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Abstract. In this paper, we present a framework for learning the solution map of a back-
ward parabolic Cauchy problem. The solution depends continuously but nonlinearly on

the final data, source, and force terms, all residing in Banach spaces of functions. We

utilize Fréchet space neural networks (Benth et al. (2023)) to address this operator learn-
ing problem. Our approach provides an alternative to Deep Operator Networks (Deep-

ONets), using basis functions to span the relevant function spaces rather than relying

on finite-dimensional approximations through censoring. With this method, structural
information encoded in the basis coefficients is leveraged in the learning process. This

results in a neural network designed to learn the mapping between infinite-dimensional

function spaces. Our numerical proof-of-concept demonstrates the effectiveness of our
method, highlighting some advantages over DeepONets.

1. Introduction

In this paper we provide a framework for learning the solution map of a backward par-
abolic Cauchy problem incorporating structural information about the final datum, source,
and the force term. The solution of the Cauchy problems depends in a nonlinear, but con-
tinuous way on the final datum, the source and force terms, which are all functions living in
appropriate Banach spaces. We propose to use the recently introduced neural networks in
Fréchet spaces (see Benth et al. (2023)), an infinite dimensional neural network structure,
to solve this operator learning problem.

Our approach provides an alternative to the operator learning method Deep Operator
Networks (DeepONets), studied by Lu et al. (2019) and Lu et al. (2021). DeepONet extends
the shallow network for operator learning proposed and analysed in Chen & Chen (1995).
The validity of these operator learning approaches is resting on the universal approximation
theorem (see Chen & Chen (1995), Lu et al. (2021) and more recently a generalisation by
Lanthaler et al. (2022) to measurable operators). Instead of using finite-dimensional neural
networks approximating sampled (also called censored) expressions of the input functions in
the operator in question, as done in DeepONets, we make use of the information contained in
the basis functions spanning the relevant function spaces. We build a neural network which
is learning the map between these function spaces expressed by their basis functions. An
infinite dimensional activation function allows us to set up a deep neural network that pre-
serves the structural information encoded in the basis coefficients when processing through
the layers.

Our approach rests on a truly infinite dimensional neural network, reflecting that we are
approximating continuous nonlinear operators between infinite dimensional spaces. Imple-
mented on a computer, we sample a finite set of basis functions in the training rather than
censoring the input functions to have finite dimensional approximations. We refer also to
(Kovachki et al. 2022, Sect. 2, p. 9) where a similar idea was mentioned but not further
explored.

Often linear operators between function spaces can be expressed as integral operators, for
example as convolutions. An approximation of such integral operators using graph kernels is
proposed in Anandkumar et al. (2019) for operator learning of partial differential equations.
The authors take an infinite dimensional perspective in learning operator maps from various
parameters into the solution, viewed as continuous mappings between function spaces of
Sobolev type. The affine transform-part of the neural network is viewed as an integral kernel
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operator, and a discrete version of this is mapped to the next layer by a finite dimensional
activation function. These ideas are further expanded into Fourier neural operators (see
Li et al. (2021), Kovachki et al. (2022), where the kernel is represented by the Fourier
transform and its inverse to obtain computationally attractive representations for estimating
the kernel operator. Cao et al. (2024) propose to use the Laplace transform instead of the
Fourier transform, taking advantage of the pole-residue relationship between the input and
output space of the operator to be approximated. In Kovachki et al. (2022) a universal
approximation theorem is shown for networks learning nonlinear operators between certain
Banach spaces of functions with infinite dimensional (integral operator) affine transforms,
but finite dimensional activation functions. In a recent paper Li et al. (2024) the Fourier
neural operator methodology is applied in conjunction with physics informed learning. We
refer the reader to the extensive literature review on operator and physics informed learning
learning in Li et al. (2024) (see also more references in Cao et al. (2024)).

In Benth et al. (2023) a universal approximation theorem was shown which ensures that
continuous operators from a Fréchet space into a Banach space can be approximated on com-
pacts with Fréchet neural networks. In our analysis of the parabolic Cauchy problem, using
the classical theory of e.g. Friedman (1975), the solution map can be shown to be Lipschitz
continuous from a product of Sobolev spaces into the continuous functions on compacts.
Thus, the universal approximation theorem ensures that we can approximate the operator
arbitrary well by the Fréchet neural network. In Lanthaler et al. (2022) the operators they
are interested in training using DeepONet are shown to be Lipschitz continuous. For the
Fourier neural operators studied in Kovachki et al. (2022), proofs of the integrability prop-
erties of the operators seem to be missing for the operators they aim to train that enables
them to use of their universal approximation theorem. Cao et al. (2024) do not address the
regularity properties for the operators they study numerically.

In a numerical proof-of-concept, we demonstrate that our proposed approach indeed works
out. We compare with the DeepONets, and point out some advantages with our approach.
We once again would like to emphasise also that we make use of infinite dimensional ac-
tivation functions, and not finite dimensional ones as in DeepONet and the Fourier neural
operator approaches, because for deep learning this allows us to progress structural infor-
mation from the basis functions throughout the layers.

Our approach and analysis extends the neural network approach to approximate nu-
merically high dimensional partial differential equations by training using synthetic data
generated by stochastic differential equations along with the Feynman-Kac formula, as ad-
vocated by E et al. (2017) and Han et al. (2018) (see also Beck et al. (2023) for an overview
and further references). We can naturally make use of the Feynman-Kac formula also for
operator learning problems related to Cauchy problems, as we show in this paper. In passing
we remark that Benth et al. (2024) have made use of similar ideas to price options in energy
markets which require an infinite dimensional framework.

Learning the operator mapping certain parameter functions into the solution of partial
differential equations is a forward problem, often referred to as “many query”. A neu-
ral operator method allows for fast and efficient computations of the solution for various
specifications of the input parameter functions (see Lanthaler et al. (2022) for a discussion
and analysis of the curse of dimensionality in such problems). The inverse problem, where
observations of the dynamical system in question is available and one wants to back out pa-
rameters, is also of interest, and has been empirically investigated in a Bayesian framework
in Li et al. (2021). Rather than learning the operator map for a specific dynamical system,
Yang et al. (2023) propose a framework to learn operators connected to a family of dif-
ferential equations. Empirical evidence demonstrates that commonalities across differential
equations reduce the training burden in such an approach.

Our results are presented as follows. In the next section we provide a review of infinite di-
mensional neural network introduced in Benth et al. (2023), collecting some useful material.
Section 3 defines the Cauchy problem relying on the classical analysis of Friedman (1975),
and identifies the operator maps that will be the core object of analysis in this paper. To use
infinite dimensional neural networks to learn the operator maps, we need continuity proper-
ties to hold according to the universal approximation theorem. Continuity of the nonlinear
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operator maps are analysed and shown for Sobolev spaces in this Section. A numerical
example is given in Section 4, providing a proof-of-concept. Here we are benchmarking
our proposed method with the DeepONets-approach, and provide further extensions and
perspectives of our proposed structure-informed operator learning approach.

2. A brief introduction to neural networks in infinite dimensions

In this Section, we give a brief review of neural networks defined on infinite dimensional
spaces, following the approach in Benth et al. (2023). Although Benth et al. (2023) consider
networks on Fréchet spaces, we focus on the case of real Banach spaces in the account given
here.

Let X and Y be two real Banach spaces with norms denoted by ∥ ·∥X and ∥ ·∥Y, resp. We
are interested in learning continuous nonlinear operators F : X → Y by neural networks.
We denote C(X;Y) the space of such continuous operators, equipped with the topology of
uniform convergence on compacts. If Y = R, we use the simpler notation C(X) to denote
C(X;R).

