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Abstract 

Understanding complex collaboration processes is essential for the success of construction 

projects. However, there is still a lack of efficient methods for timely collection and analysis of 

collaborative networks. Therefore, an integrated framework consisting three parts, namely, system 

updating for data collection, data preprocessing, and social network analysis, is proposed for the 

twinning and mining collaborative network of a construction project. First, a system updating strategy 

for automatic data collection is introduced. Centrality measures are then utilized to identify key players, 

including hubs and brokers. Meanwhile, information sharing frequency (ISF) and association rule 

mining are introduced to discover collaborative patterns, that is, frequently collaborating users (FCUs) 

and associations between information flows and task levels. Finally, the proposed framework is 

validated and demonstrated in a large-scale project. The results show that key players, FCUs, and 

associations between information flows and task levels were successfully discovered, providing a deep 

understanding of collaboration and communication for decision-making processes. This research 

contributes to the body of knowledge by: 1) introducing ISF and Apriori-based association mining 

algorithm to identify FCUs and information flow patterns in collaboration; 2) establishing a new data-

driven framework to map and analyze fine-grained collaborative networks automatically. It is also 

shown that people tend to form small groups to handle certain levels or types of tasks more efficiently. 

Other researchers and industrial practitioners may use this work as a foundation to further improve the 

efficiency of collaboration and communication. 

Keywords: social network analysis; digital twin; graph visualization; frequently collaborating users; 

association rules; process mining; information flow patterns 

 
 



 

 

1. Introduction 

Construction projects are usually complex with intensive labor input, large investment, and 

extensive involvement of multiple disciplines[1]. One of the paramount challenges currently facing 

engineers, contractors, and owners is the need to deliver high-quality construction projects in a timely 

manner. Accurate and timely information of a construction project is needed to achieve well-

maintained and efficient project control that will ensure cost and time efficiency of the project[2]. 

Because 50% to 80% of construction problems arise from a lack of data or a delay in the receipt of 

information[3], it is essential to collect and analyze data dynamically and make decisions more 

efficiently. For example, traditional methods for on-site inspection still depend on paper-based files 

such as drawing and data collection forms, which are not efficient for information exchange and 

communication, usually leading to overlooked important issues and deferred on-site decisions[4]. 

Therefore, the success of a construction project calls for fluent and efficient information exchange and 

collaboration among different stakeholders, including owners, architects, engineers, and 

contractors[5,6]. Furthermore, timely data retrieval, analysis, and communication of the data in a well-

interpreted way are important for construction firms[7,8]. 

Recently, several efforts have been made to enhance data collection, sensing, and visualization 

for construction management and collaboration[2]. Various data acquisition technologies, such as 

Global Positioning System (GPS), Radio-frequency Identification (RFID), barcodes, laser scanners, 

video and audio technologies for automated data acquisition[9], as well as computer vision and 3D 

reconstruction[10], have been investigated by both researchers and industrial practitioners. Meanwhile, 

with the increasing availability of commercial mobile and wearable computers, inspection data 

collection and knowledge sharing based on mobile devices have also been reported[11,12]. 

However, there is a lack of research investigating how people collaborate and communicate with 

each other in a construction project. To the best of our knowledge, most of the relevant studies 

examined collaboration between stakeholders from an organization-to-organization perspective. For 

example, a social network method called structural equation modeling was used to analyze the impacts 

of collaborative relationships on the innovation performance of construction projects[13]. Another 

study examined how the macro structure of the project-based collaborative network for building 

information modeling (BIM) implementation in the regional construction industry and public-private 

sectors evolves over time[14,15]. Usually, a simple graph, that is, an undirected, unweighted graph 

without multiple edges between two nodes, is built and analyzed to identify potential collaborative 

patterns[15-18]. In this way, an analysis of the connection strength or communication frequency 

between two actors, which are usually modeled as multiple edges or weighted edges, is not possible. 



 

 

Although collaborative networks from a person-to-person perspective have recently been discussed[6], 

the information flow patterns and frequency of communication are still not considered[19,20]. 

Nevertheless, investigations have shown that they are important for analyzing and assessing 

communication and collaboration performance[21]. Thus, the lack of detailed data for creating a fine-

grained collaborative network is still an important issue hindering data-driven collaboration and 

communication. Moreover, it is found that most of the related works establish a collaborative network 

based on questionnaires or interviews[15,19], which are time-consuming and tedious, making it 

difficult to obtain timely understanding of collaborative relationships. However, recent attempts to 

automatically create social networks from log files[6] still suffer from uncertainty, because a number 

of assumptions are needed to identify nodes and their relationships. That is, an automatic approach to 

twinning fine-grained collaborative networks is still sought by both researchers and industrial 

practitioners. 

To this end, a novel framework is proposed for: 1) twinning a fine-grained collaborative network 

of a construction project, 2) detecting key players involved in collaboration, and 3) discovering 

frequently collaborating users and associations between information flows and task levels. In the 

proposed framework, a mobile-based application for construction management is extended to collect 

data related to information flow and collaboration. As a result, a digital twin of the collaborative 

network could be created. Finally, the social network analysis (SNA) method, including centrality 

measures, graph visualization, and association rule mining are conducted for knowledge discovery.  

In this research, the feasibility of the proposed methodology is first validated and examined. The 

main objectives of this research are to determine: 1) how to create a digital twin of the fine-grained 

collaborative network of a construction project, 2) who the key players involved in collaboration are, 

and 3) how they collaborate and communicate with each other in handling certain construction tasks. 

In this way, this research contributes to the body of knowledge an innovative framework for twinning 

and mining detailed collaborative networks of construction projects, and provides insights for project 

managers by identifying key players and uncovering hidden collaboration patterns from collaborative 

networks. The remainder of this paper is organized as follows. Section 2 provides a brief review of 

relevant research and applications. Section 3 introduces the proposed framework and research 

methodologies, including statistical analysis and SNA. In Section 4, a demonstration of the proposed 

method as well as discovered key players, frequently collaborating users, and associations between 

information flows and task levels are presented. Section 5 discusses the findings and limitations of 

study. Finally, the paper is concluded in Section 6 with a summary of the contributions to the 

construction domain and a discussion of possible future improvements. 



 

 

2. Overview of Related Research 

Construction projects are usually complex and exhibit highly fragmented operation, with intensive 

labor input, large investment, and extensive involvement of multiple disciplines[1]. Several studies 

have shown that a construction project failure is closely associated with communication between 

stakeholders[6]. On one hand, 50% to 80% of construction problems arise from a lack of data or a 

delay in the receipt of information[3], whereas accurate and timely shared information of a 

construction project is needed to ensure its cost and time efficiency[2]. On the other hand, successful 

innovation usually requires effective cooperation and working relationships among different parties 

within a construction project[13]. Thus, there was a call for closer relationships between clients, 

designers and contractors, which requires new tools to create and maintain collaborative relationships 

between multiple stakeholders through effective information exchange and communication 

patterns[22]. 

2.1 Collaborative Relationships 

Collaboration is a process in which individuals or organizations work together and they typically 

establish collaborative relationships to share information and resources, thereby increasing mutual 

benefits compare to working alone[13]. Generally, individuals or organizations are modeled as nodes, 

and their connections or relationships are considered as edges or ties, thereby forming a social 

network[23]. Collaborative relationships reveal how actors (people, resources, etc.) interact with each 

other; they are widely used in analyzing the innovation of organizations[13], safety climate[24] and 

communication[19], gaps for project success[22], collaboration barriers[17] in the construction 

domain and in other areas such as research collaboration[25], collaborative learning[26], business[27] 

and software development[28] (Table 1). 

Researchers typically investigate collaborative relationships from two levels: the network level 

and node level. The former considers collaboration through the overall characteristics of a network. 

