
LEARNING EFFICIENT AND PROVABLY CONVERGENT
SPLITTING METHODS∗

LISA M. KREUSSER‡† , HENRY E. LOCKYER‡ , EIKE H. MÜLLER‡ , AND PRANAV

SINGH‡

Abstract. Splitting methods are widely used for solving initial value problems (IVPs) due
to their ability to simplify complicated evolutions into more manageable subproblems. These sub-
problems can be solved efficiently and accurately, leveraging properties like linearity, sparsity and
reduced stiffness. Traditionally, these methods are derived using analytic and algebraic techniques
from numerical analysis, including truncated Taylor series and their Lie algebraic analogue, the
Baker–Campbell–Hausdorff formula. These tools enable the development of high-order numerical
methods that provide exceptional accuracy for small timesteps. Moreover, these methods often
(nearly) conserve important physical invariants, such as mass, unitarity, and energy. However, in
many practical applications the computational resources are limited. Thus, it is crucial to identify
methods that achieve the best accuracy within a fixed computational budget, which might require
taking relatively large timesteps. In this regime, high-order methods derived with traditional meth-
ods often exhibit large errors since they are only designed to be asymptotically optimal. Machine
Learning techniques offer a potential solution since they can be trained to efficiently solve a given
IVP with less computational resources. However, they are often purely data-driven, come with lim-
ited convergence guarantees in the small-timestep regime and do not necessarily conserve physical
invariants. In this work, we propose a framework for finding machine learned splitting methods
that are computationally efficient for large timesteps and have provable convergence and conserva-
tion guarantees in the small-timestep limit. We demonstrate numerically that the learned methods,
which by construction converge quadratically in the timestep size, can be significantly more efficient
than established methods for the Schrödinger equation if the computational budget is limited.

Key words. Initial value problems, Geometric numerical integration, Operator splitting, Ma-
chine learning, Convergence, Computational efficiency, Schrödinger equation.

MSC codes. 34A26, 34L40, 65B99, 65L05, 65L20, 65Y20

1. Introduction. In this paper we consider first order initial value problems
(IVPs) which arise in a wide range of physical applications. They encompass systems
of ordinary differential equations (ODEs) with a finite dimensional state space, as well
as the more general case of partial differential equations (PDEs) expressed as ODEs
on an infinite dimensional Hilbert space H. Mathematically, first order IVPs can be
written as

(1.1) u̇(t) = f(u, t), u(0) = u0, u(t) ∈ H, t ∈ [0, T],

for some T > 0, where u is some state that evolves in time t from a given initial state
u0 under the action of a vector field f and u̇ denotes the derivative of u with respect
to time t. In general, it is not possible to solve IVPs like (1.1) analytically; even
where closed form solutions do exist, their evaluation is often prohibitively expen-
sive computationally. Thus we require numerical methods that are stable, accurate
and computationally efficient. These are typically realised in terms of time-stepping
methods where, for the sake of simplicity, we consider the evolution to the final time
T = Nh as being split into N equal steps of size h≪ T . A one-step numerical method

∗Submitted to the editors November 15, 2024.
Funding: Henry Lockyer is supported by a scholarship from the EPSRC Centre for Doctoral

Training in Statistical Applied Mathematics at Bath (SAMBa), under the project EP/S022945/1.
†(Corresponding author).
‡Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom

(lmk54@bath.ac.uk, hl785@bath.ac.uk, em459@bath.ac.uk, ps2106@bath.ac.uk).

1

ar
X

iv
:2

41
1.

09
44

4v
1

 [
m

at
h.

N
A

]
 1

4
N

ov
 2

02
4

mailto:lmk54@bath.ac.uk
mailto:hl785@bath.ac.uk
mailto:em459@bath.ac.uk
mailto:ps2106@bath.ac.uk

2 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

is then uniquely defined by the forward map from the approximate solution at a given
time t to the approximate solution at time t+ h.

Splitting and composition methods [6] allow the separation of the evolution in
(1.1) into simpler IVPs which can be solved efficiently and accurately; as a consequence
they have been used successfully in many areas, see e.g. [32]. In particular, we assume
that the vector field f = f [1] + f [2] can be split into two components f [1] and f [2],
each of which defines an IVP that is simpler to solve numerically; as shown in [18]
this is indeed the case for a wide range of applications.

Traditionally, splitting and composition methods methods are derived using ana-
lytic and algebraic conditions, including truncated Taylor series and their Lie algebraic
analogue, the Baker–Campbell–Hausdorff (BCH) formula [23, 9] to guarantee consis-
tency (or local error) of high order. Once stability is ensured, this leads to high-order
convergence (of the global error) in the asymptotic limit of small timesteps h → 0,
see e.g. [37, 28, 32, 5]. However, the asymptotic convergence of traditional methods
implies that they are most efficient for small timestep h, which correspond to signif-
icant computational cost. It is also not obvious that a method which is designed to
be fast in the limit h → 0 will be the best choice for larger h. To make these points
explicit we define two criteria to characterise an optimal numerical method:
C1: The method has the fastest decrease in error in the asymptotic regime h→ 0.
C2: The method has the smallest error for a given limited computational budget.
Traditionally, the focus has been on constructing methods that satisfy criterion C1.
This, however, is not helpful if computational resources are limited and simulations
have to be carried out at relatively large timestep sizes. This scenario, which is of
significant practical interest, is the case we consider in this work. Our aim is to
construct numerical methods with machine learning techniques such that they satisfy
criterion C2, while being provably convergent in the limit h→ 0.

The exact solutions of IVPs often conserve a range of quantities that are known
as invariants or first integrals. For example, for the Schrödinger equation the norm of
the complex-valued solution does not change with time, which physically translates
to the conservation of total probability, see [35]. More generally, for the Schrödinger
equation the evolution of the IVP preserves the inner product of the underlying Hilbert
space, a property known as unitarity, as well as the total energy, see [35]. Similarly,
Hamiltonian systems conserve a symplectic two-norm in phase space, see [20]. Such
invariants often have a physical interpretation and are typically related to conservation
laws. It is highly desirable to construct numerical methods which preserve these
invariants at least approximately. This usually also improves the stability of the
method since it limits the trajectory to a sub-manifold of the Hilbert space. An
important example is the class of symplectic integrators, see e.g. [20].

Machine Learning (ML) methods offer a promising alternative to traditional nu-
merical methods for determining a numerical solution to an IVP, see e.g. [24] for a
recent review. The key idea is to learn a forward solution map by training on a large
set of initial and final values for the IVP. Provided the examples used for training are
sufficiently representative of the (distribution of) initial conditions we are interested
in solving, these methods can achieve high accuracy on unseen initial conditions from
the same distribution and potentially also generalise to a wider class of IVPs. In their
simplest form, ML methods are purely data-driven. They learn a fixed-cost forward
solution map which is typically represented by a neural network. Unless measures
are taken to specifically enforce inductive priors (see e.g. [33, 31, ?]), ML techniques
do not guarantee the conservation of invariants such as unitarity and symplecticity
which can be enforced with traditional splitting methods.

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 3

With few exceptions such as [11], ML methods suffer from their detachment from
the differential equation framework: since they do not parametrise the forward map
as a function of the timestep size h, there is no sense in which convergence in the
limit h → 0 can be quantified. In contrast to traditional numerical methods which
can be made more accurate by reducing the timestep size, it is not possible to achieve
higher accuracy for these ML methods in a controlled way. Even ML methods that
learn the forward map with a variable timestep size h do not necessarily generalise to
different timestep sizes. In particular they may fail to converge in the limit h → 0.
Moreover, the stability of the forward map – a crucial component for establishing the
convergence – is exceptionally hard to guarantee.

However, provided sufficient training data is available, the model is sufficiently
expressive, and the loss function weights large time step performance sufficiently, ML
based methods have the potential to result in smaller overall errors, and thus superior
performance for specific computational budgets and larger timesteps (in the sense of
criterion C2) than traditional methods which aim to be efficient in the asymptotic
regime (in the sense of criterion C1), see [24, 19].

1.1. Contributions. In this paper we combine techniques from numerical analy-
sis and ML to find efficient splitting schemes in the sense of criterion C2 while being
provably convergent in the limit h → 0. Specifically we use machine learning to find
splitting schemes that are tailored for a specific distribution of initial conditions, yet
maintain many of the advantages of classical numerical methods, such as interpretabil-
ity, generalisability, convergence, and conservation. As our numerical results show,
the learned methods also generalise to scenarios not contained in the training set.

More specifically, we use ML methods to learn coefficients of splitting methods,
while algebraically enforcing conditions that guarantee desirable properties such as
consistency, stability and reversibility. We demonstrate the utility of this framework
by learning splittings of medium to long length which result in lower errors than
classical methods for large step sizes h. Restricting our search to physically plausi-
ble methods allows us to search a significantly lower dimensional submanifold. This
reduces the training time compared to naive black-box ML approaches while also guar-
anteeing convergence. We numerically verify that the learned methods are efficient
for the Schrödinger equation with a double well potential and also demonstrate that
they have the desirable conservation properties. While by construction the learned
methods are formally only quadratically convergent in h, we also show that we can
learn near fourth order methods.

2. Traditional numerical analysis methods. We restrict our attention to
well-posed IVPs, using the definition of well-posedness found in [16]. Hence any
IVP of the form (1.1) considered in this work has a unique solution u(t) for all t ∈
[0, T] and is differentiable with respect to time and initial conditions. Arguments
about existence and uniqueness of strong solutions to PDEs of the form (1.1) are
active areas of research and are beyond the scope of this paper. Specifically for the
linear Schrödinger equation existence and uniqueness of solutions under time-varying
potentials are discussed in [38, 34], while for the case of time-independant potentials
the theory of one-parameter semi-groups can be applied, see [15]. Once these PDEs
are semi-discretised into a system of ODEs with the method of lines, the Picard-
Lindelöf theorem provides conditions on the existence of unique solutions, see for
instance [17]. In the case of time-independent potentials a computable closed-form
expression for this unique solution is provided by the matrix exponential. However,
evaluating this directly can be prohibitively expensive in practice [29].

4 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

2.1. Flows. As we have assumed the well-posedness of our IVPs, we know there
exits a unique solution u(t) for all times t ∈ [0, T]. For a given time difference h and

vector field f we define the analytic flow ψ
[f]
h : H → H as the solution map

(2.1) ψ
[f]
h (u(t)) = u(t+ h),

which maps a state u(t) to its unique evolution u(t+ h) after time h under (1.1).