Let us start with defining a one layer real-valued neural network on X. Let A ∈ L(X),
i.e. a linear and continuous operator A : X → X, and β ∈ X. Thus, X ∋ ξ → Aξ + β ∈ X
is an affine transform on X. Introduce an activation function σ : X → X being continuous,
and define a neuron Nℓ,A,β : X → R to be the map

(1) Nℓ,A,β(ξ) = ℓ(σ(Aξ + β))

for ℓ ∈ X′. Here, X′ is the (topological) dual of X, i.e., the space of continuous linear
functionals ℓ : X → R. A one-layer neural network of width M ∈ N is given as a linear
superposition of M such neurons,

(2) N (ξ) :=

M∑
j=1

Nℓj ,Aj ,βj (ξ).

As activation functions σ, we restrict our attention to the ”sigmoidal” class. As we
operate with infinite dimensional activation functions, the sigmoidal property requires some
care. Here is (Benth et al. 2023, Def. 2.6), where a separation property is introduced for
continuous σ : X → X:

Definition 2.1 (Separation property). There exist ψ ∈ X′\{0} and ν+, ν−, ν0 ∈ X such that
either ν+ /∈ span{ν0, ν−} or ν− /∈ span{ν0, ν+} and such that

lim
λ→∞

σ(λξ) = ν+, if ξ ∈ Ψ+

lim
λ→∞

σ(λξ) = ν−, if ξ ∈ Ψ−

lim
λ→∞

σ(λξ) = ν0, if ξ ∈ Ψ0,

where Ψ+ := {ξ ∈ X |ψ(ξ) > 0}, Ψ− := {ξ ∈ X |ψ(ξ) < 0} and Ψ0 := ker(ψ).

We also need the activation functions to be bounded, in the sense that its image σ(X)
is a bounded subset of X. Indeed, one sees that with continuous and bounded activation
functions, the one-layer neural networks that we have introduced are also continuous and
bounded.

From (Benth et al. 2023, Example 2.13) we find a specification of a class of bounded
and continuous activation functions which enjoy the separation property. Let us recall this
example: fix ψ ∈ X′\{0} and suppose we have a sequence (σ̃j)j∈N of continuous functions
σ̃j : R → R with the properties σ̃j(0) = 0,

lim
x→∞

σ̃j(x) = 1, lim
x→−∞

σ̃j(x) = 0,

for all j ∈ N, where additionally we suppose supj∈N ∥σ̃j∥∞ <∞. Given a summable sequence

(ζj)j∈N ⊂ X for which 0 ̸= ζ :=
∑∞

j=1 ζj , define the function σ : X → X by

(3) σ(ξ) =

∞∑
j=1

σ̃j(ψ(ξ))ζj
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One can show (see (Benth et al. 2023, Example 2.13)) that σ is continuous, bounded and
separating, and thus suitable as an activation function. Notice that σ is a sum of σ̃j(ψ(ξ))ζj ,
where σ̃j are classical sigmoidal activation functions. We first let a global linear functional
act on ξ before it goes as input into the activation function σ̃j , having a real value. We use
this real value to scale the element ζj in the Banach space to build up an activation function
which truly maps X into itself. In a simple setting, one can choose only one such element
in the series (or a finite number of such), defining the activation function σ(ξ) := σ̃(ψ(ξ))ζ.
We mention in passing that there exist other examples of infinite dimensional activation
functions (see Benth et al. (2023)).

To obtain neural networks with values in the Banach space Y, we simply aggregate the
real-valued neural networks we have defined in (2), scaled by independent unit vectors in Y.
To be more precise, given d independent unit vectors µ1, . . . , µd ∈ Y and neural networks
N (1), . . . ,N (d), define the Y-valued neural network Nd : X → Y as

(4) Nd(ξ) =

d∑
i=1

N (i)(ξ)µi.

For such neural networks we have the following Universal Approximation Theorem (see
(Benth et al. 2023, Thm. 3.2)):

Theorem 2.2. Assume σ : X → X is a continuous, bounded and separating activation
function and suppose that F ∈ C(X;Y). Then, for given compact set K ⊂ X and ϵ > 0 there
exist d ∈ N, d independent unit vectors µ1, . . . , µd ∈ Y and d real-valued neural networks
N (1), . . . ,N (d) such that

sup
ξ∈K

∥F (ξ)−Nd(ξ)∥Y < ϵ,

where Nd is defined in (4).

This universal approximation theorem is the key to the applicability of infinite dimen-
sional neural networks in operator-learning tasks. Remark that if we let Y = R, then we
can re-state the universal approximation theorem as follows: for given ϵ > 0 and compact
subset K ⊂ X, there exists M ∈ N such that

sup
ξ∈K

|F (ξ)−N (ξ)| < ϵ,

where N is defined in (2). By saying that there exists an M , we are in reality also saying
that there exist elements ℓj ∈ X′, Aj ∈ L(X) and βj ∈ X for j = 1, . . . ,M . Obviously, all
these elements, including M , depend on ϵ and K.

To implement the neural network Nd on a computer we need a finite dimensional version
thereof. In dealing with partial differential equations and operator learning tasks, Sobolev
spaces appear naturally. These Sobolev spaces are in most cases separable Banach spaces
and carry a Schauder basis, which one can exploit to create finite dimensional networks from
our infinite dimensional Nd. Indeed, as basis functions contain structural information about
the functions that go into the operator, one can use this information in the training. We
provide some more details on this idea which is key to our method.

Suppose X is a separable Banach space, with Schauder basis denoted by (ek)k∈N. Thus,
for any ξ ∈ X we have unique coefficients ak ∈ R, k = 1, 2, . . . such that ξ =

∑∞
k=1 akek.

Without loss of generality, we can assume that ∥ek∥X = 1 for all k. We define the canonical
linear continuous projectors

pk : X → R, ξ 7→ ak, k ∈ N,

and the projection operators

(5) ΠN : X → span{e1, . . . , eN}, ξ 7→
N∑

k=1

pk(ξ)ek,

for N ∈ N. The projection operators are also linear, bounded, and ΠN converges uniformly
on compacts K ⊂ X when N → ∞ (see (Schaefer 1971, Thm. 9.6, p. 115)).
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Given a network N as in (2) and N ∈ N, define a finite dimensional network NN as

(6) NN (ξ) =

M∑
j=1

(ℓj ◦ΠN )(σ(ΠNAjΠNξ +ΠNβj)).

Let us briefly explain the reason why this architecture can be seen as a finite dimensional
object: first of all, for any N ∈ N, ΠNξ ∈ X can be identified with its truncated expansion
(p1(ξ), . . . , pN (ξ)) ∈ RN . Secondly, the restrictions of the operators ΠN ◦ Aj and ℓj to
span{e1, . . . , eN} are finite dimensional, because the action of ℓj will be prescribed by the
scalars ℓj(e1), . . . , ℓj(eN ), and the action of ΠN ◦ AJ ◦ ΠN will be specified by the matrix

{pm(Ajek)}Nm,k=1. The sum above thus resembles a classical neural network. However,

instead of the typical one dimensional activation function, the function ΠN ◦ σ restricted to
span{e1, . . . , eN} is multidimensional. The terms appearing in the sum can now easily be
programmed in a computer: we refer to Section 4 for further details.

