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Abstract. We develop a recursive integration formula for a class of ratio-
nal polynomials in 2D. Based on this, we present implementations of finite

elements that have rational basis functions. Specifically, we provide simple

MATLAB implementations of the singular Zienkiewicz and the lowest-order
Guzmán–Neilan finite element in 2D.

1. Introduction

The majority of finite elements rely on polynomial functions because they are sim-
ple to implement by use of exact integration and differentiation. However, achieving
certain types of conformity, such as H2-conformity or exact divergence constraints,
can be challenging with polynomials; ensuring these properties typically requires a
large number of degrees of freedom when working with polynomial functions. By
using rational functions these constraints can be satisfied with considerably fewer
degrees of freedom. However, to the best of our knowledge, no exact integration
formulas for rational polynomials on triangles have been established in the litera-
ture. As a result, finite elements based on rational basis functions have not been
studied extensively. In this work we develop an exact integration in 2D for a class
of rational polynomials and we apply it to several rational finite elements. This
allows for a straightforward exact implementation, and paves the way for further
investigations of rational finite elements.

Approximation with rational functions. For certain problems rational functions of-
fer better approximation properties than polynomials, see, e.g., [New64; DY86].
Indeed, for functions with certain singularities this is evident. Designing algorithms
for rational approximations is a recent topic of research [Aus+21; TNW21; BHH24].
Compared to the polynomial case many questions are still open. Indeed, exact
quadrature formulas have been developed mostly for 1D problems, e.g., [Gau93;
Gau01], for 2D circular domains without radial dependence [BGHN01; DBP11]
and for tensorial problems. A prominent example for the approximation with ra-
tional functions are the so-called NURBS used in isogeometric analysis [HCB05],
see also [BGGPV22]. Aside from few exceptions [MS16], they are based on a ten-
sorial structure. For the quadrature usually a Duffy transform [SS97] is employed
to resolve the singularities, and then quadrature formulas in 1D are applied in the
tensorial form. This approach leads to inexact quadrature, but it offers exponential
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convergence in the number of quadrature points, see, e.g., [ACHRS12; Döl+20].
For complex geometries also triangular meshes and the use of rational functions
on them are of interest. For those, in [BHH24] the problem of approximation has
been addressed by splitting triangles into three quadrilaterals and by transforming
them to the unit cube. However, for multivariate rational functions without tensor
product structure, exact numerical integration seems to be an open problem, even
in the case of dimension d = 2.

Finite element methods with rational functions. Finite element spaces based on low
order polynomials fail to satisfy certain conformity properties. For example, the
Zienkiewicz element is not H2-conforming, and for the Taylor–Hood element the
corresponding space of discretely divergence-free velocity functions is not exactly
divergence-free. However, in some situations such structure preservation in the form
of conformity is crucial. Indeed, the lack of H2-conformity can cause difficulties in
the approximation of solutions to the biharmonic equation; see [IR72; Shi84] for
the failure of convergence of the Zienkiewicz element on certain meshes. To obtain
H2-conformity with polynomial basis functions requires a high number of degrees of
freedom. For example, both the Argyris element [AFS68], see also [Cia02, Ch. 2.2.2]
and for a hierarchical version [CH21], and the Morgan–Scott element [MS75] (under
certain conditions on the mesh) are C1-conforming. Both elements use polynomials
of 5th order, and hence have 21 degrees of freedom per triangle. On the other hand,
the H2 conforming singular Zienkiewicz element [Zie71, Sec. 10.10], see also [Cia02,
Ch. 6.6.1] and Section 2.1 below, has only 12 degrees of freedom per triangle due
to the use of rational basis functions.

Divergence-free subspaces of H1 and H2-conforming finite element spaces are
related by a de Rham complex. More precisely, the curl of H2-conforming elements
yields exactly divergence-free H1-conforming elements. Therefore, mixed methods
for incompressible fluid equations with exact divergence constraint inherit some
properties from the H2-conforming spaces. The importance of exact divergence
constraints lies in the fact that they ensure pressure robustness of mixed meth-
ods for incompressible fluid equations, see [Lin09; GLRW12] for specific examples
and [JLMNR17] for a discussion illustrating this point in the context of compu-
tational fluid dynamics. There are alternatives to ensure pressure robustness by
non-conforming methods such as [LLMS17; KVZ21]. However, they inflict extra
challenges for time-dependent and for non-linear equations, some of which have
not been resolved to date. As for the H2-conforming spaces, exactly divergence-
free finite elements are available for high polynomial degree, e.g., the Falk–Neilan
element [FN13] and the Scott–Vogelius element [SV85; GN14b]. For the latter,
using split meshes the polynomial degree can be lowered [GN18; FGNZ22], but the
number of degrees of freedom increases; see [ST24] for a comparison. The Guzmán–
Neilan element [GN14b], see also Section 2.2 below, uses rational basis functions
for the velocity space, and requires considerably fewer degrees of freedom. Note
that also a 3D version is available in [GN14a].

Quadrature for rational functions. While exact quadrature formulas can be ap-
plied for rational functions with tensor product structure, the theory is much less
developed for more general rational functions. On simplices, to the best of our
knowledge, no exact quadrature for rational functions is available in the literature,
not even in the lowest-dimensional case d = 2. In practice, the Duffy transform in
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combination with a quadrature of sufficiently high exactness degree is used. This
approach is common in the implementation of NURBS, and was also applied to the
2D Guzmán–Neilan finite element in [Sch15]. Although the integration is not exact,
geometric convergence in the number of quadrature points is available. For appli-
cations in isogeometric analysis this may by sufficient. However, for finite element
spaces with exact divergence constraints the lack of an exact quadrature comprises
the conformity, and thereby partially diminishes the benefit of the method.

Main contribution. In this work we present an exact quadrature for a class of 2D
rational functions on triangles, based on a recursion formula. The quadrature can
be computed during an offline phase and tabulated for efficient use. This opens
the door for the further investigation of the singular Zienkiewicz element and the
Guzmán–Neilan element, and their use in practical applications. Our objective is
to demonstrate the overall procedure, and provide an easily accessible implemen-
tation in MATLAB. Specifically, in the spirit of [ACF99; ACFK02; BC05; CGH14;
Bar15] we provide an implementation of the biharmonic problem discretized by sin-
gular Zienkiewicz element and of the Stokes problem discretized by the lowest-order
Guzmán–Neilan element. All code is available at [DST24]. Since the focus of this
work is not on highly optimized performance, any improvement in this direction is
left to future work.

Outline. In Section 3 we present an exact recursive integration formula for a large
class of rational polynomials in d = 2 dimensions. The class of rational polynomials
includes basis functions occurring in singular Zienkiewicz and in Guzmán–Neilan
finite elements, which are introduced in Section 2.1 and Section 2.2, respectively.
Section 4.1 provides a general guideline for implementing finite element methods
with such rational basis functions. This is illustrated through simple and short
MATLAB implementations of the biharmonic problem discretized by the singu-
lar Zienkiewicz element and the Stokes problem discretized by the lowest-order
Guzmán–Neilan element. The implementations is discussed in Section 4.2 and 4.3,
respectively. We conclude our investigation with a numerical example of the im-
pact of inexact integration on the biharmonic eigenvalue problem in Section 5,
highlighting the need for exact integration rules.

2. Finite element spaces

In this section we introduce the singular Zienkiewicz in Section 2.1, and the lowest-
order Guzmán–Neilan element in Section 2.2.

Throughout this work we denote by T a triangulation in the sense of Ciar-
let [Cia02, § 2.1, p. 38] of a two-dimensional, bounded, polyhedral domain Ω.
By N we denote the set of all vertices in T . A triangle T = [v0, v1, v2] ∈ T
is determined by its vertices v0, v1, v2 ∈ R2. The set of all faces/edges f of T
is F(T ) = {f0, f1, f2}, where fj denotes the edge opposite of vertex vj for all
j = 0, 1, 2. The outer unit normal of f ∈ F(T ) is denoted by νf . By mid(T )
and mid(f) we denote their respective midpoints. Whenever indices exceed 2, they
are understood as modulo 3, e.g., v3 = v0. The space of polynomials on T of
maximal degree k ∈ N0 is denoted by Pk(T ). Moreover, let λ0, λ1, λ2 ∈ P1(T )
denote the barycentric coordinates associated to the vertices v0, v1, v2, that is,
λj(vk) = δj,k for all j, k = 0, 1, 2. We denote the vector of barycentric coordi-
nates by λ = (λ0, λ1, λ2)

⊤ ∈ [0, 1]3. We shall frequently use that these functions
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Figure 1. Degrees of freedom in the Zienkiewicz element and the re-
duced singular Zienkiewicz (left) as well as in the singular Zienkiewicz
(right) element. Dots denote point evaluation, circles denote evaluation
of the gradient, and straight lines denote the evaluation of the normal
derivative.

form the partition of unity λ0+λ1+λ2 = 1. The barycentric coordinates represent

a mapping from T onto the reference simplex T̂ = [v̂0, v̂1, v̂2] ⊂ R3 with vertices

v̂0 = (1, 0, 0)⊤, v̂1 = (0, 1, 0)⊤, v̂2 = (0, 0, 1)⊤. (2.1)

If there is no risk of misunderstanding ∇ denotes the gradient with respect to x. If
a gradient is taken with respect to another variable y instead, for clarity we denote
the gradient by ∇y.

2.1. Singular Zienkiewicz element. The singular Zienkiewicz element [Cia02,
Thm. 6.1.4] is a C1-conforming finite element. It is an enrichment of the Zienkiewicz
element, which is a reduced cubic Hermite element, see [Cia02, Thm. 2.2.9 and
Fig. 2.2.16]. For this reason, let us first recall the Zienkiewicz element. It is globally
C0-conforming and gradients are continuous in the vertices. Its 9 degrees of freedom
on each triangle T are the point values of the function and the point values of the
gradient at its vertices, cf. Figure 1. The local space is a subspace of P3(T ), and
the latter has dimension 10. Since the local space has only 9 degrees of freedom,
one considers only polynomials p ∈ P3(T ) which satisfy the additional condition

ψ(p) := 6 p
(
mid(T )

)
− 2

2∑
j=0

p(vj) +

2∑
k=0

∇p(vk) ·
(
vk −mid(T )

)
= 0. (2.2)

In other words, the local space reads Z(T ) := {p ∈ P3(T ) : ψ(p) = 0}.

Lemma 2.1 (Zienkiewicz element).

(a) The local space Z(T ) can be represented as

Z(T ) = P2(T )⊕ span{λ2jλj+1 − λ2j+1λj}j=0,1,2
.

Its degrees of freedom are the values of p and ∇p at the vertices of T for
p ∈ Z(T ), see Figure 1 (left).

(b) The corresponding global space Z is C0-conforming and is given by

Z = {v ∈ H1(Ω): v|T ∈ Z(T ) for all T ∈ T }.

Proof. Thanks to the structure of ψ based on a Taylor expansion of second order,
one can see that ψ(p) = 0 for any p ∈ P2(T ). Since ψ is linear and invariant under
affine transformation, we obtain for any i, j ∈ {0, 1, 2} with i ̸= j

ψ(λ2iλj − λiλ
2
j ) = ψ(λ2iλj)− ψ(λiλ

2
j ) = ψ(λ2iλj)− ψ(λjλ

2
i ) = 0.

Hence, ψ(p) = 0 holds also for all p ∈ P2(T ) ⊕ span{λ2jλj+1 − λ2j+1λj}j=0,1,2
.

Since the basis functions are linearly independent and the dimensions agree, this
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shows the representation of Z(T ). The second statements can be found in [Cia02,
Thm. 2.2.9 and 2.2.10]. □

There exist modifications of the polynomial space Z(T ) with improved prop-
erties [WSX07]. However, the following considerations show the difficulties when
aiming for C1-conformity.

