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Abstract

We study a setting where agents use no-regret learning algorithms to participate in
repeated auctions. Kolumbus and Nisan (2022a) showed, rather surprisingly, that
when bidders participate in second-price auctions using no-regret bidding algo-
rithms, no matter how large the number of interactions T is, the runner-up bidder
may not converge to bidding truthfully. Our first result shows that this holds for
general deterministic truthful auctions. We also show that the ratio of the learn-
ing rates of the bidders can qualitatively affect the convergence of the bidders.
Next, we consider the problem of revenue maximization in this environment. In
the setting with fully rational bidders, Myerson (1981) showed that revenue can
be maximized by using a second-price auction with reserves. We show that, in
stark contrast, in our setting with learning bidders, randomized auctions can have
strictly better revenue guarantees than second-price auctions with reserves, when
T is large enough. Finally, we study revenue maximization in the non-asymptotic
regime. We define a notion of auctioneer regret comparing the revenue generated
to the revenue of a second price auction with truthful bids. When the auctioneer
has to use the same auction throughout the interaction, we show an (almost) tight
regret bound of Θ̃(T 3/4). If the auctioneer can change auctions during the interac-
tion, but in a way that is oblivious to the bids, we show an (almost) tight bound of
Θ̃(

√
T ).

1 Introduction

In auction design, truthfulness is a highly sought-after property. It allows bidders to simply reveal
their true valuations, simplifying the bidding process. In the standard single item setting with fully
rational profit-maximizing bidders, Myerson’s seminal paper Myerson (1981) shows that an auction-
eer can achieve optimal revenue by using a truthful and deterministic auction mechanism – a Second
Price Auction (SPA) with a reserve price.

In many applications nowadays, buyers no longer bid directly in the auction but, instead, use learning
algorithms to bid on their behalf. For example, in online advertising, platforms offer automated bid-
ding tools that manage ad campaigns on behalf of advertisers. Such bidders learn to bid over many
rounds and are not fully rational. In a surprising result, Kolumbus and Nisan (2022a) show that some
appealing properties of second-price auctions break down in the presence of such learning bidders.
In particular, when (profit-maximizing) bidders use no-regret learning algorithms, the second-price
auction does not achieve as much revenue as with fully rational bidders. Indeed, bidders do not learn
to bid their value, and consequently, the runner-up bidder’s bid is less than their value with positive
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probability, which diminishes the second price auction’s revenue. Moreover, Kolumbus and Nisan
(2022b) show that for a setting where rational agents are using learning algorithms to bid, then it is
no longer optimal to truthfully submit their value as the input to the learning algorithm. This raises
a crucial question: are there truthful auctions that promote convergence to the true valuations within
a learning environment, and can they also guarantee strong revenue performance?

In this paper we provide an affirmative answer to this question. In doing so, we also showcase the
value of randomized mechanisms — often overlooked in settings with profit-maximizing bidders —
for environments where bidders are learning agents. While randomization introduces inherent inef-
ficiencies due to allocations to low-valuation bidders, this very behavior facilitates learning among
low-valuation bidders. A revenue-maximizing auctioneer must now carefully balance the random-
ization within a truthful mechanism to incentivize learning without incurring excessive revenue loss
due to mis-allocation.

We build our theory based on the model presented by Kolumbus and Nisan (2022a). We consider
single-item repeated interactions over T periods. There are two profit-maximizing bidders partici-
pating in the auctions, with valuations that are drawn independently from the same distribution, and
fully persistent over time. This assumption is motivated by online ad auctions, where multiple auc-
tions are taking place every second, and the valuations of the advertisers remain stable for certain
time scales, e.g., a day or a week. Thus, there is typically a very large sequence of auctions where
the valuations of the participating agents are persistent. Bidders use mean-based no-regret learn-
ing algorithms (Braverman et al., 2018) and receive full feedback on which they base their updates.
(Many of our results extend immediately to multiple bidders. We discuss other extensions, such as
the partial feedback settings, in Appendix G.) The auctioneer focuses on truthful auctions, and their
objective is to maximize the total revenue they achieve over the T rounds of interaction. Our results
are the following:

1.1 Our Results and Techniques

Limitations of Deterministic Auctions. Our first set of results (in Section 3) characterize the con-
vergence of learners who are using Multiplicative Weights Update (MWU) in repeated deterministic
auctions. In particular, we show the following sharp phase transition:

• If the learning rate of the winning type is at least as fast as the learning rate of the runner-up
type, then the runner-up type will not converge to bidding truthfully, even as T → ∞; in
fact, it will be bidding strictly below its true value, in expectation.

• On the other hand, we show that in many auctions, such as SPA, if the learning rate of the
runner-up type is strictly faster than that of the winning type, then the runner-up type will
indeed converge to truthful bidding.

These generalize the results of Kolumbus and Nisan (2022a) who showed that in SPA, when bidders
are using MWU with the same learning rate, then the low type will not converge to bidding truthfully.
The main challenges to proving this set of results arise from our study of general deterministic auc-
tions, which have less structure than second-price auctions. Indeed, small differences in the learning
rates can affect the landscape qualitatively, as is manifested from our results. Moreover, while the
auctions are deterministic, the learning algorithms are randomized and highly correlated. Hence our
approach is to break down the interaction into several epochs and establish some qualitative proper-
ties which hold, with high probability, at the end of each epoch. This requires a careful accounting of
the cumulative utility of each bid of both bidders within every epoch; in particular, if our estimation
is off by even some ω(1) term, then it will not be sufficient to establish our result.

Strictly-IC Auctions and the Power of Randomized Mechanisms. The results in Section 3 show
that since the low valuation bidder tends to underbid, an auctioneer using SPA with reserve makes
strictly less revenue than that predicted by the model with rational agents. Motivated by this, we
consider a special class of randomized auctions called strictly-IC auctions. These are randomized
truthful auctions where for each bidder, it is strictly better to bid their true valuation compared to any
other bid. We show that any strictly-IC auction is asymptotically truthful: that is, the limit point of
the bidder’s bid converges to their true value. Furthermore, we provide a black-box transformation
from any truthful auction A (deterministic or not) to a randomized auction A′ that has the following
two properties: (i) the bidders converge towards truthful bidding, and (ii) the difference between
the allocation and payment rules of the original auction A and its strictly-IC counterpart A′ are
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negligible for any bid profile. Hence, such an auction A′ behaves similarly to A, but, crucially, it
conveys information to the low bidder to help it converge to truthful bidding. As a corollary of this
result, we get that SPA with reserve is not revenue-maximizing in this setting, and that randomization
can get strictly more revenue than SPA with reserve. This is in stark contrast with the seminal result
of Myerson (1981) which shows that SPA with reserve is optimal for rational bidders.

At a more conceptual level, our results for randomized mechanisms can be viewed as showing that
having enough randomness is key to the low bidder converging to truthful bidding: this randomness
can come from the process itself, e.g., if bidder values are independently drawn in each round, as
in Feng et al. (2021). But if not, and if the ranking of the bidders does not change much due to the
lack of inherent randomness, our results show that injecting external randomness into the auction
induces the desired learning behavior and hence improves the revenue. Having persistent valuations
is just one case of the ranking of the bidders remaining stable over time: studying this case allows
us to showcase our main ideas, but a central message of our work is that the presence or absence
of stability in the rankings of the bidders is the main factor that dictates convergence to truthful
bidding.

A Non-Asymptotic Analysis. Our next set of results in Section 5 address the non-asymptotic regime.
Here we consider the prior-free setting, meaning that the valuations of the bidders could be drawn
from potentially different distributions that are unknown to the auctioneer. In order to evaluate
its revenue performance when bidders are learning agents, we introduce the notion of auctioneer
regret for an auction, which measures the difference between the revenue achieved over T rounds of
implementing a given auction with learning bidders and the revenue achieved by implementing the
optimal auction with rational bidders (i.e., SPA with a reserve price). Proposition 5.2 shows that if
the auctioneer is constrained to use the same auction rule for all T rounds, then no truthful auction —

deterministic or randomized — can achieve an auctioneer-regret better than Õ(T 3/4) in the setting
of adversarial valuations. However, if the auctioneer can change the auction rule just once within the
T rounds, with the change happening at a time independent of the bid history, then the auctioneer’s

regret drops to Õ(
√
T ), as we show in Section 5 Moreover, we show in Proposition 5.4 that this

bound of Õ(
√
T ) is optimal even if the auctioneer can design the auction schedule. As a byproduct

of our result, we show that the first-stage randomized auction used by the mechanism leads to the
fastest convergence to truthful bidding from no-regret learning agents.