Assuming additionally that the activation function σ is Lipschitz (which holds if σ̃j is Lips-
chitz for each j ∈ N and the Lipschitz constants satisfy a uniform bound supj∈N Lip(σ̃j) <∞:
see (3)), then the Universal Approximation Theorem is valid for NN (see (Benth et al. 2023,
Prop. 4.1)).

The networks N and NN above can also be extended to deep neural networks. An infinite
dimensional network with n ∈ N layers can be constructed from neurons of the form

(7) Nℓ,A(ξ) := ℓ(σ ◦ A1 ◦ · · · ◦ σ ◦ An)(ξ)

with A = (A1, . . . ,An) a vector of affine transformation on X given as Ai(ξ) := Aiξ + βi
for i = 1, . . . , n. Indeed, the span of such deep neurons is dense in the space of continuous
operators on X, i.e., these deep infinite dimensional neural networks are universal approxi-
mants (see (Benth et al. 2023, Prop. 5.2) and (Benth et al. 2024, Prop. 2.10)). Notice that
the universal approximation theorems do not provide any quantification on the number of
neurons M nor the depth n in the approximating networks.

3. A continuity analysis of the nonlinear operator maps

In this section, we first define the solution operator for the parabolic Cauchy problem
that we aim to solve. To achieve this, we embed the parameters of the Cauchy problem
into a suitable Banach space of functions. Next, we analyze the continuity of the operator
maps, which act as mappings from a set of parameter functions of interest to solutions. This
continuity analysis justifies the use of the Fréchet neural network structures introduced in
Section 2. Finally, we derive some robustness results for the single-point solution operator.

3.1. The parabolic Cauchy problem. We are going to follow the classical setup provided
by Friedman (1975). We aim at solving the following backward parabolic Cauchy problem
in Rn

(8)

{
Lu+ ∂tu = f(x, t), in Rn × [0, T )

u(x, T ) = ϕ(x), in Rn,

where 0 < T <∞ and

(9) Lu =
1

2

n∑
i,j=1

aij(x, t)∂
2
iju+

n∑
i=1

bi(x, t)∂iu+ c(x, t)u.

We are going to make the following assumptions on the coefficients of L, the final datum
ϕ and the forcing term f .

Assumption 3.1. The functions aij , bi, c, ϕ and f satisfy:

(i) There exists a number δ > 0 such that
∑n

i,j=1 aij(x, t)yiyj ≥ δ |y|2, for any (x, t) ∈
Rn × [0, T ], y ∈ Rn;

(ii) aij and bi are bounded in Rn × [0, T ] and Lipschitz continuous in (x, t) in compact
subsets of Rn× [0, T ]. The functions aij are Hölder continuous in x, uniformly with
respect to (x, t) ∈ Rn × [0, T ];
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(iii) c is bounded in Rn × [0, T ] and Hölder continuous in (x, t) in compact subsets of
Rn × [0, T ];

(iv) f(x, t) is continuous in Rn × [0, T ], Hölder continuous in x uniformly with respect
to (x, t) ∈ Rn × [0, T ] and |f(x, t)| ≤ κ(1 + |x|)γ in Rn × [0, T ], ϕ(x) is continuous
in Rn and |ϕ(x)| ≤ κ(1 + |x|)γ , where κ, γ are positive constants.

This set of assumptions ensures that (see (Friedman 1975, Thm 5.3, p. 148)) there exists
a unique u ∈ C(Rn× [0, T ])∩C1,2(Rn× [0, T )) solution of (8) such that |u(x, t)| ≤ κ(1+ |x|)γ
for some κ > 0. We remark that κ is here and throughout a generic constant that is allowed
to change according to the context. The solution may be represented by the Feynman-Kac
formula

u(x, t) = E

[
ϕ(Xx,t(T )) exp

(∫ T

t

c(Xx,t(s), s) ds

)]

− E

[∫ T

t

f(Xx,t(s), s) exp

(∫ s

t

c(Xx,t(r), r) dr

)
ds

]
,

(10)

for (x, t) ∈ Rn × [0, T ], where t ≤ s ≤ T , and

(11) Xx,t(s) = x+

∫ s

t

b(Xx,t(r), r) dr +

∫ s

t

η(Xx,t(r), r) dW (r)

with ηη∗ = a. Here, W is an n-dimensional Brownian motion defined on a filtered complete
probability space (Ω, (Ft)t∈[0,T ],F ,P), η ∈ Rn×n, and E[·] is the expectation operator with
respect to the probability measure P. Moreover, by (Friedman 1975, p. 112), for any
R > 0, 0 ≤ τ ≤ T , if |x| , |y| ≤ R, there exists CR,T > 0 such that

(12) E
[

sup
τ≤s≤T

|Xx,τ (s)−Xy,τ (s)|2
]
≤ CR,T |x− y|2 .

3.2. Solution maps and continuity. Our goal is to learn the nonlinear operator map

(13) (ϕ, c, f)
F t

7−→ u(·, t), 0 ≤ t < T

with the Fréchet neural network structures presented in Section 2. In order to do so, we

first need a space for (ϕ, c, f) and u(·, t) to live in, and then show that the map (ϕ, c, f)
F t

7−→
u(·, t) has the required continuity properties such that we can expect the neural network to
approximate the map sufficiently well, in light of the Universal Approximation Theorem 2.2.

We first introduce a couple of spaces of real valued functions that we will need in the
following. We refer the reader to Adams & Fournier (2003) for these definitions. For j ∈ N0,
denote by Cj(Rn) the space of real valued functions on Rn whose derivatives up the order
j exist. Define

(14) Cj(Rn) := {v ∈ Cj(Rn) : Dαv is bounded and uniformly continuous, 0 ≤ |α| ≤ j}
where clearly Dαv = ∂α1,...,αn

v with α = (α1, . . . , αn) ∈ Nn
0 . Observe that the notation

Cj(Rn) arises from the fact that for more general spaces X instead of Rn, the uniform
continuity allows for an extension to the closure X . In our case of course Rn = Rn, but
Cj(Rn) ̸= Cj(Rn).

The vector space Cj(Rn) is a Banach space when endowed with the norm given by

∥v∥Cj(Rn) := max
0≤|α|≤j

sup
x∈Rn

|Dαv(x)| .

We further consider for 0 < λ ≤ 1 also the spaces Cj,λ(Rn) ⊂ Cj(Rn) defined by

(15) Cj,λ(Rn) := {v ∈ Cj(Rn) : Dαv satisfies a λ−Hölder condition , 0 ≤ |α| ≤ j}
i.e. for any 0 ≤ |α| ≤ j there exists a constant K ≥ 0 such that

|Dαv(x)−Dαv(y)| ≤ K |x− y|λ , x, y ∈ Rn.

The space Cj,λ(Rn) is a Banach space when endowed with the norm given by

∥v∥Cj,λ(Rn) := ∥v∥Cj(Rn) + max
0≤|α|≤j

sup
x ̸=y

|Dαv(x)−Dαv(y)|
|x− y|λ

.
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For brevity reasons we write Cj,λ rather than Cj,λ(Rn). We also recall the definition of
the Sobolev space W k,p = W k,p(Rn), k ∈ N, 1 ≤ p < ∞: this is the space of all functions
v ∈ Lp(Rn) such that all their distributional derivatives Dαv, 0 < |α| ≤ k are functions in
Lp(Rn). A natural norm for these spaces is provided by

∥v∥Wk,p :=

 ∑
0≤|α|≤k

∥Dαv∥pLp

1/p

.

