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ABSTRACT

We study the design of iterative combinatorial auctions (ICAs). The main chal-
lenge in this domain is that the bundle space grows exponentially in the number
of items. To address this, several papers have recently proposed machine learning
(ML)-based preference elicitation algorithms that aim to elicit only the most im-
portant information from bidders to maximize efficiency. The SOTA ML-based
algorithms elicit bidders’ preferences via value queries (i.e., “What is your value
for the bundle {A,B}?”). However, the most popular iterative combinatorial auc-
tion in practice elicits information via more practical demand queries (i.e., “At
prices p, what is your most preferred bundle of items?”). In this paper, we exam-
ine the advantages of value and demand queries from both an auction design and
an ML perspective. We propose a novel ML algorithm that provably integrates the
full information from both query types. As suggested by our theoretical analysis,
our experimental results verify that combining demand and value queries results in
significantly better learning performance. Building on these insights, we present
MLHCA, the most efficient ICA ever designed. MLHCA substantially outper-
forms the previous SOTA in realistic auction settings, delivering large efficiency
gains. Compared to the previous SOTA, MLHCA reduces efficiency loss by up
to a factor of 10, and in the most challenging and realistic domain, MLHCA out-
performs the previous SOTA using 30% fewer queries. Thus, MLHCA achieves
efficiency improvements that translate to welfare gains of hundreds of millions of
USD, while also reducing the cognitive load on the bidders, establishing a new
benchmark both for practicability and for economic impact.

1 INTRODUCTION

Combinatorial auctions (CAs) are used to allocate multiple items among several bidders who may
view those items as complements or substitutes. In a CA, bidders are can submit bids for whole
bundles/packages of items. CAs have enjoyed widespread adoption in practice, with their applica-
tions ranging from allocating spectrum licences (Cramton, 2013) to TV ad slots (Goetzendorff et al.,
2015) and airport landing/take-off slots (Rassenti et al., 1982).

The key challenge in CAs is that the bundle space grows exponentially in the number of items, mak-
ing it impossible for bidders to report their full value function in all but the smallest domains. More-
over, Nisan & Segal (2006) showed that for arbitrary value functions, CAs require an exponential
number of bids in order to guarantee full efficiency. Thus, practical CA mechanisms cannot provide
efficiency guarantees in real world settings with more than a modest number of items. Instead, the
focus has shifted towards iterative combinatorial auctions (ICAs), where bidders interact with the
auctioneer over a series of rounds, providing only a limited (i.e., practically feasible) amount of
information, with the aim to maximize the efficiency of the final allocation.

*These authors contributed equally.
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The most established ICA following this interaction paradigm is the combinatorial clock auction
(CCA) (Ausubel et al., 2006). The CCA has been extensively used for allocating spectrum licenses,
generating over USD 20 billion in revenue between 2012 and 2014 alone (Ausubel & Baranov,
2017). Speed of convergence is a critical consideration for any ICA since each round entails costly
computations and business modelling for the bidders (Kwasnica et al., 2005; Milgrom & Segal,
2017; Bichler et al., 2017). Large spectrum auctions following the CCA format can take more than
100 bidding rounds. In order to decrease the number of rounds, many CAs in practice use aggressive
price update rules (e.g., increasing prices by up to 10% each round), which can harm efficiency
(Ausubel & Baranov, 2017). Thus, it remains a challenging problem to design a practical ICA that
is efficient and converges in a small number of rounds. Specifically, given the value of resources
allocated in such real-world ICAs, increasing their efficiency by even one percentage point already
translates into welfare gains of hundreds of millions of dollars.

1.1 ML-POWERED ITERATIVE COMBINATORIAL AUCTIONS

To address this challenge, researchers have proposed various ways of using machine learning (ML)
to improve the efficiency of ICAs. The seminal works by Blum et al. (2004) and Lahaie & Parkes
(2004) were the first to frame preference elicitation in CAs as a learning problem. In more recent
years, Brero et al. (2018; 2021), Weissteiner & Seuken (2020); Weissteiner et al. (2022b;a; 2023)
proposed ML-powered ICAs. At the heart of those approaches lies an ML-powered preference
elicitation algorithm that uses an ML model to learn each bidder’s value function to generate an
informative value query (i.e., “What is your value for the bundle {A,B}?”), which in turn refines
that bidder’s ML model.1

While those value-query based ML-powered ICAs lead to significant efficiency gains redefining
the state-of-the-art (SOTA) efficiency results in many realistic auction domains, those approaches
suffer from one common practical limitation: they fundamentally rely throughout the whole ICA on
value queries (VQs). Prior research in auction design has identified demand queries (DQs) as the
best way to run an auction (Cramton, 2013). Their advantages compared to value queries include
elimination of tacit collusion and bid signaling, as well as simplified bidder decision-making that
keeps the bidders focused on what is most relevant: the relationship between prices and aggregate
demand. Additionally, value queries are cognitively complex, and thus typically should be only used
sparsely in real-world ICAs. For these reasons, DQs are the most prominent interaction paradigm
for auctions in practice. Following this rationale, Soumalias et al. (2024b) addressed the common
limitation of prior work by designing the first practical ML-powered ICA that elicits information
from bidders via DQs instead of VQs and only makes use of VQs in supplementary rounds, when
bidders have already obtained a clearer picture on which bundles they can realistically hope to clinch
and how much they should approximately value such bundles.

While this DQ-based ICA represented a significant leap towards making ML-powered ICAs practi-
cal and at the same time outperformed the baseline CCA that is typically used in real-world appli-
cations, it still suffered from the following two important deficiencies: First, it could not reach the
SOTA efficiency of the impractical VQ-based ML-powered ICAs. Second, to improve efficiency,
just like the CCA, it required the use of a supplementary round, in which the bidders must decide
on which additional value bids to submit to the mechanism, a cognitive complicated task for the
bidders.

The present paper closes these two last gaps in the realm of ICAs by designing a hybrid ML-powered
ICA that combines DQ-based rounds with a sophisticated yet practical VQ-based supplementary
round. Importantly, this hybrid ML-powered ICA clearly outperforms the previous SOTA ICA
while still being practical in real-world applications.

1.2 OUR CONTRIBUTIONS

In this paper, we introduce the Machine Learning-powered Hybrid Combinatorial Auction (ML-
HCA), a practical ICA that achieves unprecedented efficiency. Our contributions are as follows:

1From an optimization task perspective this setting can be viewed as a combinatorial Bayesian optimization
problem.
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1. In Section 3, we provide a theoretical foundation and illustrative examples that demonstrate
the advantages and limitations of DQs and VQs as input mechanisms for auctions and
learning algorithms.

2. In Section 4, we introduce a learning algorithm capable of leveraging both types of queries.
We provide strong experimental evidence of the learning benefits of combining both query
types, as well as the advantages of starting an auction with DQs instead of VQs.

3. In Section 5 we combine our auction and ML insights to develop MLHCA, the first ICA to
incorporate both sophisticated DQ and VQ generation algorithm. Simulations in realistic
domains show that MLHCA significantly outperforms the previous SOTA, achieving higher
efficiency with 40% fewer queries (Section 6), setting a new benchmark for both efficiency
and practicality.

1.3 FURTHER RELATED WORK

In the field of automated mechanism design, Dütting et al. (2015; 2019), Golowich et al. (2018)
and Narasimhan et al. (2016) used ML to learn new mechanisms from data, while Cole & Rough-
garden (2014); Morgenstern & Roughgarden (2015) and Balcan et al. (2023) bounded the sample
complexity of learning approximately optimal mechanisms. In contrast to this prior work, our de-
sign incorporates an ML algorithm into the mechanism itself, i.e., the ML algorithm is part of the
mechanism. Lahaie & Lubin (2019) suggest an adaptive price update rule that increases price ex-
pressivity as the rounds progress in order to improve efficiency and speed of convergence. Unlike
that work, we aim to improve preference elicitation in the main rounds while still using linear prices.
Preference elicitation is a key market design challenge outside of CAs too. Soumalias et al. (2024a)
introduce an ML-powered mechanism for course allocation that improves preference elicitation by
asking students comparison queries.

Despite the prominence of DQs in real-world applications, the only prior work apart from Soumalias
et al. (2024b) on ML-based DQs that we are aware of is that of Brero & Lahaie (2018) and Brero et al.
(2019), who proposed integrating ML in a price-based ICA to generate the next price vector in order
to achieve faster convergence. However, this prior work does not exploit any notion of similarity
between bundles that contain overlapping items, only incorporates a fraction of the information
revealed by the agents’ bidding (i.e., for the bundle an agent bids on, her value for that bundle
must be larger than its price), and is computationally intractable already in medium-sized auction
domains. See Appendix D for further related work.

1.4 PRACTICAL CONSIDERATIONS AND INCENTIVES

MLHCA integrates both ML-powered DQ and VQ rounds. In DQ-based auctions like the CCA
or ML-CCA, ensuring truthful bidding depends heavily on well-chosen activity rules and payment
rules. In Appendix A.3, we provide a detailed discussion of the most common activity rules used
in the CCA to align incentives, and detail how MLHCA can also leverage these rules to achieve the
same goal.

The VQ rounds in MLHCA extend the MLCA framework (Brero et al., 2021) by incorporating
information from earlier DQ rounds into bidders’ ML models. Brero et al. (2021) argued that MLCA
offers strong practical incentives, and under two additional assumptions, truthful bidding is an ex-
post Nash equilibrium. In Appendix A.4 we provide a detailed discussion of these arguments, and
detail why they also apply to MLHCA’s VQ rounds.

By effectively combining activity rules in the DQ rounds and leveraging the established incentive
structure of MLCA in the VQ rounds, MLHCA achieves a robust incentive alignment across all its
stages.

2 PRELIMINARIES

2.1 FORMAL MODEL FOR ICAS

We consider multiset CA domains with a set N = {1, . . . , n} of bidders and a set M = {1, . . . ,m}
of distinct items with corresponding capacities, i.e., number of available copies, c = (c1, . . . , cm) ∈
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Nm. We denote by x ∈ X = {0, . . . , c1} × . . . × {0, . . . , cm} a bundle of items represented as a
positive integer vector, where xj = k iff item j ∈ M is contained k-times in x. The bidders’ true
preferences over bundles are represented by their (private) value functions vi : X → R≥0, i ∈ N ,
i.e., vi(x) represents bidder i’s true value for bundle x ∈ X . We collect the value functions vi
in the vector v = (vi)i∈N . By a = (a1, . . . , an) ∈ Xn we denote an allocation of bundles to
bidders, where ai is the bundle bidder i obtains. We denote the set of feasible allocations by F ={
a ∈ Xn :

∑
i∈N aij ≤ cj , ∀j ∈ M

}
. We assume that bidders have quasilinear utility functions

ui of the form ui(ai) = vi(ai) − πi where vi can be highly non-linear and πi ∈ R≥0 denotes the
bidder’s payment. This implies that the (true) social welfare V (a) of an allocation a is equal to the
sum of all bidders’ values

∑
i∈N vi(ai).2 We let a∗ ∈ argmaxa∈F V (a) denote a social-welfare

maximizing, i.e., efficient, allocation. The efficiency of any allocation a ∈ F is V (a)/V (a∗).

An ICA mechanism defines how the bidders interact with the auctioneer and how the allocation and
payments are determined. In this paper, we consider ICAs that iteratively ask bidders both linear
demand queries (DQs) and value queries (VQs).
Definition 1 (Linear Demand Query). In a linear demand query, the auctioneer presents a vector of
item prices p ∈ Rm

≥0 and each bidder i responds with her utility-maximizing bundle, i.e.,

x∗
i (p) ∈ argmax

x∈X
{vi(x)− ⟨p, x⟩} i ∈ N, (1)

where ⟨·, ·⟩ denotes the Euclidean scalar product in Rm.
Definition 2 (Value Query). In a value query, the auctioneer presents to bidder i a bundle of items
x and bidder i responds with her value at those prices, i.e., vi(x) ∈ R≥0.

For bidder i ∈ N , let her K ∈ N elicited DQs be denoted as RDQ
i = {(x∗

i (p
r), pr)}Kr=1 and her L ∈

N elicited VQs as RV Q
i =

{(
xl
i, vi(x

l
i)
)}L

l=1
. Bidder i’s reports are denoted as Ri = RDQ

i ∪RV Q
i .

Let R = (R1, . . . , Rn) be the tuple of elicited query data from all bidders.

In any auction that uses DQs, an important notion is the bidder’s inferred value. A bidder’s in-
ferred value for a bundle is the maximum lower bundle on her value that the auctioneer can deduce,
based on that bidder’s reports. A bidder’s inferred value for a bundle is weakly lower than her true
value, with the equality holding in case the bidder answered the corresponding VQ for that bundle.
Formally:
Definition 3 (Inferred Value). Bidder i’s inferred value for bundle x ∈ X given her reports Ri is

ṽi(x;Ri) =

{
vi(x) if (x, vi(x)) ∈ RV Q

i ,

max
{{

⟨x, pr⟩ : (x, pr) ∈ RDQ
i

}
∪ {0}

}
otherwise.

(2)

The ICA’s final allocation a∗(R) ∈ F and payments πi := πi(R) ∈ Rn
≥0 are computed based on the

elicited reports R only. Concretely, a∗(R) ∈ F is determined by solving the Winner Determination
Problem (WDP):

a∗(R) ∈ argmax
a∈F

∑
i∈N

ṽi(ai;Ri), (3)

where
∑

i∈N ṽi(ai;Ri) is the allocation’s inferred social welfare, a lower bound for its social wel-
fare

∑
i∈N vi(ai).

2.2 BENCHMARK ICAS

In this section, we briefly introduce the three main benchmarks considered in this paper.