To show that an auctioneer facing learning bidders using MWU must suffer an Ω(T 3/4) revenue
loss compared to the setting when it is facing rational agents, we break down the revenue loss into
two non-overlapping epochs: one where the learning bidders have not converged to truthful bidding,
and the other where the bidders are truthful. Now an auctioneer using the same auction throughout
the interaction faces a trade-off: they can speed up the learning process to reduce the revenue loss
from the first epoch, but this loses revenue in the second epoch due to the fact that the auction now

differs significantly from SPA. Our result optimizes this trade-off to show that an Ω(T 3/4) revenue
loss is unavoidable. This naturally suggests decomposing the interaction into two epochs: in the first
one, the auctioneer uses a truthful auction to facilitate the convergence to truthful bidding, and in the
second one it uses SPA. We then design an auction that guarantees the fastest convergence to truthful
bidding for mean-based learners in the prior-free setting, and we show that an improved revenue loss

of at most Õ(
√
T ) can be achieved with this approach. (Importantly, to maintain truthfulness, the

decisions of the auctioneers are fixed before the beginning of the interaction and are not affected by

the bids.) This regret of Õ(
√
T ) seems surprising, because in traditional no-regret learning settings

the optimal regret is achieved when the exploration and exploitation phase are intermixed.

1.2 Related Work

The most closely related works to our setting are Feng et al. (2021); Deng et al. (2022);
Kolumbus and Nisan (2022a); Banchio and Skrzypacz (2022); Rawat (2023). All these works study
the long-term behavior of bidding algorithms that participate in repeated auctions, focusing on first-
price and second-price auctions, but they give qualitatively different results. This is because they
make different assumptions across two important axes: the type of learning algorithms that the bid-
ders use and whether their valuation is persistent across the interaction or it is freshly drawn in each
round. Feng et al. (2021) studied the convergence of no-regret learning algorithms that bid repeat-
edly in second-price and first-price auctions, where all agents have i.i.d. valuation that are redrawn in
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every round from a discrete distribution that has non-negligible mass on each point. They show that
in this setting the bidders exhibit the same-long term behavior in both second-price and first-price
auctions that classical theory predicts, i.e., the bids in second-price auctions are truthful and the bids
in first-price auctions form Bayes-Nash equilibria. Kolumbus and Nisan (2022a) studied the same
setting with the crucial difference that agents’ valuations are persistent across the execution and they
are not resampled from some distribution at every iteration. Interestingly, they showed that in the
case of two bidders with in second-price auctions, the agent that has the highest valuation will end
up bidding between the low valuation and its valuation, whereas the agent with the low type will end
up bidding strictly below its valuation. Intuitively, in their setting the high type bidder quickly learns
to bid above the valuation of the low type bidder and always win the auction, and thus the low type
does not get enough signal to push its bid distribution up to its valuation. On the other hand, when
the valuations are redrawn as in Feng et al. (2021), the competition that the agents face varies. In
the long run, this gives enough information to the algorithms to realize that bidding truthfully is the
optimal strategy. In the case of first-price auctions where the agents have persistent valuations, both
Kolumbus and Nisan (2022a); Deng et al. (2022) provide convergence guarantees of no-regret learn-
ing algorithms. The type of “meta-games” we touch upon in our work, where we want to understand
the incentives of the agents who are submitting their valuations to bidding algorithms that partici-
pate in the auctions on the behalf of these agents, were originally studied by Kolumbus and Nisan
(2022a) and, subsequently, for more general classes of games by Kolumbus and Nisan (2022b).

The pioneering work of Hart and Mas-Colell (2000) showed that when players deploy no-regret
algorithms to participate in games they converge to coarse-correlated equilibria. Recently, there has
been a growing interest in the study of no-regret learning in repeated auctions. The empirical study of
Nekipelov et al. (2015) showed that the bidding behavior of advertisers on Bing is consistent with the
use of no-regret learning algorithms that bid on their behalf. Subsequently, Braverman et al. (2018)
showed, among other things, that when a seller faces a no-regret buyer in repeated auctions and can
use non-truthful, it can extract the whole welfare as its revenue. A very recent work (Cai et al., 2023)
extended some of the previous results to the setting with multiple agents. For a detailed comparison
between our work and Cai et al. (2023), we refer to Appendix B.

Banchio and Skrzypacz (2022); Rawat (2023) diverge from the previous works and consider agents
that use Q-learning algorithms instead of no-regret learning algorithms. Their experimental findings
show that in first-price auctions, such algorithmic bidders exhibit collusive phenomena, whereas they
converge to truthful bidding in second-price auctions. One of the main reasons for these phenomena
is the asynchronous update used by the Q-learning algorithm. The collusive behavior of such algo-
rithms has also been exhibited in other settings (Calvano et al., 2020; Asker et al., 2021, 2022b;
den Boer et al., 2022; Epivent and Lambin, 2022; Asker et al., 2022a). Notably, Bertrand et al.
(2023) formally proved that Q-learners do collude when deployed in repeated prisoner’s dilemma
games.

In a related line of work, Zhang et al. (2023) study the problem of steering no-regret learning agents
to a particular equilibrium. They show that the auctioneer can use payments to incentivize the
algorithms to converge to a particular equilibrium that the designer wants them to. An interpretation
of our results is that randomization is a way to achieve some kind of equilibrium steering in repeated
auctions.

Diverging slightly from the setting we consider, some recent papers have illustrated different ad-
vantages of using randomized auctions over deterministic ones. Mehta (2022); Liaw et al. (2023)
showed that there are randomized auctions which induce equilibria with better welfare guarantees
for value-maximizing autobidding agents compared to deterministic ones. In the setting of revenue
maximization in the presence of heterogeneous rational buyers, Guruganesh et al. (2022) showed
that randomization helps when designing prior-free auctions with strong revenue guarantees, when
the valuations of the buyers are drawn independently from, potentially, non-identical distributions.

2 Model

Our model follows the setup used in Kolumbus and Nisan (2022a). There are T rounds, and the auc-
tioneer sells a single item in each round t = 1, . . . , T . There are two bidders, with bidder i ∈ {1, 2}
having a persistent private valuation vi drawn i.i.d. over the discrete set B∆ := {0, 1/∆, 2/∆, . . . , 1}
from a regular distribution F . (A discrete distribution is regular if the discrete virtual valuation
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function φ(v) := v− 1
∆

∑
v′>v Pr[v′]

Pr[v] is non-decreasing.) Given an allocation probability x and price

p, the bidder with valuation v receives a payoff of v · x − p. In what follows, we refer to the bidder
with valuation vL = min{v1, v2} (resp. vH = max{v1, v2}) as the low type (resp. high type).

We are interested in truthful auctions, (also called strategy-proof auctions, or dominant-strategy
incentive-compatible mechanisms) that are individually rational, so that at every round t the auction-
eer uses a mechanism ((xt

1, x
t
2), (p

t
1, p

t
2)) satisfying

vi · xt
i(vi, b

′)− pti(vi, b
′) ≥ vi · xt

i(b, b
′)− pti(b, b

′), ∀vi, b, b′ ∈ B∆, i = 1, 2 ,

vi · xt
i(vi, b

′)− pti(vi, b
′) ≥ 0, ∀vi, b′ ∈ B∆, i = 1, 2 .

In this work, we study various properties of randomized truthful auctions.

