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Abstract

By treating intervals as inseparable sets, this paper proposes sparse machine learning regressions

for high-dimensional interval-valued time series. With LASSO or adaptive LASSO techniques, we

develop a penalized minimum distance estimation, which covers point-based estimators are special

cases. We establish the consistency and oracle properties of the proposed penalized estimator,

regardless of whether the number of predictors is diverging with the sample size. Monte Carlo sim-

ulations demonstrate the favorable finite sample properties of the proposed estimation. Empirical

applications to interval-valued crude oil price forecasting and sparse index-tracking portfolio con-

struction illustrate the robustness and effectiveness of our method against competing approaches,

including random forest and multilayer perceptron for interval-valued data. Our findings highlight

the potential of machine learning techniques in interval-valued time series analysis, offering new

insights for financial forecasting and portfolio management.
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1 Introduction

Machine learning techniques have revolutionized data analysis across various domains, provid-

ing powerful tools for forecasting economic variables and financial outcomes (Babii et al., 2022; Bia

et al., 2024; Gu et al., 2020). However, their application to interval-valued data remains largely un-

explored, despite the increasing prevalence of such data in economic and financial spheres. interval-

valued data, or more generally symbolic data, offer richer information (e.g., trends and volatility)

than point-valued data within the same time period, and avoid noise contained in high-frequency

data (Billard and Diday, 2002; Bock and Diday, 1999, 2000; Golan and Ullah, 2017). In the data-rich

environment, interval-valued data are prevalent across diverse situations, including interval-valued

salary in the job advertisements (Zhong et al., 2023), high-low asset returns (González-Rivera and

Lin, 2013; Wang et al., 2012a), a minimax regret portfolio selection problem (Giove et al., 2006),

high-low livestock prices (Lin and González-Rivera, 2016; Zhang et al., 2020), minimum-maximum

daily air quality data (Yang et al., 2019), and variation of Cholesterol level (Wang et al., 2012b).

These interval-valued data, coupled with advanced machine learning techniques, offers an oppor-

tunity to enhance the analysis and forecasting of complex phenomena. As far as we know, there is

little work on developing spares regression models for high-dimensional interval-valued data.

Our attempt in this article is to investigate the crucial problem of interval-valued machine

learning methods in high-dimensional contexts, for which we immediately face several unique the-

oretical challenges in contrast to the case of point-valued time series data. First, interval-valued

data introduce inherent complexities due to their distinct algebraic properties and operational

rules, necessitating novel approaches beyond standard point-valued techniques. Second, different

from quadratic loss with L1 penalties for the existing literature for point-valued machine learning

methods, we need to develop a proper loss function to simultaneously capture potential information

contained in interval-valued data and yield sparse regression model. Third, the diverging dimen-

sional setting in this paper substantially complicates the theoretical derivations, particularly in

establishing the consistency and asymptotic normality of our estimators. A key reason for this is

that classical large sample theories, such as the law of large numbers and central limit theorem,
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developed for point-valued data, cannot be directly applied to interval-valued data.

To address these challenges, we propose a sparse linear regression via machine learning tools

to select relevant interval-valued features and optimize model parameters by treating intervals as

inseparable sets. The estimation procedure is developed within a penalized minimum distance

framework based on DK-metrics with adaptive LASSO type penalty, and we introduce a novel

interval-based least angle regression (ILARS) algorithm to solve the resulting optimization problem.

Leveraging central limit theories based on DK-distance, we establish asymptotic properties of the

proposed parameter estimators. Specifically, under suitable regularity conditions, we prove that

the penalized minimum distance estimators demonstrate consistency and asymptotic normality in

both fixed and diverging dimensional settings, achieving the oracle properties2. In addition, we

introduce the interval-based framework of nonnegative garrote regression and ridge regression as

additional regularized approaches for interval modeling. Furthermore, when interval-valued data

reduces to point-valued data, the proposed loss function with a suitable kernel function is equivalent

the quadratic loss. Simulation studies demonstrate the favorable finite sample properties of the

proposed estimation. Empirical applications to crude oil prices forecasting and S&P 100 index-

tracking highlight the merits of the proposed method compared to other competing approaches,

including random forest and multilayer perceptron (MLP).

It is worth discussing some key references and outlining our contributions in relation to the most

relevant literature. First, in contrast to existing interval regression methods (González-Rivera and

Lin, 2013; Lin and González-Rivera, 2016, 2019; Neto and de Carvalho, 2008, 2010), our proposed

approach treats intervals as inseparable entities to capture the potential information contained

within the intervals. Previous methods, such as that of González-Rivera and Lin (2013), construct

interval models by modeling upper and lower bounds. While this approach facilitates the direct

application of traditional point-data modeling techniques, including maximum likelihood and least

squares estimation, it only utilizes the boundary information of intervals, thereby neglecting the

potentially valuable information contained within the intervals. Although González-Rivera and Lin

2The oracle properties indicate that the estimators perform as well as if the true submodel were known a priori
(Fan and Li, 2001)
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(2013)’s method has been widely adopted, this limitation of considering only boundary points is

also prevalent in subsequent studies (Buansing et al., 2020; Dias and Brito, 2017). To overcome this

methodological shortcoming, our proposed penalized DK-distance measure utilizes the information

of boundaries as well as the interior points of an interval. By utilizing the potential information

contained in intervals, our approach is expected to achieve superior forecasting accuracy.

Second, the proposed parsimonious model with adaptive LASSO represents the first attempt

to simultaneously achieve estimation and consistent variable selection for high-dimensional ITS.

While parsimonious regression techniques for point-valued data have been extensively studied and

advanced over the past decades, from the seminal least absolute shrinkage and selection operator

(LASSO, Tibshirani, 1996) to various extensions including adaptive LASSO (Zou, 2006), group

LASSO (Meier et al., 2008), with continuing developments in recent years (Bia et al., 2024; Caner

and Eliaz, 2024; Gao et al., 2024). However, analogous methodologies for interval-valued data

remain largely unexplored. While some machine learning approaches for interval-valued data exist,

such as artificial neural networks (Yang et al., 2019), support vector machines (Utkin, 2019), and

visualization techniques (Zhang and Lin, 2022), none of these methods is designed to handle the

dual challenges of high dimensionality and sparsity inherent in modern interval-valued datasets. To

the best of our knowledge, only Zhong et al. (2023) explicitly addresses high-dimensional interval-

valued data. Nevertheless, their approach is restricted to cases where only the response variable

is interval-valued while predictors remain point-valued, making it unsuitable for our context where

both predictors and response are interval-valued.

Third, we establish the consistency and oracle properties of the proposed penalized estimator,

regardless of whether the number of predictors is diverging with the sample size. While several

methods treating interval variables as inseparable entities exist, their theoretical frameworks are

primarily restricted to low dimensions. For instance, Han et al. (2016) introduced an interval-

valued vector autoregressive moving average (IVARMA) model, where each component can be

viewed as an autoregressive conditional interval model with interval-valued exogenous variables

(ACIX). To capture nonlinear features of ITS, Sun et al. (2018) developed threshold autoregressive
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interval models, which was further extended by Yang et al. (2024) to a logistic smooth transition

interval autoregressive model. Similar set-based approaches have been widely used in various fields,

including stock market (Wang et al., 2016a), foreign exchange market (Sun et al., 2020), and

commodity market (He et al., 2021; Wu et al., 2023), among many others. However, none of these

existing methodologies addresses the challenges posed by high-dimensional interval-valued data,

which is the focus of our study.

The rest of this paper is organized as follows. Section 2 introduces the interval-based machine

learning regression via adaptive LASSO. Section 3 describes the proposed estimators’ asymptotic

properties and introduces the interval-based nonnegative garrote and ridge regression. Section 4

develops the associated asymptotic properties of diverging-dimensional interval regression. Section

5 presents the simulation studies to show the finite sample properties of our method. Section 6

shows two empirical applications on the interval-valued crude oil price forecasting and the interval-

based index tracking. Section 7 concludes the paper and discusses its future prospects. The

appendix presents technical assumptions, implementation algorithms, and mathematical proofs,

with additional simulation results in the supplementary materials.

2 Machine learning regression for ITS

We first review the ACIX models in the existing literature (He et al., 2021; Sun et al., 2018).

Suppose {Yt} and {Xj,t} are stationary ITS3. Then, an ACIX model4 can be expressed as

Yt = α0 + β0I0 +

q∑
j=1

βjYt−j +
s∑

j=0

δ′jXt−j + ut, t = 1, ..., T, (2.1)

where Xt = (X1,t, ..., XJ,t)
′, α0, βj and δj = (δj,1, . . . , δj,J)

′ are unknown scalar parameters, I0 is the

interval unit element [−1
2 ,

1
2 ], and ut is an interval martingale difference sequence (IMDS), satisfying

E[ut|It−1] = [0, 0] with It−1 being the information set. Let θ = (α0, β0, β1, . . . , βq, δ
′
0, . . . , δ

′
s)

′ =

3The interval variable is defined as a measurable map on a probability space (Ω,F , P ), namely Y : Ω → IR, where
IR is the set of all pairs of ordered numbers in R. Specifically, for any w in Ω, the term of IR takes the form of
Y (w) = [YL(w), YR(w)], where YR < YL is allowed. See more discussions in Remark 1

4For any given intervals Y1 = [Y1L, Y1R], Y2 = [Y2L, Y2R] and scalar c, the operation rules of intervals are defined
as follows: (1) addition: Y1+Y2 = [Y1L+Y2L, Y1R+Y2R]; (2) Hukuhara’s difference: Y1−Y2 = [Y1L−Y2L, Y1R−Y2R];
(3) scalar multiplication: c · Y1 = [c · Y1L, c · Y1R].
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(θ1, . . . , θp)
′ and Zt = ([1, 1], I0, Yt−1, . . . , Yt−q,X

′
t, . . . ,X

′
t−s)

′, where p is the dimension of all pa-

rameters being either fixed or diverging as T → ∞. More discussions of ACIX model5 and the

definition of intervals can be found in the existing literature, e.g., He et al. (2021), Yang et al.

(2016), and among others.