As the analytic flow ψ
[f]
h encodes the true solutions of a differential equation, its

precise form is typically unavailable or computationally infeasible. Numerical time-
stepping methods, see for example [20, 21], seek approximations to the analytic flow
by approximating the solution at discrete times,

(2.2) un ≈ u(tn), n ∈ {0, 1, . . . , N},

where N ∈ N+ is the number of timesteps of size h = T
N ∈ R+ and tn = nh, with

t0 = 0 and tN = T . We consider one-step methods where the numerical solution un+1

is the result of applying a numerical method (which may involve multiple evaluations
of f , or its subcomponents f [1] and f [2] in the case of splitting methods) to the

previous state un. This can be seen as a numerical forward map Ψ
[f]
h : H → H,

(2.3) Ψ
[f]
h (un) = un+1.

Inspired by the definition of the analytic flow in equation (2.1) we define the numerical
flow as the map that sends the numerical state uν to its evolution under n timesteps
of the forward map in (2.3),

(2.4) Ψ
[f]
tn,h

(uν) =
(
Ψ

[f]
h

)n

(uν) = uν+n.

Note that we use the upper case Ψ for numerical flow and the lower case ψ for
analytical flow. Unlike the exact flow in (2.1), the numerical flow in (2.4) is only
defined at the discrete time points tn, for n ∈ {0, 1, . . . , N}. A numerical method

and its associated numerical flow Ψ
[f]
tn,h

have order of convergence p ∈ N+ if for each
sufficiently regular [20, 6] f and u0 there exists a constant C(f, u0, T) independent of
h such that

(2.5)
∥∥∥Ψ[f]

tn,h
(u0)− ψ

[f]
tn (u0)

∥∥∥ ≤ Chp,

for all n as h → 0. In other words, the numerical method is convergent of order p
and the global error is of the order O(hp). Convergence requires both consistency and
stability which imply that the numerical and analytical flows agree up to the p− 1th

term in the Taylor expansion in h.

2.2. Splittings. For the differential equation of the form (1.1) we assume that
the vector field, f = f [1] + f [2], can be split into two (sub-)components, f [1] and
f [2]. We further assume that the two IVPs, defined by the flow under the individual
vector fields f [1] and f [2], are well-posed and have known analytic solutions which can
readily be computed. The corresponding analytic flows are called the “subflows” and

denoted by ψ
[1]
t and ψ

[2]
t respectively. A numerical method for the IVP in (1.1) can

be constructed by interleaving the sub-flows. Two such well known splitting methods
are

Trotter : Ψ
[f]
h = ψ

[2]
h ◦ ψ[1]

h and(2.6)

Strang : Ψ
[f]
h = ψ

[1]
0.5h ◦ ψ[2]

h ◦ ψ[1]
0.5h.(2.7)

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 5

Trotter and Strang are methods of order one and two respectively, in the sense of (2.5),
see [6]. As a consequence, the Taylor coefficients of the analytical and numerical flows
for all points in the temporal discretisations agree for the constant, h0 term for both
methods; for Strang the coefficients of the h1 terms also agree. Both methods are
part of the larger family of splitting schemes that can be parameterised as follows,

(2.8) Ψ
[f]
T,h(· ;α, β) = ⃝N

n=1Ψ
[f]
h (· ;α, β), where Ψ

[f]
h (· ;α, β) = ⃝K

k=1ψ
[2]
βkh

◦ ψ[1]
αkh

.

Here, ⃝ represents repeated composition, i.e. ⃝N
n=1φn = φN ◦ · · · ◦ φ2 ◦ φ1 and

Ψ
[f]
T,h(· ;α, β), Ψ

[f]
h (· ;α, β), ψ[1]

αkh
and ψ

[2]
βkh

map from H to H. We call a splitting
of the form (2.8) a K-stage method with N individual steps and a timestep of size
h = T/N . Observe that in general (2.8) requires a total of 2KN sub-flow evaluations.
The vector of 2K parameters [α, β] = [α1, α2, . . . , αK , β1, β2, . . . , βK] continuously
parameterises all1 possible splittings of maximum length K.

We assume differentiability of the parameterised numerical flow Ψ
[f]
T,h(· ;α, β) with

respect to the parameters αk, βk. To ensure this, it suffices to assume the differen-

tiability of the analytical sub-flows ψ
[1]
αkh

and ψ
[2]
βkh

with respect to time and initial
conditions which naturally follows from the assumed well-posedness of the sub-flows.

2.3. Order conditions. While some particular IVPs allow exact splittings [4, 3],
in general splitting methods introduce errors which depend on the particular IVP that
is solved. Nevertheless, some splitting schemes do have (near) universal desirable
properties. For example, imposing so-called order conditions on the parameters α
and β ensures that the corresponding numerical methods have a particular order.
The ‘first order consistency’ order condition, henceforth simply called “consistency”,
is given by,

K∑
k=1

αk = 1 and

K∑
k=1

βk = 1.(2.9)

It can then be shown that (2.9) implies convergence with order p = 1 in the sense of
(2.5) if the scheme is also stable. Moreover, any splitting scheme with convergence
of order p ≥ 1 necessarily needs to satisfy the consistency condition (2.9). Thus,
without loss of generalisation, we assume in the remainder of the manuscript that the
consistency condition (2.9) is always satisfied.

The simplest consistent splitting scheme with the smallest value ofK is the Trotter
method defined by the parameters [α1, β1] = [1.0, 1.0], which satisfy (2.9). For longer
splittings with larger K we can impose further order conditions on the parameters
αk and βk. For example, enforcing symmetry under time-reversal ensures that the
splitting error is an even function of the timestep size, i.e. all odd powers of h in the
Taylor expansion in h vanish, and hence,

(2.10) Ψ
[f]
T,h =

(
Ψ

[f]
−T,−h

)−1

⇒ Ψ
[f]
T,h(u) = ψ

[f]
T (u) +O(hp), p ∈ 2Z.

When combined with stability, symmetry under time-reversal, henceforth simply
called “symmetry”, implies even order convergence. Since we assume consistency,
symmetry ensures convergence of order at least p = 2. As shown in [6], symmetry can

1Technically in (2.8) we have imposed that the flow ψ
[1]
h associated with f [1] comes first, pre-

cluding some splittings, but this can be solved by relabelling f [1] ↔ f [2].

6 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

Fig. 1. Visualisation of the α and β for two symmetric and consistent splitting schemes with
K = 5 (left) and K = 4 (right) stages. Note how symmetry constrains half the parameters, including
the trailing βK that is symbolically zero. Consistency fixes two additional parameters to ensure that
the α and β sum to one as in (2.9).

be guaranteed if the coefficient vectors that define the scheme in (2.8) are palindromic,
i.e. of the form (α1, α2, . . . , αK) = (αK , αK−1, . . . , α1) and (β1, β2, . . . , βK−1, 0) =
(βK−1, βK−2, . . . , β1, 0) with the symbolic zero βK = 0. Enforcing consistency and
symmetry imposes constraints on α and β and hence reduces the number of degrees
of freedom that define the splitting scheme: to parameterise all possible symmetric
and consistent splittings we only require K − 2 independent parameters rather than
the 2K parameters required to parameterise all splittings. Since these conditions are
straightforward to impose and reduce the dimension of the search space, we restrict
our attention to symmetric and consistent methods for the rest of the manuscript.
The parameter of two such methods are visualised in Figure 1.

2.4. Composing splitting methods. The simplest, and indeed unique, split-
ting scheme of length two that is both consistent and symmetric (and hence second
order) is Strang, defined by the parameters [0.5, 0.5, 1.0, 0.0]. However, finding higher-
order conditions requires significant work. An alternative is to build up higher-order
methods by composing multiple copies of lower order methods, see [20, II.4]. An
example of a composition method is the triple jump technique which we discuss in
more detail in Appendix A and which can be applied to Strang to construct a split-
ting method of order four, referred to as Yoshida in this paper. A disadvantage with
using composition methods to find new splittings is that they implicitly restrict the
methods that can be found, and the number of stages grows exponentially with the
desired order.

2.5. Cost estimates. The symbolic zero βK = 0 in symmetric methods is worth
remarking on as the costs for the evaluation of symmetric and general methods differs

significantly. We denote the cost of a single evaluation of the subflows ψ
[1]
αkh

, ψ
[2]
βkh

by C[1] and C[2] respectively. For evaluating N individual steps of a general K-stage
method, the total cost is given by NK(C[1] + C[2]). For symmetric K-stage methods,
composing N individual steps does not require the evaluation of the identity flows
associated with the symbolic zeros βK = 0, while adjacent sub-flows associated with

f [1] can be combined since ψ
[1]
α1h

◦ ψ[1]
αKh = ψ

[1]
(α1+αK)h. For symmetric methods, the

total cost therefore satisfies N(KC[1] + (K − 1)C[2])− (N − 1)C[1] = N(K − 1)(C[1] +
C[2]) + C[1], where the subtraction of (N − 1)C[1] accounts for the reduction of the
cost due to combination of sub-flows. Overall, this leads to relative cost savings of a
factor (K − 1)/K +O(h) per timestep. To summarise, the total cost of numerically
integrating the IVP (1.1) to the final time T with a K-stage splitting method and a

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 7

timestep size of h = T/N is given by,

(2.11) C =

{
N(K − 1)

(
C[1] + C[2]

)
+ C[1] if symmetric

NK
(
C[1] + C[2]

)
in general

}
≥ C ′(K,T)h−1,

where the constant,

(2.12) C ′(K,T) = T ·

{
(K − 1)

(
C[1] + C[2]

)
if symmetric,

K
(
C[1] + C[2]

)
in general,

is independent of h and the bound in (2.11) is sharp up to corrections of relative O(h).
As a consequence, up to corrections of O(h), which are amortised for N ≫ 1, a single
step of symmetric Strang (K = 2) costs the same as a step of non-symmetric Trotter
(K = 1).