For example, a BIM-based collaborative environment for the design of green buildings was 

proposed[29], in which network-level metrics such as network density and diameter are calculated for 

socio-technical analytics. The latter pays more attention to key players in a network; for example, 

central actors were identified from a project-level social network for successful project delivery[6]. 

Another study examined how collaborative relationships impact the innovation performance of 

construction projects, and key members in the collaborative networks were identified[13]. Frequently, 

both network-level and node-level features are considered to investigate collaborative relationships. 

With a longitudinal data set of projects in China, the overall characteristics and individual performance 



 

 

of the collaborative network were analyzed and it was illustrated that the collaborative network became 

increasingly dense around certain key nodes[14]. From an organization-to-organization perspective, 

the formation of a construction firm’s collaborative network for performing international projects was 

investigated, and it was concluded that large companies and small and medium-sized companies have 

different tendencies when pursuing collaborative ventures for overseas construction projects[17]. 

Meanwhile, an examination of project-level networks showed low levels of network density in general 

and high centrality for certain actors, reflecting their dominant role in construction projects[22].  

2.2 Social Network Analysis Method 

Because most of the related works view the problem from a network perspective, the SNA method 

is usually adopted to investigate features of collaborative networks[22]. SNA enables systematic 

specification of the relationships between actors within a group, and the results can be represented 

mathematically and graphically[18]. 

To examine the overall characteristics, network-level metrics such as network size, density, 

diameter, and average node degree are usually adopted[15]. Among them, network density is the most 

commonly used (Table 1), which describes the portion of potential connections in a network that are 

actual connections[20]. In this manner, network density is usually adopted to quantify how tightly 

different actors are connected. 

At the same time, several centrality measures (Table 1) including degree of node or degree 

centrality (DC), betweenness centrality (BC), closeness centrality (CC) and eigenvector centrality (EC) 

are introduced to quantify the importance or influence of a particular node in SNA[15]. Thus, centrality 

measures provide a way to identify key players at a micro-level. The first and simplest centrality 

introduced is DC, which is the total number of edges directed to a node and edges directed from the 

node to others. In a collaborative network, DC indicates the popularity of a node. Apart from DC, CC 

and BC are two commonly utilized centrality measures. The CC of a node is the average length of the 

shortest paths between the node and all other nodes in the graph, which quantifies how close the node 

is to others[30]. BC is the number of shortest paths that pass through the node, and quantifies the 

number of times the node acts as a bridge along the shortest path between two other nodes[31]. Thus, 

DC and CC may be used to identify potential hubs or actors[13] in a social network, and BC helps to 

detect brokers in a collaborative network[6]. The calculation methods of degree centrality 𝐷(𝑥) , 

closeness centrality 𝐶(𝑥), and betweenness centrality 𝐵(𝑥) are, respectively, represented as follows: 

𝐷(𝑥) = 𝐶𝑜𝑢𝑛𝑡(𝐸𝑘|𝑆𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒(𝐸𝑘) = 𝑥) + 𝐶𝑜𝑢𝑛𝑡(𝐸𝑘|𝐸𝑛𝑑𝑁𝑜𝑑𝑒(𝐸𝑘) = 𝑥) (1)  



 

 

𝐶(𝑥) = 1 ∑ 𝑑(𝑦, 𝑥)
𝑦

⁄  (2)  

𝐵(𝑥) =∑ 𝜎𝑦𝑧(𝑥) 𝜎𝑦𝑧⁄
𝑦≠𝑥≠𝑧

 (3)  

where 𝑥, 𝑦, 𝑧 are different nodes, 𝑑(𝑦, 𝑥) is the distance between nodes 𝑥 and 𝑦, 𝜎𝑦𝑧 is the 

total number of shortest paths from node 𝑦 to node 𝑧, and 𝜎𝑦𝑧(𝑥) is the number of those paths that 

pass through node 𝑥. 

Moreover, community detection is also adopted to discover small subgroups in a large and dense 

network[6]. Thus, it is possible to capture the spontaneous formal and informal interaction between 

project actors at different project levels[22] and develop collaboration strategies to achieve better 

outcomes while considering the relevant network patterns[17]. Consequently, by analyzing both 

stakeholders and their interests from a network perspective, SNA can improve the accuracy, 

completeness and effectiveness of stakeholder management in construction[32]. 

Although the above-mentioned methods are popular for investigating collaborative patterns, they 

mainly focus on the overall features or key players of a network and neglect the differences between 

the connections of different nodes. This is because the adopted metrics take all connections with the 

same weight. In other words, evaluating how tightly all individuals are connected and how important 

an actor is in a collaborative network is possible, whereas it is still impossible to tell whether one 

connection is more important than another or is there any association between them. 

2.3 Data Collection and Characteristics of Network 

In contrast to building social networks based on academic databases for research 

collaboration[25], surveys and interviews are two commonly used methods[15,19] to create 

collaborative networks in the construction domain, which are time-consuming, tedious and error-prone. 

Another method introduced recently is to create social networks based on log files generated by 

software, for example, for collaborative learning[26] and design[6]. When adopting this method, 

several assumptions are needed to identify nodes and their connections, which may introduce 

uncertainty for network creation. Most importantly, details of the collaborative network are always 

missed with these methods and timely analysis of the network is somewhat challenging. This is why 

the networks created in previous works are typically simple, unweighted and undirected graphs, with 

the number of nodes and ties or edges between 10 and 1, 000 (Table 1). For example, most of the 

related works[15-18] only built an organization-to-organization social network without considering 

the weight of edges, which represents the connection strength between different firms, or how closely 

two companies collaborate with each other. Although person-to-person collaboration or 



 

 

communication networks are presented in certain studies[19,20], the direction and frequency of 

information flow between two individuals, that is, direction and weight of network edges, are still not 

considered, which are important for analyzing and assessing the performance of communication and 

collaboration[21]. 

Owing to a lack of detailed data, it is still impossible to analyze more detailed collaborative 

patterns such frequently collaborating users (or strong connections between nodes) and information 

flow patterns. Moreover, the lack of automatic methods to create collaborative networks in a timely 

manner also hinders efficient decision-making process. Therefore, a method that automatically collects 

collaboration data and builds collaborative networks dynamically would be interesting to both 

researchers and practitioners to deepen their understanding of collaboration. 



 

Table 1 Summary of Related Literatures 

Area Contribution Data Collection Metrics Used* Graph Type** No. of Nodes No. of Ties 

Academe 
Research collaboration and 
productivity[25] 

Academic Database 
Network: Density 
Centrality: B, C, D, E 
No. of Links 

Simple 708 847 

Business Analyzing collaborative patterns[27] Survey Network: Size, Density 
Centrality: B, C, D 

Simple 24 N/A 

Learning Analyzing communication patterns and 
interaction[33] 

Interview Centrality: B, C, D, E Simple 19 60 

Software Collaboration patterns and impact on 
awareness[28] 

Interview 
Survey 

Communication Frequency Simple 101 140 

Construction 
Comparing knowledge integration in 
competitive and collaborative working[20] 

Interview 
Network: Density 
Centrality: D 

Simple 9 26 

Construction Analyzing project coalition[18] N/A Centrality Simple Directed 20 43 

Construction Network gaps and project success[22] N/A  
Network: Density 
Centrality: D 

Simple Directed N/A N/A 

Construction Analyzing collaborative venture[17] Government Data 
Network Density 
Centrality: B, C, D 
No. of Triad 

Simple 133 389 

Construction Collaborative design[29] N/A 
Network: Density, Diameter 
Network Size 

N/A N/A N/A  

Construction Collaborative innovation[13] Interview 
Network: Density 
Centrality: B, C, D 

Simple 16 135 

Construction 
Longitudinal analysis of macro-level 
collaboration[15] 

Interview 
Network: Density, Distance 
Average Node Degree 
Clustering Coefficient 