The ACIX model serves as a generalization of the popular ARX-type model, commonly em-

ployed for point-valued time series analysis. It provides a framework to capture the temporal

dependence of interval processes observed in economics and finance, such as volatility or range

clustering and level effects. However, in the era of big data, the dimension of Zt is often sufficiently

large to encompass the underlying structure of high-dimensional interval-valued data, and there may

exist sparsity within the predictors. For instance, when modeling the dynamics of interval-valued

stock returns influenced by multiple factors (Guo et al., 2023), such as supply, demand, geopolitical

tensions, and technological advancements, or when analyzing interval-valued macroeconomic indi-

cators using various predictors (Koop and Korobilis, 2023), like GDP growth or inflation forecasting

ranges subject to uncertainties arising from consumer confidence, trade policies, and industrial pro-

ductivity. Additionally, this challenge arises in modeling interval-valued exchange rates (Premanode

and Toumazou, 2013), which are impacted by numerous factors, including economic fundamentals,

market sentiment, and central bank interventions. In such scenarios, the ACIX model becomes less

suitable due to its fixed number of parameters and inability to handle redundant variables.

2.1 Penalized minimum DK-distance estimation

To select important interval-valued predictors from a large dataset, we propose a penalized

minimum distance estimation for the ACIX model. Without loss of generality, we assume that

the response and covariates are standardized. Our objective is to estimate the unknown regression

5Similar to the point-valued case, we consider the interval regression model (2.1) to be correctly specified in
conditional mean, if there exists a true parameter θ0 ∈ Rp such that E[Yt|Zt] = Z′

tθ
0. Otherwise, we can define the

pseudo-true parameter θ∗ as θ∗ = argminE[∥Yt − Z′
tθ∥2K ], where Z′

tθ
∗ represents the optimal linear combination in

the sense of minimizing the DK distance. Moreover, when (2.1) contains no exogenous variables, it reduces to the
ACI model.
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coefficients by solving the following penalized regression problem based on DK-distance:

θ̂T = argminθ

T∑
t=1

∥Yt − Z′
tθ∥2K + λT

p∑
j=1

wj |θj |, (2.2)

where ∥·∥K is the DK norm derived from the DK-distance, λT is the tuning parameter, wj is a

known adaptive weight for j = 1, . . . , p, and T is the sample size. In practice, we can set the

adaptive weight as ŵj = 1/|θ̃j |γ , where θ̃ = (θ̃1, ..., θ̃p)
′ is the minimum DK-distance estimator6

(Han et al., 2016), and γ is a given constant.

The DK-distance is a metric for measuring the distance between two interval-valued variables

(Han et al., 2016; He et al., 2021; Körner and Näther, 2002; Sun et al., 2018). Specifically, the

DK-distance and its derived norm ∥·∥K are defined as:

∥Yt − Z′
tθ∥2K = D2

K(Yt,Z
′
tθ) =

∫
(u,v)∈S0

[sYt(u)− sZ′
tθ
(u)][sYt(v)− sZ′

tθ
(v)]dK(u, v), (2.3)

where K(u, v) is a symmetric positive definite kernel function for u, v ∈ S0 = {1,−1}, and sYt(u)

is the support function of interval Yt defined on the unit sphere S0 = {−1, 1} as:

sYt(u) =


sup
y∈Yt

{u · y}, when YL,t ≤ YR,t

inf
y∈Yt

{u · y}, when YR,t ≤ YL,t,

for u ∈ S0. It is noteworthy that the operation rules and DK norm facilitate the construction

of a complete normed linear space. Furthermore, we can endow this space with an inner product

induced by the DK-distance metric, denoted as ⟨·, ·⟩K .7

Remark 1. The intervals Yt and Xj,t in (2.1) are extended intervals, a concept introduced by

Kaucher (1980). Mathematically, extended intervals generalize classical intervals by allowing the

left bound to exceed the right bound, providing an algebraically closed space where operations and

proofs can be constructed in closed form. Combined with interval operation rules, particularly

Hukuhara’s difference (Hukuhara, 1967), they enable the construction of a complete normed linear

6The minimum DK-distance estimator θ̃ = argmin
∑T

t=1∥Yt−Z′
tθ∥2K , and it has been proven to be a

√
T consistent

estimator with fixed dimension p.
7For example, suppose X1 and X2 are two intervals. The inner product of them is ⟨sX1 , sX2⟩K . For simplicity of

notation, we extend the use of ⟨·, ·⟩K to also denote the multiplication of interval matrices, which can be obtained by
replacing the pointed-valued multiplication with inner product for intervals.
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space through the DK norm. From a practical perspective, this framework has been widely adopted in

interval analysis (Benhamou and Granvilliers, 2006; Dimitrova et al., 1992; Sahu et al., 2024; Sun

et al., 2018), as it naturally accommodates real-world scenarios where such ordering may occur. For

instance, in analyzing household income differentials, the wife’s income (right bound) may exceed

the husband’s income (left bound).

2.2 Discussion of special cases

Our penalized minimum DK-distance estimation covers several classical special cases of interval

models. The DK-distance is, to a certain degree, equivalent to the dW distance8 introduced by

Bertoluzza et al. (1995), with the advantage of being more computationally tractable. The dW

distance measure involves not only distances between extreme points with weights W (0) and W (1),

but also distances between interior points in the intervals with weights W (ω), 0 < ω < 1. It is

interesting to see that the DK metric, as a equivalence of the dW metric, preserves this property,

which is demonstrated through examples in the special cases. In the following, we investigate various

special choices of kernel K(u, v) and discuss the corresponding penalized regression. For notational

convenience, we denote the kernel K more concisely as: K(1, 1) = a, K(1,−1) = K(−1, 1) = b,

and K(−1,−1) = c. Let Ym,t = (YL,t + YR,t)/2, Yr,t = YR,t − YL,t, Zm,t = (ZL,t + ZR,t)/2,

Zr,t = ZR,t − ZL,t be the midpoints and ranges of Yt and Zt. Then, denote ∆m,t = Ym,t − Z′
m,tθ,

∆r,t = Yr,t − Z′
r,tθ, ∆L,t = YL,t − Z′

L,tθ, and ∆R,t = YR,t − Z′
R,tθ.

Case 1. a = 1/4, b = −1/4, c = 1/4. The DK norm becomes ||Yt − Z′
tβ||2K = DK(Yt,Z

′
tβ)

2 =

∆2
m,t.

9 Thus, the penalized minimum distance estimation is obtained by

θ̂T = argminθ

T∑
t=1

(Ym,t − Z′
m,tθ)

2 + λT

p∑
j=1

1

|θ̃j |γ
|θj |, (2.4)

which is the adaptive LASSO estimation for the midpoints of intervals. Under this kernel function,

our interval model effectively utilizes only the midpoint information of the intervals. Especially, if

8The dW distance for intervals is defined as dW (A,B) =
√∫

[0,1]
(A(ω)−B(ω))2dW (ω) for A,B ∈ IR, where W (ω)

is a probability measure on the real Borel space ([0, 1],B([0, 1])).
9In this case, the DK-distance is equivalent to the dW distance, where W (ω) is a distribution such that W (1/2) = 1

and 0 otherwise.
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there is no penalty in (2.4), note that our method degenerates to the midpoints method proposed

by Billard and Diday (2000).

Case 2. a = 1, b = 1, c = 1. The DK norm becomes ||Yt−Z′
tβ||2K = DK(Yt,Z

′
tβ)

2 = ∆2
r,t. This

leads to the following optimization problem:

θ̂T = argminθ

T∑
t=1

(Yr,t − Z′
r,tθ)

2 + λT

p∑
j=1

1

|θ̃j |γ
|θj |.

In this case, our method only use the range information of the ITS. It is equivalent to the adaptive

LASSO estimation for the ranges of intervals.

Case 3. a, c > 0, b = 0. We have ||Yt − Z′
tβ||2K = DK(Yt,Z

′
tβ)

2 = a∆2
R,t + c∆2

L,t.
10 The

penalized estimation (2.2) becomes

θ̂T = argminθ

T∑
t=1

[
a(YR,t − Z′

R,tθ)
2 + c(YL,t − Z′

L,tθ)
2

]
+ λT

p∑
j=1

1

|θ̃j |γ
|θj |. (2.5)

In this case, the estimator θ̂T is obtained by minimizing the square errors of weighted bounds with

a penalization. Moreover, when there is no penalty (i.e., λT = 0), our method encompasses several

popular special cases. First, note that (2.5) is similar to the constrained Minmax method. The

Minmax method estimates the lower and upper bounds of the intervals using different parameter

vectors (Billard and Diday, 2002), thereby ignoring the dependence between the bounds. Then,

(2.5) can also be seen as the bivariate regression in Brito (2007) with a constraint. With this case,

our model is essentially equivalent to using information about the interval’s left and right bounds.

Case 4. a = c, |b| < a. It follows that, ||Yt−Z′
tβ||2K = DK(Yt,Z

′
tβ)

2 = a+b
2 ∆2

r,t+2(a−b)∆2
m,t.

11

Then, (2.2) takes the form of

θ̂T = argminθ

T∑
t=1

[
a+ b

2
(Yr,t − Z′

r,tθ)
2 + 2(a− b)(Ym,t − Z′

m,tθ)
2

]
+ λT

p∑
j=1

1

|θ̃j |γ
|θj |. (2.6)

In this case, the estimator θ̂T is obtained by the penalized square errors of weighted ranges and

midpoints. When λT = 0, equation (2.6) provides an approach similar to the well-known CRM

10If a+ c = 1, the choice of such a kernel K is equivalent to the choice of W (ω) in dW distance with W (ω) follows
a Bernoulli distribution with W (0) = c and W (1) = a.

11If a − b = 1 and b ≤ 0, the choice of such a kernel K is equivalent to the choice of W (ω) in dW distance with
W (ω) follows a distribution such that W (0) = a+ b, W (1/2) = −4b, and W (1) = c+ b.
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method proposed by Neto and de Carvalho (2008), but with additional constraints. Importantly,

our method under this kernel function is equivalent to utilizing both midpoint and range information

of intervals.

Case 5. a ̸= c, b ̸= 0. We have, ||Yt −Z′
tβ||2K = DK(Yt,Z

′
tβ)

2 = a∆2
R,t + c∆2

L,t − 2b∆R,t∆L,t or

equivalently ||Yt −Z′
tβ||2K = (a+2b+ c)/4∆2

r,t + (a− 2b+ c)∆2
m,t + (a− c)∆r,t∆m,t.