2.6. Computational efficiency. To choose an optimal numerical time-stepping
method, we aim to minimise the computational cost C = C(ε) for a given tolerance ε

on the numerical error
∥∥∥Ψ[f]

T,h(u0)− ψ
[f]
T (u0)

∥∥∥. If the method Ψ
[f]
T,h(u0) is convergent

of order p, then according to (2.5) the numerical error at the final time is smaller than
the tolerance ε provided that the timestep size h is chosen such that

(2.13) C(f [1], f [2], u0, T ; [α, β])h
p ≤ ε.

Here we have made the dependence of the constant C on the timestepping method
explicit through the parameters [α, β]. Combining (2.11) and (2.13), we see that the
total cost as a function of the tolerance ε is bounded from below by

(2.14) C(ε) ≥ C ′(K,T)C(f [1], f [2], u0, T ; [α, β])
1/pε−1/p.

Provided that the bounds in (2.11) and (2.13) are sharp, this implies that in the
limit ε, h → 0 high-order methods will be most cost effective. However, in practical
applications choosing a numerical method based on this argument (which corresponds
to criterionC1) might be premature for two reasons: firstly, the constants that appear
in (2.14) also depend on the timestepping method and might be of a similar size as
the factor ε−1/p for moderate tolerances ε. Consider, for example, the discussion in
Appendix A: composing splitting methods with the triple-jump technique leads to a
O(3p) exponential growth in the number of stages, K, and thus to a similar increase
of C ′(K,T). As a consequence, for a fixed computational budget (criterion C2) and
thus moderately large step size h, a smaller error might be obtained with a lower-
order splitting method with a small error constant C(f [1], f [2], u0, T ; [α, β]) than by
resorting to a higher-order method which may have a larger error constant. This effect
is particularly pronounced when low to moderate levels of accuracy ε are required or
acceptable, a typical scenario in applications which are either significantly constrained
by computational cost or where the IVP only provides a moderately accurate model
of the underlying physical system. Hence, at any given order it is highly desirable to
minimise the constant C(f [1], f [2], u0, T ; [α, β]).

2.7. Identifying efficient splitting methods. To a certain extent studies such
as [32] attempt to obtain a lower error constant by considering a large number of split-
tings, typically obtained by solving the algebraic order conditions, and identifying the
splittings that feature the smallest coefficients accompanying the leading commutators

8 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

terms in the residual BCH expansion. By design, this strategy is only asymptotically
relevant, i.e. for small step size h. Moreover, it ignores the magnitude of the com-
mutators and hence does not minimize the constant C(f [1], f [2], u0, T ; [α, β]) that also
depends on the particular IVP and its splitting given by f [1], f [2], the initial condition
u0 and the final time T . These factors are not straightforward to incorporate in an
algebraically motivated approach.

When the subflows are unitary or symplectic, a splitting method guarantees the
exact conservation of a shadow Hamiltonian or near conservation of the true Hamil-
tonian, and the error in energy is sometimes more relevant than the L2-error of the so-
lution. In the context of the Hamiltonian Monte Carlo sampling method, for instance,
it becomes possible to obtain optimal splittings for larger step sizes by minimizing
the expected error in energy under certain analytic priors on the problem [1, 7].

2.8. A data-driven approach for minimising the error constant. Our
goal is to construct a method which is robust in the sense that it produces a small
error for a range of different vectors fields f and splittings f [1], f [2], as well as different
initial conditions u0 and final times T . For example, keeping f [1], f [2] and T fixed, we
might be interested in,

(2.15) C(f [1], f [2], T ; [α, β]) = sup
u0∈U

{
C(f [1], f [2], u0, T ; [α, β])

}
,

for all possible initial conditions u0 from some given set U. This would allow replacing
the specific bound in (2.13) by the more general bound,

(2.16) C(f [1], f [2], T ; [α, β])hp ≤ ε,

which holds for all u0 ∈ U. Similarly, we might want to make the bound problem-
independent by considering the supremum over a range of f and splittings f [1], f [2].
However, it is usually not possible to write down the dependence of C (let alone C) on
f [1], f [2], u0 and T in closed form, so providing analytical bounds of the form in (2.16)
is typically not feasible. Instead, we could choose to quantify the error as the expected
error when drawing the initial condition u0 from some probability distribution U . In
practice, we would then estimate the expected error of the distribution U with a large,
but finite sample U drawn from U . This is the approach which we will take in this
work. As will be discussed in the following section, it fits naturally with the machine
learning framework that we propose.

3. Learned splitting schemes. We now explain how we use Machine Learning
(ML) to construct efficient splitting schemes which are guaranteed to have desirable
properties such as consistency and symmetry. To do this, we first review some key
concepts in ML in the context of the problem we consider in this paper. After this, we
discuss how to enforce consistency and time reversal symmetry through a parameter
transformation and outline our training algorithm.

3.1. ML notation and concepts. In the setting considered here, a general
supervised machine learning approach requires three ingredients:

• A dataset U, which consists of initial conditions for the IVP in (1.1). For each

u0 ∈ U, we assume that we can approximate the solution u(T) = ψ
[f]
T (u0)

of the IVP at time T to high precision, i.e. uRef ≈ u(T), and we therefore
construct labelled pairs (u0, uRef).

• A numerical flow function Φ(· ; θ) which encodes a numerical method and is
parametrised by learnable parameters θ ∈ Rd for some given d ∈ N.

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 9

• A loss function L(θ) which measures how well Φ(· ; θ) approximates the ana-

lytic flow ψ
[f]
T for initial conditions u0 ∈ U.

During training, the parameters θ are tuned such that Φ(· ; θ) approximates ψ
[f]
T .

Ideally, we would like to choose U to be the set of all possible physical initial condi-
tions. However, this is typically impractical and in the case of PDEs, where this set
is parametrised by an infinite number of degrees of freedom, impossible. Instead, we
assume here that the initial conditions u0 ∼ U are drawn from a probability distri-
bution which we denote by U . We define the loss function L(θ) as the expectation of
the mean squared error over the distribution U which is given by,

(3.1) L(θ) = E
u0∼U

∥Φ(u0; θ)− uRef∥22 .

In practice, only a finite number of samples is considered so that the expectation in
the loss function (3.1) can be replaced by a sum. The optimal parameters θ∗ are then
obtained by minimising the loss, i.e.

(3.2) θ∗ = argmin
θ

L(θ).

Our aim is therefore to determine θ∗ results in the learned function Φ(· ; θ∗) whose
evaluation is efficient in the sense of C2, and which generalises to unseen inputs u0.
This includes initial conditions with low probability or even u0 which are not in the
distribution U . Usually this is possible if the function Φ(· ; θ) is both sufficiently
expressive and enough samples u0 ∼ U are used for training to find the optimal θ∗

while avoiding overfitting. Overfitting can be mitigated by adding regularisers or by
including inductive biases in the construction of the function Φ(· ; θ).

To determine θ∗, brute force grid search or parameter sweep methods can be
used to find an approximate minimiser of the loss function (3.1) provided the pa-
rameters are contained in a bounded subset of Rd for some small d. For large d,
these approaches are too expensive since the cost grows exponentially in d. For high-
dimensional search spaces, θ∗ is usually determined using gradient-based methods
which only require differentiability of L with respect to θ. If u0 ∼ U is randomly
drawn for each gradient computation we call this stochastic optimisation (SO). Ex-
amples of SO include stochastic gradient descent (SGD) or improved variants like
Adam [25].

3.2. Incorporating flows into ML. We let our learnable numerical flows
Φ(· ; θ) be the splitting methods introduced in Section 2. Hence Φ(· ; θ) is obtained

by composing multiple applications of the forward map Ψ
[f]
h (· ;α, β) and the learnable

parameters θ are the coefficients α, β that define the splitting scheme. In symbols, we
define the learnable flow as,

(3.3) Φ(u0; θ) = Ψ
[f]
T,h(u0;α, β) :=

(
Ψ

[f]
h (u0;α, β)

)N

.

By restricting the values of the learnable parameters α, β as in (2.9) we can guarantee
the consistency order condition. Provided the IVP is well-defined and the method is
stable, this will imply that the learned flow will produce provably convergent solutions
in the limit h→ 0. Higher-order consistency can be enforced by imposing further order
conditions, such as symmetry under time reversal. Other constraints from classical
numerical analysis such as unitarity or symplecticity can also be enforced in this ML

10 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

framework by enforcing the very same classical conditions from pre-existing numerical
analysis. With the learned flow Φ(u0; θ) in (3.3) the loss function in (3.1) becomes,

(3.4) L(α, β) = E
u0∼U

∥∥∥Ψ[f]
T,h(u0;α, β)− uRef

∥∥∥2
2
.

By construction, the loss function in (3.4) is differentiable in α and β, as the numerical
flow was differentiable in α and β. As a consequence, it can be minimised with
gradient-based methods as discussed in Section 3.1. In analogy to (3.2), we obtain
the optimal parameters α∗, β∗ as

(3.5) α∗, β∗ = argmin
α,β

L(α, β) for L defined in (3.4).

The minima of the loss function (3.5) depends on the distribution U . In other words,
the learned splittings are tailored to the specific distribution of initial values, and
hence a specific distribution of IVPs. Minimizing the loss function (3.4) minimises
the expected error. For an order p splitting the error is of the form∥∥∥Ψ[f]

T,h(u0;α, β)− uRef

∥∥∥ = C0(f
[1], f [2], u0, T ; [α, β])h

p(3.6)

+

∞∑
m=1

Cm(f [1], f [2], u0, T ; [α, β])h
p+m

Observe that for small timestep sizes h the dominant contribution to the error will
come from the first term in (3.6). Minimizing the loss function (3.4) will minimise the
expected value of all error constants Cm(f [1], f [2], u0, T ; [α, β]) and in particular the
expected value of the leading constant C0(f

[1], f [2], u0, T ; [α, β]). As a consequence,
the error of the learned method is potentially significantly smaller than that of a
method constructed with traditional techniques from numerical analysis, which rely
purely on algebraic and analytic techniques, in particular for larger values of h where
asymptotic analysis typically breaks down. In other words, the learned method is
efficient in the sense of criterion C2.