Simple 212 747 

Construction Safety communication[19] Survey 
Network: Density 
Centrality: D 

Simple Weighted 183 N/A 

Construction Collaborative design[6] Log Files 
Network: Density 
Centrality: B, C, D 

Simple 23 218 

Construction 
Collaborative patterns and power 
imbalance[16] 

Interview 
Network: Density 
Centrality: B, C, D 

Simple 41 163 

Construction 
Communication assessment of change 
management process[21] 

Unknown 

Network: Density, Diameter 
Average Node Degree 
Average Strength 
Centrality: B, C, D 

Weighted 
Directed 

412 3402 

Learning 
Interaction pattern in networked 
learning[26] 

Log Files 
Network: Density 
Centrality: Out-D 

Simple 8 61 

Construction 
(Current) 

Network twinning and mining of 
collaborative patterns 

Automatic 

Network: Density, Diameter 
Centrality: B, C, D 
Information Sharing Frequency 
Association Rules 

Directed with 
Multiple Edges 

226 17068 

* Centrality: B-Betweenness, C-Closeness, D-Degree, E-Eigenvector  ** Simple denotes a unweighted, undirected graph without multiple edges between two nodes 



 

3. Methodology 

Construction projects consist of various tasks, which involve many stakeholders and information 

transfers. A digital twin of a fine-grained collaborative work could help managers and decision-makers 

to identify: 1) the key players involved in the collaboration, 2) any frequently collaborating users, and 

3) any associations between information flows and types or severity levels of tasks.  

To twin a collaborative network of a construction project automatically and discover hidden 

knowledge for better decision-making, this research proposes an integrated approach to dynamically 

collect and quantitatively analyze collaboration data of construction projects. As illustrated in Figure 

1, a research framework consisting of three procedures is adopted: 1) automatic data collection by 

updating existing systems with specific components, which could collect detailed data related to 

collaboration and store them in a database automatically; 2) data preprocessing to clean collected raw 

data and build collaborative networks; 3) identification of key players (hubs and brokers) and 

frequently collaborating users, and discovering association rules between information flows and task 

levels, thus providing deep insights on how people collaborate in a construction project and improve 

the decision-making process. To implement the proposed framework, WeChat-based Mobile App for 

data collection, PostgreSQL for data persistence, python-based scripts, and tools such as NetworkX, 

Gephi are adopted. Finally, the proposed method is applied and tested in a realistic construction project 

to validate and improve the proposed approach in this research. Each of these procedures is discussed 

below. 

 

Figure 1 Flowchart of the Proposed Methodology 
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3.1 Automatic Data Collection for Collaborative Network Twinning 

Nowadays, there are already many information systems utilized in construction projects for 

various tasks, such as safety management systems for bridge construction[1] and information-sharing 

platform for multiple stakeholders[5]. However, most of them focus on tracking, evaluating the status 

of constructed facilities and improving data interoperability among different systems, and they lack 

specific components to collect collaborative data of the users of these information systems. Therefore, 

updating an existing system is recommended to enable the twinning capacity of collaborative networks. 

To achieve automatic data collection, information requirements should initially be determined. 

That is, what types of data are needed, what are the granularities of the data, and how frequently are 

they collected? Then, according to the extracted information requirements, the development of new 

components or extension of existing systems, which is called the system updating strategy in this 

research, is recommended to automatically collect the required data. Meanwhile, collecting these data 

in the background such as using a software-based logging module is suggested. In this way, it is 

possible to collect timely communication and collaboration data without any interrupting to the normal 

workflow. Finally, the updated system can be deployed and utilized for daily communication and 

collaboration, as usual, and the data will be collected and stored in a database automatically. 

In this research, a mobile app called MobileCM for on-site inspection and construction 

management[34] was used as a starting point. Because a fine-grained collaborative network is needed 

in this research, the team decided to collect the time, creator, sender, and receiver of each on-site 

inspection issue. Thus, along with the developed functions for on-site safety and quality inspection, a 

small component is injected into MobileCM to collect data related to collaboration. Specifically, for 

each inspected on-site issue, an issue record is created as normal, and the creator and time when the 

issue record is created and shared with others is recorded. Meanwhile, the sender and receiver of an 

issue record are also captured when an engineer or construction manager shares it with others. With 

the upgraded MobileCM, engineers and other users simply use it as usual and collaboration-related 

data can be collected timely and automatically. All the collected data are stored in a relational database 

called PostgreSQL[34]. Figure 2 provides an example of how issue records, data transfers (or issue 

forwards) are stored in PostgreSQL. In the same way, it is easy to upgrade existing systems and collect 

collaboration data for other tasks involved in construction projects. 



 

 

 

Figure 2 Collected Data Related to Collaboration 

To date, the upgraded MobileCM application has been deployed and used in more than 30 projects 

in China since December, 2018, and the current study selects data of 1 typical project with 

approximately 7800 issue records from them for research purpose. 

3.2 Data Preprocessing 

As mentioned above and in our previous work[34], the collected data are stored in a relational 

database called PostgreSQL, and issue records, forward records, and user information are all stored in 

different data tables. Moreover, the quality of collected data greatly impacts the data mining process 

conducted later. Therefore, a four-step data preprocessing process is adopted: 

1) Data cleaning: issue records whose descriptions are empty or too short (less than 5 words in 

this research), and those without creation time are omitted. Forward records without a sender or 

receiver are also skipped. This is achieved by specifying certain constraints when querying the 

database. For example, the following structured query language (SQL) query skips all issue records 

with short or empty descriptions: 

SELECT * FROM issue_record WHERE Description IS NOT NULL AND LENGTH(Description)>5 

2) Data association: users involved in the project have different roles and belong to different 

organizations; because these data are kept in different tables, a data association process is needed to 

connect or join different tables. Similarly, issue records and issue forward records should be associated 

too. In this research, part of the data association is implemented based on JOIN clause of an SQL query, 

and the other part is performed using Python scripts. 

3) Data enrichment: raw data extracted from the database lacks semantic information for analytics 

purposes. In this research, the meanings of TypeID, LevelID, RoleID, etc. are added according to 

discussions with software developers and product managers. 

4) Network creation: to handle a certain inspected on-site issue (or a construction task), submitted 

issue records are usually forwarded from one user to another; that is, a small network could be formed 

by combining the issue record and corresponding issue forward records as well as data of involved 

Table of Issue Records

Table of Issue Forwards

Sender ID

Time of Creation Receiver ID

Foreign Key

Time of Creation Creator ID



 

 

users. For example, the upper-left corner of Figure 3 shows that an engineer U1 inspected an on-site 

issue and submitted an issue record to his/her manager U2; then, the issue is assigned to U3 for further 

resolution and feedback is returned to U2. Finally, the results are submitted to U4 for a final check. In 

this way, the handling process for each on-site issue or task is represented as a small network, and 

combining all the small networks creates a large collaborative network of the construction project. The 

right part of Figure 1illustrates how the network is created. First, we iterate all the issue records and 

filter related issue forward records for each issue record, then find or create network nodes based on 

the source user ID and target ID of each issue forward record, and finally create an edge between the 

two nodes with the ID and creation time of the issue forward record. It should be noted that the type, 

severity level, and other fields of an issue record are also attached to network edges as properties. 

Similarly, the roles and organizations of users are also attached to network nodes. Consequently, a 

multiple-directional graph or collaborative network is established. 