Let T− and T+ be two neighboring triangles with joint edge f = T− ∩ T+ and
normal vector ν of f . Let p− ∈ Z(T−) and p+ ∈ Z(T+) be local Zienkiewicz
polynomials that coincide at their common degrees of freedom and set

p : T− ∪ T+ → R with p|T− := p− and p|T+
:= p+. (2.3)

Then p is continuous. However, in general p is not continuously differentiable, since
the normal derivative of p at f may jump. To achieve C1-conformity, additional
degrees of freedom are needed on the joint edge f , which in turn requires enriching
the local spaces. For this purpose an extra basis functions Bf is needed that allows
to adjust the normal derivative at f . More precisely, we require that

Bf = 0 on ∂T− and ∂T+, (2.4a)

∇Bf = 0 on ∂(T− ∪ T+), (2.4b)

∂νBf ∈ P2(f) and ∂νBf (midf) ̸= 0. (2.4c)

This ensures that Bf does not interfere with the other degrees of freedom.

Remark 2.2 (Polynomial bases). The properties in (2.4) cannot not be achieved us-
ing polynomials which we will discuss here. This is the reason, why non-polynomial
basis function like rational bubbles are needed for this approach, see Lemma 2.3.

We consider the simplices

T− =

[(
0
0

)
,

(
1
0

)
,

(
0
1

)]
and T+ =

[(
1
1

)
,

(
1
0

)
,

(
0
1

)]
.

Their common face reads f = [( 10 ), (
0
1 )]. For contradiction, suppose that there is a

polynomial Bf satisfying (2.4). Then, the first two conditions require that for some
polynomial p one has

Bf (x, y) = x2y2(1− x− y)p(x, y) for all (x, y) ∈ T−.

This implies that ∂νBf (x, 1 − x) = −
√
2x2(1 − x)p(x, 1 − x) on f . The condition

∂νBf ∈ P2(f) can only be fulfilled if p(x, 1 − x) = 0, but then we have ∂νBf = 0
on f . This contradicts (2.4c).

The singular Zienkiewicz element [Cia02, Thm. 6.1.4] uses a rational bubble
function for Bf . More precisely, for j = 0, 1, 2 let fj = [vj+1, vj+2] denote the edge
connecting the vertices vj+1 and vj+2 of T . In other words, fj is the edge opposite
of vj in T . Let νfj denote the outer unit normal vector of fj . We denote the cubic
element bubble by bT := λ0λ1λ2, the quadratic edge bubble by bfj := λj+1λj+2

and the rational bubble by

Bfj :=
bT bfj

(λj + λj+1)(λj + λj+2)
=

λ0λ1λ2λj+1λj+2

(1− λj+1)(1− λj+2)
. (2.5)

The quintic polynomial in the numerator ensures (2.4a) and (2.4b). On fj the
denominator reduces to λj+1λj+2, so on fj the function Bfj is a cubic polynomial.
This ensures that its derivative is quadratic on fj . The following lemma summarizes
the important properties of Bfj .
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Lemma 2.3 (Rational bubbles, e.g., [GN14b, Lem. 2.1]). For all T ∈ T and all
indices j = 0, 1, 2 with edges fj of T , the rational bubble Bfj is in C1(T ) and
satisfies

(a) Bfj |∂T = 0,
(b) ∇Bfj |fk = 0 for all k = 0, 1, 2 with k ̸= j,

(c) ∇Bfj |fj = (∇bT |fj · νfj )νfj = −bfj∇λj = −|∇λj |bfjνfj ∈ P2(fj)
2.

The local space of the singular Zienkiewicz element is defined as

Zs(T ) := Z(T )⊕ span{Bfj : j = 0, 1, 2}. (2.6)

Lemma 2.4 (Singular Zienkiewicz element [Cia02, Thm. 6.1.4]).

(a) Any w ∈ Zs(T ) is uniquely determined by the values w(vj), ∇w(vj) and
∇w(mid(fj)) · νfj , j = 0, 1, 2, i.e., those are its degrees of freedom, see
Figure 1 (right).

(b) The corresponding global space Zs is C1-conforming and is given by

Zs = {w ∈ H2(Ω): w|T ∈ Zs(T ) for all T ∈ T }.

Note that w ∈ Zs is continuous and its tangential derivatives are continuous
on each face. Furthermore, the normal derivatives on each face are quadratic and
coincide on the end points and the mid points of each face. Therefore, they are
continuous as well.

Continuity of the normal derivatives can be achieved with a smaller local space,
namely the one of the so-called reduced singular Zienkiewicz element

Zr(T ) := {w ∈ Zs(T ) : ∇w|f · νf ∈ P1(f) for all edges f ∈ F(T )}. (2.7)

The functions in Zr(T ) can be decomposed into quadratic functions and the func-
tions λ2jλi − λ2iλj , i, j ∈ {0, 1, 2} with i ̸= j, corrected by the rational bubble
function Bfk , k ∈ {0, 1, 2}, such that its normal derivatives are linear on the faces.

Lemma 2.5 (Reduced singular Zienkiewicz element [Cia02, Sec. 6.1.6]).

(a) Any w ∈ Zr(T ) is uniquely determined by the values w(vj) and ∇w(vj)
i.e., those are its degrees of freedom, see Figure 1 (left).

(b) The corresponding global space Zr is C1-conforming and is given by

Zr = {w ∈ H2(Ω): w|T ∈ Zr(T ) for all T ∈ T }.

2.2. Guzmán–Neilan element. The Guzmán–Neilan element [GN14b] is a mixed
finite element consisting of a pressure space Q and a velocity space V . For those,
the discretely divergence-free velocity functions are even exactly divergence-free.
They are constructed in such a way that the divergence-free velocity functions are
represented as the curl of some C1-conforming Zienkiewicz type finite element.
With those they form an exact sequence with compatible projection operators.

Let us summarize the construction in 2D for the lowest-order Guzmán–Neilan
element in case the singular Zienkiewicz element from Section 2.1 is used. Note
that in the original contribution a slightly modified Zienkiewicz type element is
used, which we present in Remark 2.8 below, but this does not change any essential
properties. For functions g : R2 → R we define

curl g :=

(
∂x2

g
−∂x1g

)
= R∇g with R :=

(
0 1
−1 0

)
. (2.8)
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Figure 2. Degrees of freedom in the Guzmán–Neilan elements for the
vector-valued velocity (left) and the pressure (right).

As above let bT := λ0λ1λ2 be the element bubble function, let bfj := λj+1λj+2 be
the edge bubble functions, and let Bfj be the rational bubble functions as in (2.5),
for j = 0, 1, 2. The local pressure space and velocity space are given by

Q(T ) := P0(T ), (2.9a)

V (T ) := P1(T )
2 ⊕ span{curl(λ2jλj+1 − λ2j+1λj)}j=0,1,2 (2.9b)

⊕ span{curlBfj}j=0,1,2.

Note that we have the representation (without direct sum)

V (T ) = P1(T )
2 + curlZs(T ). (2.10)

Since V (T ) ⊂ P2(T )
2 + span{curlBfj}j=0,1,2 it follows by Lemma 2.3 (c) that

v|fj ∈ P2(fj)
2 for any v ∈ V (T ). (2.11)

This ensures that using the degrees of freedom of the vector-valued second-order
Lagrange finite element functions, see Figure 2, one obtains globally continuous
functions.

Lemma 2.6 (Guzmán-Neilan element [GN14b, Sec. 3.1–3.2]).

(a) Any v ∈ V (T ) is uniquely determined by the values v at vertices and the
midpoints of the faces, see Figure 2 (left). Any q ∈ Q(T ) is uniquely deter-
mined by its value at the barycenter, see Figure 2 (right).

(b) The global space V is C0-conforming and the global spaces are given by

V = {v ∈ H1(Ω)2 : v|T ∈ V (T ) for all T ∈ T },
Q = {v ∈ L2(Ω): v|T ∈ Q(T ) for all T ∈ T }.

A special feature of the Guzmán–Neilan element is the fact that they are part
of an exact discrete de Rham complex [GN14b, Eq. 4.5]

R −−→ Zs
curl−−−→ V

div−−→ Q −−→ 0.

Note that when including zero-traces the Guzmán–Neilan elements are inf-sup sta-
ble, as proved in [GN14b] by use of a Fortin operator.

Remark 2.7 (Divergence-free functions). The spaces of discretely divergence-free
velocity functions are defined by

Vdiv :=
{
vh ∈ V :

∫
Ω

qh div vh dx = 0 for all qh ∈ Q
}
.

Due to the representation of the velocity space in (2.10) we have that div V ⊂ Q.
Therefore, the discretely divergence-free velocity functions are exactly divergence-
free, that is Vdiv ⊂ H1

div(Ω) := {v ∈ H1(Ω)2 : div v = 0}.
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Figure 3. Degrees of freedom in the reduced Guzmán–Neilan elements
for the vector-valued velocity (left) and the pressure (right). Dots denote
point evaluations and arrows evaluation of the normal component.

Remark 2.8 (Alternative space). Instead of using the standard Zienkiewicz el-
ements (see Section 2.1), Guzmán and Neilan use in [GN14b] an alternative C1-
conforming Zienkiewicz type element for their construction. It has the same degrees
of freedom, but the local velocity space reads

Z̃s(T ) = P2(T )⊕ span{λ2jλj+1}j=0,1,2
⊕ span{Bfj}j=0,1,2

.

This means that they use the basis functions λ2jλj+1 instead of λ2jλj+1 − λ2j+1λj,
j = 0, 1, 2. Then, instead of V (T ) as in (2.9) they use the local spaces

Ṽ (T ) := P1(T )
2 ⊕ span{curl(λ2jλj+1)}j=0,1,2 ⊕ span{curlBfj}j=0,1,2,

Q̃(T ) := P0(T ).

The pressure space is the same as above, but the velocity space is slightly different.
The corresponding global spaces form an exact sequence. All the results cited in this
section are proved in [GN14b] for this construction, but also hold for the version
of the spaces presented here. This includes inf-sup stability, commuting projection
properties, and the exactness of the discrete de Rham complex.

Reduced Guzmán–Neilan element. Guzmán and Neilan have also developed a re-
duced element in [GN14b] with fewer degrees freedom for the local velocity space,
see Figure 3. The local spaces can be written with tangential unit vectors τf as

Vr(T ) := {v ∈ V (T ) : v|f · τf ∈ P1(f) for all f ∈ F(T )},
Qr(T ) := P0(T ).

Since the tangential unit vectors can be obtained by τf = R⊤νf with rotation
matrix R defined in (2.8), we have for each v ∈ Z(T ) that

curl v|f · τf = R∇v|f · τf = ∇v|f ·R⊤τf = ∇v|f · νf .

Since ∇v|f · νf ∈ P1(f) with v ∈ Z(T ) if and only if v ∈ Zs(T ), we obtain

Vr(T ) = P1(T )
2 + curlZr(T ). (2.12)

It is possible to determine an explicit basis of Vr(T ), but in our implementation
this is computed on the fly.

Lemma 2.9 (Reduced Guzmán–Neilan element [GN14b, Sec. 6]).

(a) Any v ∈ Vr(T ) is uniquely determined by the values of v at vertices and the
values of v · νf at the edge midpoints, see Figure 3 (left). Any q ∈ Q(T ) is
uniquely determined by its value at the barycenter, see Figure 3 (right).
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(b) The global space Vr is C0-conforming and the global spaces are given by

Vr = {v ∈ H1(Ω)2 : v|T ∈ Vr(T ) for all T ∈ T },
Qr = {v ∈ L2(Ω): v|T ∈ Qr(T ) for all T ∈ T }.

Since for the reduced Guzmán–Neilan element we have Vr ⊂ V , also the corre-
sponding discretely divergence-free subspace of Vr is exactly divergence-free, cf. Re-
mark 2.7.