In this way, the spaces become Banach spaces and for p = 2 Hilbert spaces. These spaces
enjoy the following embedding results, known as Sobolev-Morrey embedding: let j,m ∈ N0

and 1 ≤ p < ∞. By part III of Theorem 5.4 and Remark 5.5 (3) (Adams & Fournier 2003,
page 98) the following holds:

• If mp > n > (m− 1)p, then

(16) W j+m,p ↪→ Cj,λ, 0 < λ ≤ m− n/p

with continuity.
• If n = (m− 1)p, then

(17) W j+m,p ↪→ Cj,λ, 0 < λ < 1

with continuity. If n = m − 1 and p = 1, then λ can be also equal to 1 in the last
equation.

This result has the following consequence, which we are going to use later: by the conti-
nuity of the embedding, we have

∥v∥Cj,λ ≤ CSob ∥v∥W j+m,p , v ∈W j+m,p

for some universal constant CSob = CSob(n, j,m, p), and so we deduce in particular that

(18) max
0≤|α|≤j

sup
x̸=y

|Dαv(x)−Dαv(y)|
|x− y|λ

≤ CSob ∥v∥W j+m,p .

From now on, we will assume j = 0 and that m and p satisfy one of the two conditions
above. Thus, Wm,p embeds continuously in C0,λ for suitable λ. In this case, (18) becomes

(19) |v(x)− v(y)| ≤ CSob ∥v∥Wm,p |x− y|λ , x, y ∈ Rn, v ∈Wm,p.

Remark 3.2. If we choose m = 1, then we need n < p and thus 0 < λ < 1− n/p.

Going back to (8), we suppose the following to hold:

Assumption 3.3. For the functions ϕ, c and f ,

• ϕ ∈Wm,p

• c and f are time-independent and c, f ∈Wm,p.

Under this assumption we can conclude from the embeddings that ϕ, c, f ∈ C0,λ. In view
of these embeddings, there exists a unique solution u of (8). We fix once for all 0 ≤ t < T ,
and define

(20) F t :Wm,p ×Wm,p ×Wm,p → BC(Rn), (ϕ, c, f)
F t

7−→ u(·, t),

where BC(Rn) denotes the space of bounded continuous functions from Rn to R. Observe
that indeed u ∈ BC(Rn × [0, T ]), because ϕ, c and f are bounded and boundedness of u
then follows from (10).

We have the following continuity result for the operator F t in (20) which paves the way
for using our neural network in infinite dimension for learning.

Proposition 3.4. Let X := Wm,p ×Wm,p ×Wm,p with m and p satisfying the conditions
above. Endow X with the natural norm

∥(v1, v2, v3)∥X = ∥v1∥Wm,p + ∥v2∥Wm,p + ∥v3∥Wm,p , (v1, v2, v3) ∈ X.

Let 0 ≤ t < T . Then, the solution operator F t defined by (20) is continuous from X into
BC(Rn).
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Proof. Let

ϕk
Wm,p

−→ ϕ, ck
Wm,p

−→ c, fk
Wm,p

−→ f

as k → ∞, and let uk be the corresponding solution of (8). We observe the following
elementary facts:

(1) Since ϕk → ϕ uniformly on Rn by the embedding into C0,λ, we have ϕk(Xx,t(T )) →
ϕ(Xx,t(T )) uniformly in (ω, x) ∈ Ω× Rn as k → ∞.

(2) Similarly, since ck → c uniformly on Rn, we have ck(Xx,t(s)) → c(Xx,t(s)) uniformly
in (ω, x, s) ∈ Ω× Rn × [t, T ] as k → ∞. Therefore,∫ T

t

ck(Xx,t(s)) ds→
∫ T

t

c(Xx,t(s)) ds

uniformly in (ω, x) ∈ Ω× Rn.

(3) Using the mean value theorem and the fact that the quantities
∫ T

t
ck(Xx,t(s)) ds

and
∫ T

t
c(Xx,t(s)) ds are bounded, it is immediate to see that

exp

{∫ T

t

ck(Xx,t(s)) ds

}
→ exp

{∫ T

t

c(Xx,t(s)) ds

}
uniformly in (ω, x) ∈ Ω× Rn as k → ∞.

(4) Mutatis mutandis,
∫ s

t
ck(Xx,t(r)) dr →

∫ s

t
c(Xx,t(r)) dr uniformly in (ω, x, s) ∈ Ω×

Rn × [t, T ] and once more

exp

{∫ s

t

ck(Xx,t(r)) dr

}
→ exp

{∫ s

t

c(Xx,t(r)) dr

}
uniformly in (ω, x, s) ∈ Ω× Rn × [t, T ] as k → ∞.

(5) fk → f uniformly on Rn implies fk(Xx,t(s)) → f(Xx,t(s)) uniformly in (ω, x, s) ∈
Ω× Rn × [t, T ].

In view of this, we deduce that supRn |uk(x, t)− u(x, t)| → 0 as k → ∞. We have proved
the proposition. □

We observe that the space X defined in Proposition 3.4 above is a separable Banach space,
under the natural linear structure of product of spaces. It can be easily supplemented by
a Schauder basis, coming from a Schauder basis of Wm,p (see e.g. (Heil 2011, Ch. 4) for
a general introduction to basis functions in Banach spaces). Indeed, from Triebel (2004)
we know that these Sobolev spaces Wm,p carry an unconditional Schauder basis given by
wavelets. We refer to (Heil 2011, Ch. 12) and Meyer (2009) for more on wavelets. In Section
4 we present a numerical example where we construct a basis instead in terms of Hermite
functions for the Hilbert space W 1,2.

We finally observe that for arbitrary z ∈ Rn, the Dirac mass δz is trivially an element of
the topological dual of BC(Rn). In view of all of this, we conclude that the map ⟨δz, F t⟩ is
an element of C(X). Let us show how we can utilize this to learn the solution map uniformly
on small compact subsets of Rn (see also Corollary 3.7 below).

Proposition 3.5. Fix 0 ≤ t < T , K ⊂ X compact and R > 0. Let λ be the Hölder constant
provided by equation (19). Then there exists a constant Γ = Γ(K, T,R) > 0 such that∣∣⟨δx − δy, F

t(ϕ, c, f)⟩
∣∣ ≤ Γ(K, T,R) |x− y|λ

for (ϕ, c, f) ∈ K and |x| ≤ R, |y| ≤ R.

Proof. In the following computations we are going to use repeatedly the Hölder condition
in (19) as well as

∥v∥∞ ≤ CSob ∥v∥Wm,p .