 

Figure 3 Examples and Pseudocode for Network Creation 

In this step, NetworkX, a widely used Python package for network creation and analysis, as well 

as other Python-based packages are used. With a Python-based database driver, SQL queries used for 

data cleaning and association are executed and the cleaned data is retrieved from the PostgreSQL 

database. Then, data enrichment is conducted by iterating each retrieved data record and attaching 

required semantic information as mentioned in step 3). Finally, the collaborative network is created 

through a NetworkX-based implementation of the pseudocode shown in Figure 3. The generated 

network is a multiple-directed graph, that is, graph with multiple directed edges between different 

nodes. Moreover, the generated network is also exported as a gml file based on NetworkX, and could 

be further used for network visualization. 
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Pseudocode for Network Creation

--------------------------------------------

For each issue record ISSi in set ISS_SET:

  FWD_SET=FilterIssueForwards(ISSi)

  For each issue forward FWDk in set FWD_SET:

    //find or create node

    Ns=FindNode(FWDk.FromUserID)

    If Ns is None: Ns=CreateNode(FWDk.FromUserID)

    Nd=FindNode(FWDk.ToUserID)

    If Nd is None: Nd=CreateNode(FWDk.ToUserID)

    

    //create edges

    E=CreateEdge(Ns,Nd,FWDk.ID,FWDk.CreateTime)

    AddEdgeProperties(E,ISSi,FWDk)



 

 

3.3 Social Network Analysis 

Because people usually assume different roles in a collaborative network, the identification of 

different roles provides managers with a thorough comprehension of the social system of construction 

projects[6]. Moreover, there are many issue records generated and forwarded from one stakeholder to 

another every day. Detection of collaborative patterns (e.g., frequently collaborating users) helps 

decision-makers understand how people collaborate and optimize the social system of construction 

projects. The following sections explain the measures and methods used for hub/broker detection and 

identification of collaborative patterns, more specifically, frequently collaborating users and 

associations between information flows and task levels. 

(1) Hub and Broker Detection 

In this research, centrality measures including BC, CC, and DC are used to identify users who act 

as a hub or a broker in sharing information or resolving on-site issues. With identified key players, 

managers could improve the efficiency of the collaboration and decision-making process. 

DC and CC are usually utilized to find hubs in a network, because they quantify how frequently 

a user is connected with others and how easily a user can share information with others respectively. 

Thus, a higher DC of a user means he/she receives or sends more information from or to others, which 

implies that he/she is in a position for on-site inspection or issue resolution. Similarly, a higher CC 

implies that a user has a greater ability of data dissemination and reception, and he/she is likely a 

manager or coordinator in the collaborative network. 

Another important role is that of the broker, who works as a bridge to connect different engineers 

or workers. To detect brokers in a collaborative network, BC is adopted. As mentioned before, BC 

counts the number of shortest paths passing through a node, and quantifies the efficiency of a node in 

information sharing. The difference between CC and BC is that users with higher CC have more 

shortest paths to others, that is, they can spread information to others more easily, whereas individuals 

with higher BC have a greater ability to transfer information from one to another, which means that 

their absence would decrease communication efficiency dramatically. 

In this research, a graph mining and visualization tool called Gephi[35] is utilized, owing to its 

built-in support for the calculation of various centrality measures, including BC, CC, DC, and even 

EC. The gml file generated in the previous step can be imported into Gephi directly, and the required 

centrality measures of a collaborative network can be obtained. Moreover, Gephi also provides an 

intuitive view of the collaborative network with various visualization features. 

(2) Frequently Collaborating Users 

Because information is transferred between different users, it is quite common for the number of 

data transfers between a certain pair of users to be much higher than those between the others. In this 



 

 

research, information sharing frequency (ISF) is introduced to identify frequently collaborating 

partners in a quantitative way. The calculation of ISF is as follows: 

𝑖𝑠𝑓(𝑥, 𝑦) = 𝐶𝑜𝑢𝑛𝑡(𝐸(𝑥, 𝑦)) ≥ 𝐼𝑆𝐹𝑚𝑖𝑛 (4)  

That is, the ISF between nodes 𝑥 and 𝑦 can be calculated by counting the number of edges 

directly connecting the two nodes. Furthermore, given that on-site issues or other construction tasks 

are categorized into different groups based on levels or other labels, a fine-grained measure called 

labeled information sharing frequency (LISF) can be defined as: 

𝑙𝑖𝑠𝑓(𝑙𝑖 , 𝑥, 𝑦) = 𝐶𝑜𝑢𝑛𝑡(𝐸(𝑥, 𝑦)|𝑙𝑖) ≥ 𝐿𝐼𝑆𝐹𝑚𝑖𝑛 (5)  

That is, LISF is calculated by iterating all edges connecting nodes 𝑥 and 𝑦 and counting the 

edge with the label equals to 𝑙𝑖. 

Then, it is easy to find node pairs with the highest ISF or LISF, which indicates that the identified 

user pairs are the most active and important in handling construction tasks or a certain group of thereof. 

It is also possible to identify node pairs with minimum thresholds 𝐼𝑆𝐹𝑚𝑖𝑛 or 𝐿𝐼𝑆𝐹𝑚𝑖𝑛. Paying more 

attention to them could help improve the overall work efficiency for construction management. 

As mentioned earlier, the generated collaborative network is a multiple-directed graph and there 

are multiple directed edges between users. With a defined ISF, a simple graph is generated by merging 

multiple edges between nodes and assigning the ISF as the weight of edges. Then, frequently 

collaborating users could be identified by filtering edges with minimum weights greater than or equal 

to 𝐼𝑆𝐹𝑚𝑖𝑛 . Similarly, if we only merge edges with the same label, and filter edges by 𝐿𝐼𝑆𝐹𝑚𝑖𝑛 , 

frequently collaborating users related to different task levels could be identified. Because Gephi 

provides rich features for network editing such as edge merging and filtering, it is also used for the 

identification of frequently collaborating users. 

(3) Associations Rules of Information Flow 

To further understand how information flows between users in the collaborative network are 

associated, or if an issue record or task is transferred from user 𝑥 to 𝑦, how likely will it be sent from 

user 𝑦  to 𝑧 , a frequent itemset mining method is used to find information flow patterns among 

involved users, namely, association rules between different edges. 

Generally, suppose 𝐸𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛}  is a set of transactions, and each transaction 𝑇𝑖 =

{𝐸1, 𝐸2, … , 𝐸𝑘} is a set of items, then, subsets of a transaction are usually called itemsets. If 𝐸𝐴 and 

𝐸𝐵 are two itemsets, and 𝐸𝐴⇒ 𝐸𝐵 represents the association between them, the following metrics 

are defined[36,37]: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐸𝐴 ⇒ 𝐸𝐵) =
|𝐸𝐴 ∪ 𝐸𝐵|

|𝐸𝑇|
× 100% ≥ 𝑆𝑚𝑖𝑛 (6)  



 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐸𝐴 ⇒ 𝐸𝐵) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐸𝐴 ⇒ 𝐸𝐵)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐸𝐴)
× 100% ≥ 𝐶𝑚𝑖𝑛 (7)  

𝐿𝑖𝑓𝑡 (𝐸𝐴 ⇒ 𝐸𝐵) =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐸𝐴 ⇒ 𝐸𝐵)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐸𝐵)
≥ 𝐿𝑚𝑖𝑛 (8)  

where |𝐸𝐴 ∪ 𝐸𝐵| is the frequency of itemset 𝐸𝐴 ∪ 𝐸𝐵, or how many transactions has a subset 

𝐸𝐴 ∪ 𝐸𝐵, and |𝐸𝑇| is the total number of transactions. In this way, support quantifies the popularity 

of an itemset among all transactions, confidence is the likelihood that 𝐸𝐵 occurs if 𝐸𝐴 occurs[38], 

and lift reflects the increase ratio of occurrences of 𝐸𝐵 when 𝐸𝐴 occurs. A lift of 1 means there is 

no association between 𝐸𝐴 and 𝐸𝐵, and lift greater than 1 means they will occur together more likely. 

By choosing proper values of 𝑆𝑚𝑖𝑛 , 𝐶𝑚𝑖𝑛 , 𝐿𝑚𝑖𝑛 , minimal thresholds of the defined metrics 

respectively, potential associations between different itemsets could be identified. 