Definition 2.1 (Randomized Truthful Auction). A truthful auction ((x1, x2), (p1, p2)) is randomized
if there is some bid profile (b1, b2) ∈ B∆ such that either x1(b1, b2) ∈ (0, 1) or x2(b1, b2) ∈ (0, 1).

Bidders employ learning algorithms that bid over the T rounds. We assume that the learning al-
gorithms are mean-based no-regret learning algorithms (Braverman et al., 2018). For the following

discussion, define U t
i (b | bt

−i) :=
∑t

τ=1 vi · xτ
i (b, b

τ
−i)− pτi (b, b

τ
−i) to be the cumulative reward of

agent i when they bid b over the t rounds, whereas the other agent’s bids are bt
−i = {bτ−i}τ∈[t]. The

mean-based property states that if a bid b ∈ B∆ has performed significantly better than bid b′ ∈ B∆,
then the probability of bidding b′ in the next round is negligible. This is formalized below.

Definition 2.2 (Mean-Based Property (Braverman et al., 2018)). An algorithm for agent i is δ-mean-

based if for any bid sequence b
t
−i such that U t−1

i (b | bt
−i) − U t−1

i (b′ | bt
−i) > δ · T , for some

b, b′ ∈ B∆, the probability of playing bid b′ in the next round is at most δ. We say that an algorithm
is mean-based if it is δ-mean-based for some δ = o(1).

The no-regret learning property states that the cumulative utility that the bidding algorithm gen-
erates is close to the cumulative utility that the optimal fixed bid would have generated, regard-
less of the history of bids the other bidders played. This is formalized in Definition C.1. Mean-
based no-regret learning algorithms are becoming a standard class of learning algorithms to use
in auction environments (see, e.g., Braverman et al. (2018); Feng et al. (2021); Deng et al. (2022);
Kolumbus and Nisan (2022a), and references therein) and include many known no-regret learning
algorithms, including the multiplicative-weights update algorithm (MWU). For completeness, we
present the version of MWU that we use in our work in Algorithm 1. The above definitions consider
a fixed value of T. Thus, given a sequence of such values T and the limiting behavior as T → ∞,
we say that a family of algorithms, parameterized by the time horizon T , satisfies the mean-based
definition if there exists {δT }T∈N such that δT →T→∞ 0, and each algorithm in this family is δT -
mean-based. We define the no-regret property of such a family of algorithms in a similar way. In
general, the asymptotic behavior of the algorithms we study in this work is with respect to T and the
big O notation suppresses quantities that do not depend on T.

For the sake of exposition, we focus on the full feedback setting: after every round t ∈ [T ], the
algorithm learns for each bid b ∈ B∆ the (expected) utility it would have generated had it played
bid b. In Appendix G, we discuss potential extensions.

Throughout this paper we make a natural assumption on the algorithms which restrict bidders to
never bid over their value. Specifically, for any round t, and any history of bids before period
t, agent i bids bi > vi with zero probability. Without this assumption, Braverman et al. (2018);
Cai et al. (2023) show that the auctioneer can extract the entire welfare in the setting where the
valuations of the agents are drawn i.i.d. in each round. We focus on the last-iterate convergence of
the distribution of the bids of the algorithms as T → ∞. This is a desirable property of algorithms in
multi-agent games, and recent work has focused on establishing it for learning algorithms (Cai et al.,
2022b,a; Cai and Zheng, 2022). This is formalized in Definition C.2.

Due to space limitations, all the proofs of our results can be found in the appendix.

3 Deterministic Truthful Auctions

In this section we study the effect of the learning rate on the convergence of no-regret learning
algorithms in non-degenerate deterministic truthful auctions. Informally, the non-degeneracy re-
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quirement states that i) the winning bidder W under truthful bidding gets strictly positive utility, ii)
there is some sufficiently small bid of the winning bidder such that the runner-up bidder R wins
the item by bidding vR but does not win by bidding vR − 1/∆. The formal definition is given in
Definition D.1. We focus our attention to bidders that use MWU to participate in the auctions and
we study the bidding distribution they converge to as a function of the ratio of the learning rate of
their algorithms. Throughout this section we refer to the bidder who wins the auction under truth-
ful bidding as the winning bidder and to the bidder that loses the auction under truthtelling as the
runner-up bidder. Our main result in this section shows the following behavior in non-degenerate
deterministic truthful auctions:

• The winning bidder converges to bidding between its minimum winning bid and its true
value, no matter what the choice of the learning rates of the algorithms are.

• If the learning rate of the runner-up bidder is strictly faster than the learning rate of the
winning bidder, then the runner-up bidder converges to bidding truthfully.

• If the learning rate of the runner-up bidder is not strictly faster than that of the winning
bidder, then the runner-up bidder converges to a bidding distribution whose mean is strictly
smaller than its true value. This result holds under an even milder requirement than non-
degeneracy. Namely, as long as the utility of the winning bidder under truthful bidding is
strictly positive.

We remark that, when the learning rates of the algorithms are instantiated before the random draw
of the two valuations of the agents that are i.i.d. from some distribution F , then with probability at
least 1/2 the runner-up bidder will not converge to bidding truthfully, if the underlying auction is
deterministic. As we will show later, this behavior worsens the revenue guarantees of the auction.

Let us first set up some notation to facilitate our discussion. We denote by vW ∈ {vL, vH} and ηWT
(resp., vR ∈ {vL, vH}, and ηRT ) the value and learning rate of the winning bidder (i.e., the one who
wins if both bidders bid truthfully) and the runner-up bidder, respectively. We would like to remind
the readers that, typically, the learning rate ηT of MWU is a decreasing function of T and is chosen
in a way to minimize the quantity C∆/ηT +C′

∆ · ηT ·T , where C∆, C
′
∆ are discretization-dependent

constants. Usually, it is instantiated with ηT = 1/
√
T . However, for the purposes of our analysis we

will say that ηT is non-degenerate if limT→∞ ηT · T = ∞, limT→∞ ηT · logT = 0 . The intuition
is that if the learning rate is slower than 1/T, the bidder will be adjusting its bid distribution very
slowly, so it will not learn to bid correctly. On the other hand, if the rate is faster than 1/ logT then
the bidder will be adjusting its distribution too aggressively.

Our results show that in deterministic auctions the convergence behavior of the bidders depends
heavily on the ratio between the learning rates. In particular, for the bidder with valuation vW ,
we show that its bids converge to a distribution supported between p̂, the price it would pay if both
bidders bid truthfully, and its value vW , no matter what the choice of the learning rate of its algorithm
is. On the other hand, the convergence behavior of the runner-up bidder is more nuanced: if ηR

T/ηW
T =

ω(1), i.e., the runner-up bidder learns more aggressively than the winning bidder, then it converges to

bidding truthfully. However, if ηR
T/ηW

T < C∆, where C∆ is some discretization-dependent constant,
then the runner-up converges to a bidding distribution that puts positive mass on every (discretized)
point between 0 and vR, and, in particular, its expected value is strictly less than vR. We remark
that even though our proof idea is inspired by Kolumbus and Nisan (2022a), our analysis considers
all the possible learning rates that MWU could be instantiated with and requires a more technically
involved argument. In particular, we notice that while the result of Kolumbus and Nisan (2022a) is,
implicitly, proved for identical learning rates, we show that the choice of the learning rate affects
the qualitative behavior of the algorithms in a crucial way.

We prove this result in two parts. We start with the case where ηR
T/ηW

T < C∆. The idea of the
proof is to split the horizon into consecutive periods of size O(1/ηRT ), which we call epochs. Now
following the idea of Kolumbus and Nisan (2022a), we show that within each epoch the runner-up
bidder bids truthfully Ω(1/ηWT ) many times, so the total utility of the winning bidder for bidding

between p̂ and vW will be at least Ω(1/ηWT ) greater than bidding anything between 0 and p̂− 1/∆.
Because its learning rate is ηWT , this means that it will move a constant fraction of its mass from
the region {0, 1/∆, . . . , p̂ − 1/∆} to the region {p̂, . . . , vW }. Summing this geometric series, we
see that the winning bidder will submit bids in the region {0, 1/∆, . . . , p̂− 1/∆} at most O(1/ηWT )
many times. Let us now focus on the runner-up bidder. Following the previous argument, its total
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utility for bidding vR will be at most O(1/ηWT ) greater than bidding some other bid b′ ∈ B∆.
Since ηRW /ηWT < C, this means the probability of bidding b′ after T rounds is only smaller than
the probability of bidding vR by a discretization-dependent multiplicative constant. The formal
statement of this result and its proof follow are postponed to Appendix D.