3. Rational polynomials

Certain types of rational polynomials occur in the 2D singular Zienkiewicz and in
the Guzmán–Neilan element, as introduced in Section 2. For the implementation of
those elements no exact quadrature is available in the literature. Instead, [Sch15]
presents an inexact quadrature that resolves the corner singularities by use of the
Duffy transformation applied to the rational function, and then uses Gauß quad-
rature to approximate the integral. Here, in Section 3.2 we present exact recursive
quadrature formulas for a class of rational polynomials that include the ones in
Section 2. Furthermore, we show properties of rational polynomials in Section 3.1
that we exploit in the recursion.

Throughout this section T = [v0, v1, v2] denotes a triangle with barycentric co-
ordinates λ = (λ0, λ1, λ2) with λ0 +λ1 +λ2 = 1. For multi-indices α = (α0, α1, α2)
and β = (β0, β1, β2) in N3

0 we define the rational function

Rα
β := Rα

β(λ) :=
λα

(1− λ)β
=

∏2
j=0 λ

αj

j∏2
j=0(1− λj)βj

. (3.1)

With this notation and the canonical basis vectors ej ∈ R3, the rational bubble
functions Bfj in (2.5) read

Bfj−1 = R
(2,2,2)−ej
(1,1,1)−ej

for j = 1, 2, 3.

3.1. Differentiation and regularity. Let Rα
β : T → R be a rational polynomial

with multi-indices α, β ∈ N3
0 and let R̂α

β : T̂ → R be the function with R̂α
β ◦λ = Rα

β .
To simplify the presentation, for j = 0, 1, 2 we use the notation

∇λR
α
β := (∇λR̂

α
β) ◦ λ and ∂λj

Rα
β := (∂λj

R̂α
β) ◦ λ. (3.2)

The chain rule relates the gradients ∇xR
α
β : T → R2 and ∇λR̂

α
β : T̂ → R3 via

∇xR
α
β = ∇x(R̂

α
β ◦ λ) = ∇xλ (∇λR̂

α
β) ◦ λ = ∇xλ∇λR

α
β . (3.3)

This extends to vector-valued functions in the obvious manner. Furthermore, the
Hessian matrix of Rα

β reads

∇2
xR

α
β = ∇xλ ((∇2

λR̂
α
β) ◦ λ)(∇xλ)

⊤ = ∇xλ (∇2
λR

α
β) (∇xλ)

⊤. (3.4)

These formulae allow us to differentiate rational polynomials, once we know ∇xλ
and ∂λj

Rα
β . The computation of ∇xλ is discussed in (4.2) below, and differentiation

with respect to the barycentric coordinates is subject of the following lemma.

Lemma 3.1 (Multiplication and differentiation). For α, β, σ, τ ∈ N3
0 we have

Rα
β ·Rσ

τ = Rα+σ
β+τ , (3.5)

∂λjR
α
β = αjR

α−ej
β − βjR

α
β+ej for j ∈ {0, 1, 2}. (3.6)
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Proof. The first identity follows directly by the definition ofRα
β in (3.1). The second

identity is a consequence of the quotient rule. □

Lemma 3.2 (Regularity). For m ∈ N0 and α, β ∈ N3 we have Rα
β ∈Wm,p(T ) for

p ∈ [1,∞) if and only if |α| − ∥α+ β∥∞ > m − 2/p, and for p = ∞ if and only if
|α| − ∥α+ β∥∞ ≥ m. In particular, one has

(i) Rα
β ∈Wm,p(T ) for p ∈ [1, 2) if and only if m− 1 ≤ |α| − ∥α+ β∥∞,

(ii) Rα
β ∈Wm,p(T ) for p ∈ [2,∞] if and only if m ≤ |α| − ∥α+ β∥∞.

Proof. Let us start proving the case for m = 0.
Let p ∈ [1,∞). Note that the singularities occur only in vertices and hence it

suffices to verify integrability in the neighborhoods of vertices. By symmetry it
suffices to consider the vertex v0 which is without loss of generality at the origin
v0 = 0. Since the terms λ0, (1− λ1), and (1− λ2) are equivalent to a constant in a
neighborhood of the origin we obtain for small values ε > 0∫

{x∈T : |x|≤ε}

(
λα

(1− λ)β

)p

dx ≂
∫
{x∈T : |x|≤ε}

(
λα1
1 λα2

2

(1− λ0)β0

)p

dx

≂
∫ ε

0

rp(α1+α2−β0)r dr.

The integral is finite if and only if p(α1 + α2 − β0) + 1 > −1. This condition
is equivalent to α1 + α2 − β0 > −2/p or in other words |α| − α0 − β0 > −2/p.
By symmetry in fact we require |α| − ∥α+ β∥∞ > −2/p, which proves the claim.
Similarly, for p = ∞, in the neighborhood of v0 = 0, we have that

λα

(1− λ)β
≂

λα1
1 λα2

2

(1− λ0)β0
≲ rα1+α2−β0

is bounded, if α1 + α2 − β0 ≥ 0. This is equivalent to |α| − α0 − β0 ≥ 0, which
proves the claim for p = ∞. This estimate is sharp if we consider a path from the
barycenter to the vertex v0 = 0.

We proceed by induction over m. For j = 0, 1, 2 the identity (3.6) states

∂λj
Rα

β = αjR
α−ej
β − βjR

α
β+ej . (3.7)

The terms vanish for αj = 0 or βj = 0, respectively. Otherwise, for the correspond-
ing indices we obtain

|α− ej | − ∥α− ej + β∥∞ ≥ |α− ej | − ∥α+ β∥∞ = |α| − ∥α+ β∥∞ − 1,

|α| − ∥α+ β + ej∥∞ ≥ |α| − ∥α+ β∥∞ − 1.

In both cases p ∈ [1,∞) and p = ∞ we have R
α−ej
β ,Rα

β+ej
∈ Wm−1,p(T ) for

p ∈ [1,∞] by induction hypothesis and the formula in (3.3). Hence, Rα
β ∈Wm,p(T )

follows by (3.3) and (3.7). The sharpness follows from the fact that the singularities

of R
α−ej
β and Rα

β+ej
are linearly independent and hence cannot cancel.

The statements in (i) and (ii) are an immediate consequence. □

3.2. Integration formula. We are now in the position to derive recursive formulas
for the (mean) integral of the rationals functions Rα

β . Recall, that T ⊂ R2 is a

triangle. We define for α, β ∈ N3
0

I(α, β) := −
∫
T

Rα
β(λ(x)) dx = −

∫
T

λα

(1− λ)β
dx. (3.8)
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Note that by affine transformation this definition is independent of T , so without
loss of generality we may use

T = [(0, 0)⊤, (1, 0)⊤, (0, 1)⊤]. (3.9)

By Lemma 3.2 we have

I(α, β) <∞ if and only if ∥α+ β∥∞ ≤ |α|+ 1. (3.10)

3.2.1. Special case β0 = β1 = 0. The following lemma determines the value I(α, 0),
i.e., the special case of polynomial integrand, as

I(α, 0) = 2
α!

(2 + |α|)!
= 2

α0!α1!α2!

(2 + α0 + α1 + α2)!
. (3.11)

Lemma 3.3 (Polynomials). For any d-simplex T with d ∈ N and multi-index

α = (α0, . . . , αd) ∈ Nd+1
0 , one has the identity

−
∫
T

λα dx =
d!α!

(d+ |α|)!
=

d!α0!α1!α2! . . . αd!

(d+ α0 + α1 + α2 + · · ·+ αd)!
.

Proof. This known identity is for example presented in [Str71, p. 222] for α0 = 0.
The general case with proof can be found in [GM78, Eq. 2.3]. For the convenience
of the reader we include a short alternative proof for polynomials on a d-simplex,
for dimension d ∈ N, and α ∈ Nd+1

0 . We also apply the same technique later
in Proposition 3.9. Let T be as in (3.9). Using the Gamma function Γ(s) =∫∞
0
ts−1 exp(−t) dt, which satisfies Γ(s) = (s− 1)! for s ∈ N, we obtain

Γ(d+ |α|+ 1) −
∫
T

λ(x)α dx

= d!

∫ ∞

0

∫
T

(1− x1 − x2 − · · · − xd)
α0xα1

1 xα2
2 · · ·xαd

d td+|α| exp(−t) dx dt.

The substitution (y0, y1, . . . , yd) = t(1− x1 − · · · − xd, x1, . . . , xd) leads to

Γ(d+ |α|+ 1) −
∫
T

λ(x)α dx

= d!

∫ ∞

0

· · ·
∫ ∞

0

yα0
0 · · · yαd

d exp(−y0 − · · · − yd) dy0 dy1 . . . dyd

= d!

d∏
j=0

∫ ∞

0

zαj exp(−z) dz = d!
d∏

j=0

Γ(αj + 1) = d!α!.

This proves the claim. □

The following lemma reveals another special case with explicit value of I(α, β)
generalizing the previous lemma with β = (0, 0, β2) for some β2 ∈ N0 and α ∈ N3

0.

Lemma 3.4. For any triangle T , for multi-indices α = (α0, α1, α2) ∈ N3
0, and

β = (0, 0, β2) with β2 ∈ N0 such that ∥α+ β∥∞ ≤ |α|+ 1, one has the identity

−
∫
T

λα

(1− λ)β
dx = 2

α0!α1!α2!

(|α| − β2 + 2)!

(α0 + α1 + 1− β2)!

(α0 + α1 + 1)!
. (3.12)

Proof. We proceed similarly as in Lemma 3.3 using the Gamma function Γ(s) =∫∞
0
ts−1 exp(−t) dt with Γ(s + 1) = s! for s ∈ N0. Let T be as in (3.9). By the
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assumption ∥α+ β∥∞ ≤ |α| + 1 the integral is finite, see Lemma 3.2. With this
and the fact that β1 = 0 it follows that

2 + |α| − β2 + 1 ≥ 1 + ∥α+ β∥∞ − β2 + 1 ≥ 2.

For this reason Γ(2 + |α| − β2 + 1) is well-defined. Employing the substitution
(y0, y1, y2) = t(1− x1 − x2, x1, x2) we obtain

I := Γ(2 + |α| − β2 + 1) −
∫
T

λ(x)α

(1− λ2(x))β2
dx

= 2

∫ ∞

0

∫
T

(1− x1 − x2)
α0xα1

1 xα2
2

(1− x2)β2
t2+|α|−β2 exp(−t) dxdt

= 2

∫ ∞

0

∫ ∞

0

∫ ∞

0

yα0
0 yα1

1 yα2
2

(y0 + y1)β2
exp(−y0 − y1 − y2) dy0 dy1 dy2

= 2α2!

∫ ∞

0

∫ ∞

0

yα0
0 yα1

1

(y0 + y1)β2
exp(−y0 − y1) dy0 dy1.

We substitute s = y0 + y1, and then z = y0/s and use Lemma 3.3 for n = 1 to find

I = 2α2!

∫ ∞

0

∫ s

0

yα0
0 (s− y0)

α1

sβ2
exp(−s) dy0 ds

= 2α2!

∫ ∞

0

∫ 1

0

zα0(1− z)α1 dz sα0+α1−β2+1 exp(−s) ds

= 2α2!
α0!α1!

(α0 + α1 + 1)!
(α0 + α1 + 1− β2)!.

With Γ(s) = (s− 1)! for s ∈ N this proves the claim. □

3.2.2. Special case α0 = β0 = 0. In case that α0 = β0 = 0 the integral I(α, β) can
be split by Fubini’s theorem, leading to

J (α1, α2, β1, β2) := I((0, α1, α2), (0, β1, β2))

= 2

∫ 1

0

yα2

(1− y)β2

∫ 1−y

0

xα1

(1− x)β1
dxdy.