Specifically, information flows in handling a certain issue record or task could be taken as a 

transaction 𝑇𝑖, and every data forward from user 𝑥 to 𝑦 (or edge 𝐸𝑥𝑦) is an item of 𝑇𝑖. Thus, if 

antecedent 𝐸𝐴 is {𝐸𝑥𝑦} and consequent 𝐸𝐵 is {𝐸𝑦𝑧}, the association between 𝐸𝑥𝑦 and 𝐸𝑦𝑧, 𝐸𝑥𝑦

⇒𝐸𝑦𝑧, is the same as 𝐸𝐴 ⇒ 𝐸𝐵, which could be evaluated based on Equation (6)-(8). Then, how 

likely the information would flow from user 𝑦 to 𝑧 provided that it has flowed from user 𝑥 to 𝑦 

could be quantified by confidence, and its popularity and increase ratio are also quantitatively 

described by support and lift. Moreover, considering that both 𝐸𝐴 and 𝐸𝐵 are itemsets, or set of 

edges, association rules between multiple information flows could also be identified. 

Meanwhile, tasks with different types or levels are usually handled in different ways, and thus it 

is interesting to further explore how they will impact information flow and collaboration patterns. 

Therefore, the label (e.g., level or type of an issue record) of edges is considered to discover association 

rules between categories of issues (or construction tasks in general) and information flows. The 

difference is only edges with the same label are considered when calculating support, confidence or 

lift. Thus, associations between information-sharing paths and task levels or types can be identified. 

Based on these equations, the Apriori algorithm is adopted to find association rules between 

different edges. By iterating the created collaborative network, all edges between different nodes as 

well as the corresponding properties of related issue records are converted into a list of itemsets through 

Python scripts. Then, the Python-based Apriori module is adopted to find association rules between 

different edges considering specified minimum values of the above-defined metrics. 



 

 

4. Case Study 

To validate the usefulness of the proposed approach for the twinning and mining of construction 

project collaborative networks, a realistic project in China was selected. Previously developed 

MobileCM was upgraded to include the components mentioned in Section 3.1 for collecting data on 

collaboration during the on-site inspection and resolving process[34]. With the developed MobileCM, 

on-site issues related to safety and quality are collected, and divided into three different severity levels: 

low, medium, and high. Meanwhile, different statuses (e.g., submitted, assigned, pending, approved) 

of submitted issues are also recorded in the database. As for the users, a number of roles including 

owner, safety engineer, safety manager, and project manager, are defined and assigned to each user 

record. 

As shown in Table 2, a new version of MobileCM was deployed and data from March 20, 2019 

to October 28, 2019 were collected. During this period, 7821 issue records and 23517 issue forward 

records were generated and collected in total. Meanwhile, 709 users were registered in the system. 

Following the data preprocessing process mentioned in Section 3.2, 7250 issue records, 17068 issue 

forwards and 226 user records were retained for data mining purposes. Figure 4 shows the number of 

data records generated monthly. Except for March, which is the beginning of data collection, 

approximately 800-1200 on-site issues, and 2700-4000 issue forwards were collected every month. 

Usually, for each issue record, approximately 3~3.7 issue forward records were generated and collected 

on average. 

Table 2 Statistics of Utilized Data 

Data Type Count Count After Cleaning Period of Time 

Issue Records 7821 7250 2019/03/20-2019/10/28 

Issue Forwards 23517 17068 2019/03/20-2019/10/28 

Users 709 226 / 

 



 

 

 

Figure 4 Number of Issues, and Forwards Generated Every Month 

Figure 5 shows the generated collaborative network with node colors indicating different user 

roles and edge colors presenting types of issue records. In total, nine user roles (engineers from the 

owner’s company, project supervisors from the supervision company, and other roles from the general 

contractor) are involved in the collaboration. It is found that most of the inspected issues are related to 

safety and the number of issues handled by different users is significantly different. 

 

Figure 5 Generated Collaborative Network 
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As mentioned earlier, 226 users are involved and 17068 issue forwards are created at the same 

time; thus, a social network with 226 nodes and 17068 edges is obtained. Table 3 shows some basic 

indicators suggested by previous works[6] to quantify the overall characteristics of the generated 

collaborative network. For example, the average degree of the network is 75.5, indicating that each 

involved user in the network is connected to 75-76 other participants on average. Density reflects 

connectivity of a network, such that the highest value of 1.0 means that all users are connected to each 

other, and the lowest value of 0.0 means no connection exists among the participants. For the current 

project, the density of the network is 0.336. That is, 33.6% of all possible links are present, representing 

a medium level of network cohesion. The diameter of the network quantifies the greatest distance 

between two nodes in a network, in this case, it is 8. Modularity measures the strength of the division 

of a network into groups or communities. A network with high modularity usually has dense links 

between nodes within communities but sparse connections between nodes in different groups. As the 

range of modularity is between -0.5 and 1.0, a value of 0.489 implies that the network could be divided 

into a few communities. 

Table 3 Basic Features of Generated Collaborative Network Measures 

Attribute Value Attribute Value 

Number of Nodes 226 Density of Network 0.336 

Number of Edges 17068 Diameter of Network 8 

Average Degree 75.5 Modularity of Network 0.489 

4.1 Detection of Key Players 

Given that different participants are highly related to each other with a high average degree, it is 

important to identify key players in the network. Therefore, centrality measures defined in Equations 

(1), (2), and (3) are typically used. Generally, DC helps in finding hub users with the highest 

connections to and from them, that is, worker who handles most of the information flow. CC identifies 

participants with the lowest average distance to others, and is used to find hub users that are able to 

spread information very efficiently in the network. On the contrary, BC pays more attention to users 

who function as connectors or brokers between other users, and quantifies the influence of a node over 

the information flow. In Table 4, the top 16 nodes in the network based on DC, CC, and BC are 

provided. 

Table 4 Top-16 Nodes based on Different Centrality Measures 

Rank 
Degree Centrality Closeness Centrality Betweenness Centrality 

ID Role Degree (In+Out) ID Role Closeness ID Role Betweenness 

1 255 O 2371 = 1176 +1195 12 C 0.5082 255 O 6962.5 



 

 

2 62 S 1471 = 745 +726 62 S 0.4331 12 C 5426.7 

3 210 O 1276 = 637 +639 67 S 0.4314 62 S 3052.1 

4 75 S 1174 = 585 +589 275 S 0.4272 149 S 2399.9 

5 278 S 1067 = 539 +528 262 S 0.4197 261 M 2196.2 

6 204 O 1040 = 519 +521 66 S 0.4181 177 P 1961.4 

7 231 S 1007 = 506 +501 255 O 0.4165 210 O 1890.5 

8 258 O 954 = 477 +477 202 M 0.4165 65 S 1552.3 

9 312 S 939 = 471 +468 289 S 0.4133 289 S 1484.8 

10 262 S 913 = 464 +469 261 M 0.4125 75 S 1457.7 

11 199 O 898 = 343 +555 286 S 0.4087 198 O 1426.2 

12 259 O 827 = 417 +410 208 S 0.4018 51 O 1421.5 

13 67 S 825 = 415 +410 65 S 0.3974 282 S 1407.0 

14 264 S 825 = 409 +416 129 S 0.3960 275 S 1385.1 

15 65 S 719 = 370 +349 214 O 0.3889 315 P 1338.1 

16 211 O 718 = 349 +369 97 S 0.3882 285 S 1286.2 

*O-Owner, S-Safety Engineer, C-BIM Coordinator, M-Project Manager, P-Project Supervisor 

 

(1) Analysis of Detected Hubs 

According to DC (first four columns of Table 4), user #255 is the top one as she or he sends and 

receives the most data records, which is 2371 in total. Furthermore, except for user #199, the number 

of data sent and received by the top 16 participants is essentially the same. This is consistent with the 

workflow verified by the owner, general contractor, and supervision company, as the owner requires 

that all issue records and their handling results should go back to the user who submitted them for a 

double check. Because the dominant type of on-site issue is safety (edges colored in purple in Figure 

5 and Figure 6), it is reasonable that the roles of the top 16 hub users based on DC are either owners 

or safety engineers, which are also illustrated in the left part of Figure 6 as green and purple nodes. 