Our next result illustrates that the convergence behavior of the runner-up type exhibits a sharp phase-
transition phenomenon: if ηRT is even slightly faster than ηWT , i.e., η

R
T/ηW

T = ω(1), then the runner-up
will learn to bid truthfully. Let us first give a high-level idea of the proof. Similarly as before, we
split the horizon into intervals of size O(1/ηWT ). We consider the first interval of this interaction.
Because of the choice of the learning rate, we can show that the winning bidder will bid vR − 1/∆
at least Ω(1/ηWT ) many times. Thus, this means that the total utility of bidding vR for the runner-up

bidder will be at least Ω(1/ηWT ) greater than bidding any other bid. Since ηRT /η
W
T = ω(1), after the

first epoch the MWU algorithm will place all but a o(1)-fraction of the probability mass to bidding
truthfully. The formal statement and its proof appear in Appendix D.

Next, we discuss the implications that our results have to the revenue guarantees of the auction-
eer. In the setting with rational bidders, the seminal work of Myerson (1981) showed that using
second-price auctions with an anonymous reserve price, which depends on the value distribution F ,
generates the optimal revenue for the auctioneer. Our next result shows that this is no longer true
when the bidders are learning agents, even when the valuations of the agents are drawn i.i.d. from
the uniform distribution on B∆, which we denote by U [B∆]. Intuitively, this happens because, no
matter what the reserve price is, with some non-zero probability the valuations of both agents will
be higher than the reserve price. Then, since the runner-up bids will be strictly lower than the true
valuation, the generated revenue will be strictly lower than in the setting with rational agents, even
when T → ∞.

Theorem 3.1 (SPA with Reserve Is Not Revenue Optimal). Let two agents draw their valuations
from the uniform distribution over U [B∆] and participate in T repeated auctions using mean-based
learners. Let bT1 , b

T
2 be the bid distributions after T rounds. Let Rev(b1, b2; r) denote the revenue

of the second-price auction with reserve price r when the bids are b1, b2 ∈ B2
∆. Then, for all

r < 1− 1/∆,

E
v1,v2∼U [B∆]

[
lim

T→∞
E

b1∼bT1 ,b2∼bT2

[Rev(b1, b2; r) | v1, v2]
]
< E

v1,v2∼U [B∆]
[Rev(v1, v2; r)] − c ,

where c > 0 is some constant that does not depend on T.

4 The Value of Randomized Truthful Auctions: The Asymptotic Case

In this section we show that there is a class of randomized auctions such that when mean-based
no-regret learners participate in them repeatedly, they converge to truthful bidding. This holds for
any choice of the learning rates of these algorithms, which is in contrast to the results of Section 3.
We start by defining a class of auctions called strictly IC.

Definition 4.1 (Strictly IC Auctions). An auction is called strictly IC if for every bidder i ∈ [n],
valuation vi ∈ B∆, and bid profile b−i ∈ Bn−1

∆ it holds that vi · xi(vi, b−i) − pi(vi, b−i) >
vi · xi(b, b−i)− pi(b, b−i), ∀b 6= vi .

The next result, which is very useful for our derivation, states that when mean-based no-regret
learning algorithms bid in some strictly IC auction they converge to bidding truthfully. Recall the
definition of a mean-based learner (cf. Definition 2.2) which states that if the cumulative utility
of some bid b up until round t − 1 is much smaller than the utility of some other bid b′, then the
probability of playing b in the next round t is negligible. The proof is postponed to Appendix E.

Lemma 4.2 (Convergence in Strictly IC Auctions). Consider n bidders that participate in a re-
peated strictly IC auction A using mean-based no-regret learning algorithms. Then, as T → ∞, the
bidders converge to truthful bidding in a last-iterate sense.

The next important observation is that when we are taking a non-trivial combination of an IC auction
with a strictly IC auction, the resulting auction is strictly IC. The notion of mixture we consider is
formalized in Definition 4.3.
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Definition 4.3 (Mixture of Auctions). Let A = (x(·), p(·)) be an IC auction and A′ = (x′(·), p′(·))
be a strictly IC auction. For some q ∈ (0, 1) we define the q-mixture of the auctions A,A′ to the be

auction Ãq = (q · x(·) + (1 − q) · x′(·), q · p(·) + (1− q) · p′(·)) .

Notice that for the allocation rule q ·x(·)+(1−q) ·x′(·) Myerson’s lemma states that the correspond-
ing payment rule that makes the auction truthful is indeed q · p(·) + (1 − q) · p′(·). The following
claim, whose proof follows from the definition of this class of auctions, formalizes the fact that the
class of strictly IC auctions is closed under mixtures with IC auctions.

Claim 1 (Mixture of IC and Strictly IC Auction). Let A,A′ be an IC, strictly IC auction, respectively.
Then, for any q ∈ (0, 1) the auction q · A+ (1− q) ·A′ is strictly IC.

We remark that we can construct strictly IC auctions using randomization; such an example is pre-
sented in Section 5. Equipped with the above results, we can show that there is a black-box trans-
formation from any IC auction A to a strictly IC auction A′ so that as T → ∞, any mean-based
learning algorithms converges to truthful bidding, and the auction A′ is close to the auction A in the
sense that |xi(b)− x′

i(b)| = o(1), |pi(b)− p′i(b)| = o(1), ∀i ∈ [n], ∀b ∈ Bn
∆. The formal statement

of the result follows.

Theorem 4.4. Let A be an IC auction for n agents with valuations v1, . . . , vn. Let each agent
i ∈ [n] use a mean-based no-regret learning algorithm to bid in the auction. Then, there exists an
auction A′ such that for each agent i ∈ [n] we have that limT→∞ bTi = vi and |xi(b) − x′

i(b)| =
o(1), |pi(b) − p′i(b)| = o(1), ∀b ∈ Bn

∆, where xi(·), x′
i(·) (resp. pi(·), p′i(·)) is the allocation (resp.

payment) rule of A,A′.

Equilibria of Meta-Game in Repeated Strictly IC Auctions We now describe the implications that
our results have for the meta-game that we alluded to in Section 1. Recall that this game is defined
as follows: the agents submit their valuations to mean-based no-regret learning algorithms and then,
given these fixed valuations, they bid on the behalf of the agents in a repeated truthful auction A.
The main question we are interested in understanding is given the specification of the auctions and
the valuations of the agents, what is the optimal value they should submit to the algorithms in order
to maximize their utility, after a large number of steps?

Despite the fact that A is IC and IR, Kolumbus and Nisan (2022a) showed that, rather surprisingly,
when two agents use MWU to participate in repeated second price auctions there are instances where
the agent with the low valuation has an incentive to report a higher value to its algorithm than its
true one. This is because the valuation reported by one agent affects the bidding distribution that
the other agent will converge to. To illustrate this point, assume that the low type reports v′L > vH
to its bidding algorithm. Then, the bidder with type vH will take the role of the low bidder in the
interaction and will converge to bidding strictly below vH . Now if its expected bid is also below
vL, this will generate strictly positive utility for its opponent. Using our previous construction from
Theorem 4.4 and transforming the auction A to a strictly IC auction A′, we can show that in the
new meta-game every agent can gain at most o(1) more utility in the long run by misreporting to
the algorithm than reporting its true valuation. The reason why we observe a qualitatively different
behavior in our construction is that every algorithm converges to bidding its reported value, no matter
what the reported values of the other agents are. Due to space constraints, we refer the interested
reader to Appendix E

Revenue Maximization in the Learning Setting In this section, we illustrate another application
of Theorem 4.4 to revenue maximization in the learning setting. We are interested in auctions with
strong revenue guarantees when the bids are coming from the limiting distribution of the algorithms,
as T → ∞. This has the additional complication that not only do agents draw their valuations
from the distribution F, but also their bids come from the limiting distribution that the algorithms
converge to, as T → ∞. As we have seen already, this distribution depends on the valuation reported
to the algorithm, the particular mean-based algorithm that it is using, and, potentially, the reported
valuations and the algorithms of the opposing bidders.