(3.13)

To evaluate J (α1, α2, β1, β2) we denote the inner integral by

J x(α1, β1, y) :=

∫ 1−y

0

xα1

(1− x)β1
dx for y ∈ (0, 1). (3.14)

Hence, we have the identity

J (α1, α2, β1, β2) = 2

∫ 1

0

yα2

(1− y)β2
J x(α1, β1, y) dy. (3.15)

Lemma 3.5. We have for all α1, β1 ∈ N0 and y ∈ (0, 1)

J x(α1, β1, y) =



(1− y)α1+1

α1 + 1
if β1 = 0,

−
α1∑
j=1

1
j (1− y)j − log(y) if β1 = 1,

β1 − α1 − 2

β1 − 1
J x(α1, β1−1, y) +

1

β1 − 1

(1−y)α1+1

yβ1−1
if β1 > 1.
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Proof. The first identity follows from the integration of polynomials in 1D. We
continue with β1 = 1. In case α1 = 0 we have

J x(0, 1, y) = −
∫ 1−y

0

1

x− 1
dx = − log(y).

For α1 > 0 the formula for geometric sums leads to

J x(0, 1, y) =

∫ 1−y

0

xα1

1− x
dx = −

∫ 1−y

0

xα1 − 1

x− 1
dx−

∫ 1−y

0

1

x− 1
dx

= −
α1−1∑
j=0

∫ 1−y

0

xj dx−
∫ 1−y

0

1

x− 1
dx = −

α1∑
j=1

1

j
(1− y)j − log(y).

Finally, let β1 > 1. We use the identity

J x(α1, β1, y) =

∫ 1−y

0

xα1

(1− x)β1
dx =

∫ 1−y

0

xα1

(1− x)β1−1
dx+

∫ 1−y

0

xα1+1

(1− x)β1
dx

= J x(α1, β1 − 1, y) + J x(α1 + 1, β1, y).

Integration by parts yields for the second term

J x(α1 + 1, β1, y) =

∫ 1−y

0

xα1+1

(1− x)β1
dx

=

[
xα1+1(1− x)1−β1

β1 − 1

]1−y

0

−
∫ 1−y

0

α1 + 1

β1 − 1

xα1

(1− x)β1−1
dx

=
(1− y)α1+1y1−β1

β1 − 1
− α1 + 1

β1 − 1
J x(α1, β1 − 1, y).

Combining theses identities concludes the proof. □

Since expressions for J x are available by Lemma 3.5, certain integrals in y still
have to be computed in order to evaluate the integral J in (3.15).

Lemma 3.6. Let α2, γ ∈ N0, then we have with polygamma function ψ(1) that∫ 1

0

yα2(1− y)γ dy =
α2!γ!

(α2 + γ + 1)!
, (3.16a)∫ 1

0

yα2 log(y) dy = − 1

(α2 + 1)2
, (3.16b)∫ 1

0

yα2

1− y
log(y) dy = −ψ(1)(α2 + 1) = −π

2

6
+

α2∑
j=1

1

j2
. (3.16c)

Proof. The formula in (3.16a) is the 1D version of Lemma 3.3. Integration by parts
leads to (3.16b), that is,∫ 1

0

yα2 log y dy =

[
yα2+1

α2 + 1
log y

]1
0

−
∫ 1

0

yα2

α2 + 1
dy = − 1

(α2 + 1)2
.

A substitution with y = exp(−t) and the properties of the polygamma function
function [AS64, eq. 6.4.1 and 6.4.10] yield∫ 1

0

yα2 log(y)

y − 1
dy = −

∫ ∞

0

t exp(−α2t)

1− e−t
dt = −ψ(1)(α2 + 1) =

π2

6
−

α2∑
j=1

1

j2
. □
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Combining Lemmas 3.5 and 3.6 allows us to evaluate J . This is realized in
Algorithm 1, which will be verified in Theorem 3.7 below.

Algorithm 1: Computation of J (α1, α2, β1, β2)

ComputeJ (α1, α2, β1, β2)
Input: Indices α1, α2, β1, β2 ∈ N0

Output: Integral mean J (α1, α2, β1, β2)
if max {α1 + β1, α2 + β2} > α1 + α2 + 1 then

return ∞
Sort ((αj , βj))j=1,2 such that β2 ≥ β1
if β1 = 0 then

return 2
α1+1

α2!(α1−β2+1)!
(α1+α2−β2+2)!

if β1 = 1 then
if β2 = 1 then

return −2
∑α2

i=1
1
i2 + π2

3 − 2
∑α1

j=1
1
j
α2!(j−1)!
(α2+j)!

else

return β2−α2−2
β2−1 ComputeJ(α1, α2, 1, β2 − 1) + 2

β2−1
(α1−β2+1)!α2!
(α1−β2+α2+2)!

else

return β1−α1−2
β1−1 ComputeJ(α1, α2, β1 − 1, β2) +

2
β1−1

(α2−β1+1)!(α1−β2+1)!
(α2−β1+α1−β2+3)!

Theorem 3.7 (Computation of J in Algorithm 1). Let α1, α2, β1, β2 ∈ N0. Then
Algorithm 1 terminates and returns J (α1, α2, β1, β2).

Proof. Due to Lemma 3.2 we have J (α1, α2, β1, β2) = ∞ if and only if we have
max {α1 + β1, α2 + β2} > α1 + α2 + 1. Let us consider the remaining cases.
Since J (α1, α2, β1, β2) = J (α2, α1, β2, β1) we can assume that β2 ≥ β1. Recall

J (α1, α2, β1, β2) = 2

∫ 1

0

yα2

(1− y)β2
J x(α1, β1, y) dy.

The values for J x are available by Lemma 3.5 and the integrals in y are computed
in Lemma 3.6. Hence, one has

J (α1, α2, 0, β2) =
2

α1 + 1

∫ 1

0

yα2

(1− y)β2
(1− y)α1+1 dy

=
2

α1 + 1

α2!(α1 + 1− β2)!

(α2 + α1 − β2 + 2)!
.

This verifies Algorithm 1 for β2 ≥ β1 = 0. We continue with β2 ≥ β1 ≥ 1. We
calculate (3.16c) which yields

J (α1, α2, 1, 1) = −2

∫ 1

0

yα2

1− y
log(y) dy − 2

α1∑
j=1

1

j

∫ 1

0

yα2

1− y
(1− y)j dy

= −2

α2∑
i=1

1

i2
+
π2

3
− 2

α1∑
j=1

1

j

α2!(j − 1)!

(α2 + j)!
.

This verifies Algorithm 1 for β1 = β2 = 1.
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To cover the remaining cases, we exploit Lemma 3.5 to conclude for β1 > 1 that

J (α1, α2, β1, β2) = 2
β1 − α1 − 2

β1 − 1

∫ 1

0

yα2

(1− y)β2
J x(α1, β1 − 1, y) dy

+
2

β2 − 1

∫ 1

0

yα2

(1− y)β2

(1− y)α1+1

yβ1−1
dy

=
β1 − α1 − 2

β1 − 1
J (α1, α2, β1 − 1, β2)

+
2

β1 − 1

(α2 − β1 + 1)!(α1 − β2 + 1)!

(α2 − β1 + α1 − β2 + 3)!
.

By symmetry, we obtain for β2 > 1 the identity

J (α1, α2, β1, β2) =
β2 − α2 − 2

β2 − 1
J (α1, α2, β1, β2 − 1)

+
2

β2 − 1

(α1 − β2 + 1)!(α2 − β1 + 1)!

(α1 − β2 + α2 − β1 + 3)!
.

This yields in particular the formula for β1 = 1 < β2 and 1 < β1 ≤ β2 in the
algorithm. Since in both cases the sum β1 + β2 is reduced by one, the recursive
algorithm reaches after a finite number of steps the case β1 = 1 = β2 and terminates.

□

3.2.3. General case. In this subsection we introduce a recursive formula that suc-
cessively reduces the value of |β| or α0 until the integrand I(α, β) defined in (3.8)
matches one of the special cases outlined in (3.11), in (3.12) and in Section 3.2.1.
The reduction relies on the following recursive relations, which use the basis vectors
v̂0 = (1, 0, 0), v̂1 = (0, 1, 0), and v̂2 = (0, 0, 1).

Lemma 3.8 (Recursion formulae). For any α, β ∈ N3
0 we have the following iden-

tities for rational polynomials as defined in (3.1):

(a) Rα
β = 1

2 (R
α
β−v̂0

+Rα
β−v̂1

+Rα
β−v̂2

),

(b) Rα
β = Rα−v̂0

β−v̂2
−Rα−v̂0+v̂1

β ,

(c) Rα
β = 1

2

(
Rα

β−v̂1
+Rα

β−v̂2
+Rα−v̂0+v̂1

β−v̂1
+Rα−v̂0+v̂2

β−v̂2

)
−Rα−v̂0+v̂1+v̂2

β .

Proof. The proof of (a) follows from

(1− λ)v̂0 + (1− λ)v̂1 + (1− λ)v̂2 = (1− λ0) + (1− λ1) + (1− λ2) = 3− 1 = 2.

The claim in (b) follows from the identity

λα

(1− λ)β
=
λα−v̂0(1− λ1 − λ2)

(1− λ)β
=

λα−v̂0

(1− λ)β−v̂1
− λα−v̂0+v̂2

(1− λ)β
.

Finally, the proof of (c) is a consequence of

1

2

( λα

(1− λ)β−v̂1
+

λα

(1− λ)β−v̂2
+

λα−v̂0+v̂1

(1− λ)β−v̂1
+

λα−v̂0+v̂2

(1− λ)β−v̂2

)
− λα−v̂0+v̂1+v̂2

(1− λ)β

=
λα−v̂0

2(1− λ)β
(
λ0(1− λ1) + λ0(1− λ2) + λ1(1− λ1) + λ2(1− λ2)− 2λ1λ2

)
=

λα−v̂0

2(1− λ)β
2λ0 =

λα

(1− λ)β
. □

Those recursion relations allow us to derive recursion relations for I(α, β).
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Proposition 3.9 (Reduction). Let T ⊂ R2 be a triangle and let α, β ∈ N3
0 be

multi-indices such that I(α, β) <∞.

(a) For any permutation σ of {0, 1, 2} we have

I(α, β) = I(σ(α), σ(β)).
(b) If β0, β1, β2 ≥ 1, one has

I(α, β) = 1
2

(
I(α, β − v̂0) + I(α, β − v̂1) + I(α, β − v̂2)

)
.

(c) If β0 = 0 and α0 ≥ 1, and let αj + βj < |α|+ 1 for some j = 1, 2, then

I(α, β) = I(α− v̂0, β − v̂3−j)− I(α− v̂0 + v̂j , β).

(d) If β0 = 0, β1, β2 ≥ 1 and α0 > 0, one has

I(α, β) = 1
2

(
I(α, β − v̂1) + I(α, β − v̂2)

)
− I(α− v̂0 + v̂1 + v̂2, β)

+ 1
2

(
I(α− v̂0 + v̂1, β − v̂1) + I(α− v̂0 + v̂2, β − v̂2)

)
.

Proof. Recall that I(α, β) < ∞ holds if and only if ∥α+ β∥∞ ≤ |α| + 1, see
Lemma 3.2. The proof of (a) follows by symmetry.

To prove (b) note that with β0, β1, β2 ≥ 1 it follows that for any j ∈ {0, 1, 2}
one has ∥α+ β − v̂j∥∞ ≤ ∥α+ β∥∞ ≤ |α| + 1. Consequently, all terms are finite.
Then the claim follows from Lemma 3.8 (a).

By symmetry, we assume that the index satisfying the assumptions of (c) is
j = 2, that is, α2+β2 < |α|+1. We have (α− v̂0+ v̂2)2+β2 = α2+β2+1 ≤ |α|+1.
Thus, Lemma 3.2 shows that the integrals I(α− v̂0, β − v̂1) and I(α− v̂0 + v̂2, β)
are finite. Then the identity follows from Lemma 3.8 (b).