CCA The most established ICA is the Combinatorial Clock Auction (CCA) (Ausubel et al., 2006).
The CCA consists of two phases. The initial clock phase proceeds in rounds. In each round r,
the auctioneer sets anonymous item prices pr ∈ Rm

≥0, prompting each bidder to respond to a DQ,
declaring her utility-maximizing bundle at pr. In the next round, the prices of over-demanded items

2Note that V (a) =
∑

i∈N ui(ai) + uauctioneer(a) =
∑

i∈N (vi(ai)− πi) +
∑

i∈N πi =
∑

i∈N vi(ai).
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are increased by a fixed percentage, until over-demand is eliminated. The second phase of the CCA,
known as the supplementary round, allows bidders to report their valuations for additional bundles,
governed by specific activity rules to promote incentive alignment. The clock bids raised heuristic
suggests that bidders report their values for all bundles they requested during the clock phase. The
final allocation is determined by solving the WDP based on all reports from both phases, as in
Equation (3).

ML-CCA The most efficient DQ-based ICA is the Machine Learning-powered Combinatorial
Clock Auction (ML-CCA) (Soumalias et al., 2024b). ML-CCA has the same interaction paradigm
as the CCA, but with a substantially more refined DQ-generation algorithm in its clock phase. In
each round, an ML model is trained to estimate each bidder’s value function based on previously
submitted DQ responses. The auctioneer then solves a convex optimization problem to determine
the prices with the greatest clearing potential for those value function estimates.

BOCA The SOTA ICA in terms of efficiency is the VQ-based Bayesian optimization-based com-
binatorial auction (BOCA) (Weissteiner et al., 2023). The main idea of BOCA is that in each round,
the auctioneer creates an estimate of the upper uncertainty bound of the value function of each agent
based on her past responses. Then, the auctioneer solves an ML-based WDP to find the feasible
allocation with the highest upper bound on its estimated social welfare, and queries each agent her
value for her bundle in that allocation. This allows the mechanism to balance between exploring and
exploiting the bundle space during its preference elicitation phase.

2.3 ML FRAMEWORK

The ML models used by ML-CCA, and as basis for the construction of the uncertainty bound esti-
mates in BOCA are monotone-value neural networks (MVNNs) Mθ : X → R (Weissteiner et al.,
2022a). MVNNs are a recently introduced class of NNs specifically designed to represent monotone
combinatorial valuations. MVNNs have also had success in combinatorial allocation domains with-
out money, e.g. for course allocation Soumalias et al. (2024a). Soumalias et al. (2024b) introduced
multiset MVNNs (mMVNNs), an extension of MVNNs that also incorporates at a structural level
the information that some items in the auction are identical copies of each other. In this work, we
instantiate our ML models using mMVNNs, and denote agent i’s model as Mi : X → R. Within
this work, we will refer to all mMVNNs simply as MVNNs. We provide more details on MVNNs
in Appendix I.

3 ADVANTAGES OF DQS AND VQS AND WHY ONE SHOULD COMBINE THEM

In this section, we examine the limitations of using only VQs or only DQs in auctions and highlight
the benefits of combining them. All deferred proofs can be found in Appendix E.

3.1 DISADVANTAGES OF ONLY USING VQS

Almost all ML-powered VQ-based auctions including the current SOTA, BOCA (Weissteiner et al.,
2023) first ask each bidder multiple random VQs (i.e., VQs for randomly selected bundles). These
VQs are necessary to initialize the ML estimates of the bidder’s value functions. In practice, it is
very hard for bidders to answer random VQs since they are not aligned with their preferences.3 The
most popular ICAs in practice (e.g., the CCA) ask the bidders DQs, which have been argued can be
answered by the bidders sufficiently well (Cramton, 2013).4

Even if bidders manage to respond perfectly to random VQs, the information obtained is limited.
This is because, in large combinatorial domains, bidders typically have high values for only a small
subset of possible bundles, making the probability of querying one of these high-value bundles at

3 To provide some intuition, imagine you go to the supermarket because you want to bake a birthday cake
for your friend and then you are asked your value for 30 frying pans plus 500 coconuts. It might be hard to
estimate your value for such a random combination of items.

4 In our practical supermarket example, now imagine that you view the price tags for the same items. It is
quite doable to decide which items you want to buy and in which quantities.
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random exceedingly low. On the other hand, querying bidders with DQs at a random price vector is
more likely to prompt responses that reveal their high-value bundles. Formally:
Lemma 1. The difference in expected social welfare between an auction that uses a single random
demand query and an auction that uses k ≪ 2m random value queries can be arbitrarily large.

Remark 1. This limitation of random VQs is evidenced in practice. Empirical comparisons between
VQ-based ML-powered mechanisms, such as Weissteiner et al. (2023), and DQ-based mechanisms,
such as Soumalias et al. (2024b), reveal that efficiency after initial queries is significantly lower for
VQ-based approaches across all tested domains (see Figure 4 in Section 6).

Beyond auction efficiency, the limited information provided by random VQs poses challenges for
learning algorithms in ML-powered ICAS. In contrast, DQs provide global information about bidder
preferences across the entire bundle space. When bidder i responds to a DQ at prices p, she solves the
optimization problem: x∗

i (p) ∈ argmaxx∈X {vi(x)− ⟨p, x⟩}, which reveals valuable information
about her preferences across all possible bundles. Strong evidence for this is presented inSection 4.2,
where we show that the network trained only on DQs exhibits better generalization performance than
one trained on random VQs.

Additionally, if DQ prices are sufficiently low, bidders respond with their value-maximizing bundles,
which may be hard to recover through VQs alone. By incorporating this information, the learning
algorithm can more effectively identify critical regions in the allocation space and subsequently
focus on refining those areas. This advantage is further supported by our experiments (Figure 4
in Section 6). We show that in our ML-powered hybrid auction, the first ML-powered VQ after a
series of DQs achieves significantly higher efficiency compared to the first ML-powered VQ after
an equivalent number of random VQs in the current SOTA VQ-based auction.

Moreover, even if the auction finds an efficient allocation by using VQs, it cannot terminate early as
there is no way for the auctioneer to certify that the auction has reached 100% efficiency. In contrast,
for DQ-based auctions there is an easy condition that allows the auction to terminate early:
Proposition 1. If clearing prices exist, an auction using DQs can provide a guarantee of optimal
efficiency and terminate early.

Proof. If clearing prices have been found, the corresponding allocation constitutes a Walrasian equi-
librium, and thus has an efficiency equal to 100%. See (Soumalias et al., 2024b, Appendix C.1) for
a detailed proof.

Remark 2. This is indeed an issue in practice. In Section 6, we experimentally show that, in realistic
domains, our MLHCA can often reach 100% efficiency before the common maximum number of
100 rounds used by most ML-powered ICAs (e.g. Weissteiner & Seuken (2020); Weissteiner et al.
(2022b;a; 2023); Soumalias et al. (2024b)) is reached.

3.2 DISADVANTAGES OF ONLY USING DQS

In this section, we show the disadvantages of using DQs to elicit the bidders’ preferences.

The first major disadvantage of an auction employing only DQs is that the auction’s efficiency can
actually drop by adding more DQs.
Lemma 2. In a DQ-based ICA, adding DQs can actually reduce efficiency. A single DQ can cause
an efficiency drop arbitrarily close to 100%. By comparison, in a VQ-based ICA, adding additional
queries can never reduce efficiency (assuming truthful bidding).

Proof. Let m = 2, n = 2, c1 = 1, c2 = 1,

v1 = max {400 · 1x1≥1, 2 · 1x2≥1} and
v2 = 1.1 · 1x1≥1.

Suppose the auction has asked two DQs. The first DQ p = (1, 1) is responded by both
bidders with (1, 0) ∈ argmaxx∈X {vi(x)− ⟨p, x⟩}. The second DQ p = (1.2, 1) is re-
sponded by bidder 1 with (1, 0) ∈ argmaxx∈X {v1(x)− ⟨p, x⟩} and by bidder 2 with (0, 0) ∈
argmaxx∈X {v2(x)− ⟨p, x⟩}.
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After these 2 DQs the WDP based on the inferred values (see Equation (3)), would assign item 1 to
bidder 1 (resulting in an inferred social welfare of 1.2 + 0 = 1.2). This is the efficient allocation
with a true SCW of 400, i.e., an efficiency equal to 100%.

Now suppose that a third DQ p = (401, 1) is added to the auction. Bidder 1’s de-
mand response is (0, 1) ∈ argmaxx∈X {v1(x)− ⟨p, x⟩} and bidder 2’s response is (0, 0) ∈
argmaxx∈X {v2(x)− ⟨p, x⟩}. The WDP would now assign item 2 to bidder 1 and item 1 to bidder
2, resulting in an inferred SCW of 1+1 = 2). This would result only in an efficiency of 2+1.1

400 < 1%.

While the inferred SCW obviously cannot decrease in any round (since the set we maximize over
cannot decrease in any round and inferred values cannot decrease), we have shown here that the
true SCW can decrease substantially. In this example, the SCW dropped by more than 99%. One
could easily modify this example to even obtain an efficiency drop arbitrarily close to 100% if one
decreases the values 1,1.2 and 2 (the prices and the values inside the value functions) by any small
factor or increases the numbers 400 and 401, by any large factor. Then the proof would still work,
which shows that the efficiency can even fall from 100% to values arbitrarily close to 0%.

On the other hand, if we only ask VQs, there is no difference between inferred SCW and true SCW
(assuming truthful bidding), which results in non-decreasing SCW.

Remark 3. This is a significant issue in practice. In Section 6 we experimentally show that in the
most realistic spectrum auction domain, the CCA’s efficiency drops by over 7% with the introduction
of more DQs. In a second realistic domain, the CCA actually has higher efficiency after just 5 DQs
compared to after 100. This efficiency degradation is not only a concern for the CCA but also affects
ML-powered DQ-based ICAs in similar ways.

In the next lemma, we show that the same issue arises in an auction that uses both DQs and VQs:

Lemma 3. In an auction that first uses DQs and then VQs, adding VQs can actually reduce effi-
ciency. The efficiency drop can even be arbitrarily close to 100%.

Proof. Consider the setting from the proof of Lemma 2 including the first 2 DQs. Recall that in
this setting after these 2 DQs, the WDP would achieve 100% efficiency. Now instead of the third
DQ, we ask the following VQ: We ask bidder 1 for her value of the bundle (0, 1) and we ask
bidder 2 for her value of the bundle (1, 0). Then the WDP based on these 3 rounds would assign
item 2 to bidder 1, and item 1 to bidder 2, as we explain in the following. The inferred SCW
v1(0, 1) + v2(1, 0) = 2 + 1.1 (which is equal to the true SCW of this allocation) is higher than the
inferred SCW of all other allocations consisting of elicited bundles: For bidder 1 the DQ responses
were always (1, 0) with inferred value 1.2, and the VQ elicited v1(0, 1) = 2. For bidder 2, the DQ
responses were (1, 0) with inferred value 1 and (0, 0) with inferred value 0, and the VQ response was
v2(1, 0) = 1.1. So we see that the highest inferred SCW among all feasible allocations is achieved
by assigning item 2 to bidder 1 and item 1 to bidder 2 (e.g., assigning it the other way around would
only achieve an inferred SCW of 1.2 + 0, while the true SCW v1(1, 0) + v2(0, 1) = 400 + 0 would
be much larger).

So the efficiency dropped from 100% to 2+1.1
400 < 1% after the VQ (i.e., the efficiency drops by more

than 99%).

Even though Lemma 3 shows that an auction using DQs followed by VQs can still experience
an arbitrarily large efficiency drop, we can completely address this issue using a single carefully
designed VQ, which we call the ”bridge bid.”

Definition 4 (Bridge bid). The bridge bid asks each bidder her value for the bundle she would have
been allocated according to the WDP after the last DQ.

Lemma 4. In an ICA that first asks DQs and then VQs, by first using a single specific VQ, the
bridge bid from Definition 4, the auction can ensure its efficiency is at least as high as the efficiency
achieved by its DQs alone.

Proof. The bridge bid itself can obviously not decrease efficiency, because it simply replaces the
inferred SCW of the winning allocation of the previous WDP with the true SCW of exactly the
same allocation. In other words, the inferred values of the bundles of the previously WDP-winning
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allocation can be increased or stay the same, while all the other inferred values stay the same. Thus
the winning allocation stays the winning allocation when the bridge bid is added. For the remainder
of the proof, we will show that all the VQs after the bridge bid can also not decrease the efficiency.
In every further WDP another allocation can only outperform the bridge bid allocation if it has a
higher inferred5 social welfare. However, if it has a higher inferred SCW, it’s true SCW cannot be
lower than the one of the bridge bid. And as we have shown in the beginning of the proof, the SCW
of the allocation of the bridge bid is equal to the SCW of the last WDP winner after the last DQ.
Thus, for any VQ after the bridge bid the SCW cannot be worse than the winning allocation of the
WDP right after the last DQ.

Remark 4. Again, this in practice is highly impactful. In our experimental section (Section 6), we
show that in the most realistic domain, our MLHCA without this bridge bid loses 7 percentage points
of efficiency. The auction needs another 20 VQs to recover its DQ-only efficiency. By using just a
single specialized VQ, the bridge bid, we can completely alleviate this problem. For a more detailed
discussion, see Section 6.2.

The next theorem shows an even more fundamental limitation of only asking DQs. Specifically,
asking only DQs can result in low efficiency, even in the limit where we ask all possible DQs.
Theorem 1. A DQ-based auction cannot guarantee even 55% efficiency, even if it asks all (unac-
countably many) possible DQs (i.e., a DQ for every price vector in [0,∞)m). This remains true even
if the bidders additionally report their true values for all bundles they requested in those DQs.

Proof. Let n = 2, m = 1, c1 = 10, v1(x) = 1001x1≥1, v2(x) = 9x1 +
1
25x

2
1. Here, the unique

efficient allocation would assign 1 item to bidder 1 and the remaining 9 items to bidder 2, resulting
in an SCW of v1(1) + v2(9) = 100 + 9 · 9 + 92

25 = 184.24. However, there is no DQ p ∈ Rm
≥0 that

bidder 2 would answer with x∗
2(p) = (9):

• If the price p is below 94
10 , bidder 2 will answer with x∗

2(p) = (10);

• if the price p = 94
10 , bidder 2 will answer with either x∗

2(p) = (10) or x∗
2(p) = (0);

• if the price p is higher than 94
10 , bidder 2 will answer with x∗

2(p) = (0).

