several orders of
magnitude than the results from Sikora et al. (2023). Here, the approximation L2

err of the
error in L2(Ω) is defined by

L2
err =

(
1

NT

NT∑
t=1

((
u− uhardNN

)
(xt)

)2)1/2

, (14)

whereNT is the number of test points at which the error is calculated. In all of the examples,
the test points xt are given by a 100×100 grid of equidistant points in Ω. And on the other
hand, the training times are considerably smaller, by a factor of about 3 on CPUs and by
a factor of 14 if GPUs are used.

The obtained results validate our implementation of FastVPINNs. In our opinion, the
improved accuracy compared with the literature can be attributed to two factors. First,
the use of hard constraints for the boundary conditions, which seems to be essential for
boundary layer problems, and second the h-refinement approach of hp-VPINNs.

4.3 Studies with the SUPG Stabilization and the Regularization with
Constant Parameters

In this section, we analyze the performance of the SUPG-based loss functional and loss
functional with regularization applied to problems Pout and Ppara. Concretely, our studies
explore the SUPG stabilization LSUPG

τ defined in (11) and PDE loss with regularization Lreg
λ

given in (12). For the simulations, we employed a neural network architecture consisting of
seven hidden layers with 30 neurons each. The domain was discretized into 64 cells, with
100 quadrature points and 36 test functions per cell, resulting in a total of 6400 quadrature
points. To conduct the experiments, learning rates of 0.01 · 3−2 and 0.01 · 3−3 have been
used. The L2

err is calculated as given in (14). The network is trained for 100,000 epochs, and
the smallest error obtained during this training, i.e., after each epoch and not necessarily
after the final epoch, is reported below. The used parameters are similar to those used in
the studies described in Frerichs-Mihov et al. (2024a). For both problems, we applied an
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Table 3: Problem Pout, results for using constant parameters in the SUPG loss or regular-
ization loss; best results reported in Frerichs-Mihov et al. (2024a): 3.419 · 10−2

(PINN) and 3.619 · 10−2 (hp-VPINN)

loss search range optimal value L2
err

Lreg
λ [10−5, 10−3] 2.4 · 10−4 (λ) 3.202 · 10−2

LSUPG
τ [10−5, 10−1] 3.5 · 10−2 (τ) 1.973 · 10−2

Table 4: Problem Ppara, results for using constant parameters in the SUPG loss or regular-
ization loss

loss search range optimal value L2
err

Lreg
λ [10−8, 10−2] 4 · 10−6 (λ) 4.888 · 10−1

LSUPG
τ [10−5, 5] 1.2 (τ) 5.384 · 10−2

indicator function as presented in Frerichs-Mihov et al. (2024a):

h(x, y) =
(
1− e−κx

) (
1− e−κy

) (
1− e−κ(1−x)

)(
1− e−κ(1−y)

)
,

κ = 10/10−8 = 109.
(15)

Our numerical studies were conducted in two phases. First, we performed an initial
broad-range hyperparameter search, computing L2

err for a wide range of hyperparameters,
as detailed in Tables 3 and 4. Following this, we conducted a refined hyperparameter search
based on the best performing values from the initial search. The optimal hyperparameters
for each loss functional are presented in aforementioned tables and the corresponding solu-
tions and point-wise errors in Figure 5. For both problems, it can be seen that the SUPG
stabilization (LSUPG

τ ) outperformed the approach that uses only regularization (Lreg
λ ). In

particular, for problem Pout our methods achieved lower errors compared to the PINNs and
hp-VPINNs simulations performed in Frerichs-Mihov et al. (2024a). However, on the other
hand, both results are not yet completely satisfactory. There is a comparatively big error
in the right lower corner of the domain for the numerical solution of Pout and the contour
lines of the numerical solution of Ppara are not parallel to the y-axis. But all in all, we
think that the obtained results demonstrate that including the SUPG stabilization term
is an appropriate way for enhancing the accuracy of variational physics-informed neural
networks.