12 In this case,

θ̂T is obtained by solving the following optimization problem:

θ̂T = argminθ

T∑
t=1

[
a∆2

R,t + c∆2
L,t − 2b∆R,t∆L,t

]
+ λT

p∑
j=1

1

|θ̃j |γ
|θj |, (2.7)

Here, (2.7) could capture the information in ∆R,t, ∆L,t, and ∆R,t∆L,t. Utilizing the cross product

information will enhance estimation efficiency.

3 Asymptotic properties

3.1 Consistency and oracle properties

In this section, we examine the asymptotic properties of estimation under the condition that

the dimension of the predictors in the penalized ACIX model is large but fixed. In the following,

the L2 norm of any vector is denoted by || · ||. Theorems 1 and 2 establish the consistency and

asymptotic normality, respectively, of the penalized estimators for interval linear regression. The

necessary conditions for these theorems are listed in Appendix A.

Theorem 1. Given Assumptions 1-3 and 7, the penalized minimum distance estimator in (2.2) is

consistent, that is, ||θ̂T − θ0|| = Op(1/
√
T ), as T → ∞.

Theorem 1 specifically states that under the imposed assumptions, the distance between the

estimated parameter vector θ̂T and the true parameter vector θ0 in the penalized interval regres-

sion converges in probability to zero at a rate of Op(1/
√
T ). This theorem provides a theoretical

guarantee for the consistency of the estimator θ̂T , ensuring that it converges to the true parameter

values at a well-defined rate as the sample size T increases.

12if a + c − 2b = 1 and b < 0, the DK-distance is equivalent to dW distance with distributions as W (0) = a + b,
W (1/2) = −4b, W (1) = c+ b, and 0 otherwise.
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In the following analysis, we establish two main asymptotic results: the consistency of interval-

valued variable selection and the asymptotic normality of non-zero coefficient estimators. For

exposition purposes, we assume without loss of generality that the first k0 predictors are the true

variables with non-zero coefficients, while the remaining m0 = p − k0 predictors are redundant

with zero coefficients. Let θ0 = (θ0′
1 ,θ

0′
2 )

′, where θ0
1 is a k0 × 1 vector of non-zero coefficients and

θ0
2 is a m0 × 1 vector of zero coefficients, i.e., θ0

1 ̸= 0 and θ0
2 = 0. Note that this partition is

solely for theoretical analysis, as the true non-zero and zero coefficients are unknown in practice.

Let θ̂T = (θ̂
′
1T , θ̂

′
2T )

′ denote the estimator corresponding to θ0
1 and θ0

2, respectively. Further, let

Z1t = (Z1t, ..., Zk0t)
′ represent the vector of the first k0 covariates.

Theorem 2 (Oracle properties). Under Assumptions 1-3 and 7, the penalized interval regression

estimation via adaptive LASSO satisfies the following properties:

(i) Consistency in variable selection: limT→∞ P (θ̂2T = 0) = 1;

(ii) Asymptotic normality:
√
T (θ̂1T − θ0

1)
d→ N(0, C−1

11 E[⟨sZ1t , sut⟩K⟨sut , s
′
Z1t

⟩K ]C−1
11 ), as T →

∞, where C11 is a k0×k0 block of matrix E[⟨sZt , s
′
Zt
⟩K ] 13 corresponding to the nonzero coefficients.

Theorem 2 states two asymptotic properties of the penalized interval regression. The first prop-

erty is the consistency in variable selection, meaning that the probability of correctly identifying

the zero coefficients approaches 1 as the sample size increases. The other property is that esti-

mated coefficients of active variables follow an asymptotic normal distribution with mean zero and

variance, in terms of C−1
11 E[⟨sZ1t , sut⟩K⟨sut , s

′
Z1t

⟩K ]C−1
11 .

3.2 Properties of other interval-based regularized methods

Following the spirit of Breiman (1995), we propose the interval-based nonnegative garrote, a

machine learning technique for adaptive feature selection. We also analyze the relationship between

penalized interval regression via adaptive LASSO and via nonnegative garrote. The nonnegative

13In Han et al. (2020), some asymptotic properties are derived as 1
T

∑T
t=1⟨sZt , s

′
Zt
⟩K

p→ E[⟨sZt , s
′
Zt
⟩K ] and

√
T (θ̃−

θ0)
d→ N(0, [E⟨sZt , s

′
Zt
⟩K ]−1E[⟨sZt , sut⟩K⟨sut , s

′
Zt
⟩K ][E⟨sZt , s

′
Zt
⟩K ]−1). It is important to note that the asymptotic

variance in Theorem 2 cannot be simplified under conditional homoskedasticity, see more details in Theorem 3.2 of
Han et al. (2020).
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garrote for intervals is equivalent to minimizing the following loss function,

T∑
t=1

∥Yt −
p∑

j=1

Zjtθ̃jcj∥2K + λT

p∑
j=1

cj , subject to ∀j, cj ≥ 0, (3.1)

where cj is a constant, λT is the tuning parameter, θ̂jgarrote = cj θ̃j is the interval-based nonnegative

garrote estimator, and θ̃j denotes the minimum DK-distance estimator as defined in Section 2.1.

Based on equation (3.1) and Theorem 2, we can derive the following corollaries.

Corollary 1. The nonnegative garrote for interval-valued data is a special case of the penalized

interval regression via adaptive LASSO with γ = 1, ŵj = 1/|θ̃j | and θj θ̃j ≥ 0 for any j = 1, ...,m.

Corollary 2. Suppose that the conditions in Theorem 2 hold. Then the interval-based nonnegative

garrote is consistent for variable selection.

If the conditions in Corollary 1 are satisfied, i.e., γ in estimation (2.2) is set to be 1 and

ŵj = 1/|θ̃j |, the penalized estimation for interval regression takes the form:

θ̂T = argminθ

T∑
t=1

∥Yt − Z′
tθ∥2K + λT

p∑
j=1

|θj |
|θ̃j |γ

. (3.2)

Let θj = cj θ̃j and θj/θ̃j ≥ 0 (or θj θ̃j ≥ 0). Then, (3.2) is equivalent to (3.1). Corollary 2 shows the

consistency of variable selection of the interval-based nonnegative garrote.

Next, we propose a ridge regression method for interval-valued data, introducing a regularized

approach that directly incorporates interval structures. The interval-based ridge regression is given

by

θ̂ridge = argminθ

T∑
t=1

∥Yt − Z′
tθ∥2K + λT

p∑
j=1

θ2j . (3.3)

Since the optimization (3.3) is a quadratic problem, the following corollary presents a closed-form

solution for parameter estimation derived through direct differentiation.

Corollary 3. With Assumptions 1-3, the solution of nonlinear quadratic convex programming

problem (3.3) can be expressed as:

θ̂ridge = (
T∑
t=1

⟨sZt , s
′
Zt
⟩K + λT I)

−1(
T∑
t=1

⟨sZt , sYt⟩K), (3.4)

where λT is the tuning parameter and I is the identity matrix.
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4 Asymptotic properties in diverging dimensions

In the preceding sections, we have analyzed the asymptotic properties of the interval linear

regression model via adaptive LASSO when the dimension of regressors is fixed. Besides, the

number of regressors could be diverging, which has been studied for point-valued data, like Fan

and Peng (2004) and Huang et al. (2008a). In this section, we focus on a diverging dimension of

regressors as the sample size increases, that is, p grows to infinity at some slower rates than the

sample size T . We first show the consistency of the minimum DK-distance estimator for ACIX

model when the dimension of predictors is diverging.

Theorem 3. Given Assumptions 1-4, the minimum DK-distance estimator of (2.1) θ̃T is ρ−1
1T

√
p/T

consistent, namely

||θ̃T − θ0|| = Op(ρ
−1
1T

√
p/T ), (4.1)

as T → ∞, where ρ1T is the smallest eigenvalue of ΣT = 1
T

∑T
t=1⟨sZt , sZ′

t
⟩K .

Theorem 3 is a generalization of estimation consistency of the conventional ACIX model. It

can also be seen as a generalization of the ordinary least square (OLS) estimation consistency with

diverging dimension for the interval-valued case.

Without loss of generality, we assume that the coefficients of the first kT variables are non-zero.

It follows that the coefficients of the last mT = p−kT variables are zeros. Moreover, we still let Z1t

denote the first kT covariates and Σ1T = 1
T

∑T
t=1⟨sZ1t , sZ′

1t
⟩K . Before giving the consistency and

oracle properties of the penalized estimation with diverging dimension, we first show the following

Lemma.

Lemma 1. Let v be a p× 1 vector. For any positive δ, under Assumption 1,

E sup
||v||<δ

|
T∑
t=1

⟨sut , sZ′
tv
⟩K | ≤ δσ

√
Tp.

Theorem 4. Let θ̂T be the estimator of the interval-based adaptive LASSO regression. Suppose

Assumptions 1-4, 8(a) and 9 hold. Let hT = ρ−1
1T

√
p/T and h′T = [(p + λTkT (ρ

−1
1T (p/T )

1/2 +

1)−γ)/(Tρ1T )]
1/2. Then θ̂T is consistent and ||θ̂T − θ0|| = Op(min{hT , h′T }), as T → ∞.
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Note that ρ1T appears in the denominators of hT and h′T , which makes it possible that h′T may

converge to zero faster than hT if ρ1T → 0. Additionally, if we suppose that there exists a positive

constant ρ1 and ρ2 such that 0 < ρ1 < ρ1T < ρ2 < ∞, Theorem 4 yields that the convergence rate

of hT = Op(
√

p/T ) and hT ≤ h′T . Thus we have ||θ̂T − θ0|| = Op(
√
p/T ). This condition is also

common in the existing literature, such as Condition (F) in Fan and Peng (2004). Furthermore, if

p is finite, Theorem 4 degenerates to Theorem 1.

Theorem 5. Let θ̂T = (θ̂
′
1T , θ̂

′
2T )

′ be the solution of (2.2), where θ̂1T and θ̂2T are estimators of

θ0
1 and θ0

2, respectively. Suppose Assumptions 1-6, 8 and 9 are satisfied. We have the following

properties:

(i) Consistency in variable selection: limT→∞ P (θ̂2T = 0) = 1.