Therefore, the WDP cannot assign 9 items to bidder 2 if only DQs were asked no matter how
many DQs were asked. Raising the bids for those bundles would also not help, because this would
still not give us any value for 9 items for bidder 2. The best SCW that such WDPs based on DQ
responses (and raised DQ responses) can achieve is thus 100, which results in an efficiency of
100

184.24 ≈ 54.28%.

Thus, every method that only asks DQs (e.g., CCA or Soumalias et al. (2024b)) will result in ineffi-
cient allocations even in the limit of infinitely many iterations in the case of certain value functions
(even if raised clock bids are added in the supplementary round).
Remark 5. The issue highlighted in Theorem 1 also arises in practical settings. In Section 6,
we experimentally show that in the most realistic domain, MRVM, the final 50 DQs of ML-CCA
(Soumalias et al., 2024b), the current SOTA DQ-based ICA, only increase efficiency by 0.3% points.
If the bidders also report their true values for all bundles they requested, this only causes an ef-
ficiency increase of less than 0.2% points. In contrast, for MLHCA, the last 30 VQs cause an
efficiency increase of over 1.8% points. For the other domains, we see a qualitatively similar picture
in Figure 4.

In Theorem 1, we showed that a DQ-based auction cannot guarantee full efficiency. Intuitively,
the driving force behind this limitation is that despite the broad information that DQs provide, they
cannot fully reveal a bidder’s value function. In Example 1, we show a practical example where
both linear and non-linear value functions would result in exactly the same response to any DQ by
the bidder. However, the same is not true for a VQ-based auction, leading to the following result:

5Note that after every VQ it is still possible that the WDP combines bundles queried during any VQ with
bundles that were DQ responses for any old DQ. Thus even after some VQs the inferred SCW of the DWP-
winning allocation can be strictly smaller than its true SCW.
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Lemma 5. Asking each bidder
∏m

j=1 cj different VQs guarantees that the allocation will be efficient.

Proof. If the bidders give us their values for all possible bundles, then we have access to their
complete value functions. Then the WDP is equivalent to optimizing the SCW.

Thus, Weissteiner & Seuken (2020); Weissteiner et al. (2022b;a; 2023) and the hybrid method that
we introduce in this paper have a guarantee to converge to an efficient allocation in the limit of
infinitely many iterations.6

3.3 THE ADVANTAGES OF COMBINING DQS AND VQS

DQs are cognitively simpler than VQs early in the auction. All ML-powered, VQ-based ICAs
in the literature begin by asking bidders their values for uniformly at random selected bundles to
initialize the ML models. In contrast, the SOTA ML-powered DQ-based approach (Brero & Lahaie,
2018; Brero et al., 2019; Soumalias et al., 2024b) starts by asking bidders for their preferred bundles
at low initial prices that gradually increase over rounds. From a practical standpoint, it is nearly
impossible for bidders to accurately assess VQs for randomly chosen bundles, whereas responding
to DQs with low prices is far easier.7 As the auction progresses and the bidders’ ML models become
more accurate, a VQ-based ML-powered ICA can ask targeted VQs that align better with bidder
interests, making them easier to answer.8

DQs are more effective in the early stages of the auction. Initially, the auctioneer lacks knowl-
edge of which bundles align with bidders’ interests. Beginning with DQs allows the auctioneer to
gather early insights about the bidders’ preferences over the whole bundle space, facilitating the
use of more targeted queries later on. This practice is well-established in the combinatorial auction
community. For instance, the initial DQ phase in the CCA is often referred to as a “price discovery
phase” (Ausubel et al., 2006). We argue that the same concept holds even in ML-powered auctions.
Our experiments in Section 6 confirm that DQ-based approaches (e.g., ML-CCA (Soumalias et al.,
2024b)) outperform VQ-based approaches (Weissteiner & Seuken, 2020; Weissteiner et al., 2022b;a;
2023) during the early rounds of the auction. However, as suggested by Theorem 1 and Lemma 5 ,
VQ-based approaches eventually surpass DQ-based mechanisms in later iterations.

A key contributing factor as to why VQ-based ML-powered approaches perform better than DQ-
based approaches is that they can take into account the WDP, i.e., the downstream optimization
problem that will determine the final allocation.9 In contrast, responses to a single DQ often lead
to over-demand for certain items or leave some items unassigned (under-demand). In Example 1,
bidder 2 lacks information to know she should bid for 9 items. Only the auctioneer, having infor-
mation from all bidders, knows that assigning 9 items to bidder 2 would complement bidder 1’s
preferences. The auctioneer can leverage this aggregated knowledge by asking bidder 2 a VQ for 9
items, whereas DQs alone would not provide this opportunity.

Example 1. In the example from the proof of Theorem 1, after sufficiently many DQs have been
asked, a single VQ would suffice to increase the social welfare from ≈ 56.45% to 100%. MLHCA
would ask this VQ in its first VQ round, provided that enough DQs had been asked beforehand, as
we explain in the remainder of this example. v1 can be very precisely reconstructed from DQs p = ϵ
(which is responded by x = (1)), p = 100 − ϵ (which is responded by x = (1)), and p = 100 + ϵ

6Note that all these methods always enforce to ask a new VQ in any round, i.e., if the WDP suggests to ask
a bidder a VQ for a bundle she was already asked for in a previous round, then we solve a constrained WDP
instead with the constraint that this bidder is not allowed to be asked for any previously asked bundle again.

7In the example from Footnotes 3 and 4, imagine being asked your value for a bundle of 30 frying pans and
500 coconuts. It’s hard to assess such a random combination. Now, imagine shopping at a supermarket with a
50% discount across all items; it’s easier to determine what items you want under these conditions.

8Continuing with our example, imagine being asked for the value of ingredients specifically for a strawberry
cake in one iteration and for a blueberry cake in the next. If your goal is to bake a cake, these targeted VQs are
much easier to respond to.

9By definition, all the bundles in a VQ form a feasible allocation. Furthermore, VQs typically allocate
(almost) all items to bidders, as they maximize the estimated social welfare. The MVNN architecture ensures
monotonicity in the estimated value functions. If the estimated value functions were strictly monotonic, the
solution to the MILPs determining the next VQ would always allocate all items.
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(which is responded by x = (0)). The last two DQs reveal that 100 − ϵ ≤ v1(1) ≤ 100 + ϵ. And
the first DQ reveals that v1(x) − v1(1) ≤ (x − 1)ϵ for any x > 1. Combining these information
reveals that v1 ≤ 1001·≥1 + 10ϵ and with the help of monotonicity these 3 DQs reveal that v1 ≥
1001·≥1 − ϵ. So, we can reconstruct the true v1 up to 10ϵ. For bidder 2, from DQs p = 94−ϵ

10

(which is responded by x = 10) and p = 94+ϵ
10 (which is responded by x = 0), we can only

reconstruct that v2(·) ≤ 94+ϵ
10 (·) and that v2(10) ≥ 94− ϵ. E.g., the linear function 94

10 (·) would not
contradict any possible DQ response from bidder 2. Our ML algorithm should not have any problem
with estimating v1 sufficiently well. If additionally, our ML algorithm estimates v2 (approximately)
as this linear function 94

10 (·), then the WDP would directly assign 1 item to bidder 1 and 9 items
to bidder 2, which is the efficient allocation. In theory, MVNNs could also express functions that
achieve 0 training loss on all DQs for bidder 2 but do not result in an efficient allocation. However,
these functions would be highly non-linear and for many NN architectures it is shown that they prefer
functions which are in a certain sense close to linear (Heiss et al., 2019; 2023; 2021; Heiss, 2024).
In Appendix I.1 we explain, why our MVNNs would learn a linear approximation of v2. Therefore
the WDP would result in the efficient allocation in this example.

Remark 6. Note that this example is not pathological. In Section 6, we will show that in realistic
domains using 40 DQs and only 2 VQs, our MLHCA can achieve higher efficiency than the SOTA
DQ-based mechanism using 100 queries.

Our MLHCA is the first auction to integrate both a sophisticated DQ and VQ generation algorithm.
By leveraging insights from auction theory and starting with DQs before transitioning to VQs, ML-
HCA achieves state-of-the-art efficiency in all rounds and demonstrates significantly improved final
efficiency across all domains compared to the current state-of-the-art.

Moreover, we argue that the combination of DQs and VQs is particularly powerful for learning
bidders’ value functions, as the information from these two query types complements each other
nicely (see Section 4).

4 MIXED QUERY LEARNING

In this section, we introduce our mixed training algorithm and provide experimental evidence sup-
porting our theoretical analysis from Section 3. Specifically, we demonstrate the learning benefits of
initializing auctions with DQs rather than VQs and highlight how combining DQs with VQs leads
to superior learning performance.

4.1 MIXED TRAINING ALGORITHM

To leverage the advantages of both DQs and VQs, we propose a two-stage training algorithm. In each
epoch, the ML model is first trained on all DQ responses using the loss function from (Soumalias
et al., 2024b). The main idea behind this loss is that for each DQ, an optimization problem is solved
to predict the bidder’s utility-maximizing bundle at the given prices, treating her ML model as her
true value function. In case the predicted reply disagrees with the bidder’s true reply, the loss is
the difference in predicted utility between these 2 bundles. This loss provably incorporates the full
information that the DQ responses provide. Then, the model is trained on the VQ responses using a
standard regression loss. For more details, see Appendix F.

4.2 EXPERIMENTAL ANALYSIS

In this section, we demonstrate the learning benefits of initializing auctions with DQs rather than
VQs and highlight how combining both query types leads to superior learning performance.

We conduct the following experiment: We perform hyperparameter optimization (HPO) to train an
mMVNN for the most critical bidder type in the most realistic domain—the national bidder in the
MRVM domain. In Appendix G we present the same experiment for all other domains. Our HPO
procedure is the following. For a single bidder of that type, we generate three distinct training sets:

1. The first training set contains 40 DQs simulating 40 CCA clock rounds, along with 20 VQs
for bundles chosen uniformly at random.
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OPTIMIZATION TRAIN POINTS R2 KT MAE SCALED R2
c

METRIC VQS DQS Tr Tp Tr Tp Tr Tp Tr Tp

R2 ON Vr 20 40 0.84 0.42 0.79 0.80 0.037 0.044 0.84 0.80

60 0 0.73 −10.07 0.68 0.64 0.052 0.236 0.74 0.20

0 60 0.24 −3.07 0.77 0.77 0.103 0.128 0.83 0.76

R2 ON Vp 20 40 0.82 0.01 0.79 0.80 0.041 0.062 0.84 0.83

60 0 0.76 −3.40 0.72 0.62 0.049 0.141 0.77 0.05

0 60 −0.05 −6.24 0.78 0.72 0.103 0.154 0.84 0.69

Table 1: Learning comparison of training only on DQs, only on VQs, or on both. Shown are
averages over ten instances for the winning configuration of each HPO procedure. Winners are
marked in gray.

2. The second training set consists of 60 DQs, simulating 60 CCA clock rounds, with no VQs.

3. The third training set contains 60 VQs and no DQs.

We evaluate the generalization performance of the trained models on two distinct sets: A random
bundle set (Vr), which consists of 50,000 bundles sampled uniformly at random from the bundle
space. A random price-driven set (Vp), which consists of the bundles requested by the bidder in 200
randomly generated price vectors {pr}200r=1, where each item’s price is drawn uniformly between 0
and three times its average value for that bidder type. Vr evaluates generalization performance over
the entire bundle space, while Vp focuses on the bidder’s utility-maximizing bundles for various
prices.

For each HPO configuration, we average the performance across 10 bidders of the same type. The
best-performing configuration for each validation set is selected based on the coefficient of determi-
nation.

For the selected configurations, we evaluate performance on 10 separate test seeds representing new
bidders, generating the test sets Tr and Tp in the same way as for the validation sets. For each
test set, we report the coefficient of determination (R2), Kendall Tau (KT), scaled Mean Absolute
Error (scaled MAE) normalized with respect to the average value of a bundle in that domain and
R2 centered (R2

c), a shift invariant version of R2. An R2
c value of 1 indicates that the ML model

has learned the bidder’s value function perfectly, up to a constant shift. By comparing R2
c with

the standard R2, we can assess, for the bundles tested, the shift magnitude in the learned value
function.10

Each HPO procedure was conducted under identical conditions, including the same test instances,
random seeds, hyperparameter search space, and total computation time. For more details on the
HPO process, see appendix K.1.

Table 1 shows that training on a mixture of DQs and VQs consistently outperforms training on
either query type alone. This is evident across all metrics, and especially for the utility-maximizing
bundles of test set Tp, where mixed training yields almost three times lower MAE compared to other
approaches.

Furthermore, the mixed-query model was the only one able to approximately learn the correct mean
value for both validation sets, as reflected by the small difference between its R2

c and standard R2.
In contrast, models trained solely on DQs or VQs showed a much larger discrepancy between these
two metrics for at least one of the validation sets. As explained in Section 3, when training only on
DQs, the model only has relative information about bundle values and thus the value function is not
uniquely identifiable, preventing the network from learning it accurately. On the other hand, models
trained solely on VQs experience a distributional shift between the two test sets—one set focuses on
utility-maximizing bundles, while the other contains bundles selected uniformly at random. Since

10Note that this shift is not perfectly constant as (m)MVNNs map the zero bundle to zero.
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the VQ training set is drawn uniformly at random and lacks utility-maximizing bundles, the model
fails to capture the bidder’s value function for these critical bundles.11

In Table 1 we observe that the models trained only on DQs exhibit much better generalization perfor-
mance in the bundles of Tp than the models trained on random VQs, despite of their lack of absolute
value information. The reason for the better generalization performance is the strong distributional
shift between the bundles of the two sets. But from an allocative value perspective, the bundles in
the set Tp are those for which the bidders have high utility, and thus value. Thus, this is the criti-
cal area of the allocation space where the auctioneer wants the models to perform well. This gives
strong empirical motivation as to why starting the learning process with DQs is more effective than
starting it with VQs. In Section 6 we will show that the efficiency after the first ML-powered VQ
is, across all domains, much higher for the model trained on DQs compared to the one trained on
random VQs. The reason behind this improvement is precisely the fact that the DQ-trained models
have learned a better approximation of the bidders’ value functions in the most critical part of the
allocation space. In fact, the learning performance is so much better that, in two out of the four
realistic domains tested, a single ML-powered VQ in the DQ-trained networks suffices to achieve
better auction efficiency than the VQ-trained networks using 60 ML-powered VQs.