Next, results of a sensitivity analysis concerning the accuracy of the numerical solutions
for variations of the parameter τ in LSUPG

τ will be presented. It is important to note that
even when all parameters are kept constant, the minimum error obtained varies noticeably
across multiple runs of the simulations. To obtain a more representative picture, we repeated
the simulations 5 times and used the average of the minimum errors to plot the values shown
in Figure 6. It is important to clarify that the errors mentioned in Tables 3 and 4 are the
result of the best run only. For Pout, it can be seen that there is a certain, but relatively
small, interval for the stabilization parameter where the obtained errors are close to the
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Figure 5: Best results for Pout (top) and Ppara (bottom). The exact solutions for Pout and
Ppara are shown in (a) and (d). The predicted solutions are shown in (b) and (e)
and the point-wise errors in (c) and (f)

Figure 6: Sensitivity analysis on the τ parameter for problems Pout and Ppara using LSUPG
τ

as loss functional

best one. In the case of Ppara, there is even just a single stabilization parameter that gives
the by far most accurate result. The best values from Figure 6 correspond with those from
Tables 3 and 4. This study shows that a refined search is needed to find the optimal value
of the stabilization parameter to obtain accurate results. This search is usually not feasible
in practice since the solution of the problem is usually not known.
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Figure 7: hp-VPINNs architecture for convection-dominated problems with SUPG stabi-
lization that predicts the stabilization parameter τ and imposes hard constraints

5 Learning the Parameters in the SUPG Loss and the Indicator Function

The studies from Section 4 and further preliminary numerical simulations have identified two
main challenges in addressing convection-dominated CDR problems with the hp-VPINNs
as studied in this paper. The first challenge consists in determining the optimal, or at
least a good, SUPG stabilization parameter τ . The second challenge involves the choice
of a suitable indicator function (7) for enforcing Dirichlet boundary conditions, see also
Matthaiou et al. (2024) for a discussion of this challenge. This second challenge is particu-
larly important because the indicator function must not only match the Dirichlet boundary
values at the boundary, but its gradient near the boundary should also fit to the solution’s
gradient. To address these challenges, we propose two enhancements to hp-VPINNs, and
with that in particular to FastVPINNs. Firstly, we introduce a modified neural network
that simultaneously predicts a spatially varying stabilization parameter τ(x, y) along with
the solution as shown in Figure 7. Secondly, we also propose an adaptive indicator function
whose slope near the boundaries is controlled by a learnable parameter, which is learnt
during the training process.

5.1 Neural Network Predicting the Stabilization Parameter τ(x, y)

The stabilization parameter that controls the artificial streamline diffusion can be expressed
as a function of the coefficients of the CDR problem and the local mesh width, as it is done
in finite element methods. However, the difficulty of this approach is that the optimal
stabilization parameter is not known for problems defined in two- and higher-dimensional
domains. In a neural network context, the stabilization parameter τ can be considered as
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an additional hyperparameter that has to be found by performing hyperparameter tuning,
as it was done in Section 4. However, this approach is time-consuming and it might be
infeasible in practice.

To address this challenge, we propose a neural network that can predict the stabilization
parameter τ along with the solution, as shown in Figure 7. With this approach, the neural
network-predicted τ can be spatially varying, and this variation depends not only on the
coefficients of the problem but also on the local shape of the predicted solution. This
feature can also be observed for optimized SUPG stabilization parameters, e.g., see John
et al. (2011, 2023). In this way, numerical stabilization is added only where needed.

The network-predicted τ is constrained using a sigmoid activation function to ensure
that it remains positive. Preliminary numerical studies showed that it is of advantage, for
obtaining consistent values of τ across different runs, to set τ to zero at the boundary of
the domain. That means, the quadrature nodes on ∂Ω do not contribute to the SUPG
stabilization loss LSUPG defined in (10). In fact, the solution on ∂Ω is known and applying
a stabilization there is not mandatory. We used the indicator function

τhardNN (x; θW , θb) = w(x)σ (τNN(x; θW , θb)) ,

where, τNN(x; θW , θb) is the stabilization parameter predicted by the neural network, σ is
the sigmoid function, and w(x) is an indicator function defined by

w(x) = tanh(50x) tanh(50y) tanh(50(1− x)) tanh(50(1− y)).

Then we set
τ(x; θW , θb) = τgτ

hard
NN (x; θW , θb),

where τg, termed as ‘τ growth’, is controlling the strength of the stabilization factor. The
hyperparameter τg needs to be fine-tuned. The predicted τ is then used in the calculation
of LSUPG

τ given in (11).
We will use problems Pout and Ppara to demonstrate the effect of applying the learnt τ in

the SUPG stabilization loss. Three approaches will be compared: PDE loss (9) only, PDE
loss with SUPG stabilization (11) and constant τ , and PDE loss with SUPG stabilization
(11) with learnt τg-based SUPG stabilization.