As we explained in Section 3, second price auctions with reserves have strictly worse revenue guar-
antees in the setting with learning bidders compared to the setting with rational bidders. Using our
transformation described in Theorem 4.4 we can restore their revenue guarantees. The following
result whose formal proof is deferred to Appendix E is, essentially, a corollary of Theorem 4.4. Let
us denote by Rev(A; b1, . . . , bn) the revenue of some auction A and by Rev(Myerson; b1, . . . , bn)
the revenue of Myerson’s optimal auction for F, where the bid profile is b1, . . . , bn ∈ Bn

∆.
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Corollary 4.5. Consider an environment with n agents that draw their values i.i.d. from some
regular distribution F and participate in repeated single-item auctions using mean-based no-regret
learning algorithms. Then, there is a randomized auction A so that

E
v1,...,vn∼Fn

[
lim

T→∞
E

b1∼bT1 ,...,bn∼bTn

[Rev(A; b1, . . . , bn)]

∣∣∣∣ v1, . . . , vn
]

≥ E
v1,...,vn∼Fn

[Rev(Myerson; v1, . . . , vn)]− o(1).

Given the results from Theorem 3.1 and Corollary 4.5 we would like to remark the following.

Remark 1 (Randomized Auctions vs. SPA with Reserve). Our results illustrate that randomized
auctions have strictly better revenue guarantees compared to SPA with reserve price, when the bid-
ders are using mean-based no-regret learning algorithms. This is a property of randomized auctions
that is not witnessed in the setting where the bidders are fully rational, as proven by Myerson (1981).

5 Revenue Maximization in the Finite Time Horizon Setting

So far, we have focused on the asymptotic regime and we have studied the convergence of the
learning bidders under various auctions. In this section, we study the finite-horizon setting, where
our goal is to come up with auctions that have strong revenue guarantees for the auctioneer. We focus
on the prior-free setting, meaning that the auctioneer does not have any distributional knowledge
about the valuation of the agents. Similarly to the rest of the paper, we assume that the two buyers are
using mean-based no-regret learning algorithms to participate in single-item auctions for T rounds.
Since we are working on the prior-free setting, it is natural to compete with the cumulative revenue of
the second-price auction. The goal of the auctioneer is to choose an auction in a way that minimizes

R̃egT (A; vL, vH) =

T∑

t=1

Rev(vL, vH ; SP)−E

[
T∑

t=1

Rev(btL, b
t
H ;A)

]
,

where the expectation is taken with respect to the randomness of the learning algorithms and, poten-
tially, the auction. We will refer to this benchmark as the auctioneer regret. One quantity that will
be useful for the derivation of our results is the following

γA = min
i∈{1,2},bi,b−i,vi∈B3

∆
:bi 6=vi

{(vi · xi(vi, b−i)− pi(vi, b−i))− (vi · xi(bi, b−i)− pi(bi, b−i))} ,

i.e., the minimum increase in the utility by bidding truthfully instead of bidding non-truthfully in A.

Our first goal is to understand the dependence of the auctioneer regret on the time horizon T . Then,
we will move on to establishing bounds with respect to the number of discretized bids ∆. Our first
result shows that given any strictly IC auction A there exists an auction AT that achieves auctioneer

regret O
(
T ·
√

∆·δT
γA

)
. This is formalized below and the proof is postponed to Appendix F.

Proposition 5.1. There exists auction AT which is a mixture of some strictly IC auction A and
SPA such that, for all vL, vH ∈ [0, 1]2 and for all δT -mean-based learning algorithms it holds that

R̃egT (AT ; vL, vH) = O
(√

∆·δT
γA

· T
)
, ∀vL, vH ∈ B2

∆ .

We emphasize that for common mean-based no-regret learning algorithms such as MWU it is the

case that δT = Õ (1/
√
T) , which implies that the auctioneer regret from Proposition 5.1 grows

as Õ
(
T 3/4

)
. Our next result complements this result by showing that even if the high-valuation

bidder always bids truthfully and the low-valuation bidder uses MWU with learning rate Θ(1/
√
T),

no auction can achieve a better auctioneer regret than O(T 3/4).

Proposition 5.2 (Lower Bound for Constant Auction Policies). Consider a repeated auction envi-
ronment where the high-valuation bidder bids truthfully and the low-valuation bidder uses MWU

with rate Θ(1/
√
T ). Then, every truthful auction AT has an auctioneer regret R̃egT (AT ; vL, vH) ≥

C∆ · T 3/4, where C∆ > 0 is some constant that depends on the discretization parameter.

The proof is postponed to Appendix F. We note that choosing the learning rate of MWU to be

1/
√
T gives the optimal no-regret guarantees. Other choices, such as ηT = Ω(1), have trivial regret

bounds.
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Having established the previous results for repeated auctions where the auctions remain constant
across all the iterations, it is natural to ask whether we can get improved results when the auctioneer
is allowed to change the underlying auction, but in a way that is oblivious to the bids that bidders have
submitted so far. In other words, the auctioneer has to commit to an auction schedule {A1, . . . , AT }
before the beginning of the interaction. We extend the definition of the auctioneer regret in a natural

way to allow for different auctions in every timestep and we denote R̃egT (A1, . . . , AT ; vL, vH) =∑T
t=1 Rev(vL, vH ; SP) − E[

∑T
t=1 Rev(b

t
L, b

t
H ;At)] . Our next result shows that there exists an

auction schedule where the auctioneer changes the underlying auction only once throughout the

interaction so that its regret is bounded by Õ(δT · T ). For typical choices of ηT this translates

to an auctioneer regret bounded by Õ(
√
T ). The main insight is that the auctioneer can split the

interaction into two intervals: the first interval has size T0, for some appropriately chosen T0 ∈
[T ], where the auctioneer uses some strictly IC auction A that encourages the learners to converge
to bidding truthfully. Then, assuming that T0 is large enough to guarantee this convergence, the
auctioneer switches to using second-price auction. This is perhaps counterintuitive because in other
no-regret learning settings, such as multi-armed bandits, the optimal regret bound is achieved when
exploration and exploitation are happening simultaneously, whereas in our setting these two phases
are separated.

Theorem 5.3. There exists an auction schedule (A1, . . . , AT ) in whichA1 = A2 = . . . = AT0
= A,

where A is any strictly IC auction, and AT0+1 = AT0+2 = . . . = AT = SP, that achieves

R̃eg(A1, . . . , AT ; vL, vH) ≤ O
(
δT · T ·

(
1
γA

+∆
))

, ∀vL, vH ∈ B2
∆ .

The formal proof of this result is postponed to Appendix F. The previous result shows that for
ηT = Õ (1/

√
T) the auctioneer regret of the auction schedule we designed is Õ(

√
T ). Thus, we see

an Õ(T 1/4) improvement compared to the previous setting where the auctioneer was restricted to
be using the same auction across all iterations.

Next, we prove that even if the auctioneer uses a different auction in every step, our bound from
Theorem 5.3 is (almost) optimal with respect to the time horizon T. The proof idea is that when
the agents are using MWU with learning rate ηT , the signals in the first O(1/ηT ) steps are insuffi-
cient for them to move their bidding distribution to truthful bids. I.e., with at least some constant
probability in every round within the first O(1/ηT ) rounds, they will not be bidding their true val-
uation. Importantly, our lower bound holds even in the (unrealistic) setting where the auctioneer
can choose A1, . . . , AT , conditioned on vL, vH . This is formalized below; the proof is postponed to
Appendix F.

Proposition 5.4. When two agents are using MWU with learning rate 1/
√
T to participate

in repeated single-item auctions for all the auction schedules (A1, . . . , AT ) it holds that

R̃eg(A1, . . . , AT ; vL, vH) = Ω(
√
T ) .