When considering CC (columns 5 to 7 of Table 4), user #12 is selected as the top hub, which is 

consistent with the role of user #12 as the BIM coordinator, and with their main responsibility being 

to coordinate the work of others. Similarly, project managers #202 and #261 are also selected as hubs, 

because their role is to organize all the construction tasks and keep them moving forward fluently. 

Although user #255 has the highest DC, his or her CC is not that high, indicating that the ability to 

spread information of user #255 is lower than that of certain other users such as #12, #62, and #67. It 

is also concluded that user #62 ranks second among all the users for both DC and CC. In other words, 

user #62 has a great ability to receive information and spread it to others. This is also confirmed by the 

leaders of this project, as user #62 is usually selected as the first engineer to receive observed on-site 

issues by the owners (a strong connection between users #62 and #255 is also discovered in Section 

4.2). Following user #62, there are also a few safety engineers (users #67, #275, #262, #66, etc.) 

working as hubs to handle and spread submitted on-site issues. Finally, the results also show that the 

difference in closeness among the top 16 users is not so large, which means that it is easier to find 

another user to handle the submitted issues if the current user could not process them in time. 



 

 

 

Figure 6 Detected Hubs based on Degree (Left) and Closeness (Right) Centralities 

In addition, users #255, #62, #262, #67, and #65 are identified as hubs by both DC and CC, which 

highlights their importance in handling and spreading information. Moreover, Figure 6 also shows that 

the top 16 hubs by either DC or CC are all in the central part of the network, as they usually have more 

connections with others. 

(2) Analysis of Detected Brokers 

The last three columns of Table 4 list the top 16 users based on BC. It is found that users #255, 

#12, and #62 are the top three brokers. Their roles are owners, BIM coordinators, and safety engineers, 

respectively, and they could build connections between different groups. Compared with DC and CC, 

an additional user role, project supervisor, is also included in the top 16 user list by BC. In their 

positions as project supervisors, users #177 and #315 also play an important role in linking the 

supervision company with other groups. 

As mentioned above, the modularity of the network represents the possibility of dividing the 

network into different groups and communities. Therefore, modularity-based community detection 

was conducted using Gephi, and seven communities were identified. The left part of Figure 7 shows 

the seven communities detected with their silhouettes highlighted, and the nodes of the network are 

colored to represent different communities. Meanwhile, the top 16 users selected by betweenness are 

also marked with their IDs in Figure 7. The results showed that 15 of 16 participants were in the central 

part of the network with the exception of user #315. Among the top 16 lists, users #255, #161, #275, 

#62, #65, and #289 all belong to community #3, which has the highest number of the top 16 users 

among the seven communities. There are five users (#12, #51, #177, #282, #149) from community #2. 

It can be seen from the right part of Figure 7 that all these users have a strong connection with nodes 
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of the same group and other groups. For example, there are many edges between user #12 and users 

of community #3, and quite a few links also exist between nodes of community #2 and user #12. In 

this case, removing user #12 from the network would significantly affect the efficiency of information 

sharing between communities #2 and #3. Following the same logic, users #285, and #198 also play an 

important role in bridging other participants and communities #5 and #6, respectively. Thus, more 

efforts should be made to detect brokers, as mistakes or problems originating from them significantly 

impact the overall efficiency of collaboration. 

Finally, considering the three different centrality measures together, it is found that users #255, 

#62, and #65 are the three most important hubs and brokers in the network, as they appear in all the 

three top 16 user lists. As a result, managers should pay more attention to them, and determine a better 

way to further explore the efficiency of collaboration and information sharing. 

 

 

Figure 7 Detected Brokers and Communities 

4.2 Identification of Frequently Collaborating Users 

After important players such as hubs and brokers are detected and analyzed, this section further 

explores the connections between users by identifying frequently collaborating users based on ISF and 

LISF. If we take 𝐼𝑆𝐹𝑚𝑖𝑛 as 100, which means we only consider node pairs between which at least 100 

data records are shared, Figure 8 is obtained. Similarly, following the method proposed in Section 3.3, 

a multiple graph as shown in Figure 9, is created by setting the value of 𝐿𝐼𝑆𝐹𝑚𝑖𝑛 as 60. 

The left part of Figure 8 shows the generated network, and where a wider edge represents a larger 

ISF. According to Figure 8, the weights of the edges between node pairs (#210, #75), (#210, #264), 

(#231, #204), (#231, #199), (#255, #62), and (#255, #291) are quite high, implying that information is 

shared between them frequently and strong connections are established between these user pairs. In 

addition, the roles of frequently collaborating user pairs are owners and safety engineers. Furthermore, 
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it seems that frequently collaborating users may be divided into three groups. User #255 is the center 

of group 1, and several users have strong relationships with user #255. The key players of group 2 are 

users #210, #75, and #264, the latter two of which are both strongly connected to user #210, and some 

other users are also linked to them. Group 3 also had three key players, they are users #231, #199, and 

#204. 

According to the right part of Figure 9, frequently collaborating users can be divided into four 

groups: G1, G2, G3, G4. G1 is composed of user #513 and #310, between whom high-level issue 

records are usually transferred. G2 has the highest number of users, and the dominant level of on-site 

issues in this group is high. In G2, users #255 and #62 have the strongest connection in handing high-

level issues. As for G3, all levels of on-site issues are involved; among them, low-level issues are 

usually handled by users #210, #75, and #264. Finally, G4 contains only four users and mainly deals 

with medium-level issues. 

 

Figure 8 Frequently Collaborating Users Found with a Minimal ISF of 100 
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Figure 9 Frequently Collaborating Users Labeled by Task Levels 

In this way, frequently collaborating users such as (#255, #62) and (#231, #199) could be 

identified, and the manner in which different user pairs are connected with task levels is also discovered. 

Thus, managers could deepen their understanding of the collaborative network, and make better 

decisions. For example, in the case of Figure 9, if a manager wants to know how high-level issues are 

handled, he/she should talk to users #255 and #62, whereas for medium-level tasks, #231, #199, and 

#277 are better candidates to provide suggestions. 

4.3 Association Rule Mining of Information Flows 

To explore associations between edges or information flows and task levels, the Apriori-based 

algorithm in Section 3.3 is adopted to discover hidden information flow patterns based on the 

parameters in Table 5. 

Table 5 Parameters Used for Association Rule Mining 

Description 𝑺𝒎𝒊𝒏 𝑪𝒎𝒊𝒏 𝑳𝒎𝒊𝒏 

Associations between Information Flows 100/7250≈0.014 0.75 3 

Associations between Information Flows and Task Levels 60/7250≈0.008 0.75 3 

 

(1) Associations between Information Flows 

Table 6 shows extracted association rules with minimal support 𝑆𝑚𝑖𝑛 as 100/7250 ≈ 0.014, 

which is obtained by dividing total number of issue records by 100, a minimal number of information 

flows happened between two users. Meanwhile, minimal confidence 𝐶𝑚𝑖𝑛, and minimal lift 𝐿𝑚𝑖𝑛 are 

chosen as 0.75 and 3 respectively. As illustrated in the first row of Table 6, if a data record goes from 
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user #278 to #255 (noted as “278->255”), it is likely that the data record will go back from user #255 

to #278 with a confidence as 0.9917. The lift of this pattern is 59.9, which is much higher than 1.0, 

indicating that there is a strong association between “278->255” and “255->278”. In this way, it could 

be concluded that information is transferred forward and backward between node pairs (#255, #278), 

(#255, #291), (#255, #62), (#210, #264), (#210, #75), and (#231, #199) quite frequently. That is, for 

these frequently collaborating user pairs, we could expect that if an issue record is sent from one to 

another then the record will be sent back. This is consistent with the conclusion drawn above with 

respect to ISF. However, although ISF suggests that there is a strong relationship between users #231 

and #204, no clear pattern is found between them. In other words, although many data records were 

shared between #231 and #204, they were then transferred to different users for further processing. 