We define for convenience the map I,

I :Wm,p → R, v 7→ exp{(T − t) ∥v∥∞}.
We observe that it is a continuous map onWm,p, because of the continuity of the embedding
and by composition of continuous maps, namely

Wm,p ∋ v 7→ v ∈ C0,λ 7→ ∥v∥∞ 7→ I(v).
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Let x, y ∈ Rn, and set u(·, t) = F t(ϕ, c, f). Then, using Feynman-Kac formula (10), and
several times the mean value theorem for the terms involving the exponential function, we
obtain

|u(x, t)− u(y, t)| ≤ E |ϕ(Xx,t(T ))− ϕ(Xy,t(T ))| exp

[∫ T

t

c(Xx,t(s)) ds

]

+ E |ϕ(Xy,t(T ))|

∣∣∣∣∣exp
[∫ T

t

c(Xx,t(s)) ds

]
− exp

[∫ T

t

c(Xy,t(s)) ds

]∣∣∣∣∣
+ E

∫ T

t

|f(Xx,t(s))− f(Xy,t(s))| exp
[∫ s

t

c(Xx,t(r)) dr

]
ds

+ E
∫ T

t

|f(Xy,t(s))|
∣∣∣∣exp [∫ s

t

c(Xx,t(r)) dr

]
− exp

[∫ s

t

c(Xy,t(r)) dr

]∣∣∣∣ ds
≤ CSobE ∥ϕ∥Wm,p I(c) |Xx,t(T )−Xy,t(T )|λ

+ E ∥ϕ∥∞ I(c)

∣∣∣∣∣
∫ T

t

[c(Xx,t(s))− c(Xy,t(s))]ds

∣∣∣∣∣
+ CSobE

∫ T

t

∥f∥Wm,p I(c) |Xx,t(s)−Xy,t(s)|λ ds

+ E
∫ T

t

∥f∥∞ I(c)

∣∣∣∣∫ s

t

[c(Xx,t(r))− c(Xy,t(r))]dr

∣∣∣∣ ds.
Thus, by applying Hölder’s inequality repeatedly (2/λ ≥ 1),

|u(x, t)− u(y, t)| ≤ CSob ∥ϕ∥Wm,p I(c)
[
E |Xx,t(T )−Xy,t(T )|2

]λ/2
+ ∥ϕ∥∞ I(c)CSob ∥c∥Wm,p E

∫ T

t

|Xx,t(s)−Xy,t(s)|λ ds

+ CSob ∥f∥Wm,p I(c)E
∫ T

t

|Xx,t(s)−Xy,t(s)|λ ds

+ CSob ∥f∥∞ I(c) ∥c∥Wm,p E
∫ T

t

∫ s

t

|Xx,t(r)−Xy,t(r)|λ drds

≤ CSob ∥ϕ∥Wm,p I(c)
[
E |Xx,t(T )−Xy,t(T )|2

]λ/2
+ ∥ϕ∥Wm,p I(c)C

2
Sob ∥c∥Wm,p

[
E
∫ T

t

|Xx,t(s)−Xy,t(s)|2 ds

]λ/2
(T − t)1−λ/2

+ CSob ∥f∥Wm,p I(c)

[
E
∫ T

t

|Xx,t(s)−Xy,t(s)|2 ds

]λ/2
(T − t)1−λ/2

+ C2
Sob ∥f∥Wm,p I(c) ∥c∥Wm,p

[
E
∫ T

t

∫ s

t

|Xx,t(r)−Xy,t(r)|2 drds

]λ/2 [
(T − t)2

2

]1−λ/2

.

Let x, y : |x| ≤ R, |y| ≤ R for some fixed R > 0. Using (12) we infer

|u(x, t)− u(y, t)| ≤ CSob ∥ϕ∥Wm,p I(c)C
λ/2
R,T |x− y|λ

+ C2
Sob ∥ϕ∥Wm,p I(c) ∥c∥Wm,p C

λ/2
R,T (T − t) |x− y|λ

+ CSob ∥f∥Wm,p I(c)C
λ/2
R,T (T − t) |x− y|λ

+ C2
Sob ∥f∥Wm,p I(c) ∥c∥Wm,p C

λ/2
R,T

(T − t)2

2
|x− y|λ .
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Therefore, by continuity and Weierstrass theorem, we conclude that there exists a constant
Γ = Γ(K, T,R) > 0 such that

|u(x, t)− u(y, t)| ≤ Γ(K, T,R) |x− y|λ , (ϕ, c, f) ∈ K, |x| ≤ R, |y| ≤ R,

i.e.∣∣F t(ϕ, c, f)(x)− F t(ϕ, c, f)(y)
∣∣ ≤ Γ(K, T,R) |x− y|λ , (ϕ, c, f) ∈ K, |x| ≤ R, |y| ≤ R.

We have proved the proposition. □

Remark 3.6. We remark that the result in Proposition 3.5 would hold for subsets K ⊂ X
being bounded only and not necessarily being compact. However, since the Universal Ap-
proximation Theorem 2.2 in any case requires working on compact sets, we have formulated
the proposition accordingly.

We have the following important consequence, which in broad strokes tells us that, as
long as we stay close to x and willing to accept a slightly higher error, we do not need to
change the approximating neural network architecture.

Corollary 3.7. Fix 0 ≤ t < T , K ⊂ X compact and R > 0. Let x : |x| ≤ R. Let ε > 0 be
arbitrary. Suppose to be given for some N ∈ N

NN =

N∑
j=1

Nℓj ,Aj ,βj

with ℓj ∈ X′, Aj ∈ L(X) and βj ∈ X such that

sup
(ϕ,c,f)∈K

∣∣NN (ϕ, c, f)− ⟨δx, F t(ϕ, c, f)⟩
∣∣ < ε.

Fix ε′ > 0 and set r =
(

ε′

Γ(K,T,R)

)1/λ
. Then for any y ∈ Br(x), |y| ≤ R, it holds

sup
(ϕ,c,f)∈K

∣∣(NN (ϕ, c, f)− ⟨δy, F t(ϕ, c, f)⟩
∣∣ < ε+ ε′.

Proof. From the previous proposition, we indeed have for any y ∈ Br(x), |y| ≤ R∣∣⟨δx − δy, F
t(ϕ, c, f)⟩

∣∣ < ε′

for any (ϕ, c, f) ∈ K, and therefore

sup
(ϕ,c,f)∈K

∣∣⟨δx, F t(ϕ, c, f)⟩ − ⟨δy, F t(ϕ, c, f)⟩
∣∣ < ε′.

By the triangle inequality we get the claim. □

Needless to say, everything said until here still holds for possibly different solution op-
erators F t where some of the “variables”defining the parabolic Cauchy problem are fixed,
i.e., given exogenously. However, by relaxing the properties of these fixed variables, we can
allow for more flexible specifications but still preserve the continuity of the solution operator.
We investigate this next in the case where f = 0 and the final datum ϕ is not necessarily
in Wm,p but is continuous with some polynomial growth (i.e., still satisfying the standard
assumptions ensuring well-posedness of (8)). Namely, we consider solutions of this kind:

u(x, t) = E

[
ϕ(Xx,t(T )) exp

(∫ T

t

c(Xx,t(s)) ds

)]
, (x, t) ∈ Rn × [0, T ]

with c ∈Wm,p and ϕ continuous in Rn such that |ϕ(x)| ≤ κ(1+ |x|)γ , where κ, γ are positive
constants. From the general theory in Subsection 3.1 we know that |u(x, t)| ≤ κ(1 + |x|)γ
for some κ > 0 (possibly different to the above), and thus in general the solution will be
unbounded. To overcome this issue, we simply restrict ourselves to a fixed compact subset
K ⊂ Rn, and we will learn the solution here. More precisely, for 0 ≤ t < T , K ⊂ Rn

compact and ϕ as above we define the following solution operator

(21) F t,K,ϕ :Wm,p → C(K), c 7−→ u(·, t)
∣∣∣
K
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namely the solution of (8) as a function of c restricted to K with f = 0, final datum ϕ given.
Also in this setting we obtain:

Proposition 3.8. Let ϕ be continuous in Rn and such that |ϕ(x)| ≤ κ(1+ |x|)γ , where κ, γ
are positive constants. Assume c ∈Wm,p, 0 ≤ t < T and let K ⊂ Rn be compact. Then the
solution operator F t,K,ϕ of the parabolic Cauchy problem

{
Lu+ ∂tu = 0, in Rn × [0, T )

u(x, T ) = ϕ(x), in Rn,

is continuous from Wm,p into C(K).