Having established the optimal dependence with respect to the time horizon T, we now shift our
attention to understanding the dependence of the auctioneer regret on the discretization parameter
∆. First, we define an auction Ā that satisfies γĀ = Θ(1/∆2).

Definition 5.5 (Staircase Auction). We define the allocation rule of auction Ā in the following way:
with probability 1/2 select a bidder i ∈ {1, 2} independently of their bids and then allocate to i with
probability bi. We define the payment rule in the way that makes the auction truthful.

A simple application of Myerson’s lemma shows that γĀ = Θ(1/∆2). This is because between any
two consecutive bids, i.e., bids whose distance is 1/∆, the increase in the allocation is 1/2∆ and the
function is linear. A corollary of Theorem 5.3 shows the following bound in the auctioneer regret.

Corollary 5.6. Let the bidders use a mean-based learner with ηT = Õ(
√

log∆/T) and the auction-

eer use the schedule (A1, . . . , AT ) with A1 = . . . = AT0
= Ā, AT0+1 = AT0+2 = . . . = AT =

SPA, for T0 = Õ
(√

T/∆2
)
. Then, R̃eg(A1, . . . , AT ; vL, vH) ≤ Õ

(
∆2

√
T
)
, ∀vL, vH ∈ B2

∆ .

6 Conclusion

Our work studies the behavior of learning bidders in repeated single-item auctions, with persistent
valuations. We show the limitations of deterministic mechanisms, and how nuances such as learning
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rates can qualitatively affect participant behavior. Moreover, we show that randomized auctions
can encourage faster convergence of bidders to truthful behavior. We hope our work paves the way
to better understanding of learning agents’ behavior in single-parameter environments, and of the
power of randomization.
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A Multiplicative Weights Update (MWU)

In this section we describe the version of MWU we consider in this work. Similar to Braverman et al.
(2018), we are using the following version of the algorithm.

ALGORITHM 1: Multiplicative Weights Update Algorithm.

1: Choose ηT =
√

log∆
T . Initialize ∆ weights, letting wt

i be the value of the ith weight at round t.

Initially, set all w0
i = 1, let v be the valuation of the agent.

2: for t = 1 to T do
3: Choose bid bi with probability pti = wt−1

i /
∑

j w
t−1
j .

4: for j = 1 to K do
5: Let ut

j = v · xt(bj , b
′)− pt(bj , b

′)

6: Set wt
j = wt−1

j · eηTut
j .

7: end for
8: end for

B Further Related Work

We view our results and the setting in which we work as orthogonal to the setting of Cai et al. (2023).
Firstly, they do not restrict themselves to truthful auctions, and for their welfare extraction results,
the agents are allowed to overbid. Secondly, in their setting, redrawing valuations i.i.d. in every
round helps the learning process (this was also observed by Feng et al. (2021)). Intuitively, consider
two agents and SPA: for every valuation of player 1, there is some positive probability that player 2’s
draw is below it, hence player 1 will learn that bidding truthfully is strictly better (in expectation over
the other random draw), which leads to the desired bidding behavior. In such a system, randomness
is already present due to the draws of the valuations, which helps the convergence to the right bidding
behavior.

Our work also differs from Cai et al. (2023) in having different conceptual goals: we aim to “restore”
the single-shot behavior in natural auctions, such as second-price auctions, in the presence of mean-
based learning agents by making minimal modifications to the underlying auction rule. On the other
hand, Cai et al. (2023) aim to exploit the mean-based learning behavior to extract more revenue, and
their auctions diverge from the truthful ones we consider in our work. Thus, in our setting, it is clear
that reporting the valuation truthfully to the bidding algorithm is an (almost) optimal strategy for
the agents (i.e., the so-called “meta-game” considered by Kolumbus and Nisan (2022a) is truthful),
whereas it is not clear to us whether reporting the valuations truthfully to the no-regret algorithms is
an optimal strategy in the setting of Cai et al. (2023).

C Omitted Details from Section 2

Skreta (2006) shows that our discrete-type space mechanism design problem approximates the mech-
anism design problem with continuous type space as ∆ → ∞: specifically, Proposition 1 from that
paper gives the following claims.

Claim 2. A mechanism is truthful if and only for every v−i xi(vi, v−i) is non-decreasing on vi and
pi satisfy that

∣∣∣∣ pi(vi, v−i)−
(
vixi(vi, v−i)−

∫ vi

0

xi(z, v−i)dz

) ∣∣∣∣ ≤ O(1/∆).

Claim 3. Suppose bidders are rational agents (i.e., they maximize profits). Let OPT be the revenue
of the revenue-maximizing mechanism (among truthful or non-truthful) that the auctioneer can im-
plement, and Rev(r − SPA) be the revenue of a Second Price Auction with reserve r. Then for
r = min{v : φ(v) ≥ 0}, we have that OPT = Rev(r − SPA).

Definition C.1 (No-Regret Learning Property). Let {bτi }τ∈[T ] be the bid sequence submitted by

agent i’s algorithm, and UT
i (bT ) =

∑T
τ=1 vi · xτ

i (b
τ
i , b

τ
−i) − pτi (b

τ
i , b

τ
−i) the total reward agent i
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receives. We say that this algorithm satisfies the no-regret property if for any sequence bT
−i it holds

that

E

[
max
b∈B∆

UT
i (b | bT

−i)− UT
i (bT )

]
= o(T ) ,

where the expectation is taken with respect to the randomness of the algorithm.

Definition C.2 (Last Iterate Convergence (LIC)). Let b̃Ti the bid distribution of bidder i in the last

round T . We say that b̃Ti converges to some distribution q̃ over B∆ if limT→∞ dTV(b̃
T
i , q̃) = o(1),

where dTV := 1
2

(∑
b∈B∆

|b̃Ti (b)− q̃(b)|
)

is the Total-Variation (TV) distance between b̃Ti and q̃.

D Omitted Details from Section 3

Definition D.1 (Non-Degenerate auctions). A single-item auction (x, p) for two agents is non-
degenerate with respect to the valuation profile (v1, v2) if there are bid profiles b1 ≤ v1, b2 ≤ v2, so
that

v1 · x1(v1, b2)− p1(v1, b2) > v1 · x1(v1 − 1/∆, b2)− p1(v1, b2) ≥ 0

v2 · x2(b1, v2)− p2(b1, v2) > v2 · x2(b1, v2 − 1/∆)− p2(b1, v2 − 1/∆) ≥ 0 ,

and

max {v1 · x1(v1, v2)− p1(v1, v2), v2 · x2(v1, v2)− p2(v1, v2)} > 0 .

In order to show our result, we utilize a characterization (cf. Theorem D.2) regarding the struc-
ture of truthful deterministic single-item auctions that charge non-negative payments (see, e.g.,
Roughgarden (2010, Thm 9.36)) for n bidders.

Theorem D.2 (Characterization of Truthful Deterministic Single-Item Auctions Roughgarden
(2010)). A single-item auction is truthful, and satisfies NPT, i.e., no payment transfers from the
auctioneer to the bidders, if and only if:

• xi(·, v−i) is monotone for every i ∈ [n], v−i ∈ Bn−1
∆ .

• For all i ∈ [n], vi ∈ B∆, v−i ∈ Bn−1
∆ we have that

pi(vi, v−i) =

{
0, if xi(vi, v−i) = 0

min{b ∈ B∆ : xi(b, v−i) = 1}, if xi(vi, v−i) = 1
.

Theorem D.3 (No Deterministic Auction Leads to Truthful Bidding). Fix a valuation profile (v1, v2)
and a deterministic truthful auction. Suppose bidders bid using MWU and with non-degenerate
learning rates. Let W (respectively R), be the bidder i ∈ {1, 2} such that xi(vi, v−i) = 1 (re-

spectively, xi(vi, v−i) = 0) and let p̂ = pW (vW , vR). Assume that limT→∞ ηR
T/ηW

T < ∞ and
vW · xW (vW , vR) − p̂ > 0. Then, with probability at least 0.99, the winner’s bids converge to a
distribution supported between p̂, vW and the runner-up bidder converges to a bidding distribution
satisfying 0 < Pr[0] ≤ Pr[1/∆] ≤ . . . ≤ Pr[vR].