Comparing the models trained only on DQs with random VQs in Table 1 provides strong empirical
evidence of the two main, orthogonal learning advantages of starting an ML-powered auction with
DQs compared to random VQs. The first advantage is that CCA DQs provide global information
about the bundle space, which promotes exploration of the allocation space. This global information
that DQs provide is evident from the higher KT that the DQ-trained network can achieve across
both test sets compared to the VQ-trained one. The reason for this increased performance is that, as
explained in Section 3, DQs provide global relative information about the entire allocation space.

The second learning advantage of starting an auction with CCA DQs is that they provide particularly
much information about the critical, high valued areas of the allocation space right from the start.
This is evident from the fact that the models trained only on DQs exhibit much better generaliza-
tion performance in the bundles of Tp than the models trained on random VQs, despite their lack
of absolute value information. The reason for the better generalization performance is the strong
distributional shift between the bundles of the two sets. But from an allocative value perspective,
the bundles in the set Tp are those for which the bidders have high utility, and thus value. Thus, this
is the critical area of the allocation space where the auctioneer wants the models to perform well.

These two learning advantages are so critical that, as we will demonstrate in Section 6, the efficiency
gains after the first ML-powered VQs is, across all domains, much higher for the model trained on
DQs compared to the one trained on random VQs. In fact, the learning performance is so much better
that, in two out of the four domains, our hybrid auction (Section 5) using just two ML-powered VQs,
following training on 40 DQs, achieves higher efficiency than the SOTA VQ-based mechanism using
40 random VQs and 60 ML-powered VQs.

In Figure 1, we present prediction vs. true value plots for the top-performing configurations with
respect to R2 on Vr from Table 1. We compare the model trained on 40 DQs and 20 VQs against
the one trained on 60 VQs, corresponding to the first and second rows of Table 1. Bundles from Tc
are represented by red circles, while those from Tp are shown in blue. For bundles in Tp, we also
plot their inferred values, reflecting their price when the bidder requested them.

In Figure 1a we observe that the model trained solely on VQs consistently under predicts values for
bundles in Tp. Furthermore, there is a very large spread in the predicted values of these bundles.
These bundles are out of distribution for the network, and thus it cannot generalize to them. If
we examine the inferred values for the same bundles, we observe a substantial deviation from the
true diagonal. The vertical distance between each bundle’s inferred value and the true diagonal line
corresponds to the bidder’s utility when requesting that bundle - the quantity she is maximizing.
In contrast, as shown in Figure 1b, the model trained on the mixed dataset is able to place the
bundles of Tp in an almost perfect parallel line to the true diagonal, and with a much smaller shift.
These bundles are not out of distribution for that network, which means it can perform better. For
the bundles of Tc, we observe that the predictions of both models are centered around the true
diagonal, indicating that both networks have learned the correct mean value. However, again we can

11Note that at the start of an ML-powered, VQ-based auction, the ML models are not yet sufficiently accurate,
preventing the auctioneer from asking VQs for utility- or value-maximizing bundles.
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(a) (b)

Figure 1: Comparison of scaled prediction vs. true values for an mMVNN trained with different
query types for the national bidder in the MRVM domain. (a) Training with 60 demand queries. (b)
Training with 40 demand queries and 20 value queries.

observe that for the network trained on the mixed dataset, its predictions on Tc are again more tightly
clustered in a line around the true diagonal, as was also suggested by the stronger MAE and KT in
Table 1. These observations illustrate the powerful synergy between DQs and VQs. The global,
relative information provided by DQs enables the network to align its predictions roughly along a
consistent trajectory—essentially forming a parallel line to the true diagonal. The absolute value
information from the VQs then fine-tunes this alignment, effectively positioning the line exactly on
the true diagonal, ensuring the predicted values match the true values accurately.

5 THE MECHANISM

In this section, we describe our ML-powered Hybrid Combinatorial Auction (MLHCA), which com-
bines the auction and ML insights of how to combine DQs and VQs from Sections 3 and 4.

We present a simplified version of MLHCA in Algorithm 1. In Lines 3 to 6, we generate the first
QCCA ∈ N DQs using the same price update rule as the CCA (with larger price increments). In
each of the next QDQ ∈ N ML-powered rounds, we first train, for each bidder, an mMVNN on
her demand responses (Line 9). Next, in Line 10, we call NEXTPRICE (Soumalias et al., 2024b)
to generate the next DQ based on the agents’ trained mMVNNs (see Appendix C). If MLHCA has
found market-clearing prices, then the corresponding allocation is efficient and is returned, along
with payments π(R) according to the deployed payment rule (Line 16). MLHCA is plug-and-play
compatible with many different payment rules. If, by the end of the ML-powered DQs the market
has not cleared we switch to VQ rounds. In the first VQ round (Line 18) we ask each bidder for
her bridge bid (see Definition 4). This single VQ bid ensures that the MLHCA’s efficiency is lower
bounded by the efficiency after just the DQ rounds (Lemma 4). In the final QVQ − 1 VQ rounds, for
each bidder, we query her her value for the bundle she is allocated in the predicted optimal allocation
(based on all ML models), under the constraint that she has not answered a VQ for that bundle in
the past.12 The final allocation and payments are then determined based on all reports (Lines 25 to
26). Note that ML-CCA can be combined with various possible payment rules π(R), such as VCG
or VCG-nearest. We present the detailed description of the mechanism in Appendix H.

6 EXPERIMENTS

In this section, we experimentally evaluate MLHCA. We compare its efficiency against BOCA
(Weissteiner et al., 2023) and ML-CCA (Soumalias et al., 2024a) the SOTA VQ-based and DQ-
based ICAs, respectively.

12This is the VQ generation algorithm that was first suggested in Brero et al. (2021) and used in all follow-up
work.
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6.1 EXPERIMENT SETUP

To generate synthetic CA instances, we use the spectrum auction test suite (SATS) (Weiss et al.,
2017). SATS gives us access to the true optimal allocation a∗ ∈ F , which we use to measure
the efficiency loss, i.e., 1 − V (a∗)/V (a∗(R)) when eliciting reports R. As in all mechanisms we
compare against (e.g. (Soumalias et al., 2024b; Weissteiner et al., 2023)), we focus of efficiency (and
not revenue). The main application of ICAs is in spectrum allocation, a government-run operation
with a mandate to maximize welfare (Cramton, 2013). See Appendix J for a discussion of the
corresponding results on revenue. To enable a fair comparison against prior work, we use 100 total
queries for all auction mechanisms. Those are 100 VQs for BOCA, 100 DQs for ML-CCA, and 40
DQs and 60 VQs for MLHCA. For BOCA and ML-CCA, we use the best mechanism configuration
and hyperparameters as reported in their corresponding papers.

For MLHCA’s VQ rounds, we performed HPO separately for each bidder type in each domain, as
detailed in Section 4.2. For the DQ rounds, we adopted the HPO parameters reported by Soumalias
et al. (2024b), since our learning algorithm, when restricted to DQs, is equivalent to theirs. For
further details, please refer to Appendix K.1.

6.2 EVALUATING THE EFFECTIVENESS OF THE BRIDGE BID

In this section, we experimentally evaluate the effectiveness of the bridge bid from Section 3.

In Figure 2a, we plot MLHCA’s efficiency in the MRVM domain as a function of the number of
elicited bids, comparing performance with and without the bridge bid. Without the bridge bid, we
observe a significant efficiency drop of 7.3% points when MLHCA transitions to its VQ rounds. This

Algorithm 1: MLHCA(QCCA, QDQ, QVQ, π)

Parameters: QCCA, QDQ, QVQ and π
1 RV Q ← ({})Ni=1

2 RDQ ← ({})Ni=1

3 for r = 1, ..., QCCA do ▷ Draw QCCA initial prices

4 pr ← CCA(RDQ)
5 foreach i ∈ N do ▷ Initial demand query responses

6 RDQ
i ← RDQ

i ∪ {(x∗
i (p

r), pr)}
7 for r = QCCA + 1, ..., QCCA +QDQ do ▷ ML-powered DQs

8 foreach i ∈ N do
9 Mθ

i ← MIXEDTRAINING(RDQ
i ∪RV Q

i ) ▷ Algorithm 4

10 pr ← NEXTPRICE(
(
Mθ

i

)n
i=1

) ▷ Appendix C

11 foreach i ∈ N do ▷ Demand query responses for pr

12 RDQ
i ← RDQ

i ∪ {(x∗
i (p

r), pr)}

13 if
n∑

i=1

(x∗
i (p

k))j = cj ∀j ∈M then ▷ Market-clearing prices found

14 Set final allocation a∗(RDQ ∪RV Q)← (x∗
i (p

r))ni=1

15 Calculate payments π(RDQ ∪RV Q)← (πi(R
DQ ∪RV Q))ni=1

16 return a∗(RDQ ∪RV Q) and π(RDQ ∪RV Q)
17 foreach i ∈ N do ▷ Bridge bid

18 RV Q
i ← RV Q

i ∪ {(a∗
i (R

DQ ∪RV Q), vi(a
∗
i (R

DQ ∪RV Q)))}
19 for r = QCCA +QDQ + 2, ..., QCCA +QDQ +QVQ do ▷ ML-powered VQs

20 foreach i ∈ N do
21 Mθ

i ← MIXEDTRAINING(RDQ
i ∪RV Q

i ) ▷ Section 4.1

22 a← NEXTALLOCATION
((
Mθ

i

)n
i=1

), RDQ ∪RV Q
)

▷ Appendix H

23 foreach i ∈ N do
24 RV Q

i ← RV Q
i ∪ {(ai, vi(ai))} ▷ Value query responses

25 Calculate final allocation a∗(RDQ ∪RV Q) as in Equation (3)
26 Calculate payments π(RDQ ∪RV Q) ▷ E.g., VCG (Appendix A)

27 return a∗(RDQ ∪RV Q) and π(RDQ ∪RV Q)
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(a) Efficiency of MLHCA with and without the bridge
bid (Definition 4) in the MRVM domain.
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(b) Normalized inferred and true SCW of MLHCA
without the bridge bid in the MRVM domain. Both
quantities are normalized with respect to their average
values at the start of the ML-based VQs.

Figure 2: Comparison of MLHCA’s performance in the MRVM domain: (a) Efficiency with and
without the bridge bid; (b) Normalized inferred and true SCW. Shown are averages with 95% CIs.

is consistent with our theoretical results in Lemma 3, where we showed that efficiency can decrease
when the first VQ is introduced after DQs. In the MRVM domain, the most realistic setting, this
effect is particularly pronounced. Notably, the auction requires 20 of our powerful ML-powered VQs
just to recover the efficiency lost by the introduction of the first VQ. By contrast, using the bridge
bid (Definition 4) completely mitigates this efficiency drop, as predicted by Lemma 4. However, as
Figure 2a shows, if enough VQs are elicited, MLHCA without the bridge bid can eventually recover
its efficiency, and both approaches converge to similar performance levels.

However, given that the auctioneer cannot determine the true efficiency of the auction at runtime, it is
prudent to use the bridge bid version, which ensures consistent performance throughout the auction
and significantly outperforms the alternative for the majority of rounds. Therefore, we consider this
version the default approach for our MLHCA.

To better understand the cause of this efficiency drop, we refer to Figure 2b, where we plot the
normalized inferred and true social welfare of MLHCA without the bridge bid in the MRVM domain.
Both quantities are normalized to their values at the start of the ML-powered VQ rounds. At this
point, we observe a stark contrast: the first VQ increases inferred social welfare by over 70%, while
decreasing true social welfare by more than 7%. Before the ML-powered VQs, agents’ reports
were limited to their responses to DQs, and the auction’s inferred social welfare was calculated
based on the prices of the allocated bundles, as described in Equation (3). Due to the relatively low
competition in MRVM, there was a substantial gap between the agents’ true values and the inferred
values based on their DQ responses.13
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Figure 3: Normalized Inferred Social Welfare of
MLHCA with and without the bridge bid (Defini-
tion 4) in the MRVM domain. Shown are averages
with 95% CIs.

When the auction transitioned to VQs, agents
responded with their true values for the queried
bundles, leading to a sharp increase in inferred
social welfare. However, the bidders’ true val-
ues for the bundles they received during the DQ
rounds were much higher than their inferred
values, which the WDP failed to capture. As a
result, transitioning to ML-powered VQs with-
out the bridge bid caused a sharp increase in
inferred social welfare alongside a drop in true
social welfare.

This efficiency drop when transitioning to VQs
is less pronounced in other domains. In Fig-
ure 3, we plot MLHCA’s SCW for all domains as a function of the number of elicited bids, normal-

13Low competition in the auction can be gauged from its revenue, as, in the absence of reserve prices, revenue
is primarily driven by competition among bidders. MRVM has the lowest ratio of revenue to welfare across all
domains by a factor of nearly 2; see Appendix J.
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EFFICIENCY LOSS IN % QUERIES TO REJECT NULL HYPOTHESIS

DOMAIN MLHCA BOCA ML-CCACLOCK ML-CCARAISED CCA BOCA ≥MLHCA ML-CCACLOCK ≥MLHCA ML-CCARAISED ≥MLHCA

GSVM 0.00± 0.00 — 1.77± 0.68 1.07± 0.37 9.60± 1.49 — 42 42
LSVM 0.04± 0.07 0.39± 0.31 8.36± 1.70 3.61± 0.77 17.44± 1.60 58 42 43
SRVM 0.00± 0.00 0.06± 0.02 0.41± 0.11 0.07± 0.02 0.37± 0.11 42 42 42
MRVM 4.81± 0.57 7.77± 0.35 6.94± 0.24 6.68± 0.22 7.53± 0.48 54 74 79

Table 2: MLHCA (40DQs + 60VQs) vs BOCA (100VQs), ML-CCA (ML-CCAclock) (100DQs) and
ML-CCA with raised clock bids (ML-CCAraised) (100DQs and up to 100VQs). Shown are averages
and a 95% CI. Winners based on a t-test with significance level of 5% are marked in grey.
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Figure 4: Efficiency loss paths (i.e., regret plots) of MLHCA compared to BOCA, ML-CCA and
CCA. Shown are averages over 50 instances with 95% CIs.

ized to the start of the ML-powered VQ rounds. In these domains, the higher level of competition
leads to inferred values for the queried bundles during the DQ rounds being much closer to the true
values. Consequently, the bridge bid is less critical in these settings.