In our previous studies we observed that using a symmetric indicator function as given
in (15) might generate large errors on the boundary when there is no steep gradient in
the solution, compare Figure 5. Therefore, for this study, we applied a modified indicator
function that has a steep slope at the outflow boundaries x = 1 and y = 1 and a low slope
at the other two boundaries:

h(x, y) =
(
1− e−κ1x

) (
1− e−κ1y

) (
1− e−κ2(1−x)

)(
1− e−κ2(1−y)

)
,

κ1 = 30, κ2 = 10/10−8 = 109.
(16)

Similarly for Ppara, we applied a modified indicator function, which has a steep slope at
boundaries y = 0, y = 1 and x = 1, and a low slope at the boundary x = 0:

h(x, y) =
(
1− e−κ1x

) (
1− e−κ2y

) (
1− e−κ2(1−x)

)(
1− e−κ2(1−y)

)
,

κ1 = 30, κ2 = 10/10−8 = 109.
(17)
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Table 5: L2
err for problem Pout using different loss functionals

loss Lhard
var

LSUPG
τ

constant τ

LSUPG
τ

learnt τ

search range - τ ∈ [10−5, 10−1] τg ∈ [5 · 10−2, 10]

optimal parameter - τ = 10−5 τg = 1

best L2
err 1.693 · 10−4 1.340 · 10−4 1.037 · 10−4

A neural network with seven hidden layers and 30 neurons per layer was used. The net-
work was trained for 50, 000 epochs with a learning rate of 0.01 · 3−2. We used 8 × 8 cells
with 100 quadrature points and 36 test functions per cell. To determine the optimal hy-
perparameters for the constant τ and neural network-predicted τ , we initially performed
a single run for each hyperparameter within the broad search ranges specified in Tables 5
and 6 for the problems Pout and Ppara, respectively. From these initial runs, we identified
the hyperparameters that performed the best for each approach. Subsequently, we ran 10
simulations using these optimal hyperparameters for each study. The average L2

err values
from these 10 runs are presented in Tables 5 and 6. It can be observed that the model with
the learnt τ (with the hyperparameter τg) leads to notably more accurate results than both
the model with constant τ (as a hyperparameter) and the model without any SUPG loss.
Some representative solutions for the approach with the learnt stabilization parameter are
presented in Figures 8 and 9.

Table 6: L2
err for problem Ppara using different loss functionals

loss Lhard
var

LSUPG
τ

constant τ

LSUPG
τ

learnt τ

search range - τ ∈ [10−4, 10−1] τg ∈ [10−4, 10]

optimal parameter - τ = 5 · 10−4 τg = 1

best L2
err 1.544 · 10−4 1.192 · 10−4 9.043 · 10−5

All errors presented in Tables 5 and 6 are considerably smaller than those in Tables 3
and 4, respectively. For Pout, in particular the error in the right lower corner of the domain
almost disappeared, compare Figures 5 and 8. In the case of Ppara, the contour lines of
the computed solutions are parallel to the y-axis now. These observations show that a
combination of a learnt stabilization parameter and a suitable indicator function, namely
using (16) and (17) instead of (15), leads to a tremendous increase of accuracy.

5.2 Adaptive Indicator Function

In our previous set of studies, we used a fixed indicator function to impose hard-constrained
boundary conditions and we observed in preliminary simulations that the choice of the indi-
cator function might have a considerable impact on the accuracy of the computed solutions.
To the best of our knowledge, there is no proposal available on how to select a priori a good
indicator function. That’s why, we pursue an approach to compute an adaptive indicator
function. This function is still of the same principal form as used so far, but it is constructed
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Figure 8: Results for problem Pout with LSUPG
τ for τg = 1, 0.1, 0.05. Note that the optimal

solution was obtained for τg = 1. The stabilization parameter τ(x, y) is shown
in (a), (d) and (g). The predicted solution is depicted in (b), (e) and (h). The
point-wise error is presented in (c), (f) and (i)

using trainable parameters that control the slope of the function near the boundaries. Our
approach will enable the neural network to learn not only the solution but also the param-
eters for the indicator functions, resulting in a better fit for the specific parameters of the
chosen problem.