3.3. Enforcing consistency and symmetry through parameter transfor-
mations. Training on the landscape defined by the loss function (3.4) for a splitting

method Ψ
[f]
T,h(u0;α, β) is non-trivial since it is non-convex and ill-conditioned, in par-

ticular for small values of h. To see this, consider the expansion of the error in (3.6).
For sufficiently long splitting methods the manifold of all parameters α, β will likely
contain a sub-manifold of parameters for which the method is of order p+ 1, i.e. the
constant C0(f

[1], f [2], u0, T ; [α, β]) will be identically zero on this sub-manifold. Hence,
varying the parameters within this sub-manifold will only lead to small changes in
the loss function due to changes in the error constants Cm(f [1], f [2], u0, T ; [α, β]) with
m ≥ 1. However, moving away from the sub-manifold will at least reduce the order
of the method from p+1 to p, and thus incur changes of O(h−1) in the loss function.
This argument can be applied recursively: sub-manifolds of higher-order methods are
nested within manifolds that describe lower-order methods. As a consequence, the
condition number of the Hessian grows with some power of the inverse timestep size
h−1. Furthermore, this problem is likely to get worse for splitting methods with more
sub-flows K, i.e. higher-dimensional parameter spaces. To compensate for the poor
conditioning, we would have to severely restrict the learning rate which renders SO
methods very inefficient.

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 11

Given that the consistency order condition (2.9) is easy to enforce and required
for provable convergence guarantees of the learned method, it would be unwise not to
incorporate it. The consistency order condition (2.9) restricts the parameters α, β to
an affine hyperplane. Symmetric splitting methods can be obtained by imposing an
additional set of linear constraints on α, β, which – together with (2.9) – reduce the
parameters to a lower-dimensional hyperplane that contains methods of even order.

To restrict ourselves to the sub-manifold that enforces consistency and symmetry,

we express the original α, β ∈ RK in terms of suitable coordinates γα ∈ R⌊K−1
2 ⌋, γβ ∈

R⌊K−2
2 ⌋ on the sub-manifold and combine reduced parameters as γ := [γα, γβ] ∈ RK−2.

ForK even, both sub-parameterisations γα, γβ are of equal size, i.e. |γα| = |γβ | = K−2
2 .

However, if K is odd, the sub-parametrisations cannot be of equal size. The symbolic
zero βK = 0 suggests that γβ has fewer degrees of freedom and hence γβ has a smaller
sub-parameterisation than γα, i.e. |γα| = K−1

2 and |γβ | = K−3
2 . The corresponding

linear parameter transform g : RK−2 → R2K which will be used in the following can
be written in matrix form as,

(3.7) [α, β]⊤ = g([γα, γβ]) =

(
A 0
0 B

)[
γα
γβ

]
+

[
C
D

]
⇔ Aγα + C = α, Bγβ +D = β.

Explicit expressions for the matrices A ∈ RK×⌊K−1
2 ⌋, B ∈ RK×⌊K−2

2 ⌋ and the vectors
C,D ∈ RK can be found in Appendix B. The loss function in (3.4) and optimisation
problem in (3.5) becomes a function of the parameters γ ∈ RK−2, namely

(3.8) L(γ) = E
u0∼U

∥∥∥Ψ[f]
T,h(u0; g(γ))− uRef

∥∥∥2
2

and γ∗ = argmin
γ

L(γ).

In summary, restricting learning to a sub-manifold (1) reduces the dimension of the
search space, (2) improves conditioning and (3) guarantees that the learned splitting
method is provably consistent.

3.4. Training algorithm. Having set out the machine learning problem, we
now discuss our training algorithm for minimising the loss function (3.8). It is natu-
ral to expect that the coefficients of known classical splittings, such as Trotter in (2.6)
and Strang in (2.7), are local minima of the loss function. For higher-dimensional
coefficient spaces, local minima might also correspond to compositions of these meth-
ods, as discussed in Section 2.4. Our goal is to beat preexisting numerical methods
for our choice of initial conditions and step sizes, thus care must be taken to avoid
poor local minima that may correspond to pre-existing methods.

Although they are usually the standard choice in machine learning applications,
pure gradient based methods such as Adam [25] risk getting stuck in such local min-
ima which are more prevalent in low- to moderate-dimensional parameter spaces that
we consider here. For this reason, we opt to incorporate a global optimisation aspect
which attempts to cover a significant fraction of the parameter space with the aim to
identify the minima with very low loss values. As described in Algorithm 3.1, the key
idea is to create a set of candidate parameter values that are distributed widely over
the search space, screen these candidates with a simple heuristic to reduce them to
a manageable number and then run a SO algorithm with the candidates as starting
points to fine-tune the parameter values. We used Adam in all numerical experi-
ments (see Appendix D.1 for a discussion of other first- and second-order stochastic
optimisers).

Let Strain = {(u(j)0 , u
(j)
Ref)}

Mtrain
j=1 with u

(j)
0 ∼ U be the training dataset with Mtrain

data points. A validation dataset Svalid with Mvalid samples is constructed in the

12 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

same way. For each subset B ⊆ Strain (or equivalently B ⊆ Svalid), we define the loss
function

(3.9) L(γ;B) = 1

|B|
∑

(u0,uRef)∈B

∥∥∥Ψ[f]
T,h(u0; g(γ))− uRef

∥∥∥2
2

which approximates the “true” loss in (3.8) with a finite sample of size |B|.

Algorithm 3.1 Learning Pipeline for (approximately) minimising L(γ)
1: Generate candidate coefficients Γ = {γ1, γ2, . . . }, by either choosing γi ∈ RK−2

randomly or as the vertices of a regular grid that covers the bounded domain
Ω ⊂ RK−2 in which we expect to find the global minimum.

2: for all candidates γi ∈ Γ do
3: Compute loss ℓi := L(γi;Svalid).
4: end for
5: Remove all candidates γj from Γ for which ℓj > mini{ℓi}+ ϵ for some ϵ > 0.
6: Remove all candidates γj from Γ for which ∃ i s.t. ∥γj − γi∥ ≤ δ and ℓj > ℓi for

some minimum distance δ > 0.
7: for all candidates γi ∈ Γ do
8: Improve γi by applying a fixed number of batched SO steps; for this use different

randomly chosen batches B ⊂ Strain at each SO step.
9: end for

10: return γmin = argminγi∈Γ{L(γi;Svalid)}.

Observe that the variance of the estimator in (3.9) decreases ∝ |B|−1. As a con-
sequence, for small |B| the value of L(γ;B) for fixed γ can vary significantly between
different batches B. This is not surprising since the learned splitting method will
perform differently for different initial conditions. Hence, when making comparative
judgments between different parameters, such as in lines 3 and 10 of Algorithm 3.1,
the loss function L(γi; ·) should be evaluated with a single fixed batch, chosen to be
Svalid, for all parameters γi.

Each minimum of the loss function will have some basin of attraction under SO.
Because of this, it would be computationally inefficient to fine-tune all candidates
identified in the first step of Algorithm 3.1 with expensive SO iterations. We there-
fore only pursue candidates that have a low loss (compared to all other candidates)
and which are separated by some distance δ > 0. This distance is chosen heuristically
to be smaller than the average diameter of all basins of attraction. While alterna-
tive techniques such as particle swarm methods [30, 22] have been suggested in the
literature, we find that empirically Algorithm 3.1 produces good results.

Because second-order convergence, in the limit h → 0, of our learned methods is
guaranteed by their construction in Section 3.3, the learned method will generalise
to other initial conditions outside the training distribution U . This is a distinctive
advantage compared to naive ML approaches, which cannot be expected to generalise
in this sense.

4. Numerical results. In this section we numerically show the efficiency of
learned splitting methods for a representative model problem.

4.1. Schrödinger’s equation. To demonstrate the advantages of our approach,
we consider the one-dimensional Schrödinger equation iu̇(x, t) = [V (x) − ∆]u(x, t)

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 13

where ∆ = ∂2/∂x2 is the Laplace operator and V (x) is a real-valued potential which
we assume to be monotonically increasing for |x| > L. While typically the prob-
lem is defined on R × [0, T], discretisation of the unbounded spatial domain with an
equidistant grid would require an infinite number of unknowns and make the solution
untractable on a computer with finite memory. Because of this, we restrict the domain
to Ω × [0, T], where Ω = [−L,+L] for some L > 0, and impose periodic boundary
conditions in space; these boundary conditions render the Laplace operator diagonal
in Fourier space [36]. The solution on Ω× [0, T] differs from the one on R× [0, T] by
terms that are exponentially suppressed. These differences are small provided L is
sufficiently large (to see this, note that the eigenfunction corresponding to energy E
can be bounded by C exp[−

√
V (L)− E] for |x| > L and some constant C).

The Schrödinger equation can be seen as an example of a wider class of one-
dimensional autonomous PDEs of the form

(4.1) u̇(x, t) = F(u(x, t)), u(x, 0) = u0(x), u(x, t) ∈ C, x ∈ Ω ⊂ R, t ∈ [0, T]

with suitable boundary conditions on ∂Ω. Here, F (which is i[∆ − V (x)] for the
Schrödinger equation), is the differential operator acting on the solution u(x, t). The
method of lines is used to convert the problem (4.1) into a system of coupled ODEs
of the form (1.1) which can be solved numerically. For this, we pick a discretisa-
tion of the spatial domain Ω defined by a set of M equally spaced points {xm}Mm=1,
xm = (2m−1

M − 1)L ∈ Ω, discretise the differential operator F and solve for the time-
dependent solution vector u(t) = (u1(t), . . . , uM (t)) ∈ CM with um(t) ≈ u(xm, t) for
m = 1, . . . ,M . For the Schrödinger equation, this allows us to write the problem in
the form of the IVP in (1.1) as

(4.2) u̇(t) = i[∆̂− V̂]u(t), u(0) = u0, u(t) ∈ CM , t ∈ [0, T]

for some initial condition u0 ∈ CM . The Laplace operator ∆, and indeed the entire
Hamiltonian H = V (x) − ∆, is self-adjoint. The Hermitian matrix ∆̂ ∈ CM×M

approximates ∆, and is diagonal in discrete Fourier space. Additionally, V̂ ∈ RM×M

is a diagonal matrix, where the diagonal entries are given by V̂m,m = V (xm). The

natural splitting for (4.2) is to use f [1] = −iV̂ and f [2] = i∆̂ as this lets us exploit

the diagonalisability of both these flows. We let ∆̂ = U†∆̂diagU where ∆̂diag ∈
CM×M denotes a diagonal matrix and U ∈ CM×M is the unitary Fourier transform
matrix. Note that applying U and U† with the Fast Fourier Transformation [13] costs
O(M log(M)) operations. As a consequence, the sub-flows corresponding to f [1] and
f [2] are given by

(4.3) ψ
[1]
t = e−itV̂ and ψ

[2]
t = eit∆̂ = U†eit∆̂diagU,

respectively. The sub-flows can be evaluated efficiently since e−itV̂ and eit∆̂diag are
exponentials of diagonal matrices which can be computed in O(M) time. Hence, the

total cost for one evaluation of ψ
[1]
t and ψ

[2]
t is O(M) and O(M logM), respectively.