6.3 EFFICIENCY RESULTS

In this section, we present the efficiency of MLHCA, comparing its performance against the current
alternatives discussed in Section 2.2. These results build on the theoretical insights discussed in
Sections 3 and 4, showcasing both the advantages of starting with DQs and the efficacy of our
hybrid approach.

In Table 2, we show the average efficiency loss of each mechanism after 100 queries. For ML-CCA,
we also report results if it were supplemented with the clock bids raised heuristic (see Section 2.2),
which would involve up to an additional 100 VQs per bidder.14 Finally, we report the number of
queries that MLHCA requires to outperform the final efficiency of each other mechanism, i.e., in
GSVM, with 42 queries (40 DQs and 2 VQs) MLHCA statistically outperforms ML-CCA, even if
ML-CCA were supplemented with 100 VQs from the clock bids raised heuristic.

In Table 2, we observe that across all domains, MLHCA significantly outperforms all other mecha-
nisms. First, MLHCA is the only mechanism that can achieve a perfect 100% efficiency in SRVM.
As a matter of fact, it can do this using less than 60 queries, while the other auctions cannot do that
even with 100 queries. In the LSVM domain, MLHCA achieves a 10-fold reduction in efficiency
loss compared to BOCA, the previous SOTA. But the most realistic domain is MRVM, designed to
simulate the data from the 2014 Canadian spectrum auction (Weiss et al., 2017). In that domain,
MLHCA is the first mechanism to cause a significant efficiency increase versus the CCA, increasing
efficiency compared to all other mechanisms by over 2.5% points. If MLHCA were used in the latest
Canadian Spectrum Auction, based on the value of goods traded (Innovation, Science and Economic

14In the clock bids raised heuristic, the bidders only need to report their value for each unique bundle they
bid on during the auction, which, for 100 DQs, can be up to 100 bundles.
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Development Canada, 2023), this alone would have translated in welfare gains of over 50 million
USD versus the three other mechanisms studied here.

But in these auctions, speed of convergence is also important. In all domains, MLHCA needs at
most 58 queries (40 DQs and 18 VQs) to statistically outperform both the BOCA and the ML-CCA
final efficiency, which would require 100 VQs and 100 DQs, respectively. Additionally, in three out
of four domains, MLHCA outperforms the 100 DQ efficiency of ML-CCA using only 40 DQs and 2
VQs. This result aligns with our theoretical analysis in Section 3.3, where we provided an example
showcasing that, after the DQs have served to learn the bidder’s value functions sufficiently well, a
single VQ can lead to 100% efficiency.

Figure 4 shows the efficiency loss path for all domains. We see that MLHCA’s superior (average)
performance does not only hold at the end of the auction, but also for a large range of queries:
in all domains, MLHCA outperforms ML-CCA in queries {42, . . . , 100} and BOCA in queries
{1, . . . , 100}. These results align with our theoretical analysis. Up to query 40, MLHCA is identical
to ML-CCA, so the two mechanisms achieve identical efficiency. After query 40, the superior
learning performance of combining DQs with VQs (as shown in Section 4) combined with the
superior efficiency of asking VQs (Section 3) means that MLHCA outperforms ML-CCA. Up to
query 40, MLHCA outperforms BOCA because of the auction and learning advantages of DQs at
the early stages of the auction when the ML models are not yet sufficiently accurate. After round 40
MLHCA outperforms BOCA because of the far superior learning performance of networks trained
on both DQs and VQs compared to only VQs.

Figure 4 clearly demonstrates how our results align with the theoretical insights from Sections 3
and 4. First, the efficiency loss path of CCA highlights the non-monotonicity of DQ-based mecha-
nisms, as proven in Lemma 2. Notably, in the LSVM domain, the CCA achieves higher efficiency
after just 5 DQs compared to after 100. Next, by comparing the efficiency of BOCA with that of
ML-CCA after 40 elicited bids, we observe the much lower efficiency of random VQs compared
to DQs, as highlighted in Lemma 1. This discrepancy is especially pronounced in the MRVM do-
main, where the efficiency loss of BOCA after the initial random VQs is orders of magnitude worse
compared to mechanisms that employ ML-powered VQs. Finally, comparing ML-CCA with ML-
HCA highlights the potential efficiency gains of supplementing DQs with VQs. Both ML-CCA and
MLHCA show identical efficiency loss paths for the first 40 elicited bids, as they employ the same
network configuration and identical DQs during these rounds. However, once MLHCA switches to
ML-powered VQs after 40 queries, we see an immediate and significant drop in efficiency loss—by
several orders of magnitude in both the LSVM and SRVM domains. In contrast, the efficiency of
the DQ-based ML-CCA remains stagnant. This observation aligns with our theoretical results in
Theorem 1. Once the ML models have effectively learned the bidders’ value functions, the intro-
duction of VQs yields a dramatic reduction in efficiency loss. However, the DQ-based ML-CCA,
despite having well-trained models, lacks the ability to leverage this information further, preventing
any significant efficiency improvement beyond this point.

In summary, MLHCA outperforms both DQ-based and VQ-based SOTA mechanisms in terms of
both efficiency and speed of convergence, achieving high efficiency with fewer queries. This makes
MLHCA a powerful and practical choice for real-world auction scenarios where high efficiency and
rapid convergence are crucial.

7 CONCLUSION

We have introduced MLHCA, the first ICA that combines ML-powered VQ and DQ generation
algorithms. MLHCA provably incorporates the full information that both query types provide, and
leverages the theoretical and practical insights developed in this work to combine these queries
effectively and achieve unprecedented efficiency-clearly surpassing current SOTA mechanisms.

Our results demonstrate that MLHCA consistently outperforms previous SOTA mechanisms across
all tested domains, achieving substantial efficiency gains with significantly fewer queries. Notably,
MLHCA reduces efficiency loss by up to a factor of 10 compared to the previous SOTA while
surpassing all previous mechanisms with at most 74% of their queries. In the most realistic do-
main, MLHCA’s efficiency gains translate into welfare improvements exceeding 50 million USD in
a single auction instance. Importantly, MLHCA achieves these gains while simplifying bidder par-
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ticipation: compared to the previous SOTA VQ-based mechanism, MLHCA primarily relies on the
more practical DQs, requiring only a few cognitively demanding VQs to reach similar efficiency lev-
els. Compared to the SOTA DQ-based mechanism, MLHCA can achieve equivalent efficiency with
just 40% of the DQs and only two VQs in most domains, eliminating the need for a supplementary
round and thus streamlining the bidding process.

In conclusion, by effectively integrating both query types, MLHCA sets a new benchmark in both
allocative efficiency and speed of convergence. This work lays the foundation for future combinato-
rial auction designs, where ML techniques not only enhance efficiency but also simplify the bidding
process, ultimately increasing bidder participation and thus impact potential.
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A PAYMENT AND ACTIVITY RULES

In this section, we reprint the VCG and VCG-nearest payment rules, as well as give an overview
of activity rules for the CCA, and argue why the most prominent choices are also applicable to our
MLHCA.

A.1 VCG PAYMENTS

Definition 5. (VCG PAYMENTS FROM DEMAND AND VALUE QUERY DATA) Let R =
(R1, . . . , Rn) denote an elicited set of both demand and value query data from each bidder and
let R−i := (R1, . . . , Ri−1, Ri+1, . . . , Rn). We then calculate the VCG payments πVCG(R) =
(πVCG

1 (R) . . . , πVCG
n (R)) ∈ Rn

≥0 as follows:

πVCG
i (R) :=

∑
j∈N\{i}

ṽj (a
∗(R−i)j ;Rj)−

∑
j∈N\{i}

ṽj (a
∗(R)j ;Rj) . (4)

where a∗(R−i) is the allocation that maximizes the inferred social welfare when excluding bidder i,
i.e.,

a∗(R−i) ∈ argmax
a∈F

∑
j∈N\{i}

ṽj(aj ;Rj), (5)

and a∗(R) is the inferred social welfare-maximizing allocation (see Equation (3)).

Thus, when using VCG payments, bidder i’s utility is:

ui = vi(a
∗(R)i)− πVCG

i (R)

= vi(a
∗(R)i) +

∑
j∈N\{i}

ṽj (a
∗(R)j ;Rj)−

∑
j∈N\{i}

ṽj (a
∗(R−i)j ;Rj) .

A.2 VCG-NEAREST PAYMENTS

To define the VCG-nearest payments, we must first introduce the core:

Definition 6. (THE CORE) An outcome (a, π) ∈ F × Rn
≥0 (i.e., a tuple of a feasible allocation a

and payments π) is in the core if it satisfies the following two properties:

1. The outcome is individual rational, i.e, ui = vi(ai)− πi ≥ 0 for all i ∈ N

2. The core constraints

∀ L ⊆ N
∑

i∈N\L

πi(R) ≥ max
a′∈F

∑
i∈L

vi(a
′
i)−

∑
i∈L

vi(ai) (6)

where vi(ai) is bidder i’s value for bundle ai and F is the set of feasible allocations.

In words, a payment vector π (together with a feasible allocation a) is in the core if no coalition of
bidders L ⊂ N is willing to pay more for the items than the mechanism is charging the winners.
Note that by replacing the true values vi(ai) with the bidders’ (possibly untruthful) inferred values
based on their reports ṽi(ai;Ri) in Definition 6 one can equivalently define the revealed core.

Now, we can define

Definition 7. (MINIMUM REVENUE CORE) Among all payment vectors in the (revealed) core, the
(revealed) minimum revenue core is the set of payment vectors with smallest L1-norm, i.e., which
minimize the sum of the payments of all bidders.

We can now define VCG-nearest payments:

Definition 8. (VCG-NEAREST PAYMENTS) Given an allocation aR for bidder reports R, the
VCG-nearest payments πVCG-nearest(R) are defined as the vector of payments in the (revealed) mini-
mum revenue core that minimizes the L2-norm to the VCG payment vector πVCG(R).
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A.3 ON THE IMPORTANCE OF ACTIVITY RULES TO ALIGN INCENTIVES

In the CCA, activity rules serve multiple purposes. First, they help accelerate the auction process.
Second, they reduce ”bid-sniping” opportunities—bidders concealing their true intentions until the
very last rounds of the auction.15 Third, they limit surprise bids in the supplementary round of the
CCA, significantly reducing a bidder’s ability to drive up opponents’ payments by overbidding on
bundles they cannot win (Ausubel & Baranov, 2017). There are two types of activity rules that are
implemented in a CCA:

1. Clock phase activity rules, which limit the bundles that an agent can bid on during the clock
phase, based on their bids in previous clock rounds.

2. Supplementary round activity rules, which restrict the amounts that an agent can bid on
specific sets of items during the supplementary round.

Traditionally, most clock phase activity rules in the CCA have relied on either revealed-preference
principles or a points-based system, where points are assigned to each item before the auction, and
bidders are only allowed to submit monotonically non-increasing bids in terms of points. In other
words, as prices rise across rounds, bidders cannot submit bids for larger sets of items. Both of these
approaches, as well as hybrid combinations thereof, were shown to actually further interfere with
truthful bidding in some cases (Ausubel & Baranov, 2014; 2020).

However, Ausubel & Baranov (2019) showed that basing clock phase activity rules entirely on
the generalized axiom of revealed preference (GARP) can dynamically approximate VCG payoffs,
thus improving the bidding incentives of the CCA. GARP imposes revealed-preference constraints
(see Definition 9) on the bidder’s demand responses. The GARP activity rule requires that the
bidder demonstrates rational behavior in her demand choices, without necessitating a monotonic
price trajectory. As a result, it can also be applied during the ML-powered DQ phase of MLHCA,
allowing our mechanism to enjoy similar improvements in bidding incentives.

For the supplementary round, the CCA’s most prominent activity rules are again based on a combi-
nation of points-based systems and revealed-preference ideas, which we outline below:
Definition 9. (REVEALED-PREFERENCE CONSTRAINT) The revealed-preference constraint for
bundle x ∈ X with respect to clock round r is

bi(x) ≤ bi(x
r) + ⟨pr, x− xr⟩ , (7)

where bi(x) ∈ R≥0 is bidder i’s bid for bundle x ∈ X in the supplementary round, xr ∈ X is the
bundle demanded by the agent at clock round r, bi(xr) ∈ R≥0 is the final bid for bundle xr ∈ X
and pr ∈ Rm

≥0 is the linear price vector of clock round r.

Intuitively, the revealed-preference constraint ensures that a bidder cannot claim a higher value for
bundle x relative to bundle xr, given that they expressed a preference for bundle xr at the given
prices pr (see Equation (1)). The difference between the three most prominent supplementary round
activity rules is with respect to which clock rounds the revealed-preference constraint should be
satisfied. Specifically:

1. Final Cap: A bid for bundle x ∈ X should satisfy the revealed-preference constraint
(Definition 9) with respect to the final clock round’s price pQ

max ∈ R≥0 and bundle xQmax ∈
X .

2. Relative Cap: A bid for bundle x ∈ X should satisfy the revealed-preference constraint
(Definition 9) with respect to the last clock round for which the bidder was eligible for that
bundle x ∈ X , based on the points-based system.

3. Intermediate Cap: A bid for bundle x ∈ X should satisfy the revealed-preference con-
straint (Definition 9) with respect to all eligibility-reducing rounds, starting from the last
clock round for which the bidder was eligible for x ∈ X based on the point system.