Moreover, collaborative pattern that describes information sharing among three users, #199, #231, and 

#277, is also discovered, about which ISF provides no evidence. 

Table 6 Frequent Collaborative Patterns 

No. Patterns Antecedent Consequent Support Confidence Lift 

1 {'278->255', '255->278'} {'278->255'} {'255->278'} 0.01656 0.9917 59.90 

2 {'278->255', '255->278'} {'255->278'} {'278->255'} 0.01656 1.0000 59.90 

3 {'291->255', '255->291'} {'291->255'} {'255->291'} 0.01876 0.9577 51.04 

4 {'291->255', '255->291'} {'255->291'} {'291->255'} 0.01876 1.0000 51.04 

5 {'62->255', '255->62'} {'62->255'} {'255->62'} 0.02497 1.0000 39.39 

6 {'62->255', '255->62'} {'255->62'} {'62->255'} 0.02497 0.9837 39.39 

7 {'210->264', '264->210'} {'210->264'} {'264->210'} 0.02608 0.9895 37.35 

8 {'210->264', '264->210'} {'264->210'} {'210->264'} 0.02608 0.9844 37.35 

9 {'199->277', '199->231'} {'199->277'} {'199->231'} 0.02856 1.0000 34.35 

10 {'199->277', '199->231'} {'199->231'} {'199->277'} 0.02856 0.9810 34.35 

11 {'231->199', '199->277', '199->231'} {'199->231'} {'231->199', '199->277'} 0.02621 0.9005 34.35 

12 {'231->199', '199->277', '199->231'} {'231->199', '199->277'} {'199->231'} 0.02621 1.0000 34.35 

13 {'231->199', '199->277', '199->231'} {'199->277'} {'231->199', '199->231'} 0.02621 0.9179 34.29 

14 {'231->199', '199->277', '199->231'} {'231->199', '199->231'} {'199->277'} 0.02621 0.9794 34.29 

15 {'231->199', '199->231'} {'231->199'} {'199->231'} 0.02677 0.9949 34.17 

16 {'231->199', '199->231'} {'199->231'} {'231->199'} 0.02677 0.9194 34.17 

17 {'231->199', '199->277'} {'231->199'} {'199->277'} 0.02621 0.9744 34.12 

18 {'231->199', '199->277'} {'199->277'} {'231->199'} 0.02621 0.9179 34.12 

19 {'231->199', '199->277', '199->231'} {'231->199'} {'199->231', '199->277'} 0.02621 0.9744 34.12 



 

 

20 {'231->199', '199->277', '199->231'} {'199->277', '199->231'} {'231->199'} 0.02621 0.9179 34.12 

21 {'210->75', '75->210'} {'75->210'} {'210->75'} 0.03091 1.0000 31.65 

22 {'210->75', '75->210'} {'210->75'} {'75->210'} 0.03091 0.9782 31.65 

As a result, beyond detected hubs or brokers, collaborative patterns including frequently 

collaborating users and associations between information-sharing paths could also be identified, 

enabling managers to understand the collaborative network more deeply. 

(2) Associations between Information Flows and Task Levels 

Meanwhile, if we consider the severity level of issue records as a label of edges, Table 7 is 

obtained based on the Apriori algorithm with minimal support 𝑆𝑚𝑖𝑛 as 60/7250 ≈ 0.008, minimal 

confidence 𝐶𝑚𝑖𝑛 as 0.75, and minimal lift 𝐿𝑚𝑖𝑛 as 3. According to Table 7, most of the high-level 

issues are related to user #255, and sent forward and backward between user #255 and #67, #312, #262, 

#291, #278, and #62, respectively. However, medium-level issues are processed by user pairs including 

(#255, #291), (#75, #212), (#199, #277), (#199, #231) and a triple (#199, #277, #231). In addition, 

low-level issues are handled by user pairs (#210, #264) and (#210, #75). Given that the lift of each 

pattern listed in Table 7 is much higher than 1.0, it is concluded that if an issue record with a specific 

level is sent from a user to another of the mentioned user pair, it is most likely that the issue record 

will be sent back with processing results. 

Interestingly, according to Table 7, both high- and medium-level issues are frequently sent 

forward and backward between users #255 and #291, however, it can only be seen in Figure 9 that 

there is a strong association between high-level issues and user pair (#255, #291). This is because the 

Apriori algorithm provides more details about the associations between frequently collaborating users 

and task levels than LISF. Moreover, although the support of pattern No. 1 is lower than that of pattern 

No. 11, its lift is higher, indicating that the association between medium-level issues and user pair 

(#255, #291) is stronger than the association between high-level issues and user pair (#255, #291). 

By identifying associations between task levels and frequently collaborating users, it is possible 

for managers to understand how well an engineer’s experience or knowledge matches the severity 

levels of on-site tasks. Thus, managers could optimize the collaborative network and assign people to 

the positions where they are most needed. 

 



 