If ϕ is assumed additionally to be Hölder continuous with exponent 0 < λ̃ ≤ 1, the
following holds: given a compact subset K ⊂ Wm,p, there is Γ = Γ(ϕ, λ̃, T, aij , bi,K,K) > 0
constant such that

∣∣⟨δx − δy, F
t,K,ϕ(c)⟩

∣∣ ≤ Γ |x− y|λ̃ , c ∈ K, x, y ∈ K.

Proof. Let us show continuity first. Given ck
Wm,p

−→ c, we know from before that

exp

{∫ T

t

ck(Xx,t(s)) ds

}
→ exp

{∫ T

t

c(Xx,t(s)) ds

}

uniformly on Ω×K. Furthermore, from standard SDEs theory (see for instance (Friedman
1975, Thm 2.3 page 107)), we know that for any h ∈ N

E |Xx,t(s)|h ≤ (2 + |x|h)eCs, t ≤ s ≤ T, x ∈ Rn

where C = C(h, aij , bi, T ). Thus, in view of the bound satisfied by ϕ, we easily get

|ϕ(Xx,t(T ))| ≲ϕ (1 + |Xx,t(T )|h), x ∈ K

for some h = h(ϕ) ∈ N, and hence

E |ϕ(Xx,t(T ))| ≤ C(ϕ, T, aij , bi,K)

uniformly in x ∈ K. From this we infer

|uk(x, t)− u(x, t)| ≤ E |ϕ(Xx,t(T ))|

∣∣∣∣∣exp
[∫ T

t

ck(Xx,t(s)) ds

]
− exp

[∫ T

t

c(Xx,t(s)) ds

]∣∣∣∣∣
≤ E |ϕ(Xx,t(T ))| sup

(ω,x)∈Ω×K

∣∣∣∣∣exp
[∫ T

t

ck(Xx,t(s)) ds

]
− exp

[∫ T

t

c(Xx,t(s)) ds

]∣∣∣∣∣
≤ C(ϕ, T, aij , bi,K) sup

(ω,x)∈Ω×K

∣∣∣∣∣exp
[∫ T

t

cm(Xx,t(s)) ds

]
− exp

[∫ T

t

c(Xx,t(s)) ds

]∣∣∣∣∣
uniformly in x ∈ K. Therefore, supx∈K |uk(x, t)− u(x, t)| → 0 as k → ∞, namely F t,K,ϕ is
continuous on Wm,p into C(K).
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Let us now assume additionally that ϕ is Hölder continuous for some exponent 0 < λ̃ ≤ 1.
Arguing as above in the proof of Proposition 3.5, for x, y ∈ K we now have

|u(x, t)− u(y, t)| ≤ E |ϕ(Xx,t(T ))− ϕ(Xy,t(T ))| exp

[∫ T

t

c(Xx,t(s)) ds

]

+ E |ϕ(Xy,t(T ))|

∣∣∣∣∣exp
[∫ T

t

c(Xx,t(s)) ds

]
− exp

[∫ T

t

c(Xy,t(s)) ds

]∣∣∣∣∣
≤ CϕI(c)E |Xx,t(T )−Xy,t(T )|λ̃

+ I(c)E |ϕ(Xy,t(T ))|

∣∣∣∣∣
∫ T

t

[c(Xx,t(s))− c(Xy,t(s))]ds

∣∣∣∣∣
≤ CϕI(c)

[
E |Xx,t(T )−Xy,t(T )|2

]λ̃/2
+ I(c)CSob ∥c∥Wm,p E |ϕ(Xy,t(T ))|

∫ T

t

|Xx,t(s)−Xy,t(s)|λ̃ ds.

By Hölder’s and Jensen’s inequalities we infer

E |ϕ(Xy,t(T ))|
∫ T

t

|Xx,t(s)−Xy,t(s)|λ̃ ds ≤
[
E |ϕ(Xy,t(T ))|2/(2−λ̃)

]1−λ̃/2

×

×

E[∫ T

t

|Xx,t(s)−Xy,t(s)|λ̃ ds

]2/λ̃λ̃/2

≤
[
E |ϕ(Xy,t(T ))|2/(2−λ̃)

]1−λ̃/2

×

× (T − t)1−λ̃/2

[
E
∫ T

t

|Xx,t(s)−Xy,t(s)|2 ds

]λ̃/2
.

From above, we deduce

|ϕ(Xy,t(T ))|2/(2−λ̃) ≲ϕ,λ̃ (1 + |Xy,t(T )|2h/(2−λ̃)
), y ∈ K

for some h = h(ϕ) ∈ N, and hence, with a different constant,

E |ϕ(Xy,t(T ))|2/(2−λ̃) ≤ C(ϕ, λ̃, T, aij , bi,K)

uniformly in y ∈ K. Similarly to above, we then obtain

|u(x, t)− u(y, t)| ≤ CϕI(c)C
λ̃/2
K,T |x− y|λ̃ +

+ CSobI(c) ∥c∥Wm,p C(ϕ, λ̃, T, aij , bi,K)C
λ̃/2
H,T (T − t) |x− y|λ̃ ,

for x, y ∈ K. Let K ⊂ Wm,p be a fixed compact subset. By continuity and the Weierstrass
Theorem, we conclude that there exists a constant Γ = Γ(ϕ, λ̃, T, aij , bi,K,K) > 0 such that

|u(x, t)− u(y, t)| ≤ Γ |x− y|λ̃ , c ∈ K, x, y ∈ K,

i.e., ∣∣F t,K,ϕ(c)(x)− F t,K,ϕ(c)(y)
∣∣ ≤ Γ |x− y|λ̃ , c ∈ K, x, y ∈ K,

and the claim follows. □

As an immediate consequence, we effortlessly obtain the analogous of Corollary 3.7:

Corollary 3.9. Assume the setting of Proposition 3.8. Let x ∈ K and ε > 0 be arbitrary.
Suppose for N ∈ N to be given

NN =

N∑
j=1

Nℓj ,Aj ,βj
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with ℓj ∈ (Wm,p)′, Aj ∈ L(Wm,p) and βj ∈Wm,p such that

sup
c∈K

∣∣NN (c)− ⟨δx, F t,K,ϕ(c)⟩
∣∣ < ε.

Fix ε′ > 0 and set r =
(

ε′

Γ

)1/λ̃
. Then for any y ∈ K ∩Br(x), it holds

sup
c∈K

∣∣(NN (c)− ⟨δy, F t,K,ϕ(c)⟩
∣∣ < ε+ ε′.

After these theoretical considerations on continuity, verifying the use of the Universal Ap-
proximation Theorem for operator-learning, we proceed in the next section with a numerical
case study.

4. A numerical case study

We demonstrate our proposed methodology by considering a particular case of the Cauchy
problem set on R and train a neural network to learn the operator mapping the function
c into the u solution evaluated in a location. In our proof-of-concept study, we benchmark
with respect to the DeepONet approach.

For our purposes, we need to have a set of orthonormal basis functions in W 1,2. These
provide us with structural information that we exploit in the training. Here we propose to
construct such a basis from the Hermite functions, which is an orthonormal basis of L2(R).

4.1. Basis functions. Following e.g. (Schwartz 1950, p. 261), we define the 1-d Hermite
polynomials by

(22) Hm(x) = (−1)m21/4−m(m!)−1/2π−m/2 exp(2πx2)
dm

dxm
exp(−2πx2)

and the associated Hermite functions

(23) Hm(x) = Hm(x) exp(−πx2).
where x ∈ R, m ∈ N0. Then (Hm)m∈N0 is an orthonormal system in L2(R). We first derive
⟨Hm,Hn⟩W 1,2 which we need in order to obtain an orthonormal set of vectors in W 1,2.