Ausubel & Baranov (2017) showed that combining the Final Cap and Relative Cap activity rules
leads to the largest amount of reduction in bid-sniping opportunities for the UK 4G auction, as

15The notion of ”bid-sniping” originated in eBay auctions with predetermined ending times, where high-
value bidders could reduce their payments by submitting bids at the very last moment.
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measured by the theoretical bid amount that each bidder would need to increase her bid by in the
supplementary round in order to protect her final clock round bundle. Finally, note that the Final- and
Intermediate Cap activity rules can also be applied to the ML-powered DQ phase of our MLHCA.16

To conclude, both the DQ and VQ phases of MLHCA are compatible with the most prominent activ-
ity rules of the CCA, and MLHCA also remains compatible with the commonly used VCG-nearest
pricing rule (Definition 8). Combined with MLHCA’s similar interaction paradigm to the CCA,
these aspects provide strong evidence that our mechanism can leverage activity rules to effectively
mitigate bidder misreporting opportunities, much like the classical CCA.

A.4 ON THE IMPORTANCE OF MARGINAL ECONOMIES TO ALIGN INCENTIVES

In this section, we review the key arguments from Brero et al. (2021) on why MLCA provides strong
incentives for truthful reporting in practice. These arguments extend to any ML-powered ICA that
employs the same VQ-generation algorithm, including MLHCA.

Bidder i’s utility in MLCA (and MLHCA) under VCG payments (see Definition 5) can be expressed
as:

ui = vi(a
∗(R)i)− πVCG

i (R)

= vi(a
∗(R)i) +

∑
j∈N\{i}

ṽj (a
∗(R)j ;Rj)︸ ︷︷ ︸

(a)

−
∑

j∈N\{i}

ṽj (a
∗(R−i)j ;Rj)︸ ︷︷ ︸

(b) Inferred SW of marginal economy

.

Any beneficial misreport by bidder i must increase the difference (a) − (b).

MLCA has two features that mitigate manipulations. First, MLCA explicitly queries each bidder’s
marginal economy (Algorithm 3, Line 5), which implies that (b) is practically independent of bidder
i’s reports. Experimental evidence supporting this claim is provided in Section 7.3 of Brero et al.
(2021). Second, MLCA (and also MLHCA) enables bidders to “push” information to the auction
which they deem useful. This mitigates certain manipulations that target (a), as it allows bidders
to increase (a) with truthful information. Brero et al. (2021) argue that any remaining manipulation
would be implausible as it would require almost complete information.

Under further assumptions, we can also derive two theoretical incentive guarantees:

• Assumption 1 requires that, for all bidders i ∈ N , if all other bidders report truthfully, then
the reported social welfare of bidder i’s marginal economy (i.e., term (b)) is independent
of her value reports.

• Assumption 2 requires that, if all bidders i ∈ N bid truthfully, then MLCA finds an efficient
allocation.

Result 1: Social Welfare Alignment Under Assumption 1, and given that all other bidders are
truthful, MLCA is social welfare aligned. This means that the only way for a bidder to increase her
true utility is by increasing the reported social welfare of a∗(R) in the main economy (i.e., term (a)),
which, in this case, equals the true social welfare of a∗(R) (Brero et al., 2021, Proposition 3). The
same is true for the VQ phase of MLHCA, as it employs the same allocation and payment rules.

Result 2: Ex-Post Nash Equilibrium If both Assumption 1 and Assumption 2 hold, then bidding
truthfully constitutes an ex-post Nash equilibrium in MLCA (Brero et al., 2021, Proposition 4). The
same is true for the VQ phase of MLHCA, as it employs the same allocation and payment rules.

To conclude, MLHCA’s compatibility with both activity rules during its DQ rounds and marginal
economies during its VQ rounds, as well as its compatibility with VCG and VCG-nearest payments,
provides strong evidence that MLHCA can effectively mitigate opportunities for bidder misreport-
ing.

16Soumalias et al. (2024b) argued that with the modification for the Relative Cap rule that the revealed-
preference constraint should hold for the QCCA rounds that follow the same price update rule as the CCA, and
then the ML-powered clock rounds should be treated as corresponding to the same amount of points, since the
prices in these rounds on aggregate stay very close to the prices of the last Qinit round.
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B A MACHINE LEARNING-POWERED ICA

In this section, we present in detail the machine learning-powered combinatorial auction (MLCA)
by Brero et al. (2021).

At the core of MLCA is a query module (Algorithm 2), which, for each bidder i ∈ I ⊆ N , de-
termines a new value query qi. First, in the estimation step (Line 1), an ML algorithm Ai is used
to learn bidder i’s valuation from reports Ri. Next, in the optimization step (Line 2), an ML-based
WDP is solved to find a candidate q of value queries. In principle, any ML algorithm Ai that allows
for solving the corresponding ML-based WDP in a fast way could be used. Finally, if qi has already
been queried before (Line 4), another, more restricted ML-based WDP (Line 6) is solved and qi is
updated correspondingly. This ensures that all final queries q are new.

Algorithm 2: NEXTQUERIES(I,R) (Brero et al. 2021)

Inputs: Index set of bidders I and reported values R
1 foreach i ∈ I do Fit Ai on Ri: Ai[Ri] ▷ Estimation step

2 Solve q ∈ argmax
a∈F

∑
i∈I

Ai[Ri](ai) ▷ Optimization step

3 foreach i ∈ I do
4 if (qi, vi(qi)) ∈ Ri then ▷ Bundle already queried

5 Define F ′ = {a ∈ F : ai ̸= x,∀(x, vi(x)) ∈ Ri}
6 Re-solve q′ ∈ argmaxa∈F′

∑
l∈I Al[Rl](al)

7 Update qi = q′i
8 return Profile of new queries q = (q1, . . . , qn)

In Algorithm 3, we present MLCA. In the following, let R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn).
MLCA proceeds in rounds until a maximum number of queries per bidder Qmax is reached. In each
round, it calls Algorithm 2 (Qround − 1)n + 1 times: for each bidder i ∈ N , Qround − 1 times
excluding a different bidder j ̸= i (Lines 5–10, sampled marginal economies) and once including
all bidders (Line 11, main economy). In total each bidder is queried Qround bundles per round in
MLCA. At the end of each round, the mechanism receives reports Rnew from all bidders for the
newly generated queries qnew and updates the overall elicited reports R (Lines 12–14). In Lines 16–
17, MLCA computes an allocation a∗R that maximizes the reported social welfare (see Equation (3))
and determines VCG payments p(R) based on the reported values R (see Appendix Definition 5).
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Algorithm 3: MLCA(Qinit, Qmax, Qround) (Brero et al. 2021)

Params: Qinit, Qmax, Qround initial, max and #queries/round
1 foreach i ∈ N do
2 Receive reports Ri for Qinit randomly drawn bundles
3 for k = 1, ..., ⌊(Qmax −Qinit)/Qround⌋ do ▷Round iterator

4 foreach i ∈ N do ▷ Marginal economy queries

5 Draw uniformly without replacement (Qround−1) bidders from N \ {i} and store them in Ñ

6 foreach j ∈ Ñ do
7 qnew = qnew∪ NextQueries(N \ {j}, R−j)
8 qnew = NextQueries(N,R) ▷ Main economy queries

9 foreach i ∈ N do
10 Receive reports Rnew

i for qnew
i , set Ri = Ri ∪Rnew

i

11 Given elicited reports R compute a∗
R as in Equation (3)

12 Given elicited reports R compute VCG-payments p(R)
13 return Final allocation a∗

R and payments p(R)
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C ML-POWERED DEMAND QUERY GENERATION

In this section, we reprint the ML-powered demand query generation algorithm from Soumalias
et al. (2024b). The critical notions behind the idea are those of indirect utility and revenue and
clearing prices.
Definition 10 (Indirect Utility and Revenue). For linear prices p ∈ Rm

≥0, a bidder’s indirect utility
U and the seller’s indirect revenue R are defined as

U(p, vi) := max
x∈X

{vi(x)− ⟨p, x⟩} and (8)

R(p) := max
a∈F

{∑
i∈N

⟨p, ai⟩

}
1
=

∑
j∈M

cjpj , (9)

i.e., at prices p, Equations (8) and (9) are the maximum utility a bidder can achieve for all x ∈ X
and the maximum revenue the seller can achieve among all feasible allocations.
Definition 11 (Clearing Prices). Prices p ∈ Rm

≥0 are clearing prices if there exists an allocation
a(p) ∈ F such that

1. for each bidder i, the bundle ai(p) maximizes her utility, i.e., vi(ai(p)) − ⟨p, ai(p)⟩ =
U(p, vi),∀i ∈ N , and

2. the allocation a(p) ∈ F maximizes the sellers revenue, i.e.,
∑

i∈N ⟨p, ai(p)⟩ = R(p).17

Theorem 2 extends Bikhchandani & Ostroy (2002, Theorem 3.1), establishing a connection between
the aforementioned definitions:
Theorem 2 (Soumalias et al. (2024b)). Consider the notation from Definitions 10 and 11 and the
objective function W (p, v) := R(p) +

∑
i∈N U(p, vi). Then it holds that, if a linear clearing price

vector exists, every price vector

p′ ∈ argmin
p̃∈Rm

≥0

W (p̃, v) (10a)

such that (x∗
i (p̃))i∈N ∈ F (10b)

is a clearing price vector and the corresponding allocation a(p′) ∈ F is efficient.18

Theorem 2 does not claim the existence of linear clearing prices (LCPs) p ∈ Rm
≥0. For general value

functions v, LCPs may not exist (Bikhchandani & Ostroy, 2002). However, in the case that LCPs
do exist, Theorem 2 shows that all minimizers of equation 10 are LCPs and their corresponding
allocation is efficient. This is at the core of their ML-powered demand query generation algorithm.

Their key idea to generate ML-powered demand queries is the following: As an approximation for
the true value function vi, they use for each bidder a distinct mMVNN Mθ

i : X → R≥0 that has
been trained on the bidder’s elicited DQ data Ri. Motivated by Theorem 2, they then try to find the
DQ p ∈ Rm

≥0 minimizing W (p,
(
Mθ

i

)n
i=1

) subject to the feasibility constraint equation 10b. This
way, we find demand queries p ∈ Rm

≥0 which, given the already observed demand responses R, have
high clearing potential.

Note that equation 10 is a hard, bi-level optimization problem. Instead, Theorem 3 allows them to
minimize the problem via gradient descent:

Theorem 3 ((Soumalias et al., 2024b)). Let
(
Mθ

i

)n
i=1

be a tuple of trained mMVNNs and let
x̂∗
i (p) ∈ argmaxx∈X

{
Mθ

i (x)− ⟨p, x⟩
}

denote each bidder’s predicted utility maximizing bun-
dle w.r.t. Mθ

i . Then it holds that p 7→ W (p,
(
Mθ

i

)n
i=1

) is convex, Lipschitz-continuous and a.e.

17For linear prices, this maximum is achieved by selling every item, i.e., ∀j ∈M :
∑

i∈N (ai)j = cj .
18More precisely, constraint equation 10b should be reformulated as

∃ (x∗
i (p̃))i∈N ∈×

i∈N

X ∗
i (p̃) : (x

∗
i (p̃))i∈N ∈ F ,

where X ∗
i (p̃) := argmaxx∈X {vi(x)− ⟨p̃, x⟩}, since in theory, x∗

i (p̃) does not always have to be unique.
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differentiable. Moreover,
c−

∑
i∈N

x̂∗
i (p) ∈ ∇sub

p W (p,
(
Mθ

i

)n
i=1

) (11)

is always a sub-gradient and a.e. a classical gradient.

With Theorem 3, we obtain the following update rule of classical GD pnew
j

a.e.
= pj − γ(cj −∑

i∈N (x̂∗
i (p))j), ∀j ∈ M . Interestingly, this equation has an intuitive economic interpretation.

If the jth item is over/under-demanded based on the predicted utility-maximizing bundles x̂∗
i (p),

then its new price pnew
j is increased/decreased by the learning rate times its over/under-demand. To

enforce constraint equation 10b in GD, they asymmetrically increase the prices 1 + µ ∈ R≥0 times
more in case of over-demand than they decrease them in case of under-demand. This leads to the
final update rule:

pnew
j

a.e.
= pj − γ̃j(cj −

∑
i∈N

(x̂∗
i (p))j), ∀j ∈ M, (12a)

γ̃j :=

{
γ · (1 + µ) , cj <

∑
i∈N (x̂∗

i (p))j
γ , else

(12b)
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D EXTENDED LITERATURE REVIEW

In addition to the related work mentioned in Section 1, we also want to mention some further recent
work an ML-based ICAs.

Estermann et al. (2023) use more diverse VQs for the initial VQs. They show that this diversity
leads to higher efficiency than just asking initial VQs for i.i.d. uniformly random bundles. However,
this does not solve the problem of it being cognitively very hard for bidders to answer these VQs
that are not aligned with their preferences. Moreover, their efficiency results are outperformed by
our MLHCA.

Maruo & Kashima (2024) uses multi-task learning to transfer to improve the generalization of the
MVNNs by leveraging similarities among the value functions across bidders. This technique should
also be compatible with our MLHCA. Thus, it would be an interesting direction for future work to
incorporate multi-task learning into MLHCA and to evaluate how much this would improve effi-
ciency. From a game theoretical perspective, one should think very carefully if multi-task learning
could change the incentives of bidders. From a game-theoretical perspective, one would achieve
incentive-alignment with SCW, if each bidder i cannot change the marginal efficiency of the econ-
omy N \ {i}. For MLCA, 3 out of 4 VQs actually query these marginal economies, such that
Mθ

i has no direct influence on these queries, which provides quite a strong game theoretical argu-
ment. Via multi-task learning, bidders have a more direct way to influence other bidders’ models.
While multi-task learning is a very promising direction to explore, one should be aware of potential
game-theoretical risks imposed by multi-task learning.

Lubin et al. (2021) allow bidders to answer VQs with an interval over prices instead of an exact
price. It would be interesting for future work to combine this approach with MLHCA.

Weissteiner (2023) and Heiss (2024, Section 4.4) provide a broader picture on ML-based ICAs.
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E PROOFS FROM SECTION 3

In this Section, we provide all deferred proofs from Section 3.