Table 7 Frequent Collaborative Patterns Labeled by Task Level 

No. Patterns Antecedent Consequent Support Confidence Lift 

1 {'291->255:M', '255->291:M'} {'291->255:M'} {'255->291:M'} 0.00855 0.9841 115.05 

2 {'291->255:M', '255->291:M'} {'255->291:M'} {'291->255:M'} 0.00855 1.0000 115.05 

3 {'255->67:H', '67->255:H'} {'67->255:H'} {'255->67:H'} 0.00855 1.0000 113.25 

4 {'255->67:H', '67->255:H'} {'255->67:H'} {'67->255:H'} 0.00855 0.9688 113.25 

5 {'75->212:M', '212->75:M'} {'75->212:M'} {'212->75:M'} 0.00869 0.9692 111.51 

6 {'75->212:M', '212->75:M'} {'212->75:M'} {'75->212:M'} 0.00869 1.0000 111.51 

7 {'255->312:H', '312->255:H'} {'312->255:H'} {'255->312:H'} 0.00911 0.9851 106.56 

8 {'255->312:H', '312->255:H'} {'255->312:H'} {'312->255:H'} 0.00911 0.9851 106.56 

9 {'262->255:H', '255->262:H'} {'262->255:H'} {'255->262:H'} 0.00924 0.9853 103.50 

10 {'262->255:H', '255->262:H'} {'255->262:H'} {'262->255:H'} 0.00924 0.9710 103.50 

11 {'291->255:H', '255->291:H'} {'291->255:H'} {'255->291:H'} 0.01021 0.9367 91.75 

12 {'291->255:H', '255->291:H'} {'255->291:H'} {'291->255:H'} 0.01021 1.0000 91.75 

13 {'278->255:H', '255->278:H'} {'255->278:H'} {'278->255:H'} 0.01159 1.0000 85.27 

14 {'278->255:H', '255->278:H'} {'278->255:H'} {'255->278:H'} 0.01159 0.9882 85.27 

15 {'62->255:H', '255->62:H'} {'255->62:H'} {'62->255:H'} 0.01973 0.9795 49.64 

16 {'62->255:H', '255->62:H'} {'62->255:H'} {'255->62:H'} 0.01973 1.0000 49.64 

17 {'210->264:L', '264->210:L'} {'264->210:L'} {'210->264:L'} 0.02414 0.9887 40.72 

18 {'210->264:L', '264->210:L'} {'210->264:L'} {'264->210:L'} 0.02414 0.9943 40.72 

19 {'210->75:L', '75->210:L'} {'210->75:L'} {'75->210:L'} 0.02815 0.9808 34.85 

20 {'210->75:L', '75->210:L'} {'75->210:L'} {'210->75:L'} 0.02815 1.0000 34.85 

21 {'199->277:M', '199->231:M'} {'199->231:M'} {'199->277:M'} 0.02856 0.9810 34.35 

22 {'199->277:M', '199->231:M'} {'199->277:M'} {'199->231:M'} 0.02856 1.0000 34.35 

23 {'199->277:M', '199->231:M', '231->199:M'} {'199->231:M'} {'199->277:M', '231->199:M'} 0.02621 0.9005 34.35 

24 {'199->277:M', '199->231:M', '231->199:M'} {'199->277:M', '231->199:M'} {'199->231:M'} 0.02621 1.0000 34.35 

25 {'199->277:M', '199->231:M', '231->199:M'} {'199->277:M'} {'231->199:M', '199->231:M'} 0.02621 0.9179 34.29 

26 {'199->277:M', '199->231:M', '231->199:M'} {'231->199:M', '199->231:M'} {'199->277:M'} 0.02621 0.9794 34.29 

27 {'231->199:M', '199->231:M'} {'231->199:M'} {'199->231:M'} 0.02677 0.9949 34.17 

28 {'231->199:M', '199->231:M'} {'199->231:M'} {'231->199:M'} 0.02677 0.9194 34.17 

29 {'199->277:M', '231->199:M'} {'231->199:M'} {'199->277:M'} 0.02621 0.9744 34.12 

30 {'199->277:M', '231->199:M'} {'199->277:M'} {'231->199:M'} 0.02621 0.9179 34.12 

31 {'199->277:M', '199->231:M', '231->199:M'} {'231->199:M'} {'199->277:M', '199->231:M'} 0.02621 0.9744 34.12 

32 {'199->277:M', '199->231:M', '231->199:M'} {'199->277:M', '199->231:M'} {'231->199:M'} 0.02621 0.9179 34.12 



 

5. Discussion 

In this research, an approach to twinning and mining collaborative networks was proposed and 

validated in a construction project. Because of limited time, only functions related to on-site inspection 

of existing systems were updated, and then the collaborative network was established and analyzed to 

discover hidden knowledge about collaboration. However, the proposed framework could be adopted 

to collect collaboration data and identify collaborative patterns when processing other construction 

tasks and even tasks from other fields. For this purpose, relevant systems should be updated to 

automatically capture data of information sharing, including creators, time, senders, receivers, and 

forward records, and no extra data are needed. Then, following the data preprocessing and SNA 

methods introduced in this work, hidden collaborative patterns that are valuable for decision-making 

purposes could be extracted. Moreover, although Gephi was used for graph visualization and 

calculation of centrality measures in this research, it is possible to perform the same work with Python-

based packages such as NetworkX[39]. Hence, all the data preprocessing and mining procedures could 

be embedded as a Python-based web service[7], thereby achieving a fully automated data-driven 

decision-making process. 

Centrality measures are commonly used to identify key players in a social network. In this 

research, DC is used to detect users who handle the most issues. In other words, the workload of these 

users is much higher than the others. Proper strategies that balance the workload between different 

users would improve the overall collaboration performance. Important users detected by CC are 

usually leaders or managers, who can easily spread information to different stakeholders. In this 

research, it was found that there are several users with similar closeness to others, which means that 

the network is robust in efficient information sharing, because it is easy to find a new user for 

information distribution if one is not able to transfer the required data in time. Brokers identified by 

betweenness are important in bridging different groups, and a network with fewer brokers is vulnerable 

with respect to information distribution and collaboration. This is because a small group of the network 

would lose their connections to others if the brokers are out of service. Occasionally, a certain user 

may be highlighted by multiple centrality measures, such as users #255, #62, and #65 in this research. 

If this is the case, more attention should be paid to them, because problems that hinder their 

functionality will cause significant problems to the overall network. 

According to the defined ISF and LISF, and association rule mining utilized in this research, it 

was found that users tend to form small groups with two or three people for certain types or levels of 

issues. The information of an on-site issue is usually sent forward and backward between users of the 



 

 

small group, and it is also shown that there is a strong connection between frequently collaborating 

users and task levels. In this way, users are concentrated on certain levels of issues and collaborating 

with partners they are familiar with, thus achieving more efficient collaboration. Moreover, ISF and 

LISF could identify most of the frequently collaborating users and their connections with task levels, 

whereas association rule mining goes deeper in finding associations between information flows and 

task levels than ISF and LISF. Given that ISF and LISF are much easier and easy to implement, they 

are recommended for fast decision-making processes. 

Owing to a lack of detailed information of the collaborative network, previous work related to 

SNA in the construction field mainly focused on the overall features of a network, and the identification 

of key players. This research attempts to take a step forward in discovering hidden knowledge from 

the connections between different stakeholders, and extracting associations between information flows 

and task levels. With the method proposed in this work, a much deeper understanding of collaborative 

networks could be achieved, thereby leading to a better decision-making process. 

6. Conclusion and Future Work 

In this research, an approach to twinning and mining collaborative networks is proposed and 

validated with collected collaborative data related to on-site inspection of a construction project. To 

fill the gap that most of collaborative networks are created manually, a strategy to update existing 

information systems and inject components for automatic data collection and network creation is 

introduced. Therefore, SNA and the Apriori algorithm are used to explore an established collaborative 

network in three aspects: 1) detection of hubs and brokers, which discovers users handling most of the 

on-site issues, with high capacity of information distribution or bridging different groups; 2) 

identifying frequently collaborating users and their relations to task levels; 3) unveiling associations 

between information flows and task levels. The benefits of the proposed approach are to equip 

managers with methods for evaluating the performance of collaboration, detection of key players, and 

understanding how people collaboratively complete construction tasks. 

The contributions of this work to the body of knowledge are twofold: 1) metrics including ISF 

and LISF are defined and the Apriori algorithm is proposed for identification of collaborative patterns, 

i.e., frequently collaborating users and information flow patterns; 2) an integrated framework for 

automatic twinning and mining of fine-grained collaborative networks is established. Comparing to 

previous works, this research introduces methods and tools to look at collaboration in a much deeper 

way. Beyond detection of key players and network-level assessment of collaboration, strength of 

connections and association rules between information flows are investigated, making it possible to 



 

 

identify frequently collaborating users and unveil information flow patterns. In this way, insights on 

how people are collaborating with each other and how information is flowing from one another could 

be obtained, and managers can make wise decisions to make the collaboration and communication 

process more fluent and efficient. 

Meanwhile, this work also contributes to the practice by:1) revealing that people tend to form 

small groups (pairs or threesomes in this research) to handle certain types or levels of tasks more 

efficiently; 2) providing a few easy-to-use metrics to discover collaborative patterns for decision-

making purposes. In other words, instead of large, complex connected groups, construction managers 

should setup small groups with two or three works to handle on-issues in a more efficient way. And 

they could find frequently collaborating users easily with ISF or LISF to check if large or complex 

connected groups exists. 

However, mining collaborative network in the construction domain is still in its infancy, and many 

investigations are needed. For example, relationships between topics of on-site issues[7] and 

frequently collaborating users, and the influence of modularity of the collaborative network on the 

performance of information flow, are two interesting topics worth exploring. Comparison of the 

proposed approach in this work with new methods introduced in the future is also value and important. 

Furthermore, integration with semantic analysis and reasoning[40,41], etc., are also encouraged to 

discover connections between spaces, objects, workers, tasks, and events for data-driven decision-

making. 
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