In our numerical experiments we fix M = 200.

4.2. Implementation. Our Python code is publicly available on Zenodo and
datasets and scripts to recreate all figures are available on Github. All training and
inference algorithms were implemented in the JAX library [10], which we found to
be significantly faster than PyTorch since it allows the very efficient automatic differ-
entiation with respect to the parameters α, β in products of exponentials that arise

http://doi.org/10.5281/zenodo.13871934
https://github.com/hl785/paperFigsRepo

14 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

from (2.8). Double precision arithmetic was used for all calculations. We used the
Optax package [8] for the implementation of Stochastic Optimisation in line 8 of Al-
gorithm 3.1. The Fast Fourier Transform that is required in the evaluation of the

flow ψ
[2]
t = eit∆̂ in (4.3) employs the efficient jax.numpy.fft method to mimic the

implementation in the Expsolve package [36]. During training and validation the ana-

lytical flow ψ
[f]
T = eiT [∆̂−V̂] needs to be computed. For this, the matrix exponential is

evaluated by exponentiating the (dense) matrix ∆̂− V̂ with the scipy.linalg.expm
function, which employs the scaling and squaring algorithm given in [2]. Since this is
only required during training and will not have any impact on the performance of the
learned timestepping methods, no attempt was made to optimise this operation.

4.3. Learning splitting coefficients for Schrödinger’s equation. During
training we learn optimal splitting coefficients for the Schrödinger equation given in
(4.2) where V (x) = x4 − 10x2 is a quartic function that describes a double-well po-
tential. The minima of the potential are located at x± = ±

√
5 in this case. The

parameter transform described in Section 3.3 is used to enforce consistency and sym-
metry of the learned splitting methods.

4.3.1. Data generation. The training dataset Strain = {(u(j)0 , u
(j)
Ref)}

Mtrain
j=1 con-

sists of initial conditions and reference solutions, where u
(j)
0 and u

(j)
Ref are functions

evaluated on the spatial grid {xm}Mm=1 introduced in Section 4.1. The reference solu-
tions are calculated using the matrix exponential of the initial conditions. While we
have not specified the distribution U of initial conditions explicitly, this distribution
is defined implicitly by a sampling algorithm that is controlled by three parameters:
the centre mean xcent, the centre standard deviation xstdDev, and the basis standard
deviation σ. We let xcent = −

√
5, xstdDev = 0.1, and σ = 0.5 for training.

We recursively generate u
(j)
0 by starting from the previous reference solution

u
(j−1)
Ref . With a moderate probability we perturb u

(j−1)
Ref by adding the discrete Gauss-

ianN (x
(j)
0 , σ) then renormalising and/or a random phase shift, or with a low probabil-

ity we set u
(j)
0 to be the discrete Gaussian N (x

(j)
0 , σ), where x

(j)
0 ∼ N (xcent, xstdDev).

As xcent = x−, these discrete Gaussians are clustered around the centre of the left well
of the potential V . For j = 0, we proceed as above but start with the discrete Gaussian
N (x̄0, σ) for some x̄0 ∼ N (xcent, xstdDev) instead of the previous reference solution.
The recursive augmentation method is written down explicitly in Algorithm C.1, along

with some representative initial conditions u
(j)
0 in Figure 11, in Appendix C.

A fixed validation dataset Svalid is constructed in the same way. During training,
we fix T = 10 and h = 1

7 (which implies N = 70), and use the approximate loss
function in (3.9). We find that training with a fixed step size results in learned
splitting methods which generalise to other timestep sizes h and final times T (see
Section 4.3.4).

4.3.2. Training procedure. The landscape defined by the loss function (3.9)
for splittings of length K = 5 and evaluated on a fixed validation set B = Svalid of
size 200, has three free parameters γ and is visualised in Figure 2. As this figure
shows, the landscape is clearly non-convex and has multiple minima, as expected.
Observe that locations of lower values of the loss function appear to be close to
lower-dimensional sub-manifolds that define higher order methods, which is consistent
with the discussion in Section 3.3. The minimum at γStrang = [0.125, 0.25, 0.25] is
readily identified as the composition of four Strang splittings (resulting in a five-stage
method) with a validation loss value of L(γStrang) = 0.2917. However, by using the

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 15

Fig. 2. Plot of the loss function L(γ) in (3.9) for the Schrödinger equation in (4.2) with
T = 10 and h = 1

7
. A section of the one-dimensional manifold of fourth-order accurate methods

can be seen in the lower right corner. To obtain this figure, the loss function was evaluated on the
fixed validation set B = Svalid with 200 members and for a uniform grid for the values of γ in the
box [−0.5, 0.4]3. Lower loss values are plotted as darker and larger points.

full training algorithm in Algorithm 3.1, we also identified a novel learned splitting,
referred to as Learn5A, with γlearned = [0.3627,−0.1003,−0.1353] and a substantially
lower validation loss value of L(γlearned) = 0.02106.

For the training dataset, the landscape will vary between batches, but we expect
the qualitative behaviour shown in Figure 2 to be representative for most batches.
Due to this stochasticity γlearned will not be a minimum of the loss function when
evaluated on Svalid. Instead we consider the nearby validation loss minimum found
at γvalid = [0.3314,−0.07304,−0.1821]. To gain further insight into the loss function
L(γ), we plot the validation loss in the proximity of the two minima γStrang and γvalid
in Figure 3. The shape of the minima is characterised by their Hessian matrices. The
condition numbers of the Hessians at γStrang and γvalid are 15.5 and 8563.1, respec-
tively. The high condition number of the Hessian matrix at γvalid is consistent with
the discussion in Section 3.3. This large condition number implies that the naive SGD
will be very inefficient, we explored a variety of improved stochastic optimisers (SOs),
including both first- and second-order methods, in our training pipeline (line 8 of Algo-
rithm 3.1); further details can be found in Appendix D.1. However, all results reported
in the rest of this section were obtained with the widely used Adam method [25] which
we find to be efficient and robust. The minimum γlearned = [0.3627,−0.1003,−0.1353]
was found with a fixed learning rate of 0.01, where the parameters are initialised with
the candidates identified in the initial exploration of the parameter space (lines 1-6

16 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

Fig. 3. Local environment of the validation loss visualised in Figure 2 around the two minima
γStrang and γvalid. The function is plotted in the three planes that are perpendicular to the largest
(left), middle (centre), and smallest (right), eigenvalues of the Hessian matrix at the local minima.

of Algorithm 3.1). The evolution of γlearned during training is shown in Figure 12 in
Appendix D.

4.3.3. Learning longer splitting methods. We also employed the training
pipeline described in Section 3.4 to find longer learned splittings with K = 8 stages
and six free parameters. For this, we generated 75,000 random parameter candidates,
where we implicitly ensured that some of the parameter values are negative and hence
potentially near methods higher than second order. We then evaluated the loss on
a consistent validation set (for fairness of comparison), selected the 100 parameter
candidates with the lowest losses and removed all candidates that were within an
(Euclidean) distance of less than 0.75 to parameter candidates with lower loss values.
This resulted in nine candidates that were explored further. For these, the Adam
optimisation step in line 8 of Algorithm 3.1 was performed for 250 iterations with a
learning rate schedule starting at 0.02 and decreasing exponentially with a decay rate
of 0.995. As before, the parameter transform g(γ) in (3.7) was used to ensure that the
learned methods are consistent and symmetric. Two of the nine parameter candidates
converged to unknown splittings with low losses, which we refer to as Learn8A and
Learn8B. Along with Learn5A found in Section 4.3.2, the splitting coefficients γ after
training are given in Table 1 and their evolution during training is shown in Figure 12
in Appendix D.

Naturally, the question arises whether the learned methods are similar to known,
existing methods. Since this is difficult to infer from the numerical value of γ, we
describe a graphical technique for visualising different splitting methods. For this, a
method defined by the coefficients (α1, . . . , αK , β1, . . . , βK) is represented by the con-
tinuous curve obtained by joining line segments of (oriented) lengths α1, β1, α2, β2, . . . ,
αK , βK in this order such that the segments associated with αj are parallel to the
horizontal axis while the segments corresponding to βj are parallel to the vertical axis.
Figure 4 uses this technique to visualise splitting methods discussed in this work. As
explained in Appendix E, this construction can be interpreted as the solution of an

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 17

Splitting K γ

Trotter 1 —
Strang 2 []
Yoshida 4 [0.67560, 1.35120]

4× Strang 5 [0.125, 0.25, 0.25]
Learn5A 5 [0.3627,−0.1003,−0.1353]
Learn8A 8 [0.2135,−0.0582, 0.4125,−0.1352, 0.4443,−0.0251]
Learn8B 8 [0.1178, 0.3876, 0.3660, 0.2922, 0.0564,−0.0212]

Table 1
Coefficients γ of existing and learned splitting methods with different numbers of stages K. The

non-symmetric Trotter given in (2.6) can not be symmetricly parameterised. The Strang method,
given in (2.7), is completely defined by symmetry and consistency.

Fig. 4. Comparison of the paths that visualise the fluxes (E.1) for the IVP u̇(t) = [1, 1]⊤,
u(0) = [0, 0]⊤, t ∈ [0, 1]. Results are shown for known numerical methods and our new learned
splitting methods.

initial value problem. As none of the learned paths are covered by another path in
their entirety in Figure 4, we conclude that the learned methods are novel since they
differ from existing methods. We expect that the associated splitting methods also be-
have fundamentally different for more complicated IVPs, in particular the Schrödinger
equation considered here.