Proposition 4.1. The following holds:

(1) for m,n ∈ N∫
R
H′

m(x)H′
n(x) dx = π(2m+ 1)δm,n − π

√
m(m− 1) δm,n+2

− π
√
(m+ 1)(m+ 2) δm,n−2,

(2) for m ∈ N and n = 0∫
R
H′

m(x)H′
0(x) dx = −π

√
2 δm,2,

(3) and for m = n = 0 ∫
R
H′

0(x)H′
0(x) dx = π.

Proof. It follows from (Schwartz 1950, VII, 7; 30) (or by direct computation) that

−H′
m(x) + 2πxHm(x) = 2

√
π(m+ 1)Hm+1(x), m ∈ N0

and
−H′

m(x)− 2πxHm(x) = −2
√
πmHm−1(x), m ∈ N.

By summing up these two equations, one obtains the recursion

H′
m(x) =

√
πmHm−1(x)−

√
π(m+ 1)Hm+1(x), m ∈ N.

Hence, after appealing to the orthogonality of (Hm)m∈N0
, we get∫

R
H′

m(x)H′
n(x) dx

= π
(√

mn+
√
(m+ 1)(n+ 1)

)
δm,n − π

√
m(n+ 1) δm,n+2 − π

√
(m+ 1)n δm,n−2
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which proves (1). For m = 0 one obtains directly from the definition of H0 that

H′
0(x) = −2πxH0(x).

From the definition of H0 and H0 it follows that H0(x) = 21/4 and H1(x) = 25/4
√
πx. Now

we can re-write H′
0(x) = −2πxH0(x) as

H′
0(x) = −2πx21/4 exp(−πx2) = −

√
πH1(x)

because H1(x) = 21/42
√
πx exp(−πx2). With this last observation the case (2) with m = 1

and case (3) follows. □

To this end, we write the conclusions of the last proposition in a more concise form,
resulting in the following “multiplication table”: for m,n ∈ N0 it holds:

• ⟨Hm,Hn⟩W 1,2 = 1 + π(2m+ 1) for m = n;

• ⟨Hm,Hn⟩W 1,2 = −π
√
ℓ(ℓ− 1) for |m− n| = 2 with ℓ = max{m,n};

• ⟨Hm,Hn⟩W 1,2 = 0 otherwise.

With this and the fact that ∫
R
Hm(x)Hn(x) dx = δm,n ,

we can now apply the Gram–Schmidt procedure to the vectors H0,H1, . . . to obtain an
orthonormal basis in W 1,2, which we denote by (ek)k∈N0

. We remark in passing that we can
build basis functions in W 1,2 for d > 1 by tensorising the above Hermite basis.

4.2. Numerical example. We consider the parabolic Cauchy problem in R

(24)

{
Lu+ ∂tu = 0, in R× [0, T )

u(x, T ) = ϕ(x), in R,

where 0 < T <∞ and

(25) Lu =
1

2
∂2xu+ c(x)u.

To simplify, we have set a = 1, b = 0 and the forcing term f = 0 in this numerical example.
For the final datum ϕ, we choose ϕ(x) = x2. With these specifications, we aim for learning
the non-linear operator mapping

(26) c 7→ u(·, t).
where, by (10) and (11) u is given by

(27) u(x, t) = E

[
ϕ(Xx,t(T )) exp

(∫ T

t

c(Xx,t(s)) ds

)]
and

(28) Xx,t(s) = x+

∫ s

t

dW (r).

For fixed x ∈ R, we fit a neural network as introduced in Section 2 to learn the map
c 7→ u(x, t) on a compact subset K ⊂Wm,p. In our numerics, we let t = 0 and T = 1.

Instead of using data points {(ci, ui(x, t))}Mtrain
i=1 to train the neural network, we instead

fit a neural network to minimize the energy functional

(29) g 7→ E
[∫

W 1,2

|X (c)− g(c)|2µ(dc)
]
,

with X (c) given by

(30) X (c) := ϕ(Xx,t(T )) exp

(∫ 1

0

c(Xx,t(s)) ds

)
,

and where µ is a measure on K. This approach allows us to appeal to the Uniform Approx-
imation Theorem since we have continuity of the map c 7→ u(x, t). We refer to (Beck et al.
2021, Prop. 2.2) where this approach has been used first in the finite dimensional case, and
(Benth et al. 2024, Lem. 5.4) for its extension to infinite dimensional spaces.
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(a) (b)

Figure 1. First 5 basis functions e1, . . . , e5 (left) and 5 random samples of
c from K (right)

Recall from above the basis (ek)k∈N0
of Hermite functions for W 1,2. We choose the

compact set K ⊂W 1,2 by

K := {c ∈W 1,2; c =

5∑
k=1

aiei, ai ∈ [−5, 5]}.

We specify a uniform measure µ on K canonically from the classical uniform measure on
[−5, 5]5. and we trivially extend it to the whole space. In Figure 1 we show the first 5
basis vectors and 5 random samples from K (Note that the multiple occurrences of 5 is a
coincident and not intentional). We fit a Fréchet neural network as introduced in Section 2
with two layers and 15 nodes in each layer. For the activation function σ we follow Example
4.4 in Benth, Detering and Galimberti Benth et al. (2023) and specify σ(x) = β(ψ(x))z for a
ψ ∈ L(W 1,2,R), a vector z ∈W 1,2 and β is a real-valued Lipschitz continuous function on the
real line. In particular, we choose β(y) := max{0, 1−exp(−y)}, ψ(h) = a1 ·0.25+ . . . a5 ·0.25
for h =

∑∞
k=1 aiei and z = e1 + · · ·+ e5.

We build a training set of Mtrain = 5, 000, 000 datapoints by first sampling uniformly a
vector ci from K for i = 1 . . .Mtrain, and then, for each i, we make an independent draw
from the Brownian motion W appearing in (28). Based on this draw, we calculate

(31) X (ci) := ϕ(Xx,t(T )) exp

[∫ T

t

ci(Xx,t(s)) ds

]
.

for x ∈ {−1,−0.5, 0, 0.5, 1}. The set (ci,X (ci)) for i = 1, . . .Mtrain constitutes the training
set for each x ∈ {−1,−0.5, 0, 0.5, 1}. We train the neural network with 25 epochs and a
batch size of 10, 000. We denote the resulting neural network by N x

σ .
To test the accuracy of our network, we generate a test set of sizeMtest = 10, 000. For this,

we first randomly sample functions c̃i, i = 1, . . . ,Mtest from K. For each of these samples
we now calculate u(x, t, c̃i) for x ∈ {−1,−0.5, 0, 0.5, 1} based on Monte Carlo simulation
with 10, 000 paths. Note in passing that we include c̃i in the argument of u to emphasize
the dependency, slightly abusing the notation. We consider (c̃i, u(x, t, c̃i)), i = 1, . . . ,Mtest

as examples from the ground truth. Next, we calculate the mean square error of the neural
network predictions with respect to the ground truth given by

1

Mtest

Mtest∑
i=1

(Nσ(c̃i)− u(x, t, c̃i))
2.