(ii) Let ξ2T = σ2α′
TΨαT , where Ψ = 1

T

∑T
t=1 E(Σ

−1
1T ⟨sZ1t , sut⟩K⟨sZ′

1t
, sut⟩KΣ−1

1T ), αT is any

kT × 1 vector satisfying ||αT || = 1. Then, as T → ∞, we have

T 1/2ξ−1
T α′

T (θ̂1T − θ0
1) = T 1/2ξ−1

T

T∑
t=1

α′
TΣ

−1
1T ⟨sZ1t , sut⟩K + op(1)

d→ N(0, 1).

Theorem 5 (i) indicates that the penalized linear regression for interval-valued data is consis-

tent in variable selection, that is, the estimators of the zero coefficients are exactly zero with high

probability when T is large. Moreover, Theorem 5 (ii) states that the estimators of the nonzero pa-

rameters have the asymptotic normal distribution when the number of parameters diverges. Similar

results in the point-valued case can be found in existing literature, such as Fan and Peng (2004),

Huang et al. (2008a) and Huang et al. (2008b). While these studies considered the independent

and identically distributed point-valued random variables, this paper proves the oracle properties

for martingale difference ITS. Furthermore, Theorem 5 demonstrates that our proposed penalized

model can effectively identify the true non-zero coefficients while shrinking irrelevant coefficients

to zero, thus achieving model sparsity. This variable selection property is particularly valuable in

high-dimensional interval-valued settings, where it not only enhances model interpretability but

also potentially improves prediction accuracy by reducing model complexity.

Remark 2. The condition p < T is necessary for the identification and consistent estimation of
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the linear regression model for interval-valued data. This condition is frequently satisfied in eco-

nomic and financial applications, which justifies its inclusion in our model assumptions. However,

when p > T , the minimum DK-distance estimators are no longer feasible as initial estimators for

the adaptive weights. In analogous point-valued models with i.i.d. errors, Huang et al. (2008b)

demonstrated that marginal regression estimators are zero-consistent under a partial orthogonal-

ity condition. However, the proof of estimators’ asymptotic consistency requires a commonly used

proposition in Van Der Vaart and Wellner (1997), which cannot be applied anymore for ITS. The

exploration of asymptotic properties for penalized linear interval regression estimators in ultrahigh-

dimensional scenarios is a subject left for future research endeavors.

Remark 3. In the context of diverging number of regressors, the nonnegative garrote method can

also be extended to the interval-valued case. It is easy to verify that Corollary 1 and 2 hold in

this case. This extension provides an alternative approach to variable selection and parameter

estimation for high-dimensional interval data. Besides, the interval-based ridge regression can be

solved by (3.4). Additionally, Corollary 3 can also be obtained.

5 Simulation

This section investigates the finite sample performance of the proposed penalized estimation for

interval regression. The two-stage minimum DK-distance estimators are considered as estimated

adaptive weights of the penalized estimation (Han et al., 2016; He et al., 2021), and the tuning

parameter λT is selected by a five-fold cross-validation process.

5.1 ACI-based data generating processes

First, we consider the data generating process (DGP) as follows:

Yt = α0 + β0I0 +

p−2∑
j=1

δjXj,t + ut, t = 1, . . . , T, (5.1)

where Yt, Xj,t, and ut are all interval variables, θ = (α0, β0, δ1, . . . , δp−2)
′ is the given point-valued

coefficients. The ordered pairsXj,t = (XL,j,t, XR,j,t), j = 1, ..., p−2, are generated from the bivariate

normal distributions with non-zero covariance matrix. To generate the interval innovations {ut},
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we employ an ACI(1,0) process following Sun et al. (2018):

Yt = α0 + β0I0 + β1Yt−1 + ut, (5.2)

where the parameters (α0, β0, β1)
′ are estimated by a two-stage minimum DK-distance method;

Yt = ln(Pt)− ln(Pt−1) and Pt are designated as the time series of the daily S&P 500 index data for

the period January 2, 2015 to December 31, 2019, with its bounds as the high and low prices in day t.

From model (5.2), we have the estimated interval innovation, namely ût = Yt−(α̂0+ β̂0I0+ β̂1Yt−1).

We then generate {ut} via the naive bootstrapping from {ût}, with sample size T . In addition,

following Han et al. (2016) and Sun et al. (2018), a two-stage minimum DK-distance method is also

used here with some given preliminary kernels K in the first stage. We take a preliminary kernel

in the first step with K = (a, b, c) = (5, 1, 1).14

In our simulation experiments, we consider two DGPs:

DGP 1: The dimension of predictors is fixed at p = 10. Following Zou (2006), the initial coef-

ficients are set as θ = (α0, β0, δ1, . . . , δ8)
′ = (0, 0, 3, 1.5, 0, 0, 2, 0, 0, 0)′. We examine the estimators

under sample sizes T = 20, 40, 80.

DGP 2: The dimension of predictors diverges as the sample size increases. We set p =

[3T 1/3], where [·] represents the largest integer not exceeding 3T 1/3. The initial coefficients are

θ = (0, 0, 11/4,−23/6, 37/12,−13/9, 1/3, 0, ..., 0)′. We consider sample sizes T = 100, 200, 400, 800.

Each experiment is repeated 1000 times. To evaluate the performance of our estimation method,

we employ bias (Bias), standard deviation (SD), and root mean square error (RMSE) for each

estimated parameter θ̂j , i.e.,

Bias(θ̂j) =
1

N

N∑
i=1

(θ̂
(i)
j − θj), (5.3)

SD(θ̂j) = [
1

N

N∑
i=1

(θ̂
(i)
j − θ̄j)

2]
1
2 , (5.4)

RMSE(θ̂j) = [
1

N

N∑
i=1

(θ̂
(i)
j − θj)

2]
1
2 , (5.5)

14Han et al. (2020) proved that the two-stage DK-distance estimator is asymptotically most efficient among all
symmetric positive definite kernels satisfying K(1, 1) > 0, K(1, 1)K(−1,−1) > K(1,−1)2 and K(1,−1) = K(−1, 1).
Thus, as sample size T increases to infinity, the choice of kernel K in the first stage has little impact on the optimal
kernel derived by the two-stage estimation.
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where N = 1000 is the number of replications, θj is the true parameter value, and θ̄j =
1
N

∑N
i=1 θ̂

(i)
j

is the average of the estimated θ̂j across all replications.

The LARS algorithm has been used to compute the solution path for the LASSO problem in

point-valued cases (Efron et al., 2004; Tibshirani and Ryan, 2013). For our interval-valued case, we

propose an interval-based LARS algorithm, as detailed in Appendix B, to obtain the estimators.

We set the parameter γ to 0.5 and 1 in our experiments.

5.2 Bivariate normal distribution

In this section, the interval innovation (uL,t, uR,t) is generated from a bivariate normal distri-

bution, (uL,t, uR,t) ∼ i.i.d.N(0,Σ0). The DGP for this case can be expressed as:

YL,t = α0 −
1

2
β0 +

p−2∑
j=1

δjXL,j,t + uL,t

YR,t = α0 +
1

2
β0 +

p−2∑
j=1

δjXR,j,t + uR,t

(5.6)

where α0, β0, and δj are given initial scalar parameters, and Σ0 is a 2× 2 positive definite matrix

with diagonal elements equal to 1 and all other elements equal to 0.75. The regressors (XL,j,t, XR,j,t)

(j = 1, . . . , p−2; t = 1, . . . , T ) are also generated from bivariate normal distributions with non-zero

covariance matrices.

In this section, we also consider two types of DGPs: (1) where p is fixed, and (2) where p

diverges as the sample size increases. We define these DGPs as follows:

DGP 3: Yt = [YL,t, YR,t] and ut = [uL,t, uR,t] are generated according to (5.6). We set p = 10,

θ = (α0, β0, δ1, . . . , δ8)
′ = (0, 0, 3, 1.5, 0, 0, 2, 0, 0, 0)′, and T = 20, 40, 80.

DGP 4: Yt = [YL,t, YR,t] and ut = [uL,t, uR,t] are generated according to (5.6). We set p =

[3T 1/3], θ = (0, 0, 11/4,−23/6, 37/12,−13/9, 1/3, 0, . . . , 0)′, and T = 100, 200, 400, 800.

All other parameter settings remain the same as those in Section 5.1. We employ the criteria

defined in equations (5.3) - (5.5) to evaluate the performance of our estimators.

17



5.3 Evaluation results

Panel A of Table 1 reports the Bias, SD and RMSE of our method and the minimum DK-

distance estimators of ACIX model based on DGP 1, with γ = 0.5. Several observations emerge

from this panel. First, the Bias, SD and RMSE of each estimator whose true value is set to be zero

are approaching zero as the sample size T increases, consistent with asymptotic efficiency of variable

selection in Theorem 2. For example, RMSE of α0 decreases from 3.1521× 10−3 to 0.4728× 10−3

as T increases from 20 to 80. Second, for the nonvanishing coefficients, the evaluation criteria

of estimators of δ1, δ2 and δ5 converge to zero as T increases. These observations indicate the

consistency of the estimated nonvanishing parameters and provide a finite sample evidence for the

oracle properties. For example, SD of δ1 decreases from 0.4867 × 10−3 to 0.1588 × 10−3 as T

increases from 20 to 80. Third, our method yields substantially improved estimates compared to

the minimum DK-distance method. As evidenced in Panel A, our approach demonstrates superior

performance relative to ACIX, producing Bias, SD, and RMSE values that more closely approximate

zero. This underscores the enhanced efficacy of our penalized method over the minimum DK-

distance estimation in scenarios characterized by model sparsity. For example, when the sample

size T = 80, the Bias for δ3 of our method is 0.0111 × 10−3, which is smaller than 0.0354 × 10−3

of the minimum DK-distance method. When ut follows a bivariate normal distribution, similar

results can be obtained from Panel B of Table 1.

Table 2 shows the evaluation results of DGP 2 and DGP 4 with K = (5, 1, 1) and γ = 1. In these

cases, our proposed penalized minimum distance estimation still outperforms the minimum DK-

distance estimation of ACIX model. In Table 2, most results of Bias from our estimation provide

values closer to zero than those of minimum DK-distance estimation. Nearly all results of SD and

RMSE from our estimation are smaller than those of the minimum DK-distance estimation. For

example, when T = 400 and ut is generated by an ACI process, the Bias, SD, and RMSE of δ1 are

0.0074, 0.2311, and 0.2312 (all ×10−3), which are smaller than those of the benchmark estimation:

0.0079, 0.2312, and 0.2537 (all ×10−3). Furthermore, Table 2 shows that our model makes more

accurate estimation of zero coefficients. For example, when T = 400 and ut is generated by a
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Table 1: The Bias, SD, and RMSE of the estimated parameters.