Next, we assess the performance and efficency of our learned methods by compar-
ing them to three well-known splittings, namely Trotter, Strang and Yoshida. As can
be seen from Table 1 and Figure 4, the different methods involve different numbers
of stages K. This makes comparisons harder, as comparing Strang with 4× Strang
is not fair unless their different cost is taken into account. To address this, we plot
the error against the number of exponential evaluations, i.e. the number of sub-flow
evaluations. Since the number of sub-flow evaluations can also be regarded as a proxy
for the computational cost, this allows a fair comparison of the methods with differ-
ent numbers of stages as we can no longer “improve” a method by repeating it many
times in a single step of a longer method. Figure 5 shows the expected L2-error at the
final times T = 10 over the validation set as a function of the number of exponential
evaluations (which is proportional to the inverse of the timestep size h) for various
methods. As expected we observe from Figure 5 that the learned splittings Learn5A,
Learn8A and Learn8B converge quadratically for h → 0. Interestingly, they show a
faster initial decay for larger h and this is discussed in more detail in Section 4.3.5.

While the fourth-order Yoshida integrator performs better at high resolutions,

18 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

Fig. 5. Average L2-error
∥∥∥Ψ[f]

10,h(u0)− ψ
[f]
10 (u0)

∥∥∥
2
at the final time T = 10 on a validation

set of size 200. The median is shown with a line, with a shaded envelope indicating the 15.9%
and 84.1% quantile. The solid horizontal black vertical line corresponds to the unitarity bound
which arises form the fact that the L2-norm of the numerical flow cannot exceed 1. Learn5AProj is
introduced in Section 4.3.5.

Figure 5 demonstrates that our learned methods outperform all other classical meth-
ods for smaller computational budgets: one can either achieve a significant speed-up
by using larger step sizes or improve accuracy by orders of magnitude with the same
step size. We illustrate this in Figure 6, where we plot the relative advantage (in
terms of accuracy) in comparison to Yoshida as a function of the number of expo-
nential evaluations. The figure confirms that our learned splitting methods can be
up to two orders of magnitude more accurate than Yoshida at the same cost. This
is further quantified in Table 2 where we estimated the loss values after 2506 subflow
evaluations; our learned methods have the highest relative advantage for this timestep
size. The final two columns of the table show the relative accuracy of the methods
as well as the gain in speed. The latter is defined as the relative decrease in the
number of subflow evaluations compared to Yoshida when both methods reach the
same L2 error. We conclude that we have indeed learned splitting methods that out-
perform classical numerical methods such as Trotter, Strang, and Yoshida for small
computational budgets.

Splitting
L2-error for Rel accuracy Rel speed
2506 subflows vs Yoshida vs Yoshida

Trotter 0.023247 0.55 0.84
Strang 0.012862 1.00 1.00
Yoshida 0.012864 1.00 1.00
Learn5A 0.001121 11.47 1.84
Learn8A 0.000081 158.75 3.55
Learn8B 0.001029 12.50 1.88

Table 2
Comparison of loss values after 2506 subflow evaluations, corresponding relative accuracy and

gain in speed for various splitting methods.

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 19

Fig. 6. Comparison of the classical vs learned methods relative expected L2-errors, as plotted
in Figure 5. The plot shows the L2-error of a classical method divided by the L2-error of a learned
method. Hence, values larger than one represent the learned method being superior. We define the
best classical and learned method as the element-wise minimum of the respective families.

4.3.4. Generalisation to other setups. Due to the cost associated with train-
ing, learning an optimised splitting method is most justified if it generalises to other
setups. Sections 4.3.2 and 4.3.3 demonstrate that our learned methods are conver-
gent and extrapolate from the training set to the unseen validation set drawn from
the same distribution, as expected for any sensible ML approach. However, we note
that all methods were trained for a fixed final time T = 10 and timestep size h = 1

7 ,
which corresponds to 561 sub-flow evaluations for Learn5A and 981 sub-flow evalua-
tions for Learn8A and Learn8B. As shown in Figure 6, our learned methods maintain
and indeed improve their advantages when generalised to other numbers of subflow
evaluations. Next, we investigate the generalisation to other final times, different ini-
tial conditions and for perturbations of the double-well potential. More specifically,
we consider the following setups:

• Final time: The final time T was set to either T1 = 10 or T2 = 30.
• Initial conditions: Recall that the (distribution of) initial conditions in Sec-
tion 4.3.1 were controlled by three parameters xcent, xstdDev and σ and we de-
note the distribution of initial conditions by U(xcent, xstdDev, σ). Here we vary
the (distribution of) initial conditions by either setting U1 = U(−

√
5, 0.1, 0.5),

U2 = U(
√
5, 0.2, 0.5), or U3 = U(−

√
15, 0.05,

√
0.1)

• Shape of the potential: The shape of the double-well potential V (x) is set
to either V1(x) = x4−10x2, V2(x) = x4−10x2−10x, V3(x) = 3x4−50x2+20x,
or V4(x) = x4 − 30x2; note that this includes non-symmetric potentials.

Figure 7 illustrates the L2-error for different final time, initial conditions and the
shape of the potential. Both variations of individual parameters (left) and of all pa-
rameters (right) are shown. We omit to plot the L2-error for the case where only the
initial conditions are changed, i.e. T = T1, U = U2, and V = V1, as it is visually in-
distinguishable from the L2 error on the original training data. We conclude that our
learned methods do indeed generalise to IVPs with different final times, initial condi-
tions and potentials and maintain their advantage compared to classical integrators
for larger timestep sizes under these variations.

To demonstrate that we have indeed adapted to our distribution of IVPs (char-
acterised by different distributions of initial conditions and potentials) and and have
not simply learned universal splittings (that we may have been able to find with tra-
ditional techniques) we illustrate that the loss landscape is significantly distribution

20 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

Fig. 7. L2 error for generalisations to additional datasets with different final times, initial
conditions and potentials. The same quantities as in Figure 5 are plotted. The solid line in the
left figure shows the L2-error for the original training data, i.e. T = T1, U = U1, and V = V1, for
reference. The dashed line in the left figure shows L2-error for a changed potential, i.e. T = T1,
U = U1, and V = V2. In the right figure all parameters are changed simultaneously: the solid line
shows the L2-error for different final time T = T2, initial conditions U = U2, and potential V = V3.

Fig. 8. Left error landscape generated with the distribution of IVPs defined by T = T1, U = U3,
and V = V4. By comparing with Figure 2, reproduced right, we clearly see that the landscape,
and therefore gradients and minima are problem-dependent. This shows that our pipleline and the
learned methods are indeed adapted to the training set of IVP distributions.

dependant. To see this we consider a distribution of initial conditions with sufficiently
deep wells and sufficiently low energy initial conditions so that the training dataset
illustrates only negligible quantum tunneling, i.e. T = T1, U = U3, and V = V4.
The associated landscape is shown in Figure 8 and significantly different from the
landscape in Figure 2. In particular, we note that 4× Strang has ceased to be a local
minimum.

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 21

Fig. 9. Fit of the coefficients C2j for j = 1, 2, 3 in the Taylor expansion (4.4) to the data points
(xi, yi) as a function of the timestep size h.

4.3.5. Order of learned methods. Recall that for a given method, h is in-
versely proportional to the number of exponentials N required to integrate to a fixed
final time T . With this in mind, Figure 5 shows that asymptotically the L2-error
of the learned methods is quadratically convergent in the timestep size h. This is of
course to be expected since the methods were explicitly constructed to be consistent
and symmetric. Interestingly, before reaching this asymptotic convergence rate, there
is a significant drop of the error for larger values of h. To quantify this, we consider
a Taylor expansion of the L2-error. As the odd terms of the Taylor expansion are
symbolically zero due to the parameter transform enforcing symmetry, we expand

(4.4) E(h) = C2h
2 + C4h

4 + C6h
6 +O(h8),

for some non-negative constants C2, C4, C6 ≥ 0. If 0 < C2 ≪ C4, C6, then the
methods are formally second order (C2 ̸= 0), but the error will decrease approxi-
mately with a higher power of h for larger stepsizes where the term C2h

2 in (4.4)
is small relative to the higher order terms. Figure 9 shows a fit of the leading
terms in the expansion (4.4) to the L2-error, excluding the two data points with
the largest timesteps where the sixth order polynomial approximation is not appro-
priate. This fit is based on the assumption that our data is of the form (xi, yi) and

obeys the model yi =
∑3

j=1 C2jx
2j
i with coefficients C2j . A least-squares fit leads

to the minimisation problem argminC∈R3 L(C) where C = (C2, C4, C6) ∈ R3 and

L(C) =
∑

i(
∑3

j=1 C2jϕj(xi) − yi)
2. To enforce non-negativity of the coefficients, we

set C2j = (C̃2j)
2 and fit the logarithm of the error, i.e. we find argminC̃∈R3 L̃(C̃) with

C̃ = (C̃2, C̃4, C̃6) and L̃(C̃) =
∑

i(log(
∑3

j=1(C̃2j)
2ϕj(xi)) − log(yi))

2. The results of
this fit in Figure 9 show that visually the agreement with the data looks very reason-
able for the Learn8A method, while it is less good for the other two methods. This
is because the expansion in (4.4) does not consist of orthogonal basis functions and
hence will be poor for larger values of h which constrain the terms C4 and C6 as
higher order terms will have non-trivial effects. We stress, however, that our goal is
not to find the exact values of the fit coefficients but rather to get an indication of the
relative sizes of C2, C4 and C6. The numerical values of the fit coefficients C2, C4, C6

given in Table 3 show that for all three learned methods we have C2 ≪ C6. This
confirms that although our learned methods are formally of order two, they are very
close to methods of higher order.

22 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

method C2 C4 C6

Learn5A 1.026 0.000 1348.6
Learn8A 0.026 0.035 307.0
Learn8B 0.309 0.000 205.4

Table 3
Fit coefficients of the L2-error expansion in (4.4) as a function of the timestep size h for the

three learned methods, based on the fit shown in Figure 9.

Fig. 10. Function w(γ) := |w112| + |w122| which acts as a proxy of the violation of the fourth
order condition as a function of the parameters γ. The function is plotted in the vicinity of the
minima of the validation loss shown in Figure 3.