Similarly, under the conditions on α, β as specified in (d) one can show that all
terms are finite and the identity follows from Lemma 3.8 (c). □

Algorithm 2: Computation of I(α, β)
ComputeI (α, β)
Input: Multi-indices α, β ∈ N3

0 with α = (α0, α1, α2) and β = (β0, β1, β2)
Output: Integral mean I(α, β)
if max {α0 + β0, α1 + β1, α2 + β2} > α0 + α1 + α2 + 1 then

return ∞
Sort ((αj , βj))j=1,2 such that β0 ≤ β1 ≤ β2
if β0 = β1 = 0 then

return 2 α0!α1!α2!
(|α|−β2+2)!

(α0+α1+1−β2)!
(α0+α1+1)!

if β0 ≥ 1 then // β ≥ (1, 1, 1)

return 1
2

∑2
j=0 ComputeI(α, β − v̂j)

if α0 = 0 then // β0 = 0, β2 ≥ β1 ≥ 1
return ComputeJ(α1, α2, β1, β2)

if α1 + β1 < |α|+ 1 then // β0 = 0, β2 ≥ β1 ≥ 1, α0 ≥ 1
return ComputeI(α− v̂0, β − v̂2)− ComputeI(α− v̂0 + v̂1, β)

if α2 + β2 < |α|+ 1 then
return ComputeI(α− v̂0, β − v̂1)− ComputeI(α− v̂0 + v̂2, β)

else

return 1
2

∑2
j=1

(
ComputeI(α, β − v̂j) + ComputeI(α− v̂0 + v̂j , β − v̂j)

)
− ComputeI(α− v̂0 + v̂1 + v̂2, β)
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Theorem 3.10 (Computation of I in Algorithm 2). Let α, β ∈ N3
0. Then Algo-

rithm 2 terminates and returns I(α, β).

Proof. The first condition determines whether the integral is finite as described in
Lemma 3.2. The sorting of the (αj , βj) guarantees that β0 ≤ β1 ≤ β2 using Propo-
sition 3.9 (a). In case β0 = β1 = 0 we use the explicit formula as in Lemma 3.4.

If β ≥ (1, 1, 1), the routine exploits Proposition 3.9 (b) to reduce some βj . After
that the remaining cases have β0 = 0 and 1 ≤ β1 ≤ β2. If also α0 = 0, then
I(α, β) = J (α1, α2, β1, β2) and we can use Algorithm 1 to compute its value. In
the remaining cases we have additionally to the conditions on β that α0 ≥ 1. If
either α1 + β1 < |α| + 1 or α2 + β2 < |α| + 1, then the three term recursion in
Proposition 3.9 (c) can be applied to reduce α0, and on one term also one of the
entries of β. Now, the only remaining case is β0 = 0, 1 ≤ β1 ≤ β2, α0 ≥ 0, and
α1 + β1 = α2 + β2 = |α|+ 1. In this case Proposition 3.9 (d) is applicable, and in
each term α0 or |β| is reduced. Since α0 and |β| are non-increasing in the iteration,
and in each step α0 or |β| is reduced, the algorithm terminates after finitely many
iterations. □

Remark 3.11 (Performance). Algorithm 2 is recursive and is not optimized in
terms of performance. It can be improved by storing the values of I(α, β) that are
computed in the iteration and using symmetries. Note that in the implementation
of finite elements as in Section 4, Algorithm 2 is solely used in the offline phase.

4. Implementation

In this section we describe our implementation of the finite elements discussed
in Section 2 with MATLAB [Mat24], which is available at [DST24]. Our code
uses the implementation of a uniform mesh refinement routine from [Bar15]. The
implementation can easily be transferred to other programming languages. We
discuss general finite elements using rational bubble functions in Section 4.1. Then
we address the special cases of the singular Zienkiewicz element in Section 4.2 and
the lowest-order Guzmán–Neilan element in Section 4.3.

Before we discuss our implementation, we explain the computation of the Jaco-
bian Dλ = (∇λ)⊤ needed for the computation of gradients in (3.3) and of Hessians
in (3.4). Let T = [v0, v1, v2] be a simplex spanned by vertices v0, v1, v2 ∈ R2 and
let T ref = [vref0 , vref1 , vref2 ] denote the reference simplex with vertices vref0 = (0, 0)⊤,
vref1 = (1, 0)⊤, vref2 = (0, 1)⊤ in R2. The affine transformation mapping vrefi 7→ vi
for all i = 0, 1, 2 is denoted by F : T ref → T . Its Jacobian matrix is given by

DF =
(
v1 − v0, v2 − v0

)
= (∇F )⊤ ∈ R2×2.

The barycentric coordinates of T ref for any x = (x1, x2)
⊤ ∈ R2 are given by

λref(x) =

λref0 (x)
λref1 (x)
λref2 (x)

 =

1− x1 − x2
x1
x2

 . (4.1)

The barycentric coordinates λ = (λ0, λ1, λ2)
⊤ on T satisfy λ ◦ F = λref. This

identity and the chain rule lead with Jacobian matrices Dλref, Dλ ∈ R3×2 to

Dλref = D(λ ◦ F ) = DλDF.
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Hence, we can compute, as for example in Figure 4, line 6, the matrix

GT := Dλ = Dλref (DF )−⊤ =

−1 −1
1 0
0 1

 (DF )−1 ∈ R3×2. (4.2)

Remark 4.1 (Alternative). Lemma 3.10 in [Bar15] states the alternative formula

Dλ =

(
1 1 1
v0 v1 v2

)−1
0 0
1 0
0 1

 .

4.1. Finite elements using rational functions. This subsection provides a gen-
eral framework to implement finite element schemes that involve rational functions
of the form (3.1).

4.1.1. The class ‘Rational Function’. The local bases of the finite elements under
consideration are linear combinations of rational functions. That is with scalars
γ(j) ∈ R and multi-indices α(j), β(j) ∈ N3

0 for j = 1, . . . ,m ∈ N expressed in
barycentric coordinates they have the form

b̂ =

m∑
j=1

γ(j)R̂α(j)

β(j) . (4.3)

Given a triangle T with barycentric coordinates λ : T → T̂ we obtain the rational

function b = b̂ ◦λ in standard coordinates. In MATLAB we store such functions as
tensors, that is, we identify b with b ∈ R3×3×m, via

b ∼ b ∈ R3×3×m with b[:, :, j] =

α(j)
0 α

(j)
1 α

(j)
2

β
(j)
0 β

(j)
1 β

(j)
2

γ(j) 0 0

 for j = 1, . . . ,m.

Based on the results in Section 3 we implement several routines for rational func-
tions b ∼ b ∈ R3×3×m and c ∼ c ∈ R3×3×n, for m,n ∈ N, including the following:

• Multiply_Rationals(b,c) returns the rational function b c using (3.5),
• Integrate_Rational(b) returns −

∫
T
bdx using Algorithm 2,

• Diff_Rational_lam(b) returns the gradient ∇λb̂ using (3.6),
• Diff_Rational_x(DF,nabla_b) and Diff_Rational_y(DF,nabla_b) with nabla b =
∇λb̂ and DF = DF return the derivatives ∂x1

b and ∂x2
b using (3.3), (4.2).

4.1.2. Compute local system matrices. Let (bℓ)
L
ℓ=1 with L ∈ N denote a set of

rational basis functions of a local finite element space P(T ) on a simplex T ∈ T .
Our routine computes local system matrices such as the mass matrix M and the
stiffness matrix A, defined by

M = (Mℓ,k)
L
ℓ,k=1 with Mℓ,k :=

∫
T

bℓ bk dx,

A = (Aℓ,k)
L
ℓ,k=1 with Aℓ,k :=

∫
T

∇bℓ · ∇bk dx.

We can compute these local matrices directly by the routines mentioned in Sec-
tion 4.1.1, but this approach appears to be rather slow. Instead, the integrals are
best calculated on a reference simplex using the routines in Section 4.1.1 and then
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transformed to T as exemplified in Section 4.2 and 4.3 below. Notice that the refer-

ence simplex is T̂ ⊂ R3 defined in (2.1), that is, we compute quantities with respect
to the barycentric coordinates. This distinguishes our ansatz from typical finite
element implementations as for example in [Bra07, Chap. 2.8], where the reference
element is T ref ⊂ R2.

4.1.3. Evaluation of the right-hand side. Let f : Ω → R be a function usually rep-
resenting the right-hand side of a partial differential equation, and let T ∈ T be
a simplex. Let (φj)

J
j=1 ⊂ Pr(T ) denote a basis of the polynomial space Pr(T ) for

some r ∈ N0 and recall the local basis functions (bℓ)
L
ℓ=1 mentioned in Section 4.1.2.

Let φj = φ̂j ◦ λ and bℓ = b̂ℓ ◦ λ and we define the affinely transformed basis on

the reference triangle by φref
j = φ̂j ◦ λref and brefℓ = b̂ℓ ◦ λref for all j = 1, . . . , J

and ℓ = 1, . . . , L, with λref as in (4.1). As described in the Section 4.1.2 we can
compute the matrix

Ĉ ∈ RL×J with entries Ĉℓ,j = −
∫
T ref

φref
j brefℓ dx = −

∫
T

φjbℓ dx.

Suppose we have an approximation If =
∑J

j=1 fjφj of f with coefficient vector

f = (fj)
J
j=1 ∈ RJ , obtained for example by means of nodal interpolation. Then for

all ℓ = 1, . . . , L, one has

−
∫
T

f bℓ dx ≈ −
∫
T

If bℓ dx =

J∑
j=1

fj −
∫
T

φj bℓ dx = (Ĉ f)ℓ.

In particular, the matrix vector multiplication Ĉ f allows us to evaluation the right-
hand side in our finite element scheme on each simplex T ∈ T . In our implemen-

tations we precompute Ĉ⊤ =: bhat and obtain f by nodal interpolation, cf. line 19
in Figure 4.

4.1.4. Change of basis. Rather than using the basis (bℓ)
L
ℓ=1 from the previous sub-

sections, we want to use a basis (cℓ)
L
ℓ=1 ⊂ P(T ) := span{bℓ : ℓ = 1, . . . , L}, that

corresponds to the degrees of freedom (ψℓ)
L
ℓ=1 ⊂ P(T )∗ of the finite element in the

sense that

ψℓ(cm) = δℓ,m for all ℓ,m = 1, . . . , L.

The representation of the basis functions (cℓ)
L
ℓ=1 might be independent of the un-

derlying triangle T ∈ T , as for example in the case of Lagrange finite elements or,
more generally, for affinely equivalent elements, see [BS08, Def. 3.4.1]. However,
since the elements discussed in this paper are not affinely equivalent, we compute
the representation of the shape functions on the fly. For this purpose we define the
generalized Vandermonde matrix

V = (Vℓ,k)
L
ℓ,k=1 ∈ RL×L with Vℓ,k := ψℓ(bk) for all ℓ, k = 1, . . . , L.

Then, the coefficients y = (yℓ)
L
ℓ=1 ∈ RL in the expansion cm =

∑L
ℓ=1 yℓbℓ, for each

m = 1, . . . L, are determined by

Vy = em,

where em denotes the m-th canonical unit vector in RL. In other words, the coeffi-
cients of each basis function are the columns of the inverse matrix V−1. We obtain
the system matrices with respect to the basis (cℓ)

L
ℓ=1 by multiplying the matrices
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computed in Section 4.1.2 by the matrix V−1 and its transpose from the left and
right, e.g., for the mass matrix

M̃ = (M̃ℓ,k)
L
ℓ,k=1 := V−⊤MV−1 satisfies M̃ℓ,k =

∫
T

cℓ ck dx for ℓ, k = 1, . . . , L.

Similarly, we modify the computation of the right-hand side in Section 4.1.3 by

multiplying the matrix Ĉ by V−⊤, i.e., we replace Ĉf by V−⊤Ĉf.

4.1.5. Assembly of the global system. With the local integrals computed as in the
previous subsections, one can assemble the global system matrices and right-hand
side. With global basis functions (Bj)

N
j=1 and N := dimVh and with a(•, •) : Vh ×

Vh → R representing the bilinear form of the corresponding system matrix one has

A = (Aj,k)
N
j,k=1 ∈ RN×N with Aj,k = a(Bj , Bk).