α0 β0 δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

Panel A
T=20
Bias PLR -0.0012 0.1585 -0.0722 -0.0341 0.0302 0.0114 -0.0481 0.0281 -0.0224 -0.0002

ACIX -1.0764 -1.3270 0.0278 0.0367 0.0499 0.0367 -0.0545 0.0507 0.0543 0.0041
SD PLR 3.1680 0.8209 0.4867 0.5585 0.2915 0.2343 0.3580 0.3183 0.2712 0.2282

ACIX 9.6777 9.1656 0.8833 0.7050 0.9143 0.5730 0.5573 0.6937 0.5984 0.6455
RMSE PLR 3.1521 0.8320 0.4896 0.5567 0.2916 0.2334 0.3594 0.3179 0.2708 0.2270

ACIX 9.7373 9.2612 0.8838 0.7059 0.9156 0.5742 0.5600 0.6956 0.6009 0.6456

T=40
Bias PLR 0.0582 0.0037 0.0347 -0.0125 -0.0020 -0.0080 -0.0666 -0.0046 -0.0171 0.0118

ACIX 0.1496 -0.7165 0.0087 -0.0065 0.0660 0.0076 -0.0180 0.0526 -0.0051 0.0236
SD PLR 0.8540 0.7069 0.2570 0.3420 0.1643 0.0851 0.1940 0.1572 0.2075 0.1612

ACIX 3.7575 4.9646 0.3348 0.3815 0.3619 0.3144 0.2880 0.2910 0.4563 0.3209
RMSE PLR 0.8517 0.7034 0.2580 0.3405 0.1635 0.0850 0.2042 0.1565 0.2072 0.1608

ACIX 3.7605 5.0160 0.3350 0.3816 0.3678 0.3144 0.2886 0.2957 0.4563 0.3217

T=80
Bias PLR -0.0407 -0.2761 0.0410 0.0188 0.0111 -0.0078 0.0013 0.0002 -0.0002 0.0028

ACIX 0.0195 -0.8104 0.0447 0.0309 0.0354 0.0169 0.0276 -0.0155 0.0161 0.0161
SD PLR 0.4734 1.5215 0.1588 0.1991 0.1211 0.0876 0.1695 0.1223 0.1236 0.1052

ACIX 3.2108 3.9481 0.2659 0.2391 0.2679 0.2342 0.2484 0.2344 0.2604 0.2372
RMSE PLR 0.4728 1.5388 0.1632 0.1990 0.1210 0.0875 0.1687 0.1217 0.1229 0.1047

ACIX 3.2109 4.0304 0.2696 0.2411 0.2703 0.2348 0.2499 0.2349 0.2609 0.2378

Panel B
T=20
Bias PLR 0.0027 0.0264 -0.0033 -0.0232 -0.0035 0.0007 -0.0145 0.0052 0.0031 -0.0060

ACIX 0.0034 0.0632 -0.0083 -0.0007 -0.0007 -0.0014 -0.0014 0.0059 -0.0038 0.0002
SD PLR 0.1935 0.2469 0.0733 0.1056 0.0453 0.0289 0.0596 0.0525 0.0405 0.0373

ACIX 1.0113 1.5442 0.0939 0.1142 0.1016 0.0877 0.1046 0.0980 0.0970 0.0849
RMSE PLR 0.1926 0.2471 0.0730 0.1076 0.0452 0.0288 0.0610 0.0525 0.0405 0.0376

ACIX 1.0113 1.5455 0.0943 0.1142 0.1016 0.0877 0.1046 0.0982 0.0971 0.0849

T=40
Bias PLR -0.0089 -0.0350 -0.0031 -0.0012 -0.0010 0.0043 -0.0070 -0.0005 -0.0004 0.0022

ACIX -0.0757 -0.1771 -0.0007 0.0064 0.0065 0.0103 -0.0038 0.0016 -0.0014 0.0010
SD PLR 0.3045 0.2670 0.0428 0.0637 0.0248 0.0197 0.0403 0.0242 0.0334 0.0367

ACIX 0.8164 0.9504 0.0565 0.0681 0.0706 0.0548 0.0612 0.0454 0.0558 0.0644
RMSE PLR 0.3032 0.2679 0.0427 0.0634 0.0247 0.0201 0.0406 0.0241 0.0333 0.0366

ACIX 0.8199 0.9668 0.0565 0.0684 0.0709 0.0558 0.0613 0.0454 0.0558 0.0644

T=80
Bias PLR -0.0372 0.0301 -0.0033 -0.0052 0.0008 0.0009 -0.0108 -0.0011 -0.0017 0.0015

ACIX -0.0933 0.0762 0.0020 0.0012 -0.0013 -0.0033 -0.0101 -0.0006 -0.0053 0.0009
SD PLR 0.1756 0.1834 0.0303 0.0467 0.0232 0.0154 0.0321 0.0205 0.0208 0.0181

ACIX 0.4591 0.7654 0.0381 0.0544 0.0470 0.0421 0.0455 0.0351 0.0438 0.0423
RMSE PLR 0.1787 0.1850 0.0304 0.0468 0.0231 0.0154 0.0337 0.0205 0.0208 0.0181

ACIX 0.4685 0.7691 0.0381 0.0544 0.0470 0.0423 0.0466 0.0351 0.0441 0.0423

Note: Our method is denoted as PLR, and the minimum Dk-distance estimation of ACIX is denoted as ACIX.
In panel A, the interval innovation error is generated by ACI model. Additionally, all the values in this panel are
obtained by multiplying the original value by 103. In panel B, the interval innovation error is generated by bivariate
normal distribution. In addition, (a, b, c) = (5, 1, 1) and γ = 0.5.
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bivariate normal distribution, the evaluation results of δ6 are -0.0003, 0.0109, and 0.0109, which

are 70.0%, 36.6%, and 36.6% better than those of benchmark estimation. A possible explanation

for this is that our estimation process could shrink the estimators of the zero coefficients to zero.

The evaluation results of other parameters are listed in the online appendices of this paper.

6 Empirical applications

6.1 Interval-valued crude oil price forecasting

Accurate crude oil price forecasting is an important yet controversial issue in economic and

management research. Numerous studies have demonstrated that crude oil prices are influenced

by a myriad of financial and macroeconomic factors, such as supply and demand dynamics, stock

market performance, interest rates, exchange rates, monetary policy, and other commodity prices

(He et al., 2010, 2021; Naser, 2016; Wei et al., 2017). Importantly, many of these factors are

represented in the form of interval-valued data, reflecting the inherent uncertainty and variability

in their measurement. However, most existing work has focused on point-valued data, potentially

overlooking valuable information contained within the interval-valued representations. Modeling

interval-valued data may capture more comprehensive information, thereby enhancing the accuracy

of crude oil price predictions. Consequently, we are motivated to identify and select important

interval-valued factors from various potential variables via shrinkage methods, with the expectation

of improving the forecasting accuracy of interval-valued crude oil prices.

6.1.1 Data description

This section describes the data used in our analysis, focusing on the monthly interval-valued

West Texas Intermediate (WTI) crude oil futures prices. These prices are constructed from daily

closing prices sourced from the New York Mercantile Exchange (NYMEX), a major marketplace for

crude oil futures trading. Denote the ITS of crude oil prices as Yt = [YL,t, YR,t], where YL,t and YR,t

are constructed by taking the logarithm of the minimum and maximum daily closing prices within

month t, respectively. The sample period spans from January 2006 to December 2019. Figure 1

illustrates the bounds and range of these interval-valued prices over time.
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Table 2: The evaluation results with diverging dimension and T = 100, 200, 400.

Bias SD RMSE Bias SD RMSE
PLR ACIX PLR ACIX PLR ACIX PLR ACIX PLR ACIX PLR ACIX

Panel A1: T = 100 Panel A2: T = 100
α0 0.0948 0.4100 0.3911 1.1277 0.4025 1.1999 0.0006 0.0000 0.0469 0.0902 0.0469 0.0902
β0 0.0050 -0.0331 0.5958 1.9965 0.5958 1.9968 -0.0101 0.0061 0.1093 0.2287 0.1098 0.2287
δ1 -0.0308 -0.0109 0.5339 0.5768 0.5348 0.5769 -0.0018 -0.0018 0.0348 0.0371 0.0348 0.0371
δ2 0.0149 0.0100 0.5319 0.5559 0.5321 0.5560 0.0023 0.0005 0.0449 0.0467 0.0450 0.0467
δ3 -0.0008 -0.0009 0.4603 0.4817 0.4603 0.4817 0.0076 0.0056 0.0429 0.0467 0.0436 0.0470
δ4 -0.0323 -0.0335 0.5183 0.5239 0.5193 0.5249 0.0014 -0.0010 0.0413 0.0430 0.0413 0.0430
δ5 0.0536 0.0631 0.5441 0.5833 0.5468 0.5867 -0.0069 0.0037 0.0375 0.0373 0.0381 0.0374
δ6 -0.0200 -0.0153 0.2517 0.6281 0.2525 0.6283 -0.0005 0.0004 0.0158 0.0377 0.0158 0.0377
δ7 -0.0084 -0.0920 0.2074 0.4572 0.2076 0.4663 0.0003 -0.0002 0.0197 0.0390 0.0198 0.0390
δ8 0.0092 0.0047 0.2829 0.5869 0.2831 0.5869 -0.0027 -0.0025 0.0203 0.0420 0.0205 0.0421
δ9 0.0353 0.0000 0.2425 0.5930 0.2451 0.5930 -0.0007 0.0034 0.0161 0.0376 0.0161 0.0378
δ10 0.0026 0.0016 0.2366 0.5320 0.2366 0.5320 0.0005 -0.0025 0.0139 0.0326 0.0139 0.0327
δ11 0.0210 0.0184 0.1733 0.4700 0.1746 0.4704 0.0018 -0.0020 0.0243 0.0438 0.0244 0.0439