Proof of Theorem D.3. The idea of the proof is to split the horizon T into continuous non-
overlapping epochs of length c/ηWT , where c is some sufficiently large constant that depends on

the discretization parameter ∆. Notice that since limT→∞ ηWT · T = ∞ these epochs are well-
defined, when T is sufficiently large. Assume without loss of generality that the weights of all the
bids that are at most vW (resp. vR) for the winning bidder (resp. runner-up) are initialized to 1. (The
proof holds as long as there is some constant mass on each bid at the initialization stage, albeit with
different constants.) We denote the epochs by τ and the rounds of the interaction by t.

Let cW = vW − p̂ be the utility the bidder gets when it wins the auction. By assumption, cW > 0.
Let WW be the set of bids between p̂ and vW , i.e., WW = {p̂, p̂ + 1/∆, . . . , vW }. Whenever the

runner-up bids vR all the bids in WW increase their weights by a multiplicative factor of ecW ·ηW
T ,

whereas the weights of the other bids remain unchanged. Moreover, since the allocation rule is non-
decreasing and the price does not depend on the bid, whenever the weight of some bid b ∈ B∆ is
increased, the weights of all the bids that are greater than b are also increased by the same amount.
Notice that, since bidding vR is a weakly-dominant strategy for the runner-up type, the mass that it
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puts on vR will never decrease relatively to the mass of the rest of the bids. Thus, the probability of
bidding vR for the runner-up type is at least 1/∆ in every round. Hence, if we consider an interval
of size T0 = 8∆2/(ηWT · cW ) and we denote by Zi, i ∈ [T0], the indicator variable of whether the
runner-up bid vR in round i ∈ [T0] we have that for any α > 0

Pr [Z1 + . . .+ ZT0
≥ α] ≥ Pr

[
Z̃1 + . . .+ Z̃T0

≥ α
]
,

where Z̃i,∈ [T0] are i.i.d. Bernoulli random variables with mean 1/∆. Then, the multiplicative

version of Chernoff bound on {Z̃i}i∈[T0] shows that, with probability at least 1− e−∆/(ηW
T ·cW ) the

runner-up type will bid at least 4∆/(ηWT · cW )) many times vR in this window. By a union bound,

we know that with probability at least 1−(T ·ηWT /c)·e−∆/(ηW
T ·cW ) this holds across all the T ·ηWT /c

different epochs. We call this event E1 and condition on it for the rest of the proof. Our assumption
that ηT is non-degenerate shows that this probability is at least 1− o(1).

Let wτ
W (b) be the total weight that the winning type assigns to b at the beginning of epoch τ and

mτ
W (b) be its probability. Notice that at τ = 1 this distribution is uniform. Consider the ratio of the

weights of any b ≤ p̂− 1/∆ and p̂. We have that

wτ+1
W (b)

wτ+1
W (p̂)

≤ wτ
W (b)

wτ
W (p̂)

· e−4cW ·∆·ηW
T /(cW ·ηW

T ) =
wτ

W (b)

wτ
W (p̂)

· e−4∆ , (1)

where wτ
W (b), wτ

W (p̂) are the weights that the winner puts on b, p̂ at the beginning of epoch τ

(similarly for the τ+1 terms). For the probability of each bid in MWU, mτ+1
W (b) =

wτ+1

W (b)∑
b′∈B∆

wτ+1

W
(b′)

(and symmetrically for the other terms). Thus, by dividing the numerator and the denominator of
the RHS of Equation (1) by

∑
b′∈B∆

wτ
W (b′) and the numerator and denominator of the LHS of

Equation (1) by
∑

b′∈B∆
wτ+1

W (b′) we get:

mτ+1
W (b)

mτ+1
W (p̂)

≤ mτ
W (b)

mτ
W (p̂)

· e−4∆.

Multiplying by mτ+1
W (p̂) gives us

mτ+1
W (b) ≤ mτ+1

W (p̂)

mτ
W (p̂)

·mτ
W (b) · e−4∆ .

Notice that m1
W (p̂) = 1/∆,mτ

W (p̂) is non-decreasing in τ since bidding p̂ is a weakly-dominant

strategy for the winning type2, and, by definition, mτ+1
H (p̂) ≤ 1, so

mτ+1

W
(p̂)

mτ
W

(p̂) ≤ ∆. Hence,

mτ+1
W (b) ≤ ∆e−4∆ ·mτ+1

W (b) < 0.1 ·mτ
W (b), ∀b < p̂ ,

where the second inequality follows from xe−4x < 1, ∀x > 0. Thus, after each epoch the probability
that the winning type does not bid in WW decreases by a factor of 0.9. Hence, we can see that after

O(ηWT · T ) epochs that total mass in this region is at most O(0.1η
W
T ·T−1) = o(1). This proves the

claim about the distribution of the winning type.

Let Zi, i ∈ [T ], be the random variable that indicates whether vW bid in {0, 1/∆, . . . , p̂− 1/∆} in

round i ∈ [T ]. Let also T ′ denote the total number of epochs. Let Ẑτ = Zτ + . . . + Zτ+T0−1, so

that E[Z1 + . . . ZT ] =
∑T ′

τ=1 E[Ẑτ ]. The preceding steps of the proof had shown that after every
round, the probability that the winner bids in this region is non-increasing (since the bids in interval

I are weakly dominated by the bids in {p̂, . . . , vW }), hence E[Ẑτ ] ≤ T0 · E[Z(τ−1)·T0+1]. Thus, it

suffices to bound
∑T ′

τ=1 E[Z(τ−1)·T0+1].

By definition, E[Z(τ−1)·T0+1] =
∑

b<p̂ m
(τ−1)·T0+1
W (b). Now, the previous step of the proof had

shown that the mass of each bid in interval I drops by a factor of 0.9 between the beginning of

2This is where we are using the assumption that the runner-up type does not overbid. Otherwise, the argu-
ment can still go through with a different constant since we can show that the winning type will overbid only
some O(ηW

T ) many times and we need to account for this term.
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consecutive epochs, i.e., mτ ·T0+1
W (b) ≤ 0.1 · m(τ−1)·T0+1

W (b) for all b ∈ {0, 1/∆, . . . p̂ − 1}. This

implies E[Zτ ·T0+1] ≤ 0.1 · E[Z(τ−1)·T0+1]. Using E[Z1] ≤ 1, we get
∑T ′

τ=1 E[Z(τ−1)·T0+1] ≤∑T ′

τ=1(0.1)
τ−1. Multiplying this by the value of T0 gives

E [Z1 + . . .+ ZT ] ≤
T ′∑

τ=1

(8∆2/(ηWT · cW )) · (0.1)τ−1

≤
∞∑

τ=1

(8∆2/(ηWT · cW )) · (0.1)τ−1

≤ 16∆2/(ηWT · cW ) .

Hence, using Markov’s inequality we see that

Pr
[
Z1 + . . .+ ZT ≥ 101 ·

(
16∆2/(ηWT · cW )

)]
≤ E [Z1 + . . . ZT ]

101 ·
(
16∆2/(ηWT · cW )

) ≤ 1

101
.

Let us call this event E2 and condition on it.