Given that empirically the learned methods appear to be “close to” fourth order,
it is natural to look for higher order methods in the vicinity of our learned methods
in the space parametrised by γ. The key technique for finding such higher order
methods is to construct a smooth function of γ which vanishes on the manifold that
describes higher order methods. As explained in [6], the manifold of methods of at
least order four can be implicitly defined with the help of two polynomials w112, w122

of the splitting coefficients (α, β). By using the parameter transform g(γ) described in
Section 3.3, we express w112, w122 as a function of the independent splitting coefficients
γ. A symmetric method with splitting coefficients γ is of order four or higher if
w112(γ) = 0 and w122(γ) = 0. For five-stage methods with three free parameters
γ, we can explicitly parametrise the one-dimensional manifold defined by w112(γ) =
w122(γ) = 0 which contains higher order methods. This manifold is depicted in
Figure 2 and Figure 8. In Figure 10, we plot the value of w(γ) := |w112(γ)|+ |w122(γ)|
as a function of the parameters γ in the vicinity of the minima that are considered
in Figure 3. Observe that w(γ) = 0 is an equivalent definition of the higher-order
manifold w112(γ) = w122(γ) = 0. As Figure 10 shows, the manifold of methods of
at least order four is close to the minima γvalid of the validation loss, visualised in
Figure 3, that was associated with Learn5A. This confirms that our learned methods
are indeed close to methods of at least order four.

Next, we further improve the learned method Learn5A by projecting the coeffi-

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 23

cient γlearned = [0.363,−0.100,−0.135] to the closest point on the manifold w(γ) = 0.
We call this new method, defined by γproj = [0.346,−0.112,−0.132], Learn5AProj.
The L2-error of Learn5A and Learn5AProj is shown in Figure 5. As expected the
Learn5AProj shows fourth-order convergence. Note, however, that our gradient based
method was correct in moving away from the manifold of fourth-order methods as
Learn5A does indeed have a smaller error than Learn5AProj for larger timesteps.
Overall, this shows that our approach is able to find the most efficient method for a
limited, fixed cost budget (i.e. number of exponential evaluations), that these efficient
methods may be lower order and lower error constant methods, but also that gradient
based methods can approximately recover the classically derived order conditions.

5. Conclusion and future work. In this paper, we have developed a machine
learning-based framework to find computationally efficient splitting schemes tailored
for limited computational budgets and adapted to classes of IVPs defined by specific
right-hand sides, final times and distributions of initial conditions. Our approach
maintains common advantages of classical methods, such as interpretability, general-
isability, convergence, and conservation properties, which are usually not guaranteed
for machine learning-based approaches. We showed that our framework can learn
medium to long splittings with lower errors than classical splittings. It is particularly
efficient for large timestep sizes. It should be stressed that our learned methods are
novel which was confirmed by comparing them to existing splitting methods. There
are several ways in which this work can be extended. This includes exploiting the
generalisation abilities of a specific learned method. For instance, a learned method
could be found by training on a low-dimensional system, which is cheap to simulate,
and then applying it to more sophisticated higher-dimensional problems. One could
also investigate longer splittings with a larger number of subflows. Further work could
also be done to remove the dependence on labelled training data or augment the loss
function with regularisers, which penalise the violation of higher-order conditions.

Acknowledgements. The computational studies made use of the Nimbus High
Performance Computing (HPC) Services at the University of Bath (University of
Bath’s Research Computing Group (doi.org/10.15125/b6cd-s854).

REFERENCES

[1] E. Akhmatskaya, M. Fernández-Pendás, T. Radivojević, and J. M. Sanz-Serna, Adaptive
splitting integrators for enhancing sampling efficiency of modified hamiltonian monte carlo
methods in molecular simulation, Langmuir, (2017).

[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix
exponential, SIAM Journal on Matrix Analysis and Applications, 31 (2010), pp. 970–989.

[3] J. Bernier, Exact splitting methods for semigroups generated by inhomogeneous quadratic
differential operators, 2020.

[4] J. Bernier, N. Crouseilles, and Y. Li, Exact splitting methods for kinetic and schrödinger
equations, 2019.

[5] S. Blanes, F. Casas, and A. Murua, Splitting and composition methods in the numerical
integration of differential equations, Bolet́ın de la Sociedad Española de Matemática Apli-
cada, (2008).

[6] S. Blanes, F. Casas, and A. Murua, Splitting methods for differential equations, Acta Nu-
mer., (2024).

[7] S. Blanes, F. Casas, and J. M. Sanz-Serna, Numerical integrators for the hybrid monte
carlo method, SIAM Journal on Scientific Computing, 36 (2014), p. A1556–A1580.

[8] M. Blondel, Q. Berthet, et al., Efficient and modular implicit differentiation,
arXiv:2105.15183, (2021).

[9] A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra: The Theorem of Campbell,
Baker, Hausdorff and Dynkin, vol. 2034, Springer Berlin, Heidelberg, 01 2012.

doi.org/10.15125/b6cd-s854

24 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

[10] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: composable transformations of
Python+NumPy programs, 2018.

[11] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural ordinary
differential equations, in Proceedings of the 32nd International Conference on Neural In-
formation Processing Systems, NIPS’18, Curran Associates Inc., 2018, pp. 6572–6583.

[12] X. Chen, C. Liang, D. Huang, et al., Symbolic discovery of optimization algorithms, Ad-
vances in neural information processing systems, 36 (2024).

[13] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex fourier
series, Mathematics of computation, 19 (1965), pp. 297–301.

[14] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and
stochastic optimization., Journal of machine learning research, 12 (2011).

[15] K. Engel, S. Brendle, R. Nagel, et al., One-Parameter Semigroups for Linear Evolution
Equations, Graduate Texts in Mathematics, Springer New York, 1999.

[16] L. Evans, Partial Differential Equations, Graduate studies in mathematics, American Mathe-
matical Society, 2010.

[17] P. Giordano and L. L. Baglini, A Picard-Lindelöf theorem for smooth PDE, 2022.
[18] R. Glowinski, S. Osher, and W. Yin, Splitting Methods in Communication, Imaging, Science

and Engineering, Springer Cham, 01 2017.
[19] T. G. Grossmann, U. J. Komorowska, J. Latz, and C.-B. Schönlieb, Can physics-informed

neural networks beat the finite element method?, 2023.
[20] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, vol. 31 of Springer

Series in Computational Mathematics, Springer-Verlag, Berlin, second ed., 2006.
[21] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff

Problems, Springer Series in Computational Mathematics, Springer, 2008.
[22] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, Springer, 1996.
[23] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, Lie-group methods, Acta

Numer., 9 (2000), pp. 215–365.
[24] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,

Physics-informed machine learning, Nature Reviews Physics, 3 (2021), pp. 422–440.
[25] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980,

(2014).
[26] K. Levenberg, A method for the solution of certain non-linear problems in least squares,

Quarterly of applied mathematics, 2 (1944), pp. 164–168.
[27] D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, Journal

of the society for Industrial and Applied Mathematics, 11 (1963), pp. 431–441.
[28] R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), pp. 341–

434.
[29] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix,

twenty-five years later, SIAM Review, 45 (2003), pp. 3–49.
[30] M. M. Noel, A new gradient based particle swarm optimization algorithm for accurate

computation of global minimum, Applied Soft Computing, 12 (2012), pp. 353–359.
[31] C. Offen and S. Ober-Blöbaum, Symplectic integration of learned hamiltonian systems,

Chaos: An Interdisciplinary Journal of Nonlinear Science, 32 (2022).
[32] I. Omelyan, I. Mryglod, and R. Folk, Symplectic analytically integrable decomposition

algorithms: classification, derivation, and application to molecular dynamics, quantum
and celestial mechanics simulations, Comput. Phys. Comms., 151 (2003), pp. 272–314.

[33] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics, 378 (2019), pp. 686–707.

[34] M. Ruggenthaler, M. Penz, and R. van Leeuwen, Existence, uniqueness, and construction
of the density-potential mapping in time-dependent density-functional theory, Journal of
Physics: Condensed Matter, 27 (2015), p. 203202.

[35] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, Addison Wesley, 2 ed., 1985.
[36] P. Singh, A PyTorch compatible Differentiable Numerical Algorithms package for

computational quantum mechanics. https://pypi.org/project/expsolve/.
[37] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body

theories and monte carlo simulations, Physics Letters A, 146 (1990), pp. 319–323.
[38] K. Yajima, Existence of solutions for Schrödinger evolution equations, Communications in

Mathematical Physics, 110 (1987), pp. 415 – 426.

https://pypi.org/project/expsolve/

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 25

Appendix A. Triple jump and composition methods. We describe the
triple jump technique [20, II: 4.2] as an example of a composition method. Given a

numerical method Ψ
[f]
h (· ;α, β) of order p, we can construct a higher-order numerical

method by writing

(A.1) Ψ
[f]
h (· ; α̃, β̃) = Ψ

[f]
µ3h

(· ;α, β) ◦Ψ[f]
µ2h

(· ;α, β) ◦Ψ[f]
µ1h

(· ;α, β),

where,

µ1 = µ3 =
1

2− 21/(p+1)
, µ2 = 1− µ1 − µ3.(A.2)

Due to the symmetry of the parameters that define the triple jump, µ = [µ1, µ2, µ3],
within the larger class of composition methods, applying the triple jump to a sym-
metric method results in a new symmetric method. Hence the new method defined
by (A.1) is of order p+ 1 in general and of order p+ 2 if the original method is sym-

metric. The coefficients [α̃, β̃] that define the new method can be constructed from
the coefficients [α, β] of the original method in a straightforward way.

Applying the triple jump technique to the second order Strang results in a split-
ting method of order four from the Yoshida family, referred to as Yoshida in this
paper. The triple jump technique can be inductively repeated to construct higher-
order splitting methods. However, the number of stages grows exponentially in this
approach: constructing a method of order p≫ 1 will result in O(3p) stages.

Appendix B. Explicit parameter transform. To define the matrices A ∈
RK×⌊K−1

2 ⌋, B ∈ RK×⌊K−2
2 ⌋ and the vectors C,D ∈ RK for the parameter transform

in (3.7), we distinguish between K even and odd. For K even, we have

A =

 IK−2
2

−12,K−2
2

JK−2
2

 ∈ RK×K−2
2 , C =

0K−2
2 ,1

0.52,1
0K−2

2 ,1

 ∈ RK ,

B =

IK−2

2

−21,K−2
2

JK−2
2

01,K−2
2

 ∈ RK×K−2
2 , D =

0K−2

2 ,1

1
0K−2

2 ,1

0

 ∈ RK ,

while for K odd, we obtain,

A =

 IK−1
2

−21,K−1
2

JK−1
2

 ∈ RK×K−1
2 , C =

0K−1
2 ,1

1
0K−1

2 ,1

 ∈ RK ,

B =

IK−3

2

−12,K−3
2

JK−3
2

01,K−3
2

 ∈ RK×K−3
2 , D =

0K−3

2 ,1

0.52,1
0K−3

2 ,1

0

 ∈ RK .