The basis (Bj)
N
j=1 is chosen such that Ψk(Bj) = δk,j for all j, k = 1, . . . , N with

global degrees of freedom Ψk. We initialize A as a N ×N matrix with zero entries.
Then we loop over all simplices T ∈ T . For each simplex T ∈ T we compute the
corresponding local system matrices as described above and add the values for the
local degrees of freedom to the corresponding ones in A. Similarly, we proceed
with the right-hand side, which leads to the vector b = (bj)

N
j=1 ∈ RN with entries

bj =
∫
Ω
IfBj dx for all j = 1, . . . , N .

Remark 4.2 (Improvement). In Figure 4 and 6 we use a slow assembling routine
that updates the sparse Matrix A in each loop for the sake of a simpler presentation.
For a more efficient implementation it is recommended to build the system matrix
directly from an array of local system matrices and suitable index sets as described
for example in [FPW11].

4.2. Singular Zienkiewicz element. The previous section contains an approach
to implement general finite elements that use polynomial and rational basis func-
tions with degrees of freedom including point evaluations, evaluations of gradients,
and normal derivatives on edges. However, the resulting routines are in general
rather slow. We address this drawback by using the routines discussed in Sec-
tion 4.1.1 to precompute certain quantities that are independent of the specific
triangle T ∈ T . This subsection discusses the resulting implementation for the
singular Zienkiewicz element introduced in Section 2.1 for the biharmonic problem:
One seeks uh ∈ Vh ∩H2

0 (Ω) with Vh := Zs defined in Lemma 2.4 such that∫
Ω

∆uh ∆vh dx =

∫
Ω

fvh dx for all vh ∈ Vh ∩H2
0 (Ω). (4.4)

Let us recall the local basis of Zs on a simplex T = [v0, v1, v2] ∈ T with faces
F(T ) = {f0, f1, f2}. The local basis, see (2.6), contains the basis of P2(T )

b1 := λ22, b2 := λ1λ2, b3 := λ21, b4 := λ0λ2, b5 := λ0λ1, b6 := λ20.

The remaining basis functions of the reduced cubic Hermite element are

b7 := λ20λ1 − λ0λ
2
1, b8 := λ21λ2 − λ1λ

2
2, b9 := λ22λ0 − λ2λ

2
0,

and the rational bubble basis functions

b10 := Bf0 , b11 := Bf1 , b12 := Bf2 .
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The local degrees of freedom are

ψ1+j(p) = p(vj), ψ3+j(p) = ∂xp(vj), ψ7+j(p) = ∂yp(vj),

ψ10+j(p) = ∇p(mid(fj)) · νfj ,
(4.5)

for all p ∈ Zs(T ) and j = 0, 1, 2.
In our implementation the vertices {v1, . . . , vm} = N and edges {f1, . . . , fn} = F

in the underlying triangulation T are sorted according to their occurrence in the
matrix c4n ∈ Rm×2 and n4s ∈ Rn×2. Those are computed in separate routines
and contain the coordinates of each vertex and the vertex numbers of each edge as
rows, respectively. The global degrees of freedom are

Ψj(wh) = wh(vj), Ψm+j(wh) = ∂xwh(vj), Ψ2m+j(wh) = ∂ywh(vj),

Ψ3m+k(wh) = ∇wh(mid(fk)) · νfk ,
(4.6)

for all wh ∈ Vh, j = 1, . . . ,m, and k = 1, . . . , n. Let (Br)
N
r=1 ⊂ Vh with dimension

N = 3m+n denote the corresponding basis functions in the sense of Section 4.1.5.
Moreover, we define the system matrix A = (Ar,s)

N
r,s=1 for the biharmonic prob-

lem (4.4) and the right-hand side b = (br)
N
r=1 ∈ RN by

Ar,s =

∫
Ω

∆Br ∆Bs dx and br ≈
∫
Ω

fBr dx for all r, s = 1, . . . , N. (4.7)

While the computation of the right-hand side b has been discussed in Section 4.1.3,
the computation of the matrix A is explained in the remainder of this subsection.

4.2.1. Local stiffness matrix. We start with the computation of the matrix AT ∈
R12×12 that represents the (local) bilinear form. Its entries read

(AT )r,s :=

∫
T

∆br ∆bs dx for r, s = 1, . . . , 12. (4.8)

The identity in (3.3) yields for rational polynomials b : T → R with b = b̂ ◦ λ and
with the i-th row ∂xi

λ of ∇λ ∈ R2×3 that

∂xi
b = (∂xi

λ) (∇λb̂) ◦ λ. (4.9)

Applying this formula twice leads to ∂2xi
b = (∂xi

λ) (∇2
λb̂)◦λ (∂xi

λ)⊤. In particular,
we obtain the representation

∆b = ∂2x1
b+ ∂2x2

b =
∑
i=1,2

(∂xiλ) (∇2
λb̂) ◦ λ (∂xiλ)

⊤. (4.10)

Let us rewrite the matrix AT in (4.8). For v, w ∈ R3 and H ∈ R3×3 the Frobenius
product satisfies v⊤Hv = H : (v ⊗ v) and thus

v⊤Hv + w⊤Hw = H : (v ⊗ v + w ⊗ w) = H :

(
(v | w)

(
v⊤

w⊤

))
. (4.11)

Recall the matrix GT := Dλ ∈ R3×2 computed in (4.2). Using (4.11) we can

rewrite (4.10) as ∆b = (∇2
λb̂ ◦ λ) : GTG

⊤
T . Hence, for indices r, s = 1, . . . , 12 the

integrand in (4.8) is given by

∆br∆bs =
(
(∇2

λb̂r ◦ λ) : GTG
⊤
T

)(
(∇2

λb̂s ◦ λ) : GTG
⊤
T

)
. (4.12)
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LetA,B,C ∈ R3×3 be matrices and define the tensors [AB] with entries [AB]i,j,k,l =
Ai,jBk,l and [CC] with entries [CC]i,j,k,l = Ci,jCk,l. One has the identity

(A : C)(B : C) =
(∑

i,j

Ai,jCi,j

)(∑
k,l

Bk,lCk,l

)
=

∑
i,j,k,l

Ai,jBk,lCi,jCk,l = [AB] : [CC].
(4.13)

We define the tensors Â ∈ R12×12×3×3×3×3 and QT ∈ R3×3×3×3 with entries

Â(r, s, i, j, k, l) := −
∫
T

(
(∂λi∂λj b̂r)(∂λk

∂λl
b̂s)

)
◦ λ dx,

QT (i, j, k, l) := (GTG
⊤
T )i,j(GTG

⊤
T )k,l.

Notice that Â, which is denoted by Ahat in Figure 4, is independent of T and thus
is precomputed in our routine. Combining (4.12) and (4.13) leads to the identity

(AT )r,s =

∫
T

∆br∆bs dx = |T | Â(r, s, :, :, :, :) : QT . (4.14)

The MATLAB routine in Figure 4 performs this computation in lines 9–10.

1 for elem = 1 : nrElems

2 nodes = n4e(elem ,:); % nodes of triangle

3 coords = c4n(nodes ,:); % coordinates of the three nodes

4 sides = s4e(elem ,:); % sides of triangle

5 DF = [coords (2,:)-coords (1,:);coords (3,:)-coords (1,:)]’;

6 grad_lam = [-1,-1;1,0;0,1]/DF; % = [-1,-1;1,0;0,1]*inv(DF)

7 area = abs(det(DF))/2; % area of current simplex T

8 %% Compute local system matrix A_T %%

9 Q_T = tensorprod(grad_lam*grad_lam ’,grad_lam*grad_lam ’);

10 A_T = area*tensorprod(Ahat ,Q_T ,[3 4 5 6],[1 2 3 4]);

11 %% Local basis evaluation at dofs %%

12 Tgv = tensorprod(grad_lam ,That_gv ,1,3);

13 Tge = squeeze(pagemtimes(reshape(normal4s(sides ,:) ’,[1,2,3]),permute

(tensorprod(grad_lam ,That_ge ,1,3) ,[1,3,2]))) ’;

14 V = [That_v;squeeze(Tgv(1,:,:));squeeze(Tgv(2,:,:));Tge];

15 Basis4elem (:,:,elem) = inv(V);

16 %% Update global matrix A and rhs b %%

17 l2g_Dof = [nodes ,nrNodes+nodes ,2* nrNodes+nodes ,3* nrNodes+sides ];

18 A(l2g_Dof ,l2g_Dof) = A(l2g_Dof ,l2g_Dof) + Basis4elem (:,:,elem) ’*A_T*

Basis4elem (:,:,elem);

19 b(l2g_Dof) = b(l2g_Dof) + area*Basis4elem (:,:,elem)’*bhat ’*f(

BaryCoords*coords);

20 end

Figure 4. MATLAB loop over all T ∈ T to obtain the matrix A and
right-hand side b in (4.7).
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4.2.2. Local basis evaluation at dofs. In lines 12–15 in Figure 4 our routine computes
a basis (cj)

12
j=1 ⊂ Z(T ) such that with degrees of freedom ψj as in (4.5) we have

ψj(ck) = δj,k for all j, k = 1, . . . , 12.

As described in Section 4.1.4 for this purpose we invert the generalized Vander-
monde matrix V = (Vj,k)

12
j,k=1 ∈ R12×12 with Vj,k := ψj(bk) for all j, k = 1, . . . , 12.

Its entries are computed as follows.
The point evaluations ψ1, ψ2, ψ3 are independent of the underlying triangle T

and are stored in the precomputed matrix

That v = (Vj,k)
k=1,...,12
j=1,2,3 ∈ R3×12.

The dofs ψ4, . . . , ψ9 correspond to evaluations of the gradients at the vertices
v0, v1, v2 of T . We define the precomputed tensor That gv ∈ R3×12×3 with

That gv(i, j, :) = (∇λb̂j) ◦ λ(vi−1) for all i = 1, 2, 3 and j = 1, . . . , 12.

Using (4.9) this tensor allows us to compute the tensor Tgv ∈ R2×3×12 with entries
Tgv(:, i, j) = ∇bj(vi−1) for all i = 1, 2, 3 and j = 1, . . . , 12, cf. line 12 in Figure 4.

It remains to consider the evaluations ψ10, ψ11, ψ12 of the normal derivatives at
the midpoints of edges. The gradients at the face midpoints are computed similarly
as Tgv. We then multiply these gradients with precomputed normal vectors. This
leads to the matrix Tge ∈ R3×12 with entries Tge(i, j) = ∇bj(mid(fi−1)) · νfi−1

for
all i = 1, 2, 3 and j = 1, . . . , 12, cf. line 13 in Figure 4. Combining these matrices
leads to the matrix V = V ∈ R12×12 in line 14 in Figure 4.

4.2.3. Reduced Zienkiewicz element. As discussed in Section 2.1 it is possible to
reduce the number of basis functions, leading to the reduced singular Zienkiewicz
element in (2.7). To obtain this reduced element, we have to modify our local
basis functions b1, . . . , b9 by subtracting suitable scaled rational bubble functions
b10, b11, b12 such that the resulting functions b ∈ Zs(T ) satisfy ∇b|fj ·νj ∈ P1(fj) for
all j = 0, 1, 2. This property is satisfied for the quadratic basis functions b1, . . . , b6 ∈
P2(T ) without any modification. For b ∈ {b7, b8, b9} we use the ansatz

b̄ := b−
2∑

j=0

γjBfj with coefficients γ0, γ1, γ2 ∈ R to be determined.

According to Lemma 2.3 the function ∇b̄|fj is a quadratic function on the edge

fj = [vj+1, vj+2], for j = 0, 1, 2. Hence, the function b̄ satisfies ∇b̄|fj · νj ∈ P1(fj)
if and only if

∇b̄(mid(fj)) · νfj = 1
2

(
∇b̄(vj+1) +∇b̄(vj+2)

)
· νfj .