Concerning problem Pout, we propose an adaptive indicator function of form (18), more
precisely,

h(x, y) =
(
1− e−κ1x

) (
1− e−κ1y

) (
1− e−κ2(1−x)

)(
1− e−κ2(1−y)

)
,

κ1 = 10α, κ2 = 10β,
(18)

where α and β are learnable parameters controlling the gradient near the boundaries. Specif-
ically, α governs the behavior at the inlet boundaries, while β controls the behavior at the
outflow boundaries.
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Figure 9: Results for problem Ppara with LSUPG
τ for τg = 1, 0.1, 0.0005. Note that the

optimal solution was obtained for τg = 1. The stabilization parameter τ(x, y) is
shown in (a), (d) and (g). The predicted solution is depicted in (b), (e) and (h).
The point-wise error is presented in (c), (f) and (i)

Similarly, we introduce an adaptive indicator function for Ppara with three learnable
parameters: α, β, and γ, namely

h(x, y) =
(
1− e−κ1x

) (
1− e−κ2y

) (
1− e−κ3(1−x)

)(
1− e−κ2(1−y)

)
,

κ1 = 10α, κ2 = 10β, κ3 = 10γ .
(19)

In this formulation, α affects the inlet boundary, β the characteristic boundaries, and γ the
outflow boundary.

The numerical studies with adaptive indicator functions were performed only with the
loss functional Lhard

var from (9). Since the steepness of layers depends on the Péclet number,
we considered different values of the diffusion coefficient to investigate how the network’s
prediction of the indicator function depends on the steepness of the layers.

Results for Pout are presented in Figure 10 and Table 7. The parameters for the indicator
function were initialized with α = 1 and β = ϕ, where ϕ = − log10(ε)/2. For instance,
when ε = 10−8, we set β = − log10(10

−8)/2 = 4. It can be seen in Table 7 that in fact
very different parameters are proposed by the neural network for the inlet and outflow
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Figure 10: Results for problem Pout for different ε. The indicator function h(x, y) is shown
in (a), (d) and (g), the predicted solution in (b), (e) and (h), and the point-wise
error in (c), (f) and (i)

Table 7: Adaptive indicator function parameters and L2
err for Pout

ε
initial

α

final

α

initial

β

final

β

initial

L2
err

final

L2
err

10−4 1 0.281 2 3.998 2.295 · 10−1 4.317 · 10−5

10−6 1 0.338 3 3.999 1.034 · 10−1 5.518 · 10−5

10−8 1 0.360 4 4.051 9.936 · 10−5 5.887 · 10−5

boundaries, respectively, with the value at the inlet boundaries being considerably smaller.
The parameters do not depend very much on the diffusion coefficient, i.e., on the Péclet
number. The indicator functions have a different shape than the function given in (16),
which takes values very close to 1 in most parts of Ω. It can be seen that the results
obtained with the adapted parameters are (much) more accurate than those with the initial
parameters. Comparing with Table 5, one can notice also that the error in the case ε = 10−8

is noticeably smaller if the adaptive indicator function is used.
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Figure 11: Results for problem Ppara for different ε. The indicator function h(x, y) is shown
in (a), (d) and (g), the predicted solution in (b), (e) and (h), and the point-wise
error in (c), (f) and (i)

Table 8: Adaptive indicator function parameters and L2
err for Ppara

ε
initial

α

final

α

initial

β

final

β

initial

γ

final

γ

initial

L2
err

final

L2
err

10−4 1 2.129 0 -0.086 2 3.927 5.124 · 10−1 1.075 · 10−2

10−6 1 3.295 0 -0.088 3 3.921 2.706 · 10−1 1.066 · 10−4

10−8 2 3.380 0 -0.079 4 4.004 1.534 · 10−2 6.007 · 10−5

For problem Ppara, whose solution possesses different types of layers and whose ansatz
for the indicator function is given in (19), the obtained results are given in Figure 11 and
Table 8. The evaluation comes to similar conclusions as for the other example. Again, the
learnt parameters for the indicator function depend only slightly on the Péclet number. The
visualizations of the indicator functions look very much alike. Comparing with Table 6, one
can observe that the results for ε = 10−8 is considerably more accurate for the approach
with adaptive indicator function.
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6 Conclusion

FastVPINNs are a very efficient approach for computing approximations of solutions of
boundary value problems. In this paper, this approach was combined with two methods
for improving the accuracy of computed solutions of convection-diffusion-reaction problems
in the convection-dominated regime. First, the residual loss was augmented with a SUPG
stabilization term and an architecture was proposed that computes a spatially varying
stabilization parameter. And second, an architecture was developed that learns appropriate
parameters for defining a good indicator function for imposing hard-constrained Dirichlet
boundary conditions. Both extensions led to a considerable increase of the accuracy of the
computed solutions. In contrast, the inclusion of a regularization term with the weights of
the network was not helpful for obtaining solutions with higher accuracy.
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