Here, Is ∈ Rs×s denotes the identity matrix and we write Js ∈ Rs×s for the exchange
matrix. Further, rp,q ∈ Rp×q is filled with the scalar r.

Appendix C. Construction of training datasets. The procedure for gen-
erating a single batch B of random initial conditions which can be used for training

26 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

and validation is explicitly described in Algorithm C.1. In lines 5, 8 and 11 of Algo-
rithm C.1, the function g(· ; x̄0, σ) is a Gaussian with mean x̄0 and standard deviation
σ, namely

(C.1) g(x;x0, σ) := Z exp

[
−1

2

(
x− x̄0
σ

)2
]
.

Here, Z is a suitable normalisation constant such that
∑M

m=1 |g(xm;x0, σ)|2 = 1,
where xm, m = 1, . . . ,M , denotes the spatial discretisation introduced in Section 4.1.
As already remarked in Section 4.3.1, Algorithm C.1 implicitly defines the distribution
U of initial conditions used for training. Figure 11 shows six randomly chosen initial

Algorithm C.1 Generation of training batch B = {u(0)0 , u
(1)
0 , . . . , u

(b−1)
0 }.

1: Set width σ = 0.5.
2: for j = 0, 1, . . . , b− 1 do

3: Draw normally distributed random mean x
(j)
0 ∼ N (−

√
5, 0.1).

4: Draw uniformly distributed random numbers ξ
(1)
j , ξ

(2)
j , ξ

(3)
j , ξ

(4)
j ∼ U(0, 1).

5: Set ϕ̃ =

{
g(· ;x0, σ) with x0 ∼ N (−

√
5, 0.1), if j = 0,

ψ
[f]
T (u

(j−1)
0), otherwise.

6: if ξ
(1)
j < 0.5 then

7: Set ϕ̃ 7→ ϕ̃+ g(· ;x(j)0 , σ) (add Gaussian).
8: end if
9: if ξ

(2)
j < 0.5 then

10: ϕ̃ 7→ exp[2πiξ
(3)
j]ϕ̃ (apply a random phase shift).

11: end if
12: if ξ

(4)
j < 0.01 then

13: ϕ̃ = g(· ;x(j)0 , σ) (reset to Gaussian).
14: end if
15: Set u

(j)
0 = ϕ̃/Z̃ with the normalisation constant Z̃ =

∑M
m=1 |ϕ̃(xm)|2.

16: end for

conditions u
(j)
0 that were generated with Algorithm C.1. Note that the functions u

(j)
0

are concentrated around the left minimum x− = −
√
5 of the double-well potential.

Appendix D. Further details on the choice of the stochastic optimisa-
tion algorithm. Figure 12 (left) shows the evolution of the training- and validation
loss function in (3.9) for the Schrödinger equation (4.2) using Adam for the stochatic
optimisation in line 8 of the learning pipeline in Algorithm 3.1. The loss is plotted
as a function of the iterations for learning the optimal splittings with lengths K = 5
and K = 8. For K = 8, two different minima were identified, and these are labelled
“Learn8A” and “Learn8B” respectively; the learned splitting method for K = 5 is
referred to as “Learn5A”. Both the training loss and the validation loss (which is
much smoother since it is always evaluated on the same batch) are shown. The cor-
responding evolution of the splitting parameters γ is shown in Figure 12 (right). As
the plot demonstrates, all parameters converge after 250 iterations.

D.1. Comparison of different optimisers. Many different optimisers such
as Adam [25], AdaGrad [14] or Lion [12] could be chosen in the SO step in line 8 of

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 27

Fig. 11. Six randomly chosen initial conditions u
(j)
0 generated with Algorithm C.1, with modu-

lus, real and imaginary part of u
(j)
0 depicted in black, blue and red, resptively. In each of the plots,

the double-well potential is also shown on a logarithmic scale in the background.

Fig. 12. Training- and validation loss (left) and evolution of the splitting parameters for the
three learned methods Learn5A, Learn8A and Learn8B where we used Adam for the stochastic op-
timisation.

Algorithm 3.1. Since the number of learned parameters is low, this includes second-
order methods such as Levenberg-Marquardt [26, 27] which require the evaluation of
the Hessian. For each of these methods performance can be tuned by varying the
relevant hyperparameters such as the learning rate, momentum and weight decay in
the stochastic gradient descent on batched training data.

Figure 13 illustrates the performance of AdaGrad, Adam, Lion and Levenberg-
Marquardt on our training data when trying to find the minimum for a splitting
method with three free parameters γ1, γ2 and γ3. To obtain this figure, we started
near the novel learned splitting Learned5A by setting the initial values of the pa-
rameters to γ1 = 0.374129 ± δ, γ2 = −0.109994 ± δ, γ3 = −0.123223 ± δ where
δ ∈ {−0.05,+0.05,−0.1,+0.1} and explored the loss landscape. The loss function in
the upper left plot in Figure 13 shows that all optimisers apart from Lion, converged
to numerical methods with error of around 0.02. For reference, the exact final values
of the parameters obtained with the different methods and the corresponding value
of the loss function are tabulated in Table 4. We conclude that they are all good
candidates for optimisers to be used in line 8 of Algorithm 3.1. As Adam is known
to be an efficient and widely used algorithm, all other numerical experiments employ

28 L. M. KREUSSER, H. E. LOCKYER, E. H. MÜLLER, AND P. SINGH

Fig. 13. Comparison of different optimisers with associated learning rates 0.05 and 0.1 for
finding a splittting method with three free parameters. The plot in the top left corner shows the
evolution of the loss function; the other three plots visualise the corresponding evolution of the
parameters γ1, γ2 and γ3.

Adam.

optimizer LR γ1 γ2 γ3 loss L

AdaGrad
0.05 0.3609 -0.09857 -0.1375 0.02096
0.1 0.4114 -0.1455 -0.09246 0.2316

Adam
0.05 0.3627 -0.1003 -0.1353 0.02106
0.1 0.3665 -0.1036 -0.1309 0.0212

Lion
0.05 0.3446 -0.07162 -0.1938 0.1275
0.1 0.3169 -0.06039 -0.2246 0.07843

Levenberg- 0.05 0.3245 -0.0671 -0.1963 0.02011
Marquardt 0.1 0.3242 -0.06704 -0.1966 0.2013

Table 4
Final values of the parameters γ1, γ2 and γ3 and loss function when trained over 250 epochs

with different optimisers and learning rates LR.

Appendix E. Visualisation of splitting methods. In the following we
describe how the visualisation of splitting methods described in Section 4.3.3 arises
from the solution of a the simple two-dimensional IVP u̇(t) = [1, 1]⊤, u(0) = [0, 0]⊤,
t ∈ [0, 1] for u(t) = (u1(t), u2(t))

⊤ ∈ R2. The exact analytical solution u(t) = [t, t]
corresponds to a diagonal line from [0, 0] to [1, 1]. The natural splitting is f [1] = [1, 0]⊤,

f [2] = [0, 1]⊤. The corresponding sub-flows ψ
[1]
δt : (u1(t), u2(t))

⊤ 7→ (u1(t+δt), u2(t))
⊤

and ψ
[2]
δt : (u1(t), u2(t))

⊤ 7→ (u1(t), u2(t + δt))⊤ translate the state parallel to the
coordinate axes. For 0 ≤ τ ≤ 1 we can now define the flux
(E.1)

Ψ
[f]
τh(· ;α, β) =

ψ
[1]
(τ−Sk′)h

⃝k′−1
k=1 ψ

[2]
βkh

◦ ψ[1]
αkh

for Sk′ ≤ τ ≤ Sk′ + αk′

ψ
[2]
(τ−α′

k−Sk′)h
◦ ψ[1]

α′
kh

⃝k′−1
k=1 ψ

[2]
βkh

◦ ψ[1]
αkh

for Sk′ + αk′ ≤ τ ≤ Sk′+1

where the partial sums Sk′ are given by

Sk′ =

k′−1∑
k=1

βk + αk for k′ = 1, 2, . . . ,K .

As τ increases from 0 to 1, this flux will translate a given state u to Ψ
[f]
h (u;α, β) along

LEARNING EFFICIENT AND PROVABLY CONVERGENT SPLITTING METHODS 29

a connected path of straight line segments that are parallel to the coordinate axes and
whose (orientated) lengths are given by βk and αk respectively. This path can thus be
regarded as a visualisation of the numerical time-stepping method defined by (α, β)
which resolves the evolution within a single timestep of size h. Figure 4 visualises
the evolution of the initial state [0, 0] under different learned and reference methods
for h = 1. Consistency of a method is equivalent to the path ending at [1, 1], and
for consistent methods symmetry is akin to having discrete 180◦ rotational symmetry
about the point [0.5, 0.5]. By comparing Strang with 4× Strang in Figure 4 it can be
seen that decreasing the step size of a method brings the path closer to the diagonal
line which represents the analytic solution at the cost of increasing the number of line
segments.

	Introduction
	Contributions

	Traditional numerical analysis methods
	Flows
	Splittings
	Order conditions
	Composing splitting methods
	Cost estimates
	Computational efficiency
	Identifying efficient splitting methods
	A data-driven approach for minimising the error constant

	Learned splitting schemes
	ML notation and concepts
	Incorporating flows into ML
	Enforcing consistency and symmetry through parameter transformations
	Training algorithm

	Numerical results
	Schrödinger's equation
	Implementation
	Learning splitting coefficients for Schrödinger's equation
	Data generation
	Training procedure
	Learning longer splitting methods
	Generalisation to other setups
	Order of learned methods

	Conclusion and future work
	References
	Appendix A. Triple jump and composition methods
	Appendix B. Explicit parameter transform
	Appendix C. Construction of training datasets
	Appendix D. Further details on the choice of the stochastic optimisation algorithm
	Comparison of different optimisers

	Appendix E. Visualisation of splitting methods