Due to the properties of the rational bubble functions stated in Lemma 2.3 and by
the definition of b̄ this is equivalent to

∇
(
b(mid(fj))− γjBfj (mid(fj))

)
· νfj = 1

2

(
∇b(vj+1) +∇b(vj+2)

)
· νfj .

This determines the coefficients to be

γj =
∇b(mid(fj)) · νfj − 1

2

(
∇b(vj+1) +∇b(vj+2)

)
· νfj

Bfj (mid(fj)) · νfj
for j = 0, 1, 2.
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1 gamma0 = (V(10 ,7:9)-normal4s(sides (1) ,:)/2*(V([5 ,8] ,7:9)+V([6 ,9] ,7:9))

)/V(10 ,10);

2 gamma1 = (V(11 ,7:9)-normal4s(sides (2) ,:)/2*(V([6 ,9] ,7:9)+V([4 ,7] ,7:9))

)/V(11 ,11);

3 gamma2 = (V(12 ,7:9)-normal4s(sides (3) ,:)/2*(V([4 ,7] ,7:9)+V([5 ,8] ,7:9))

)/V(12 ,12);

4 RedBasis = [eye(9);zeros (3,6) ,-[gamma0;gamma1;gamma2 ]];

5 Basis4elem (:,:,elem) = RedBasis/V(1:9 ,1:9);

6 l2g_Dof = [nodes ,nrNodes+nodes ,2* nrNodes+nodes];

Figure 5. Modification replacing lines 15–17 in Figure 4 to obtain the
reduced singular Zienkiewicz element.

The values on the right-hand side have been computed and stored in the matrix
V ∈ R12×12, see Section 4.2.2, in the sense that for all k = 1, . . . , 9 and j = 0, 1, 2

∇bk(mid(fj)) · νfj = V(10 + j, k),

∇bk(vj) = (V(4 + j, k), V(7 + j, k))⊤,

Bfj (mid(fj)) · νfj = b10+j(mid(fj)) · νfj = V(10 + j, 10 + j).

This allows us to compute the values γj as in line 1–3 in Figure 5. In this way
we obtain the basis functions b̄1, . . . , b̄9 of Zr(T ) with b̄k = bk for k = 1, . . . , 6.
Since the degrees of freedom ψ1, . . . , ψ9 do not see the correction by the rational
bubble functions according to Lemma 2.3, that is, ψk(Bfj ) = 0 for k = 1, . . . , 9
and j = 0, 1, 2, the Vandermonde matrix remains unchanged in the sense that
ψk(b̄ℓ) = ψk(bℓ) for all k, ℓ = 1, . . . , 9. This allows us to compute the coefficients

(yℓ)
12
ℓ=1 ∈ R12 of the functions c̄k =

∑12
ℓ=1 yℓbℓ ∈ Zr(T ) with ψℓ(c̄k) = δℓ,k for all

k, ℓ = 1, . . . , 9 as illustrated in lines 4–5 in Figure 5.

4.3. Guzmán–Neilan element. In this subsection we present an implementation
of the 2D Guzmán–Neilan element for the Stokes problem. More precisely, we con-
sider the Guzmán–Neilan element as presented in Section 2.2 with global spaces V
and Q defined in Lemma 2.6 with given underlying triangulation T . The discretized
Stokes problems seeks (uh, πh) ∈ (V ∩H1

0 (Ω)
2)×Q ∩ L2

0(Ω) such that∫
Ω

∇uh : ∇vh dx−
∫
Ω

πh div vh dx =

∫
Ω

fvh dx for all vh ∈ V ∩H1
0 (Ω)

2,∫
Ω

qh div uh = 0 for all qh ∈ Q ∩ L2
0(Ω).

To define our local basis functions for any simplex T = [v0, v1, v2], recall the func-
tions bfi and Bfi with i = 0, 1, 2 defined in (2.5), and set e1 = (1, 0)⊤, e2 = (0, 1)⊤.
The local velocity space V (T ) is spanned by the basis functions

b1 := λ0e1, b2 := λ1e1, b3 := λ2e1,

b4 := λ0e2, b5 := λ1e2, b6 := λ2e2,

b7 := curl(λ20λ1 − λ21λ0), b8 := curl(λ21λ2 − λ22λ1), b9 := curl(λ22λ0 − λ20λ2),

b10 := curl(Bf0), b11 := curl(Bf1), b12 := curl(Bf2).

(4.15)



EXACT INTEGRATION FOR RATIONAL FINITE ELEMENTS 25

Let us additionally define

ρ1 := λ20λ1 − λ21λ0, ρ2 := λ21λ2 − λ22λ1, ρ3 := λ22λ0 − λ20λ2,

ρ4 := Bf0 , ρ5 := Bf1 , ρ6 := Bf2 .

The local basis of Q(T ) consists of the single constant function

q1 = 1.

The local degrees of freedom are for all p ∈ V (T ) and j = 0, 1, 2 defined by

ψ1+j(v) = (p(vj))1, ψ4+j(p) = (p(vj))2,

ψ7+j(p) = p(mid(fj)) · νfj , ψ10+j(p) = p(mid(fj)) · τfj .
(4.16)

In our implementation the vertices {v1, . . . , vm} = N and edges {f1, . . . , fn} = F
in the underlying triangulation T are sorted according to their occurrence in the
matrix c4n ∈ Rm×2 and n4s ∈ Rn×2, which contains the coordinates of each vertex
and the vertex numbers of each edge, respectively. Then the global degrees of
freedom are, for all wh ∈ V , j = 1, . . . ,m, and k = 1, . . . , n,

Ψj(wh) = (wh(vj))1, Ψm+j(wh) = (wh(vj))2,

Ψ2m+k(wh) = wh(mid(fk)) · νfk , Ψ2m+n+k(wh) = wh(mid(fk)) · τfk .
(4.17)

The corresponding global basis in the sense of Section 4.1.5 is denoted by (Br)
N
r=1 ⊂

Vh with dimension N = 2m + 2n. Moreover, in our implementation the simplices
{T1, . . . , Tp} = T are sorted according to their occurrence in the matrix n4e ∈ Rp×3

whose j-th row contains the indices of the vertices of Tj . Then (qj)
p
j=1 with qj := 1Tj

for all j = 1, . . . , p is a basis of Q. The remainder of this subsection focuses on the
computation of the local contribution of the matrices A = (Ar,s)

N
r,s=1 ∈ RN×N and

B = (Br,j)
j=1,...,p
r=1,...,N ∈ RN×p as well as of the right-hand side b = (br)

N
r=1 ∈ RN such

that for all r, s = 1, . . . , N and j = 1, . . . , p

Ar,s =

∫
Ω

∇Br : ∇Bs dx, Br,j =

∫
Ω

qj divBr dx, br ≈
∫
Ω

fBr dx. (4.18)

4.3.1. Local stiffness matrix. First, we describe the computation of the local stiff-
ness matrix AT ∈ R12×12. Given a simplex T = [v0, v1, v2] ∈ T its entries read

(AT )r,s =

∫
T

∇br : ∇bs dx for all r, s = 1, . . . , 12.

We divide this matrix into blocks RT ,MT , PT ∈ R6×6 in the sense that

AT =

(
PT MT

M⊤
T RT

)
.

This means PT contains the entries where both basis functions are affine polyno-
mials, RT contains the entries where both basis functions are curls of a rational
functions, and MT contains the mixed ones.

Let us start with computing PT . Its entries are

(PT )r,s :=

∫
T

∇br : ∇bs dx for r, s = 1, . . . , 6.

For all j, k = 1, 2, 3 we have the identity

Pj,k =

∫
T

∇λj−1 · ∇λk−1 dx =

∫
T

∇bj : ∇bk dx =

∫
T

∇b3+j : ∇b3+k dx.
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1 for elem = 1 : nrElems

2 nodes = n4e(elem ,:); % nodes of triangle

3 coords = c4n(nodes ,:); % coordinates of the three nodes

4 sides = s4e(elem ,:); % sides of triangle

5 DF = [coords (2,:)-coords (1,:);coords (3,:)-coords (1,:)]’;

6 grad_lam = [-1,-1;1,0;0,1]/DF; %grad_lam = [-1,-1;1,0;0,1]*inv(DF)

7 area = abs(det(DF))/2; % area equals volume of current simplex

8 %% Compute local stiffness matrix A_T (P_T , R_T ,M_T) %%

9 GG = grad_lam*grad_lam ’;

10 A_T (1:3 ,1:3) = area*GG; A_T (4:6 ,4:6) = area*GG; %P_T

11 Q_T = tensorprod(GG,GG);

12 A_T (7:12 ,7:12) = area*tensorprod(Rhat ,Q_T ,[3 4 5 6],[1 2 3 4]); %R_T

13 W_T = tensorprod(R*grad_lam ’,GG);

14 A_T (1:6 ,7:12) = area*tensorprod(Mhat ,W_T ,[3 4 5 6],[1 2 3 4]); %M_T

15 A_T (7:12 ,1:6) = A_T (1:6 ,7:12) ’;

16 B_T = area*grad_lam (:);

17 %% Local basis evaluation at dofs %%

18 normals = normal4s(sides ,:); %normal vector for each side

19 tangents = tangent4s(sides ,:); %tangent vector for each side

20 V_left = [eye(6);normals (1,:)*val_mid1 ’; normals (2,:)*val_mid2 ’;

normals (3,:)*val_mid3 ’; tangents (1,:)*val_mid1 ’; tangents (2,:)*

val_mid2 ’; tangents (3,:)*val_mid3 ’];

21 Tgv = tensorprod(grad_lam ,That_gv ,1,3);

22 Tge = tensorprod(grad_lam ,That_ge ,1,3);

23 for i=1:3

24 Tge_nt ([i,i+3] ,:) = [normals(i,:);tangents(i,:)]*R*squeeze(Tge(:,i

,:)); end

25 V_right = [squeeze(Tgv(2,:,:));-squeeze(Tgv(1,:,:));Tge_nt ];

26 V = [V_left ,V_right ];

27 Basis4elem (:,:,elem) = inv(V);

28 %% Update global matrix A and rhs b %%

29 l2g_Dof = [nodes ,nrNodes+nodes ,2* nrNodes+sides ,2* nrNodes+nrSides+

sides];

30 A(l2g_Dof ,l2g_Dof) = A(l2g_Dof ,l2g_Dof) + Basis4elem (:,:,elem) ’*A_T*

Basis4elem (:,:,elem);

31 B(l2g_Dof ,elem) = Basis4elem (1:6,:,elem)’*B_T;

32 f_loc = f(BaryCoords*coords);

33 b2 = tensorprod(grad_lam ,bhat2 ,1,2);

34 b_T1 = [bhat1 ’*f_loc (:,1);bhat1 ’*f_loc (:,2)];

35 b_T2 =squeeze(b2(2,:,:)) ’*f_loc (:,1)-squeeze(b2(1,:,:))’*f_loc (:,2);

36 b(l2g_Dof) = area*b(l2g_Dof)+Basis4elem (:,:,elem) ’*[b_T1;b_T2];

37 end

Figure 6. Computation of the local contributions to assemble the ma-
trices A, B, and b in (4.18).

Moreover, the off-diagonal blocks equal zero, that is, Pj,3+k = 0 = P3+j,k for all
j, k = 1, 2, 3. Hence, with the matrix GT = Dλ ∈ R3×2 computed as in (4.2) we
have, cf. Figure 6, line 10, that

PT =

(
|T |GTG

⊤
T 0

0 |T |GTG
⊤
T

)
.
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Let us now consider RT ∈ R6×6. Recall that in 2D the curl is given by

curl f = R∇f with rotation matrix R =

(
0 1
−1 0

)
.