Panel B1: T = 200 Panel B2: T = 200
α0 0.1598 0.3947 0.4032 0.8348 0.4337 0.9234 0.0019 -0.0010 0.0264 0.0556 0.0265 0.0556
β0 -0.0463 -0.1734 0.4465 1.4727 0.4489 1.4829 0.0023 0.0076 0.0955 0.1878 0.0956 0.1880
δ1 0.0123 -0.0246 0.3559 0.3919 0.3561 0.3927 -0.0013 -0.0004 0.0269 0.0281 0.0269 0.0281
δ2 0.0084 -0.0114 0.2967 0.3272 0.2968 0.3274 -0.0003 -0.0007 0.0294 0.0306 0.0294 0.0306
δ3 0.0304 0.0174 0.3647 0.3781 0.3659 0.3785 -0.0037 -0.0034 0.0283 0.0315 0.0285 0.0317
δ4 0.0229 0.0091 0.3506 0.3582 0.3514 0.3583 0.0035 0.0025 0.0210 0.0237 0.0213 0.0238
δ5 -0.0117 -0.0366 0.3364 0.3414 0.3366 0.3433 0.0000 0.0053 0.0260 0.0254 0.0260 0.0259
δ6 -0.0100 -0.0104 0.1475 0.3751 0.1479 0.3752 0.0025 0.0011 0.0158 0.0271 0.0160 0.0271
δ7 0.0325 0.0354 0.1649 0.3669 0.1681 0.3686 0.0028 0.0006 0.0163 0.0308 0.0165 0.0308
δ8 0.0031 0.0247 0.1349 0.3361 0.1350 0.3370 -0.0018 0.0049 0.0116 0.0262 0.0117 0.0267
δ9 -0.0026 0.0333 0.1655 0.4395 0.1655 0.4407 0.0013 -0.0025 0.0134 0.0275 0.0135 0.0276
δ10 0.0129 0.0227 0.2394 0.4157 0.2398 0.4164 -0.0014 -0.0048 0.0137 0.0309 0.0138 0.0312
δ11 0.0282 0.0244 0.1698 0.3892 0.1721 0.3900 -0.0007 -0.0036 0.0172 0.0307 0.0172 0.0309
δ12 0.0104 0.0096 0.1320 0.3395 0.1324 0.3396 -0.0012 -0.0034 0.0092 0.0264 0.0093 0.0267
δ13 0.0091 0.0355 0.1261 0.3502 0.1264 0.3520 -0.0001 0.0009 0.0154 0.0313 0.0154 0.0314
δ14 0.0024 0.0241 0.1866 0.4005 0.1866 0.4013 0.0005 0.0026 0.0149 0.0283 0.0149 0.0284
δ15 0.0072 0.0219 0.2171 0.4147 0.2172 0.4153 0.0011 0.0024 0.0140 0.0290 0.0140 0.0291

Panel C1: T = 400 Panel C2: T = 400
α0 0.1549 0.2920 0.3905 0.7234 0.4201 0.7801 0.0015 -0.0017 0.0284 0.0456 0.0285 0.0456
β0 -0.1174 -0.1514 0.5202 1.1991 0.5333 1.2087 0.0046 0.0100 0.0740 0.1204 0.0741 0.1208
δ1 0.0074 0.0079 0.2311 0.2536 0.2312 0.2537 0.0000 -0.0001 0.0180 0.0189 0.0180 0.0189
δ2 0.0404 0.0425 0.2231 0.2487 0.2268 0.2523 -0.0040 -0.0044 0.0206 0.0213 0.0210 0.0218
δ3 0.0450 0.0457 0.2226 0.2352 0.2271 0.2396 0.0001 -0.0002 0.0189 0.0197 0.0189 0.0197
δ4 0.0354 0.0335 0.2177 0.2271 0.2206 0.2295 0.0030 0.0023 0.0182 0.0190 0.0185 0.0192
δ5 -0.0109 -0.0069 0.2604 0.2765 0.2607 0.2765 -0.0002 0.0017 0.0199 0.0203 0.0199 0.0204
δ6 -0.0042 0.0090 0.1346 0.2682 0.1346 0.2684 -0.0003 0.0010 0.0109 0.0172 0.0109 0.0172
δ7 -0.0072 0.0129 0.1265 0.2419 0.1267 0.2423 -0.0014 -0.0015 0.0138 0.0195 0.0139 0.0195
δ8 0.0174 0.0045 0.1745 0.2883 0.1754 0.2883 0.0019 0.0025 0.0134 0.0215 0.0135 0.0216
δ9 0.0047 0.0059 0.1469 0.2530 0.1469 0.2530 0.0000 0.0009 0.0092 0.0163 0.0092 0.0163
δ10 0.0147 0.0223 0.1296 0.2568 0.1304 0.2578 -0.0001 -0.0005 0.0135 0.0198 0.0135 0.0198
δ11 -0.0020 0.0118 0.1774 0.2897 0.1774 0.2899 -0.0024 -0.0038 0.0137 0.0186 0.0139 0.0190
δ12 -0.0154 -0.0244 0.1291 0.2211 0.1300 0.2224 0.0002 -0.0009 0.0141 0.0206 0.0141 0.0206
δ13 0.0044 -0.0027 0.1195 0.2298 0.1196 0.2298 -0.0005 0.0011 0.0125 0.0180 0.0125 0.0180
δ14 0.0079 0.0005 0.1222 0.2324 0.1225 0.2324 -0.0018 -0.0018 0.0144 0.0209 0.0145 0.0209
δ15 0.0035 -0.0103 0.1092 0.2352 0.1093 0.2354 -0.0022 -0.0013 0.0109 0.0183 0.0111 0.0184
δ16 -0.0122 -0.0108 0.1712 0.2848 0.1716 0.2850 -0.0006 -0.0013 0.0144 0.0237 0.0145 0.0237
δ17 0.0142 0.0038 0.1322 0.2658 0.1330 0.2658 -0.0021 0.0000 0.0131 0.0210 0.0132 0.0210
δ18 0.0187 0.0106 0.1378 0.2854 0.1391 0.2856 0.0008 0.0033 0.0121 0.0187 0.0121 0.0190
δ19 0.0127 0.0152 0.1348 0.2627 0.1354 0.2632 0.0008 -0.0011 0.0130 0.0214 0.0130 0.0215
δ20 -0.0067 -0.0310 0.1036 0.2163 0.1038 0.2185 0.0004 0.0007 0.0128 0.0193 0.0128 0.0193

Note: Our method is denoted as PLR, and the minimum Dk-distance estimation of ACIX is denoted as ACIX. In
Panel A1, B1, and C1 of this table, the interval innovation error is generated by ACI model. Additionally, all the
values in this panel are obtained by multiplying the original value by 103. In Panel A2, B2, and C2, the interval
innovation error is generated by bivariate normal distribution. In addition, (a, b, c) = (5, 1, 1) and γ = 1.
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Figure 1: The monthly interval-valued WTI crude oil futures prices. The sample period is from January 2006 to
December 2019. The dotted line, solid line and chain line respectively represent “Low” (logarithmic low price, YL,t),
“High” (logarithmic high price, YR,t) and “Range” (YR,t − YL,t). The left vertical axis is for “Low” and “High”, and
the right one is for “Range”.

We draw some interesting observations from Figure 1. First, the ITS of crude oil price captures

intra-month variations that monthly closing prices fail to reflect. Additionally, there appears to be

a strong correlation between the lower and upper bounds of the interval. Second, the range of oil

prices tends to increase as the price level decreases, suggesting that crude oil prices may become

more volatile during downward trends. This pattern demonstrates that price level and volatility are

two distinct aspects of crude oil price movements, likely exhibiting a negative correlation. Third,

two considerable drops are evident in the trend of interval-valued prices. The first occurs from July

to December 2008, attributable to the subprime crisis, while the second spans from June 2014 to

January 2016, resulting from shale oil shocks.

As a crucial strategic resource on a global scale, crude oil typically exhibits high volatility in its

pricing, influenced by a myriad of factors. Table 3 presents several factors used in our application,

including stock market indicators, monetary market variables, and supply and demand metrics.

These factors have been widely used in existing literature (Chai et al., 2018; Wang et al., 2016b;

Yang et al., 2016). To assess the stationarity of our data, we applied the Augmented Dickey-Fuller

(ADF) test to YL,t, YR,t, and the bounds of explanatory variables. The results indicate that all

point-valued series are first-order stationary.

22



Table 3: Explanatory variables

Stock market Dow Jones Industrial Average (DJIA)

Commodity market log copper future price in London metal exchange (LME)

Monetary market generalized nominal dollar index
long-term average real interest rate of U.S. treasury bonds
U.S. interest rate on a three-month Treasury bill (secondary market)
U.S. M2

Crude oil supply and demand log U.S. imports of crude oil
log U.S. production of crude oil
log U.S. ending stocks of crude oil

Technology WTI-Brent future closing price spread

Speculation interval-valued speculation index (see details in Yang et al. (2016))

6.1.2 Evaluation

To explore the performance of sparse model for ITS, we first employ the ACIX model (Han

et al., 2016) with all predictors as a benchmark forecasting model. Next, following the spirit of

González-Rivera and Lin (2013) and Sun et al. (2021), the center-range method (CRM) and the

constrained center-range method (CCRM) are considered as benchmark forecast methods. These

two methods first proposed by Neto and de Carvalho (2008, 2010) can be expressed as: ymt =

βm
0 +βm

1 xm1,t+· · ·+βm
p xmp,t+ϵmt and yrt = βr

0+βr
1x

r
1,t+· · ·+βr

px
r
p,t+ϵrt , where {ymt , xmi,t} are midpoints

of interval observations, and {yrt , xri,t} represent the ranges. Both CRM and CCRM estimators can

be obtained from two separate point-valued least squares estimation methods. CCRM imposes

restrictions on the coefficients of range, i.e., βr
i ≥ 0 for 1 ≤ i ≤ p, to ensure the range variables

are nonnegative. A bivariate model for lower and upper bounds (BLU) is also employed as a

benchmark forecast model. BLU model is based on estimation in the following system: ylt =

βl
0+βl

1x
l
1,t+ · · ·+βl

px
l
p,t+ ϵlt and yut = βu

o +βu
1x

u
1,t+ · · ·+βu

px
u
p,t+ ϵut . Furthermore, to evaluate the

performance of our proposed interval-based adaptive LASSO model relative to alternative machine

learning approaches, we utilize random forest and MLP models as benchmarks for interval-valued

data, denoted as IRF and IMLP15. They employ a strategy of estimating the lower and upper

bounds of intervals separately.