In Table 1, first column, we list the mean squared error for the different values of x. In
Figure 2(a) we provide the resulting box plots and in Figure 3(a)- 3(e) the histograms of the
distributions of the errors Nσ(c̃i) − u(x, t, c̃i). We stress that we essentially fix 5 separate
neural networks for each x in this proof-of-concept case study.
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Next, for comparison, we fit a DeepONet structure to learn the map c 7→ u(t, x, c) via
minimizing the energy functional (29) based on the samples (ci,X (ci)) for i = 1, . . .Mtrain.
We use a 2-layer DeepONet with a branch net of 50 nodes and a trunk net of 50 nodes.
We choose a ReLU (rectified linear unit) activation function. The DeepONet has 6, 301
parameters, comparable to the number of parameters of our Fréchet network (6, 500 pa-
rameters). Because the DeepONet requires sampling of ci on a grid, we evaluate each
ci from the training set on an equally spaced grid {y1, . . . , y20} of size 20. The training
set for the DeepONet is composed of the set {((ci, xj), u(t, xj , ci))}i=1,...Mtrain,1≤j≤5 where
ci = (ci(y1), . . . , ci(y20)) and (x1, x2, x3, x4, x5) = (−1,−0.5, 0, 0.5, 1). We train the network
again with 25 epochs and a batch size of 10, 000. We denote the resulting neural network by
NDON

σ . Now we take the same test set as before and evaluate it on the grid, i.e., calculate
{((c̃i, xj), u(t, xj , ci))}i=1,...Mtest,1≤j≤5. The mean squared errors are presented in the right
column of Table 1. The error distributions are displayed as a box plot in Figure2(b) and as
histograms in Figures 3(f)-3(j).

Overall we observe an error of similar magnitude for both architectures. For all values of
x the mean square error is slightly lower for the Fréchet neural network, except for x = 0.5,
where it is lower for DeepONet. We further observe that the error distribution for the Fréchet
neural network is more symmetric while for DeepONet it is heavily skewed. We stress that
the DeepONet is basically trained on a training set 5 times larger than the training set
for the Fréchet neural network. This is due to the nature of DeepONet approximating
the map c 7→ u(t, ·, c), i.e., it learns the entire solution function u(t, ·, c). This requires
to feed in the argument x, at which u(t, ·, c) is to be evaluated, resulting in the training
set {((ci, xj), u(t, xj , ci))}i=1,...Mtrain,1≤j≤5. In contrast to Fréchet neural network which is
separately trained for each x ∈ {−1,−0.5, 0, 0.5, 1}, DeepONet can therefore make use of
information across different values of x in the learning process.

As evident from the theory covered in Section 2 and 3, it is possible to learn the entire
solution u(t, ·, c) with the Fréchet neural network structure. In fact, we know from Section
3 that the non-linear and continuous operator c 7→ u(t, ·, c) is a continuous operator from
Wm,p to C(K). Because C(K) naturally embeds continuously into L2(K), we can actually
see this operator as an operator fromWm,p to L2(K) where it is still continuous by composi-
tion. We can now choose any orthonormal basis in L2(K) to represent the solution u(t, ·, c).
For example if K = [0, 1]n, then we can use tensor products of sinus and cosinus functions.
We can compute these Fourier coefficients simply by evaluating numerical integrals, with-
out computing derivatives. With the Fourier coefficients and the sinus and cosinus basis
functions, structural information about the solution u(t, ·, c) could be used. We expect a
significant improvement in the learning for Fréchet neural networks in this case. We leave a
full scale numerical analysis of this approach for future research.

x Value Fréchet NN DeepONet
x = −1 0.011 0.047
x = −0.5 0.040 0.147
x = 0 0.061 0.069
x = 0.5 0.042 0.023
x = 1 0.016 0.033

Table 1. Mean Squared Error for various x values across two methods,
rounded to 10−3.

Overall the proof-of-concept case study presented here shows already that using the struc-
tural information, being the key in our proposed Fréchet neural network architecture, is
promising. We believe that our approach can be applied successfully in many situations
where an entire set of partial differential equations needs to be solved at once. For example,
in mathematical finance one is interested in pricing derivatives like options (see e.g. Björk
(2009)). With X being a model for the market and ϕ signifying the payoff function of a
derivative at time T , the price dynamics of the derivative can be described by u(t, x;ϕ)
with x = X(t). By learning the operator map ϕ 7→ u(t, x;ϕ), one has available a pricing
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(a) Box plot Error Distribution (Fréchet NN) (b) Box plot Error Distribution (DON)

Figure 2. Box plots of the error distributions. The left figure shows the
result from the Fréchet neural network, and the right figure the results with
DeepONet.

(a) x = −1 (b) x = −0.5 (c) x = 0 (d) x = 0.5 (e) x = 1

(f) x = −1 (g) x = −0.5 (h) x = 0 (i) x = 0.5 (j) x = 1

Figure 3. Comparison of error distributions for various values of x. The
first row shows the result from the Fréchet neural network, and the second
row shows the results with DeepONet.

generator for such derivatives and portfolios thereof. The function c is mapping the mul-
tivariate process X into an interest rate dynamics in such a context, and from derivatives
prices one can consider the inverse problem of re-constructing c from data. Having access
to the operator map (ϕ, c) 7→ u(t, x;ϕ, c) and its structural representation provides a tool
for solving this problem. Moreover, we can price portfolios of derivatives after learning the
operator map. A damped L2-space is an appropriate space for payoff functions, i.e., L2(w)
with w(dx) = exp(−x2)dx. Another important problem in option theory is computing the
implied volatility. This entails in recovering the covariance function a (the matrix specifying
the elliptic operator in (9)) from knowing the prices, given by u. I.e., this is the inverse
problem for the operator map a 7→ u(t, x; a). If one is able to specify a suitable space for a
as well as showing continuity of the operator map, we can use our framework for this task.

Random parabolic partial differential equations is another avenue of applications of our
operator-learning methodology (see e.g. Nabian & Meidani (2019), who propose a deep
neural network architecture to solve high-dimensional random partial differential equations).
If one or more of the parameter functions ϕ, c or f are random, by knowing the operator
(ϕ, c, f) 7→ u(t, x;ϕ, c, f) we can efficiently sample from the solution u by drawing random
samples of the input functions. By representing both the input functions and the output
map in terms of their basis functions, we are indeed sampling the loadings of the basis
expansion of the input, and using the learned network for the output loadings. We believe
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this is a fruitful approach for uncertainty quantification, in particular for high dimensional
problems.

References

Adams, R. & Fournier, J. (2003), Sobolev Spaces, ISSN, Elsevier Science.
URL: https://books.google.de/books?id=R5A65Koh-EoC

Anandkumar, A., Azizzadenesheli, K., Bhattacharya, K., Kovachki, N., Li, Z., Liu, B. &
Stuart, A. (2019), Neural operator: Graph kernel network for partial differential equa-
tions, in ‘ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations’.
URL: https://openreview.net/forum?id=fg2ZFmXFO3

Beck, C., Becker, S., Grohs, P., Jaafari, N. & Jentzen, A. (2021), ‘Solving the Kolmogorov
PDE by means of deep learning’, Journal of Scientific Computing 88(3).
URL: http://dx.doi.org/10.1007/s10915-021-01590-0

Beck, C., Hutzenthaler, M., Jentzen, A. & Kuckuck, B. (2023), ‘An overview on deep
learning-based approximation methods for partial differential equations’, Discrete and
Continuous Dynamical Systems, Series B 28(6), 3697–3746.

Benth, F. E., Detering, N. & Galimberti, L. (2023), ‘Neural networks in Fréchet spaces’,
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