Lemma 1 Proof. Let n = 2 and m = 100 and c1 = c2 = · · · = cm = 1, i.e., the auction has
100 unique items. Bidder 1 has a value of zero for the empty set and a value of ϵ > 0 for any
non-empty set of items, while bidder 2 has a value of V −→ ∞ for the full bundle, and a value of
zero for any other bundle. Note that these are proper value functions, as they are both monotone
and assign a value of zero to the empty set. The bundle space X has a size of 2m. For the auction
that asks random value queries, the probability that bidder 2 is queried her value for the full bundle
conditioned on not having been asked that question in the previous k queries is 1

2m−k . Given that
2m is many orders of magnitude larger than k, the probability of the auction not querying bidder 2
her value for the full bundle in k random value queries is:

k∏
j=1

(
1− 1

2m − (j − 1))

)
=

k∏
j=1

(
2m − j

2m − (j − 1))

)
≈

k∏
j=1

(
2m

2m

)
= 1 (13)

If that query is asked to bidder 2, then bidder 2 will be allocated that bundle and bidder 1 will be
allocated the empty bundle, and the social welfare of the final allocation will be equal to V . In any
other case, bidder 1 will be allocated a non-empty bundle, and the social welfare of the allocation
will be equal to ϵ.

Say we restrict the auction that asks random queries to just a single demand query per bidder. The
expected total price for the full bundle is m · p, where p is the expected value of the price of a single
item. Given that V ≫ p ·m, the probability that bidder 2 will not request the full bundle, even with
just a single query, tends to 0. But if bidder 2 requests the full bundle, her inferred value for it will be
on expectation p ·m, while bidder 1’s inferred value for the bundle that she requested in that round
will be at most her true value for that bundle, ϵ. Given that ϵ tends to zero, the probability that p ·m
is less than ϵ tends to zero. Thus, the expected value of the auction that asks a single random DQ
tends to V . Taking V −→ ∞ and ϵ −→ 0 completes the proof.
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F TRAINING ALGORITHM DETAILS

In this section, we provide the details on our training algorithm to combine DQs and VQs. To
leverage the advantages of both DQs and VQs, we propose a straightforward two-stage training
algorithm. In each epoch, the ML model is first trained on all DQ responses using the loss function
from (Soumalias et al., 2024b) (Lines 4 to 6). The main idea behind this loss, is that for each DQ, an
optimizaiton problem is solved to predict the bidder’s utility-maximizing bundle at the given prices,
treating her ML model as her true value function. In case the predicted reply disagrees with the
bidder’s true reply, the loss is the difference in predicted utilities between these 2 bundles, given
the current prices. Next, the model is trained on the VQ responses using a standard regression loss
(Lines 8 to 10) This mixed approach ensures that the model benefits from both the broad information
of DQs and the precise value information from VQs.

Algorithm 4: MIXEDTRAINING

Input : Demand query data RDQ
i = {(x∗

i (p
r), pr)}Rr=1, Value query data RV Q

i =
{(

xl
i, vi(x

l
i)
)}L

l=1
Epochs T ∈ N, Learning Rate γ > 0, Cardinal loss function F

1 θ0 ← init mMVNN ▷ Weissteiner et al. (2023, S.3.2)

2 for t = 0 to T − 1 do
3 for r = 1 to R do ▷ Demand responses for prices

4 Solve x̂∗
i (p

r) ∈ argmaxx∈XM
θt
i (x)− ⟨pr, x⟩

5 if x̂∗
i (p

r) ̸= x∗
i (p

r) then ▷ mMVNN is wrong

6 L(θt)← (Mθt
i (x̂∗

i (p
r))− ⟨pr, x̂∗

i (p
r)⟩)− (Mθt

i (x∗
i (p

r))− ⟨pr, x∗
i (p

r)⟩) ▷ Add

predicted utility difference to loss

7 θt+1 ← θt − γ(∇θL(θ))θ=θt ▷ SGD step

8 for l = 1 to L do ▷ Value Queries

9 L(θt)← F (Mθt
i (xl

i), vi(x
l
i)) ▷ Cardinal Loss on VQs

10 θt+1 ← θt − γ(∇θL(θ))θ=θt ▷ SGD step

11 return Trained mMVNNMθT
i
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G LEARNING EXPERIMENTS FOR OTHER DOMAINS

In Tables 3 to 5 we present the results of the learning experiment of Section 4.2 for all additional
domains.

Across all domains, the network trained only on DQs demonstrates the worst generalization per-
formance on the dataset Tr. This is primarily due to two factors: the absence of absolute value
information that VQs provide and the distributional shift between Tr and Tp, with the DQ training
data being more aligned with Tp.

The performance of the network trained solely on VQs varies by domain. In the GSVM and SRVM
domains, the learning task is relatively easy, as indicated by the already strong performance of
previous ML-powered ICAs. In these domains, the networks trained only on VQs perform well
across both test sets (Tables 3 and 5). However, in the more challenging LSVM domain—similarly
to the MRVM domain discussed in Section 4.2—the network trained exclusively on VQs performs
well on the Tr test set, which contains points from the same distribution as its training data, but
performs worse on the utility-maximizing bundles of Tp compared to the network trained on both
query types.

This inferior learning performance on the critical dataset Tp explains why MLHCA outperforms
pure VQ-based ML-powered ICAs, such as Weissteiner et al. (2023); Weissteiner & Seuken (2020),
in the LSVM domain.

OPTIMIZATION TRAIN POINTS R2 KT MAE SCALED R2
c

METRIC VQS DQS Tr Tp Tr Tp Tr Tp Tr Tp

R2 ON Vr 20 40 0.96 0.95 0.90 0.94 0.07 0.12 0.96 0.98
60 0 0.99 0.98 0.96 0.98 0.03 0.05 0.99 0.98
0 60 0.79 0.97 0.83 0.94 0.04 0.02 0.91 0.98

R2 ON Vp 20 40 0.96 0.99 0.91 0.96 0.07 0.04 0.97 0.99
60 0 0.99 0.98 0.96 0.98 0.03 0.02 0.99 0.98
0 60 0.79 0.97 0.83 0.94 0.13 0.05 0.91 0.98

Table 3: Learning comparison of training only on DQs, only on VQs, or on both for the GSVM
domain.

OPTIMIZATION TRAIN POINTS R2 KT MAE SCALED R2
c

METRIC VQS DQS Tr Tp Tr Tp Tr Tp Tr Tp

R2 ON Vr 20 40 0.38 0.88 0.65 0.80 0.46 0.33 0.44 0.91
60 0 0.67 0.80 0.75 0.81 0.30 0.46 0.67 0.87
0 60 -1.20 0.99 0.80 0.84 1.10 0.11 0.46 0.99

R2 ON Vr 20 40 0.38 0.88 0.65 0.80 0.46 0.33 0.44 0.91
60 0 0.65 0.82 0.81 0.88 0.25 0.38 0.66 0.87
0 60 -2.97 0.96 0.77 0.85 1.51 0.22 0.42 0.97

Table 4: Learning comparison of training only on DQs, only on VQs, or on both for the LSVM
domain.

32



OPTIMIZATION TRAIN POINTS R2 KT MAE SCALED R2
c

METRIC VQS DQS Tr Tp Tr Tp Tr Tp Tr Tp

R2 ON Vr 20 40 1.00 0.89 0.97 0.90 0.02 0.03 1.00 0.93
60 0 1.00 0.96 0.99 0.97 0.00 0.01 1.00 0.97
0 60 0.93 -0.13 0.96 0.92 0.11 0.10 0.97 0.94

R2 ON Vp 20 40 1.00 0.94 0.98 0.92 0.01 0.02 1.00 0.94
60 0 1.00 0.96 0.99 0.97 0.00 0.01 1.00 0.97
0 60 0.91 0.02 0.96 0.86 0.12 0.09 0.95 0.89

Table 5: Learning comparison of training only on DQs, only on VQs, or on both for the SRVM
domain.
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H DETAILED AUCTION MECHANISM

In this section, we present a detailed description of MLHCA. The full auction mechanism is pre-
sented in Algorithm 5. In Lines 3 to 6, we generate the first QCCA DQs using the same price update
rule as the CCA. In each of the next QDQ ML-powered rounds, we first train, for each bidder, an
mMVNN on her demand responses (Line 9). Next, in Line 10, we call NEXTPRICE (Soumalias
et al., 2024b) to generate the next DQ based on the agents’ trained mMVNNs (see Appendix C).
If MLHCA has found market-clearing prices, then the corresponding allocation is efficient and is
returned, along with payments π(R) according to the deployed payment rule (Line 16). If, by the
end of the ML-powered DQs the market has not cleared we switch to VQ rounds. In the first VQ
round (Line 18) we ask each bidder for her bridge bid (see Definition 4). As proven in Lemma 4,
this single VQ ensures that the MLHCA’s efficiency is lower bounded by the efficiency after just
the DQ rounds. The difference in the algorithm description compared to the version presented in
Section 5 lies in the VQ rounds. Specifically, we make use of marginal economies. Once every
Qround VQ rounds, for each bidder, we query her value for the bundle she receives in the predicted
optimal allocation (based on all ML models), under the constraint that the bidder in question re-
ceives a bundle for which she has not been queried in the past (Lines 22 to 25). This is as described
in Section 5. But in the other Qround − 1 rounds, for each bidder, we query her value for the bundle
she receives in the predicted optimal allocation based only on the models of the non-marginalized
bidders (Lines 26 to 30). Each time, for each bidder, we marginalize Qround − 1 bidders uniformly at
random without replacement. The marginal economies have been designed to improve the incentive
properties of the auction (for a detailed analysis, see Brero et al. (2021)). Similar to all papers in this
line of work, e.g. Brero et al. (2021); Weissteiner et al. (2022a; 2023), we set Qround = 4 in all of
our experiments. The final allocation and payments are then determined based on all reports (Lines
25 to 26). Note that ML-CCA can be combined with various possible payment rules π(R), such as
VCG or VCG-nearest.
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Algorithm 5: MLHCA(QCCA, QDQ, QVQ, Qround)

Parameters: QCCA, QDQ, QVQ, Qround and π
1 RV Q ← ({})Ni=1

2 RDQ ← ({})Ni=1

3 for r = 1, ..., QCCA do ▷ Draw QCCA initial prices

4 pr ← CCA(RDQ)
5 foreach i ∈ N do ▷ Initial demand query responses

6 RDQ
i ← RDQ

i ∪ {(x∗
i (p

r), pr)}
7 for r = QCCA + 1, ..., QCCA +QDQ do ▷ ML-powered DQs

8 foreach i ∈ N do
9 Mθ

i ← MIXEDTRAINING(RDQ
i ∪RV Q

i ) ▷ Section 4.1

10 pr ← NEXTPRICE(
(
Mθ

i

)n
i=1

) ▷ Appendix C

11 foreach i ∈ N do ▷ Demand query responses for pr

12 RDQ
i ← RDQ

i ∪ {(x∗
i (p

r), pr)}

13 if
n∑

i=1

(x∗
i (p

k))j = cj ∀j ∈M then ▷ Market-clearing

14 a∗(RDQ ∪RV Q)← (x∗
i (p

r))ni=1 ▷ Set final allocation to clearing allocation

15 Calculate payments π(RDQ ∪RV Q)← (πi(R
DQ ∪RV Q))ni=1

16 return a∗(RDQ ∪RV Q) and π(RDQ ∪RV Q)
17 foreach i ∈ N do ▷ Bridge bid

18 Ri ← Ri ∪ {(a∗
i (R), vi(a

∗
i (R)))}

19 for r = QCCA +QDQ + 2, ..., QCCA +QDQ +QVQ do ▷ ML-powered VQs

20 foreach i ∈ N do
21 Mθ

i ← MIXEDTRAINING(RDQ
i ∪RV Q

i ) ▷ Section 4.1

22 if r%Qround = 0 then ▷ Query Main Economy

23 foreach i ∈ N do
24 x′(R)← argmax

x∈F:xi /∈R
V Q
i

∑
i′∈NM

θ
i (xi′) ▷ Find predicted optimal allocation

25 x∗
i (R)← x′

i(R)
26 else ▷ Query Marginal Economy

27 foreach i ∈ N do
28 Ñ ← draw uniformly at random Qround − 1 bidders from N \ {i}
29 x′(R)← argmax

x∈F:xi′ /∈R
V Q

i′

∑
i′∈ÑM

θ
i (xi′) ▷ Find predicted optimal allocation

in marginal economy

30 x∗
i (R)← x′

i(R)
31 foreach i ∈ N do ▷ Value query responses for x∗(R)

32 Ri ← Ri ∪ {(x∗
i (R), vi(x

∗
i (R)))}

33 Calculate final allocation a∗(R) as in Equation (3)
34 Calculate payments π(R) ▷ E.g., VCG (Appendix A)

35 return a∗(R) and π(R)
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I MVNN

The original definition (Weissteiner et al., 2022a) is a special case of the more general definition
(Soumalias et al., 2024b) that we state here.

Definition 12 (MVNN). An MVNN Mθ
i : X → R≥0 for bidder i ∈ N is defined as

Mθ
i (x) := W i,Kiφ0,ti,Ki−1

(
. . . φ0,ti,1(W

i,1 (Dx) + bi,1) . . .
)

(14)

• Ki + 2 ∈ N is the number of layers (Ki hidden layers),
• {φ0,ti,k}Ki−1

k=1 are the MVNN-specific activation functions with cutoff ti,k > 0, called bounded
ReLU (bReLU):

φ0,ti,k(·) := min(ti,k,max(0, ·)) (15)

• W i := (W i,k)Ki

k=1 with W i,k ≥ 0 and bi := (bi,k)Ki−1
k=1 with bi,k ≤ 0 are the non-negative weights

and non-positive biases of dimensions di,k × di,k−1 and di,k, whose parameters are stored in
θ = (W i, bi).

• D := diag (1/c1, . . . , 1/cm) is the linear normalization layer that ensures Dx ∈ [0, 1] and is not
trainable.

Remark 7. The index i of the MVNN Mθ
i (x) emphasizes that we train an individual MVNN for

every bidder i to approximate vi. In the following, we sometimes omit the index i if we just want to
make general arguments about the MVNN architecture without.