The evaluation criteria listed in Table 4 have frequently been used in interval regression models

15The random forest model is constructed with 100 decision trees using the TreeBagger algorithm. The MLP uses a
single hidden layer with 10 neurons, trained for maximum 1000 epochs with error goal of 10−5 and minimum gradient
of 10−6, with a 70:15:15 data split ratio for training, validation and testing.
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(Maciel et al., 2023, 2017; Rodrigues and Salish, 2015; Yang et al., 2024) to evaluate the forecast

accuracy of these models. The criteria in Panel A measure the gap between predicted and actual

intervals, while the other criteria in Panel B measure forecast accuracy of special points in pre-

dicted intervals. Specifically, ω1 measures the nonoverlapping area of the forecasting and actual

intervals, and ωDK
measures the DK-distance between Ŷt and Yt. ωNSD1 and ωNSD2 evaluate the

nonoverlapping area of Ŷt and Yt relative to their union set, where ω(·) denotes the width and R(·)

the range of an interval, see more details in Sun et al. (2018). Moreover, ωMDE is about the mean

distance error. In addition, ωrate refers to the non-efficiency rate. For the point-based criteria, all

four are the special cases of RMSE.

Table 4: The evaluation criteria

Panel A: Interval-based criteria Meaning

ω1 = 1− 1
T

∑
t
min(Ĥt,Ht)−max(L̂t,Lt)

max(Ĥt,Ht)−min(L̂t,Lt)
nonoverlapping area

ωDK
= 1

T

√∑
t DK(Ŷt, Yt) forecast accuracy based on DK -distance

ωNSD1 = 1
T

∑
t
w([Lt,Ht]∪[L̂t,Ĥt])−w([Lt,Ht]∩[L̂t,Ĥt])

w([Lt,Ht]∪[L̂t,Ĥt]) normalized symmetric difference of intervals

ωNSD2 = 2− 1
T

∑
t
w([L̂t,Ĥt])+w([Lt,Ht])

R([Lt,Ht]∪[L̂t,Ĥt])

ωMDE = 1
T

∑
t

√
|M̂t −Mt|2 + |R̂t −Rt| mean distance error

ωrate = 1− 1
T

∑
t
w([Lt,Ht]∩[L̂t,Ĥt])

w([L̂t,Ĥt])
non-efficiency rate

Panel B: Point-based criteria

ωM =
√

1
T

∑
t(M̂t −Mt)2 RMSE of midpoint

ωR =
√

1
T

∑
t(R̂t −Rt)2 RMSE of radius

ωL =
√

1
T

∑
t(L̂t − Lt)2 RMSE of lower bound

ωH =
√

1
T

∑
t(Ĥt −Ht)2 RMSE of upper bound

Note: Ŷt = [L̂t, Ĥt] is the predicted interval of crude oil price in month t, and Yt = [Lt, Ht] is the actual interval. Mt

(M̂t) and Rt (R̂t) are the midpoint and radius of the actual (predicted) intervals.

6.1.3 Forecasting performance

We employ a rolling window approach to study the out-of-sample performance of our estimation

and other interval-based methods. A rolling estimation scheme is adopted for 60 months with the

first estimation sample spanning from January 2006 to December 2010. We conduct the one-step-
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ahead out-of-sample forecasts from January 2011 to December 2019, including Tf = 108 forecasting

periods. In addition, we also adopt a rolling estimation scheme for 120 months, namely from

January 2006 to December 2015. The last observations are forecasting sample. For each fixed

rolling window, we compare our method’s performance with that of the benchmark methods.

Table 5 shows the out-of-sample performance of seven interval forecasting methods: ACIX,

CRM, CCRM, BLU, IRF, IMLP, and our proposed method, focusing on interval-based criteria as

outlined in Panel A of Table 4. Among the seven interval-based methods considered, our method

consistently ranks highest in forecasting performance across all interval-based criteria. For instance,

with the training sample size of 60, our model’s DK-distance measure wDK
is 0.0086, outperforming

all the other values. This superior performance can be attributed to two main factors. First, our

interval model treats the interval oil price sample as an inseparable set and employs information

of distances between both boundaries and interior points. Particularly, the correlation between

the interval’s lower and upper bounds is taken into account. As Figure 1 shows, because the

bounds of interval crude oil price are not independent, modeling the interval’s lower and upper

bounds separately does not fully utilize the information of the intervals. Second, the penalized

interval regression provides a sparse model with fewer explanatory variables, effectively excluding

the influence of unrelated and weakly related variables. Compared with our interval-based machine

learning method, the underperformance of classic machine learning algorithms, i.e., IRF and IMLP,

in predicting interval-valued oil prices can be attributed to two main factors. First, they simply

apply regression to the two endpoints of the interval, neglecting the internal information. Second,

the relatively small sample size could lead to overfitting in these complex models, particularly if

not adequately tuned for the specific dataset.

The point-based criteria are outlined in Table 6. It is observed that our method consistently

outperforms the other six benchmark interval methods across all point-based criteria. To verify

these findings, a Diebold-Mariano (DM) test is conducted on the out-of-sample forecast performance

of various points within the forecasting intervals (including lower and upper boundaries, midpoint,

and radius). The results of the DM tests, denoted by asterisks in Table 6, provide strong evidence
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Table 5: Out-of-sample forecast evaluation: Interval-based criteria

ω1 ωDK
ωNSD1 ωNSD2 ωMDE ωrate

Panel A
PLR 0.4629 0.0086 0.4592 0.4592 0.0372 0.3153
ACIX 0.5592 0.0108 0.5425 0.5425 0.0468 0.4052
CRM 0.5469 0.0141 0.5370 0.5370 0.0595 0.4986
CCRM 0.5399 0.0138 0.5310 0.5310 0.0582 0.4929
BLU 0.6222 0.0123 0.5649 0.5649 0.0533 0.4044
IRF 0.7668 0.0218 0.7166 0.7166 0.0862 0.6037
IMLP 1.1366 0.0331 0.7300 0.7300 0.1136 0.5978

Panel B
PLR 0.3818 0.0110 0.3818 0.3818 0.0305 0.2399
ACIX 0.5169 0.0155 0.5034 0.5034 0.0447 0.3561
CRM 0.4678 0.0206 0.4674 0.4674 0.0504 0.4361
CCRM 0.4664 0.0201 0.4664 0.4664 0.0497 0.4334
BLU 0.4788 0.0142 0.4759 0.4759 0.0425 0.3399
IRF 0.7341 0.0303 0.6930 0.6930 0.0853 0.5746
IMLP 0.8881 0.0432 0.6661 0.6661 0.0954 0.5159

Note: “PLR” means our proposed model, i.e., the penalized interval regression model. All criteria are between 0
and 1; the smaller, the better. The smallest value in each column for each panel is highlighted in bold. In Panel A,
the sample size of training data for rolling window estimation is 60. In Panel B, the sample size of training data for
rolling window estimation is 120. The initial parameters are set as (a, b, c) = (5, 1, 1) and γ = 0.5.

of the superiority of our PLR method. For example, in Panel A, we observe that our sparse method

significantly outperforms all benchmark models at the 1% level for nearly all criteria. The only

exception is the radius measure for the IRF model, where the difference is significant at the 5%

level. Panel B results remain significant, albeit less so than Panel A. This difference likely stems

from a smaller test set sample in Panel B, reducing statistical power.

6.2 Interval-based index tracking

Index tracking is a crucial technique in portfolio management, enabling investors to replicate

the performance of a benchmark index while minimizing tracking error. Traditionally, most existing

literature on index tracking have primarily relied on closing prices as the input data source (Corielli

and Marcellino, 2006; Strub and Baumann, 2018; Wu et al., 2014). However, these approaches may

fail to capture the full extent of price fluctuations that occur throughout the trading day. Neglecting

intraday price movements can potentially lead to suboptimal portfolio construction and increased

tracking error, as the closing price alone may not accurately reflect the true dynamics of the

underlying assets, which is a critical aspect in index tracking. To address this issue, incorporating

interval-valued data can provide a more comprehensive representation of asset price movements,
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Table 6: Out-of-sample forecast evaluation: Point-based criteria and DM test

θ Lower bound Upper bound Midpoint Radius

Panel A
PLR 0.0517 0.0405 0.0426 0.0185
ACIX 0.0641∗∗∗ 0.0512∗∗∗ 0.0536∗∗∗ 0.0219∗∗∗

CRM 0.0752∗∗∗ 0.0651∗∗∗ 0.0628∗∗∗ 0.0317∗∗∗

CCRM 0.0734∗∗∗ 0.0647∗∗∗ 0.0628∗∗∗ 0.0291∗∗∗

BLU 0.0774∗∗∗ 0.0536∗∗∗ 0.0573∗∗∗ 0.0305∗∗∗

IRF 0.1284∗∗∗ 0.1095∗∗∗ 0.1169∗∗∗ 0.0232∗∗

IMLP 0.1701∗∗∗ 0.1317∗∗∗ 0.1073∗∗∗ 0.0896∗∗∗

Panel B
PLR 0.0402 0.0338 0.0338 0.0154
ACIX 0.0599∗∗∗ 0.0482∗∗∗ 0.0501∗∗∗ 0.0208∗∗∗

CRM 0.0497∗∗ 0.0640∗∗∗ 0.0500∗∗∗ 0.0279∗∗∗

CCRM 0.0495∗ 0.0630∗∗∗ 0.0500∗∗∗ 0.0265∗∗∗

BLU 0.0611∗∗∗ 0.0431∗∗∗ 0.0483∗∗∗ 0.0215∗∗

IRF 0.1171∗∗∗ 0.0998∗∗∗ 0.1059∗∗∗ 0.0250∗∗

IMLP 0.1393∗∗∗ 0.1186∗∗∗ 0.0966∗∗∗ 0.0737∗∗

Note: Panel A, B and the initial parameters are set the same as Table 5. Four point-based criteria wL, wH , wM

, and wR are reported in this table, corresponding to the RMSE of lower/upper bound, midpoint, and radius. The
superscript ∗, ∗∗ and ∗∗∗ represent significance levels of 0.1, 0.05 and 0.01 in the DM test, respectively.

which can better account for volatility and price variations, potentially leading to improved tracking

performance and reduced tracking error. Consequently, we are motivated to develop interval-based

index tracking methodologies, aiming to construct portfolios that more accurately replicate the

benchmark index’s performance. To the best of our knowledge, this paper is the first to propose a

replicating strategy based on interval-valued stock prices, marking a novel contribution to the field

of index tracking.