Hence, we obtain for all r, s = 1, . . . , 6 that

(RT )r,s :=

∫
T

∇br+6 : ∇bs+6 dx =

∫
T

(∇ curl ρr) : (∇ curl ρs) dx

=

∫
T

(∇R∇ρr) : (∇R∇ρs) dx =

∫
T

∇2ρr : ∇2ρs dx.

With GT = Dλ and (3.4) the integrand equals

∇2ρr : ∇2ρs =
(
G⊤

T (∇2
λρ̂r) ◦ λGT

)
:
(
G⊤

T (∇2
λρ̂s) ◦ λGT

)
.

We define the tensors R̂ ∈ R6×6×3×3×3×3 and QT ∈ R3×3×3×3 as

R̂(r, s, i, j, k, l) := −
∫
T

(
(∂λi

∂λk
ρ̂r)(∂λj

∂λl
ρ̂s)

)
◦ λ dx,

QT (i, j, k, l) := (GTG
⊤
T )i,j(GTG

⊤
T )k,l.

Component-wise computation reveals the identity (RT )r,s = |T | R̂(r, s, :, :, :, :) : QT .

In our implementation the element-independent tensor R̂ = Rhat is precomputed
and the computation of RT = R T is shown in Figure 6, line 12.

It remains to compute the submatrix MT with entries, for r, s = 1, . . . , 6,

(MT )r,s =

∫
T

∇br : ∇bs+6 dx =

∫
T

∇br : ∇R∇ρs dx =

∫
T

∇br : R∇2ρs dx.

With the identities (3.3), (3.4), and GT = Dλ the integrand has the form

∇br : R∇2ρs = (∇λb̂r) ◦ λGT : R(G⊤
T (∇2

λρ̂s) ◦ λ GT ).

Let us define the tensors M̂ ∈ R6×6×2×3×3×3 and WT ∈ R2×3×3×3 by

M̂(r, s, i, j, k, l) := −
∫
T

(
∂λk

(b̂r)i(∂λj
∂λl

ρ̂s)
)
◦ λ dx,

WT (i, j, k, l) := (RG⊤
T )i,j(GTG

⊤
T )k,l.

This leads to the identity (MT )r,s = |T | M̂(r, s, :, :, :, :) :WT . In our implementation

the element-independent tensor M̂ = Mhat is precomputed and the computation of
MT = M T is shown in Figure 6, line 14.

4.3.2. System matrix. Since the pressure space is one-dimensional, the contribu-
tions

∫
T
q1 div br dx with q1 = 1 are represented by a vector BT ∈ R12 with entries

(BT )r =

∫
T

div br(x) dx for r = 1, . . . , 12.

It follows by div curl ρ = 0 that (BT )r = 0 for all r = 7, . . . , 12. Due to the
definition of the basis in (4.15) for j = 1, 2, 3 we have that

div bj = ∂xλj−1 and div b3+j = ∂yλj−1.
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In particular, we obtain

(BT )r =


|T | ∂xλr−1 for r = 1, . . . , 3,

|T | ∂yλr−4 for r = 4, . . . , 6,

0 for r = 7, . . . , 12.

This leads to the computation of (BT )
6
r=1 = B T as in line 16 in Figure 6.

4.3.3. Local basis evaluation at dofs. Since point evaluations of the basis functions
b1, . . . , b6 at vertices and midpoints of edges are independent of the underlying
simplex T = [v0, v1, v2], we obtain the left side V left = (Vr,s)

s=1,...,6
r=1,...,12 ∈ R12×6 of

the generalized Vandermonde matrix by multiplying precomputed point evaluations
with the corresponding normal and tangential vectors, see Figure 6, line 20.

To obtain the remaining part V right = (Vr,s)
s=7,...,12
r=1,...,12 of the Vandermonde

matrix, we apply the considerations in Section 4.2.2 to compute in line 21–22 in
Figure 6 the tensors Tgv, Tge ∈ R2×3×6 with entries

Tgv(:, j, s) = ∇ρs(vj−1) and Tge(:, j, s) = ∇ρs(mid(fj−1)),

for all j = 1, 2, 3 and s = 1, . . . , 6. While the values in Tgv can be directly added
to the Vandermonde matrix V , one has to rotate and multiply the values in Tge by
the normal and tangential vectors as done in line 24 in Figure 6. Combining the
values leads to the matrix V = V in line 26 in Figure 6.

4.3.4. Assembly of the right-hand side. Let Pm(T ) be the polynomial space of max-
imal degree m ∈ N0 with Lagrange basis {φ1, . . . , φJ}. In lines 32–36 of Figure 6
the right-hand side is assembled. The evaluation of the local components

∫
T
Ifbj dx

for j = 1, . . . , 6 with nodal interpolation operator I : C0(T ) → Pm(T ) is described
in Section 4.1.3. To evaluate the local components

∫
T
If curl ρj dx for j = 1, . . . , 6,

the code precomputes the tensor bhat2 ∈ RJ×3×6 containing the values

bhat2(j, k, r) = −
∫
T

(φ̂j∂λk
ρ̂r)◦λ dx for all j = 1, . . . , J, k = 1, . . . , 3, r = 1, . . . , 6.

Exploiting the representation of ∇ρs = ∇λ(∇λρ̂s) ◦ λ in (3.3), we obtain in line 33
in Figure 6 the tensor b2 with entries

b2(m, j, r) = −
∫
T

φj∂xm
ρr dx for all m = 1, 2, j = 1, . . . , J, r = 1, . . . , 6.

With this we evaluate in line 35 in Figure 6 the contributions

b T2(r) = −
∫
T

If curl ρr dx = −
∫
T

If b6+r dx for all r = 1, . . . , 6.

These contributions are added to obtain the global vector b.

4.3.5. Reduced Guzmán–Neilan element. To obtain the reduced Guzmán–Neilan
element described in Lemma 2.9, we have to correct the local basis b1, . . . , b9 by
the rational bubble functions b10 = curlBf0 , b11 = curlBf1 , b12 = curlBf2 such
that the resulting functions b̄ ∈ Vr(T ) satisfy

b̄|fj · τfj ∈ P1(fj) for all j = 0, 1, 2. (4.19)
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1 gam0=(V(10 ,7:9)-tangents (1,:) /2*(V([2 ,5] ,7:9)+V([3 ,6] ,7:9)))/V(10 ,10);

2 gam1=(V(11 ,7:9)-tangents (2,:) /2*(V([3 ,6] ,7:9)+V([1 ,4] ,7:9)))/V(11 ,11);

3 gam2=(V(12 ,7:9)-tangents (3,:) /2*(V([1 ,4] ,7:9)+V([2 ,5] ,7:9)))/V(12 ,12);

4 RedBasis = [eye(9);zeros (3,6) ,-[gam0;gam1;gam2 ]];

5 Basis4elem (:,:,elem) = RedBasis/V(1:9 ,1:9);

6 l2g_Dof = [nodes ,nrNodes+nodes ,2* nrNodes+sides];

Figure 7. Modification replacing lines 27–29 in Figure 6 to obtain the
reduced Guzmán–Neilan element.

This is trivially satisfied for the affine basis functions b1 = b̄1, . . . , b6 = b̄6 ∈ P1(T )
2.

For the corrections b̄k = bk−
∑3

ℓ=1 γℓb9+ℓ with k = 7, 8, 9 and coefficients γ1, γ2, γ3 ∈
R of the remaining basis functions we exploit the identity

b̄k|fj · τfj = curl
(
ρk−6 −

3∑
ℓ=1

γℓρ3+ℓ

)∣∣∣
fj

· τfj = curl
(
ρk−6 − γjBfj

)∣∣
fj

· τfj .

This allows us to compute the coefficients γj similarly as in Section 4.2.3, which
leads to the additional code displayed in Figure 7.

5. Numerical experiment

In this work we have presented an exact numerical integration for rational finite
element functions. Previously, only inexact quadrature was available for rational
functions on triangles. In this experiment we investigate the benefits of our exact
numerical integration.

It is well known that the quadrature error may spoil the approximation or-
der when approximating solutions to PDEs as shown for the linear elliptic PDE
− div(a∇u) = f for smooth coefficient function a discretized by Lagrange elements,
c.f. [Cia02, Thm. 4.1.6] and for the related eigenvalue problem [BO90; Ban92]. The
results state that for smooth solutions and Lagrange elements of degree k the order
of convergence remains optimal if the quadrature rule is exact for polynomials of
maximal degree 2k − 2 for the source term and of 2k − 1 for the eigenvalue prob-
lem. For rough coefficients a, randomized quadrature rules have been investigated
in [KPW19].

In the remainder of this section we numerically study the effect of quadrature
errors in the singular Zienkiewicz FEM for the biharmonic eigenvalue problem: Seek
an eigenfunction φ ∈ H2(Ω) \ {0} with smallest eigenvalue λ > 0 such that

∆2φ = λφ in Ω,

φ = ∇φ · ν = 0 on ∂Ω.

The domain Ω is chosen as the unit square Ω = (0, 1)2 or the L-shaped domain
Ω = (−1, 1)2 \ [0, 1)2. The underlying triangulations are uniform for the square and
graded towards the re-entrant corner for the L-shaped domain. For the (inexact)
quadrature we use Fubini’s theorem and 1D Gauß quadrature, that is, for a function
g : T → R with T = [(0, 0)⊤, (1, 0)⊤, (0, 1)⊤] we approximate the integral with
suitable Gauß points xi, yi,j ∈ T and weights ωi, ωi,j ∈ R for i, j = 1, . . . , n with
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Figure 8. Distance |λh−λh|/λh on the square with uniform refinement

(left) and L-shaped domain with adaptive refinement (right), where λh

resulted from computations with the quadrature rule in (5.1) and various
n.

n ∈ N by∫
T

g(x, y) d(x, y) =

∫ 1

0

∫ 1−x

0

g(x, y) dy dx ≈
n∑

i=1

ωi

∫ 1−x

0

g(xi, y) dy

≈
n∑

i=1

ωi

n∑
j=1

ωi,jg(xi, yi,j).

(5.1)

Notice that for polynomials g ∈ Pk(T ) the integrand
∫ 1−x

0
g(x, y) dy is a polynomial

in x of maximal degree k + 1. Thus, exploiting the exactness of Gauß quadrature
for polynomials with maximal degree 2n − 1 in 1D, this approach is exact for
polynomials g ∈ P2n−2(T ). We use the quadrature in (5.1) to approximate the
integrands in (4.8) and the local contributions of the mass matrix

(MT )r,s =

∫
T

brbs dx for all r, s = 1, . . . , 12.

We solve the resulting eigenvalue problem and compare the approximated eigen-
value λh obtained with exact integration by the implementation presented in Sec-
tion 4.2 and the eigenvalue λh obtained by numerical quadrature (5.1) in the com-
putation of the system matrices. The results are displayed in Figure 8.

Our computations with uniform mesh refinements of the square domain indicate
a stagnation of the error as the mesh becomes finer, and hence suggests a failure
of convergence. This effect is quite strong for small number of Gauß points n, and
seems to be less prominent for larger n. However, it can be observed, that the onset
of the stagnation is merely shifted for larger n.

Also for the adaptive mesh refinement there are some issues. While the so-
lutions derived with approximated system matrices seem to exhibit convergence,
for small numbers of Gauß points n one can observe a reduced convergence order

ndof−1/2, instead of ndof−1 as for larger n. Notably, the accelerated rate ndof−1

reflects the convergence of the exact scheme towards the minimal eigenvalue, that
is, λh − λ = O(ndof−1), cf. [CP23, Sec. 4.3]. Thus, smaller values of n retard
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the convergence rate of the numerical scheme, whereas larger values of n restore
the rate to its expected trajectory. However, this may well be true only in the
pre-asymptotic stage. With an increase in the degrees of freedom, the schemes
employing inexact quadrature might still encounter a stagnation, similar to the one
observed for uniform mesh refinement of the unit square domain.
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