Remark 8 (Linear Skip Connection). Sometimes we also use linear skip connections as introduced
in (Weissteiner et al., 2023, Definition F.1)

Remark 9 (Initiaization). We always use the initialization scheme from (Weissteiner et al., 2023,
Section 3.2 and Appednix E), which offers crucial advantages over standard initialization schemes
as discussed in (Weissteiner et al., 2023, Section 3.2 and Appednix E).

I.1 ON THE INDUCTIVE BIAS OF MVNNS

Weissteiner et al. (2022a); Soumalias et al. (2024b) have shown that MVNNscan represent any
monotonic normalized function on X . However, for finitely many data points multiple different
monotonic functions can fit the data equally well, but the training algorithm will choose only one
of these functions. We want to understand according to which preferences the algorithm makes this
choice, i.e., we want to understand its inductive bias.

For certain ReLU-NNs it has been shown that L2-regularization (also known as “weight decay”)
of the parameters θ corresponds to regularizing a Lp-norm of the second derivative of the function
(Heiss et al., 2019; 2023; 2021; Heiss, 2024; Savarese et al., 2019; Ongie et al., 2019; Williams
et al., 2019; Parhi & Nowak, 2022). Since the second derivative of linear functions is zero, these
NNs prefer linear functions.

However, MVNNs use a different activation function (Weissteiner et al., 2022a). For MVNNs, no
theoretical result about their second derivative has been proven so far. It is quite clear that the
L2-regularization of the parameters of a MVNN does not exactly correspond to any Lp-norm of
the second derivative. Weissteiner et al. (2023) modified the MVNN architecture by adding so-
called linear skip connections (Weissteiner et al., 2023, Definition F.1) to obtain an inductive bias
towards linear functions. If one uses unregularized linear skip connections but regularizes all other
parameters, it is quite obvious that the optimal parameters will only have non-zero weights in the
linear skip connections if a monotonic linear function can perfectly explain the data.19

In the setting of Example 1 (which is based on the example in the proof of Theorem 1) one can
also prove that MVNNs with arbitrarily small L2-regularization, would always choose a function
that is linear on X given any possible truthful DQ responses from bidder 2, even without linear skip
connections.

19If the data can be perfectly explained by a linear function, then only using the linear skip connections
can achieve zero training loss and zero regularization costs, while setting any parameter outside the linear skip
connections to any non-zero value would lead to non-zero L2 regularization costs.
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Proposition 2. As in Example 1, let n = 2, m = 1, c1 = 10 and v2 such that whenever bidder 2 is
queried a DQ she answers in the following way:

• If the price p is below 94
10 , bidder 2 will answer with x∗

2(p) = (10);

• if the price p = 94
10 , bidder 2 will answer with either x∗

2(p) = (10) or x∗
2(p) = (0);

• if the price p is higher than 94
10 , bidder 2 will answer with x∗

2(p) = (0).

Let {p1, . . . , pn
train
DQ } ⊂ [0,∞) be the subset of prices bidder 2 is queried. Let θ∗ be any (local)

minimizer of the L2-regularized loss from Soumalias et al. (2024b)

Lλ(θ) :=

ntrain
DQ∑

r=1

(
Mθ(x̂

∗
2(p

r))− ⟨pr, x̂∗
2(p

r)⟩ −
(
Mθ(x

∗
2(p

r))− ⟨pr, x∗
2(p

r)⟩
) )+

+ λ ∥θ∥22 ,

where x̂∗
2(p

r) := argminx∈X (Mθ(x)− ⟨pr, x⟩). Then the MVNN Mθ∗ : X → R is linear.

Proof. We define p̃ := max
{
pr : x∗(r) = (10), 1 ≤ r ≤ ntrain

DQ

}
.20

1. First we show that Mθ∗(10) ≤ 10p̃ via a contraposition argument. Let’s assume
Mθ∗(10) ≥ 10q > 10p̃, then multiplying the last layer’s weights by 1 − δ > q

p̃ would
both reduce the data-loss-term L0 (since the activation the hidden layers of MVNNs are
always non-negative) and the regularization costs λ ∥·∥22. Therefore, no local minima θ∗

can satisfy Mθ∗(10) > 10p̃. Thus, we have shown that Mθ∗(10) ≤ 10p̃ holds for any
local minima θ∗.

2. Next, we show that all pre-activations of our Mθ∗ are smaller or equal to the cut-off of
the corresponding bReLU activation function for any input x ∈ X . Let’s assume again
the contraposition that at least one pre-activation is larger than the cut-off. In this case,
we can scale down all the incoming weights of such a neuron without changing Mθ∗(10).
Scaling down these weights cannot increase the value of Mθ∗(x) for any x ∈ X , so it
cannot increase the data-loss term L0, but scaling down weights obviously decreased the
regularization costs. Thus, via this counterposition argument, we have proven that all the
pre-activations are smaller or equal to the cut-off for any local minima θ∗.

3. Next, we show that all biases of θ∗ are zero. First, note that by item 2, we know that Mθ∗ is
convex (since the bReLU is convex below the cut-off). By combining this fact with item 1,
we obtain that Mθ∗(x) ≤ xp̃, since MVNNs always satisfy Mθ(0) = 0. Let’s assume the
counterposition of at least one bias being strictly negative (as by definition biases can never
be positive for MVNNs). Then we could increase the bias a little bit without increasing the
data-loss-term L0,21 but increasing the bias reduces its regularization cost. Thus any local
minima θ∗ satisfies that the biases are zero.

By combining items 2 and 3 we obtain that Mθ∗ is linear.

20If
{
pr : x∗(r) = (10), 1 ≤ r ≤ ntrain

DQ

}
is empty, we define p̃ := 0. In Example 1, p̃ = 94−ϵ

10
.

21This argument relies on the fact, that we only queried finitely many DQs. If we asked infinitely many DQs
that are dense around p = 94

10
, one would need to modify the argument by not only increasing the biases but

simultaneously also decreasing certain weights.
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J REVENUE RESULTS

EFFICIENCY LOSS IN % RELATIVE REVENUE IN %

DOMAIN MLHCA BOCA MLHCA BOCA

GSVM 0.00± 0.00 — 70.15± 4.43 —
LSVM 0.04± 0.07 0.39± 0.31 79.43± 3.05 73.53± 3.72

SRVM 0.00± 0.00 0.06± 0.02 56.05± 1.69 54.22± 1.46

MRVM 4.81± 0.57 7.77± 0.35 27.97± 2.16 42.04± 1.89

Table 6: Efficiency loss and relative revenue comparison between MLHCA (40DQs + 60VQs) and
BOCA (100VQs). Shown are averages and a 95% CI. Winners marked in gray.

In Table 6, we present the relative revenue results of MLHCA and BOCA, both using VCG payments
(see Appendix A.1). We define relative revenue as the percentage of optimal welfare recovered as
revenue on a per-instance basis. For a detailed discussion of the corresponding efficiency results,
please refer to Section 6.

Unlike efficiency, the best-performing mechanism in terms of revenue varies by domain. In the
LSVM and SRVM domains, MLHCA generates higher revenue than BOCA, while in the MRVM
domain, the opposite is true.

The explanation for MLHCA’s higher revenue in the LSVM and SRVM domains is straightforward:
MLHCA achieves higher efficiency than BOCA in these domains and still has at least 42 VQs
remaining after matching BOCA’s efficiency. This additional exploration afforded by those extra
VQs enables MLHCA to identify many high-value allocations, ultimately driving up prices under
the VCG payment rule.

The lower revenue of MLHCA compared to BOCA in the MRVM domain can be explained by
examining the DQ rounds of MLHCA. In this domain, lower competition among bidders results in
relatively low item prices, which reduces the inferred-to-true welfare ratio of the allocations based
only on the DQs. This is illustrated in Figure 3. The low inferred value from these queries prevents
them from driving up the VCG prices, even though they lead to allocations with high efficiency. As
a result, in this domain, only the VQs contribute significantly to the auction’s payments. Given that
BOCA uses 100 VQs while MLHCA uses only 60, this difference leads to BOCA achieving higher
revenue in the MRVM domain.
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K DETAILS ON WHY ONE SHOULD START WITH DQS AND END WITH VQS.

This appendix extends Section 3.3 by elaborating more on multiple reasons why ML-based ICAs
benefit enormously from first asking DQs and then transitioning to VQs.

From a practical standpoint, it is nearly impossible for bidders to accurately answer VQs for bundles
selected uniformly at random, while it is much easier for them to respond to VQs that are closely
aligned with their preferences.22 At the beginning of the auction, the auctioneer has no prior knowl-
edge of which bundles align with the bidders’ interests. By starting with DQs, the auctioneer can
gather initial insights into bidders’ preferences, enabling the selection of VQs that are later highly
targeted and more relevant to each bidder’s interests.

This practical consideration alone makes a compelling case for starting an auction with DQs. In the
following, we argue that even beyond this practical reason, there are multiple theoretical advantages
to beginning with DQs and concluding the auction with VQs.

Empirically, we observe that VQ-based approaches (Weissteiner & Seuken, 2020; Weissteiner et al.,
2022b;a; 2023) tend to outperform DQ-based mechanisms in later iterations, as suggested by Theo-
rem 1 and Lemma 5. However, DQs consistently perform better in the earlier rounds.

This leads to our hypothesis that DQs are significantly more valuable in the initial iterations of
CAs, whereas VQs become more valuable in later stages. Our experiments, presented in Section 6,
confirm this hypothesis. Our MLHCA, which begins by asking DQs and later transitions to VQs,
achieves higher efficiency compared to using only DQs or only VQs for all rounds.

The intuitive explanation for this is as follows: from the outset, bidders respond to DQs with bun-
dles that they find genuinely interesting, providing relevant information right from the start (see
Lemma 1). It also makes sense to first gather global information23 about the value functions through
DQs to get an overview of bidders’ preferences, and then use VQs to gather more precise, “local”
information about the most relevant bundles once we have enough knowledge to identify them.

As the auction progresses, the limitations of DQs (see Theorem 1) become more apparent. In con-
trast, VQs do not suffer from these limitations and remain informative until an efficient allocation is
found (see Lemma 5).

Example 1 illustrates how VQs lead to allocations that fit together effectively.24 In contrast, re-
sponses to a single DQ often lead to over-demand for certain items or leave some items unassigned
(under-demand). In Example 1, bidder 2 lacks information to know she should bid for 9 items.
Only the auctioneer, having information from all bidders, knows that assigning 9 items to bidder 2
would complement bidder 1’s preferences. The auctioneer can leverage this aggregated knowledge
by asking bidder 2 a VQ for 9 items, whereas DQs alone would not provide this opportunity.

Moreover, we argue that the combination of DQs and VQs is particularly powerful for learning
bidders’ value functions, as the information from these two query types complements each other
nicely (see Section 4).

22In the example from Footnotes 3 and 4, imagine being asked in one iteration to provide your value for a
bundle of exactly the ingredients needed for a strawberry cake, and in the next iteration for a bundle needed for
a blueberry cake. These VQs might be easier to answer if your initial intention was baking a cake.

23Each DQ provides information about every possible bundle in the bundle space, making DQs highly effec-
tive for exploring the entire space early on.

24By definition, all the bundles in a VQ form a feasible allocation. Furthermore, VQs typically allocate
(almost) all items to bidders, as they maximize the estimated social welfare. The MVNN architecture ensures
monotonicity in the estimated value functions. If the estimated value functions were strictly monotonic, the
solution to the MILPs determining the next VQ would always allocate all items.
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K.1 HYPERPARAMETER OPTIMIZATION DETAILS

In this section, we provide details on our exact HPO methodology and the ranges that we used.

We separately optimized the HPs of the mMVNNs for each bidder type of each domain, using a
different set of SATS seeds than for all other experiments in the paper. Specifically, for each bidder
type, we first trained an mMVNN using as initial data points the demand responses of an agent
of that type during 40 consecutive CCA clock rounds, and her value responses for 30 uniformly at
random selected bundles, and then measured the generalization performance of the resulting network
on a validation set that consisted of 50,000 uniformly at random bundles of items, similar to Vr in
Section 4.2. The number of seeds used to evaluate each model was equal for all models and set to 10.
Finally, for each bidder type, we selected the set of HPs that performed the best on this validation
set with respect to the coefficient of determination (R2). The full range of HPs tested for all agent
types and all domains is shown in Table 7, while the winning configurations are shown in Table 8.

The winning configurations for both metrics are shown in Table 8

Hyperparameter HPO-Range
Non-linear Hidden Layers [1,2,3]
Neurons per Hidden Layer [8, 10, 20, 30]
Learning Rate (1e-4, 1e-2)
Epochs [30, 50, 70, 100, 300, 500, 1000]
L2-Regularization (1e-8, 1e-2)
Linear Skip Connections25 [True, False]
Cached DQ solution Frequency [1, 2, 5, 10]
Batch Size for VQs [1, 5, 10]

Table 7: HPO ranges for all domains.

DOMAIN BIDDER TYPE # HIDDEN LAYERS # HIDDEN UNITS LIN. SKIP LEARNING RATE L2 REGULARIZATION EPOCHS CACHED SOLUTION FREQ. BATCH SIZE

LSVM REGIONAL 1 20 FALSE 0.001 0.000001 100 20 1
NATIONAL 1 30 TRUE 0.0001 0.001 1000 10 5

GSVM REGIONAL 2 30 TRUE 0.0001 0.001 1000 10 5
NATIONAL 2 30 FALSE 0.0005 0.0001 200 10 1

MRVM LOCAL 3 20 TRUE 0.001 0.00001 200 5 10
REGIONAL 1 30 TRUE 0.0001 0.000001 1000 20 1
NATIONAL 2 20 FALSE 0.001 0.000001 100 5 10

SRVM LOCAL 1 1000 TRUE 0.01 0.0001 10 5 1
REGIONAL 1 30 FALSE 0.005 0.000001 500 5 1
HIGH FREQUENCY 1 10 TRUE 0.005 0.00001 500 10 5
NATIONAL 1 10 TRUE 0.005 0.00001 1000 5 10

Table 8: Winning HPO configurations for R2

25For the definition of (m)MVNNs with a linear skip connection, please see Weissteiner et al. (2023, Defini-
tion F.1)
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