6.2.1 Strategies of index tracking

In this application, we develop and evaluate an interval-based strategy for tracking the S&P 100

index. The interval-valued log return of stocks is constructed as [rl,t, rh,t], where rl,t = ln
Plow,t

Pclose,t−1

and rh,t = ln
Phigh,t

Pclose,t−1
. This representation of daily interval-valued returns, also adopted by

González-Rivera and Lin (2013), captures investors’ high and low expectations and provides more

comprehensive trading information. As shown in Figure 2, the S&P 100 index returns demonstrated

notable volatility, particularly during the COVID-19 pandemic period.

Our index tracking strategy comprises two main steps. First, we employ the proposed penalized

linear interval regression to select stocks from the S&P 100 constituents, with the number of selected
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Figure 2: The daily interval-valued log returns of the S&P 100 index. The sample period is from 03/01/2017 to
31/12/2020. The blue and the red line represent the low and the high log returns of the S&P 100 index, respectively.

stocks controlled by the tuning parameter. Second, we estimate the weights of the chosen stocks

using OLS regression on closing prices.16 For comparison, we construct a point-based benchmark

strategy that follows the same two-step procedure but uses LASSO (Tibshirani, 1996) for stock

selection, with closing prices utilized in both steps.

To implement and evaluate these strategies, we use a rolling window approach with a 250-day

training period (approximately one trading year) and a 21-day testing period (approximately one

trading month). The process involves selecting 10 stocks from the S&P 100 constituents using both

interval-based and point-based methods, followed by weight estimation through OLS regression. To

ensure robustness, we examine three different training samples beginning from the first trading day

of 2017, 2018, and 2019, respectively, comparing both in-sample and out-of-sample performance.

All data are sourced from Wind and Yahoo Finance.

To evaluate the performance of our interval-based strategy and the point-based strategy, we

employ the following two widely used measures of tracking error (Corielli and Marcellino, 2006; Wu

et al., 2014):

S(T ) =

√√√√ 1

T − 1

T∑
t=1

(errt − err)2,

M(T ) =
1

T

T∑
t=1

|errt|,

where T is the sample size, errt = rt − r̂t, err is the sample mean of errt, and rt and r̂t are the

16Our strategy does not enforce full investment (sum of weights needs not equal one) and allows short selling,
enabling direct OLS estimation of weights. See Shu et al. (2020) for details about this approach.
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returns from the tracking portfolio and the index, respectively.

6.2.2 Tracking performance

Figure 3 displays the tracking error and mean absolute deviation of both the interval-based and

point-based models. To offer more detailed insights, we illustrate the cumulative error in Figure

3, where the lines represent S(τ) and M(τ) as τ ranges from 1 to 250 in the training sample and

from 1 to 21 in the test sample.17

Figure 3: The blue solid lines represent the interval-based index tracking strategy, while the red dashed lines refer
to the point-based methods. The background colors indicate different sample periods: light blue represents the in-
sample period, while light red represents the out-of-sample period. For parameter setting, the initial kernel is set to
be (5, 1, 1), and γ = 0.5.

Several observations can be obtained from Figure 3. First, the interval-based strategy outper-

forms the point-based one in-sample, as measured by both types of tracking errors. At the begin-

ning, the blue line occasionally exceeds the red line, which is attributed to the instability resulting

from the limited sample size. As the sample size used for calculating cumulative error gradually

increases, the in-sample performance of our method notably outperforms that of the point-based

method. Second, the out-of-sample tracking errors in 2018 and 2019 of the interval-based method

17To avoid confusion, it is necessary to clarify that the model is estimated from the entire set of 250 training
samples, and we only vary τ during evaluation.

29



are mostly smaller than those of the point-based method. The outperformance of our proposed

interval-based index tracking strategy illustrates that interval-valued data may contribute to im-

proving conventional portfolio strategies. Third, when the out-of-sample is 2020, neither method

demonstrates a significant advantage over the other. One possible reason is the extreme volatility

in the stock market caused by the COVID-19 pandemic in early 2020, making it challenging for

past performance to capture market behavior during such extreme shocks. Overall, the application

of the proposed interval variable selection methods in index tracking demonstrates that interval-

valued data can improve portfolio strategies. This inspires us to develop deeper research of interval

models in financial studies in the future work.

7 Conclusion

In this paper, we propose a sparse regression for high-dimensional interval-valued data via

machine learning tools. It is shown that the proposed method enjoys the oracle properties, i.e., the

consistency in variable selection and the asymptotic normality of estimators. We further extend the

proposed method to a diverging-dimensional interval case. Additionally, we also propose an interval-

based LARS algorithm to solve the solution path of the estimation. Furthermore, simulation studies

confirm the asymptotic properties of our method. Empirical applications highlight that our method

improves the out-of-sample forecasts of crude oil price and works well in index tracking.

The proposed machine learning technique for interval linear regression is an interval-valued

extension of the adaptive LASSO, originally designed for point-valued data. Several important

avenues for future research emerge from this work. One potential extension is to adopt more

sophisticated and powerful machine learning techniques, such as neural networks (Yang et al.,

2019) and random forests, to handle interval-valued data based on random set theory, rather than

simply applying existing tools to model the interval bounds. Moreover, other dimension reduction

techniques for interval-valued data can be proposed, including new principal component analysis

based on DK-distance and interval factor models (He et al., 2022; Wang et al., 2012a).
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Online Appendix of
“Sparse Interval-valued Time Series Modeling with Machine

Learning”

Appendix A

Appendix A contains the required assumptions.

Assumption 1. {Yt, X1,t, ..., XJ,t} are strictly stationary and ergodic interval stochastic processes

with E∥Yt∥4K < ∞ and E∥Xj,t∥4K < ∞ for j = 1, ..., J . The interval innovation {ut} is an IMDS

with respect to the information set It−1, i.e., E(ut|It−1) = [0, 0] a.s., and E(||ut||2K |It−1) = σ2.

Assumption 2. (a) The parameter space Θ is a compact space of Rm; (b) θ0 is an interior point

in Θ, which is the true parameter vector in ACIX model.

Assumption 3. E[⟨s ∂ut(θ)
∂θ

, s′∂ut(θ)
∂θ

⟩K ] and E[⟨s ∂ut(θ)
∂θ

, sut(θ)⟩K⟨sut(θ), s ∂ut(θ)
∂θ

⟩K ] are positive definite

for all θ in a small neighborhood of θ0, where ut(θ) = Yt − Z′
tθ and ∂ut(θ)

∂θ =
∂(Yt−Z′

tθ)
∂θ = −Zt.

Assumption 4. The smallest and largest eigenvalues of ΣT , denoted as ρ1T , ρ2T , where ΣT =

1
T

∑T
t=1⟨sZt , sZ′

t
⟩K , satisfy the conditions that ΣT is positive definite, and ρ1T > 0.

Assumption 5. There exist constants c3 and c4 such that

0 < c3 ≤ min{|θ1j |, 1 ≤ j ≤ kT } ≤ max{|θ1j |, 1 ≤ j ≤ kT } ≤ c4 < ∞.

Assumption 6. There exist constants τ1 and τ2 such as 0 < τ1 ≤ τ1T ≤ τ2T ≤ τ2 < ∞, where τ1T

and τ2T are the smallest and largest eigenvalues of Σ1T = 1
T

∑T
t=1⟨sZ1t , sZ′

1t
⟩K .

Assumption 7. (a) λT /
√
T → 0, as T → ∞; (b) λTT

(γ−1)/2 → ∞, as T → ∞, where γ a constant

given in (2.2).

Assumption 8. (a) λT (kT /T )
1/2 → 0, as T → ∞; (b) λTρ

1+γ
1T T (γ−1)/2p(−1−γ)/2 → ∞, as T → ∞.

Assumption 9. (p+ λTkT [ρ
−1
1T (p/T )

1/2 + 1]−γ)/(Tρ1T ) → 0, as T → ∞.

The stationarity and ergodicity of ITS have been defined in Han et al. (2016), and the ACIX

model is a special form of IVARMA model with one dimension. Assumption 1 requires that the
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fourth moment of {Yt} is finite with respect to DK-metric. E(ut|It−1) = [0, 0] implies that the

support function of the interval innovation ut is satisfying E(sut |It−1) = 0. The IMDS assumption

of ut is weaker than i.i.d. condition and weaker than a conditional homoscedastic assumption

for the left/right bounds of ut. Assumption 2 specifies the restricted condition of the parameter

space and the true parameter. Under Assumption 3, the expectations of matrices ⟨sZt , sZ′
t
⟩K and

⟨sZt , sut⟩K⟨sut , sZt⟩K are positive definite, and similar conditions can be found in Fan and Peng

(2004).

Assumption 4 implies that ΣT is nonsingular for each T , and it is worth noting that we allow

ρ1T → 0 as T → ∞. It can be seen in Theorem 4 that ρ1T affects the convergence rate of the

estimators. Assumption 5 assumes that the nonzero coefficients are uniformly bounded away from

zero and infinity, which is the similar to Condition (A4) in Huang et al. (2008a) and Condition

(A5) in Huang et al. (2008b). Assumption 6 is a more strict condition than Assumption 4, and it

implies that the eigenvalues of Σ1T are uniformly bounded. Noticing that kT is much smaller than

T due to the sparsity of predictors, it is reasonable to give this assumption. It is similar to the

Condition (A5) in Huang et al. (2008a) for point-valued data.

Assumption 7 states that λT = o(
√
T ). When γ = 1, Assumption 7(b) implies λT → ∞.

Assumption 8 represents an adaptation of Assumption 7 for scenarios where the model’s dimen-

sionality diverges. Specifically, Assumption 7 can be derived from Assumption 8 when p is finite.

These two assumptions are essential for establishing the convergence rate in our proofs. Notably,

similar conditions have been employed in existing studies, such as the assumptions of Theorem 2

in Fan and Li (2001), the assumptions of Theorem 2 in Zou (2006), and Conditions (A2)-(A3) in

Huang et al. (2008a). Assumption 9 makes further assumptions about the relationships between

parameters to ensure the consistency of the penalized minimum distance estimation when p is

diverging.
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