Let us now consider the bid distribution of the runner-up type after the end of the last epoch. We
denote this distribution by m̂R(·). Recall that whenever the winning type bids in WW , the runner-up
type performs no updates. Moreover, whenever it does perform an update its utility when it bids vR
is at most 1 greater than bidding b = 0. Notice that whenever the weight of some bid b is increased,
the weights of all the bids greater than b are also increased by the same amount, so the monotonicity
of the bid distribution follows immediately. It suffices now to bound the ratio of the probability of
bidding zero and the probability of bidding vR by some quantity that is independent of T. We have
that

m̂R(0)

m̂R(vR)
≥ e−ηR

T 101·(16∆2/(ηW
T ·cW )) =⇒ m̂R(0) ≥

e−ηR
T 101·(16∆2/(ηW

T ·cW ))

∆
,

where the second inequality follows from the fact that the distribution is initialized to be uniform
and vR is a weakly-dominant strategy across all rounds, so its probability is not decreased. Notice
that

lim
T→∞

ηR
T/ηW

T < C ,

for some discretization-dependent C, it follows that m̂R(0) > C′, where C′ > 0 is some
discretization-dependent constant. Since Pr[E1] ≥ 1 − o(1),Pr[E2] ≥ 100/101, we have that
Pr[E1 ∩ E2] ≥ 99/100, when T is large enough.

Theorem D.4 (Effect of Learning Rate on Convergence). Fix a valuation profile (v1, v2) and a non-
degenerate deterministic truthful auction with respect to (v1, v2). Suppose bidders bid using MWU
and with non-degenerate learning rates. Let W (respectively R), be the bidder i ∈ {1, 2} such that
xi(vi, v−i) = 1 (respectively, xi(vi, v−i) = 0). Let p̂ be the minimum winning bid of W when R
bids vR. Assume that ηR

T/ηW
T = ω(1). Then, with probability at least 1 − o(1), bidder R converges

to bidding vR and bidder W converges to a bidding distribution supported in {p̂, p̂+ 1/∆, . . . , vW }.

Proof of Theorem D.4. Consider the first T0 = c′∆/η
W
T rounds of the game, for some c′∆

discretization-dependent constant. Assume without loss of generality that the weights of all the
bids that are at most vW (resp. vR) for the winning bidder (resp. runner-up) are initialized to 1.
(Again, the argument works so long as all the weights are initialized with some constants.) Since
the auction is non-degenerate with respect to vW , vR, there exists some bid of the winning type
bW ≤ vW so that the runner-up bidder wins the auction when bidding truthfully and gets positive
utility, i.e.,

vR · xR(vR, bW )− pR(vR, bW ) > 0 .

Moreover, for all bids bR < vR it holds

vR · xR(vR, bW )− pR(vR, bW )− (vR · xR(bR, bW )− pR(bR, bW )) > 0 .

Since the auction is truthful, the difference above is minimized at bR = vR − 1/∆. Let

u′
R := vR · xR(vR, bW )− pR(vR, bW )− (vR · xR(vR − 1/∆, bW )− pR(vR − 1/∆, bW )) ,
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and, by definition, u′
R > 0. Let us consider the winning type and look at the worst-case ratio of the

probability that is placed on bids btW = bW , btW = vW at the end of every round t ∈ {1, . . . , T0}.
We have that

Pr[btW = bW ]

Pr[btW = vW ]
≥ e−ηW

T ·vW ·t

≥ e−ηW
T ·vW ·T0

= e−c′∆·vW ,

where the first inequality follows from the fact that bidding vW always yields at most vW utility
more than bidding any other bid and the second one because t ≤ T0. Moreover, since Pr[b1W =
vW ] = 1/∆ and the probability that is placed on btW = vW is non-decreasing across the executions
(since it is a weakly-dominant strategy), we have that

Pr[btW = bW ] ≥ e−c′∆·vW /∆, ∀t ∈ {1, . . . , T0} .

Let ZT0 denote the random variable that counts the number of times the winning type bids bW
within the first T0 rounds. Let Z̃τ , τ ∈ [T0] be independent Bernoulli random variables with mean

e−c′∆·vW /∆. Notice that, ∀α > 0, it holds that Pr[ZT0 ≥ α] ≥ Pr[
∑T0

τ=1 Z̃τ ≥ α]. Moreover,

E

[
T0∑

τ=1

Z̃τ

]
≥ T0 · e−c′∆·vW /∆ = c′∆/η

W
T · e−c′∆·vW /∆ .

To simplify the notation, let us denote c̃∆ = c′∆ ·e−c′∆·vH/∆. Thus, a multiplicative Chernoff bound

shows that, with probability at least 1 − e−c̃∆/(8ηW
T ) = 1 − o(1), we have that ZT0 ≥ c̃∆/(2η

W
T ).

Let us call this event E and condition on it.

Let us now focus on the bid distribution of the runner-up bidder after the first T0 rounds. Notice that
whenever the winning bidder bids bW then bidding vR yields utility at least u′

R greater than bidding
any other bid to the runner-up type, and in the rounds where this does not happen, bidding vR is still
a weakly dominant strategy so it generates as much utility as any other bid. Thus, we have that

Pr[bT0

R = vR − 1/∆]

Pr[bT0

R = vR]
≤ e−u′

R·ηR
T ·ZT0

≤ e−ηR
T ·c̃∆/(2ηW

T ∆)

= o(1)

Thus, since bidding vR is a weakly dominant strategy for the runner-up this ratio is non-increasing
in t we can immediately see that

Pr[bT0

R = vR − 1/∆]

Pr[bT0

R = vR]
= o(1) ,

which gives that

Pr[bTR = vR − 1/∆] = o(1) .

The same argument can be applied to all bids in {0, 1/∆, . . . , vR − 1/∆}.
For the winning type, a symmetric argument shows that since after O(ηWT ) many rounds the runner-
up type bids vR with high probability, all the bids in the region {v̂W , . . . , vW } will yield utility
that is larger than bidding vR − 1/∆ by at least 1/∆ (again with high probability), so after another
ω(ηWT ) rounds its mass will be concentrated on bidding in this region.

Proof of Theorem 3.1. Let E = {r < v1} ∩ {r < v2} ∩ {v1 6= v2}. We can decompose
Ev1,v2∼U [B∆] [Rev(v1, v2; r)] as:

E
v1,v2∼U [B∆]

[Rev(v1, v2; r)] = E
v1,v2∼U [B∆]

[Rev(v1, v2; r)| E ] · Pr
v1,v2∼U [B∆]

[E ]

+ E
v1,v2∼U [B∆]

[Rev(v1, v2; r)| E ′] · Pr
v1,v2∼U [B∆]

[E ′] .
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Notice that under E ′, the revenue of the auction in the learning setting satisfies

E
v1,v2∼U [B∆]

[
lim

T→∞
E

b1∼bT1 ,b2∼bT2

[Rev(b1, b2; r) | v1, v2]
∣∣∣∣ E

′
]
≤ E

v1,v2∼U [B∆]
[Rev(v1, v2; r)| E ′] .

This is because both bidders will be bidding at most their valuation, so the revenue of the auction
cannot increase. Let us now focus on the first term. Under the event E , the revenue of the auction
under rational agents is min{v1, v2} > r. However, in the learning setting, the runner-up bidder will
be bidding strictly below their valuation in expectation, by Theorem D.3. Hence, we have that

E
v1,v2∼U [B∆]

[
lim

T→∞
E

b1∼bT1 ,b2∼bT2

[Rev(b1, b2; r) | v1, v2]
∣∣∣∣ E
]
< E

v1,v2∼U [B∆]

[
min{v1, v2}

∣∣∣∣ E
]
− c′

= E
v1,v2∼U [B∆]

[Rev(v1, v2; r)| E ]− c′ .

Since Pr[E ] > 0, the result follows by combining the two inequalities.

E Omitted Details from Section 4

Proof of Lemma 4.2. Let

γA = min
i∈[n],v∈B∆,b−i∈Bn−1

∆
,b∈B∆:b6=v

{ui(v, b−i)− ui(b, b−i)} ,

i.e., the minimum improvement in the utility that is guaranteed to every player when they switch
to bidding truthfully from any non-truthful bid, no matter what their valuation and the bids of the
opponents are. Notice that for any fixed auction A this quantity does not depend on T. Moreover,
since A is a strictly IC auction we have that γA > 0. Consider any round t ∈ [T ] of the interaction.
For any player i ∈ [n], we have that

ut(vi, b
t
−i)− ut(b′, bt−i) ≥ γA, ∀b′ 6= vi ,

no matter what the bids bt−i are. Let δ1, . . . , δn be the mean-based parameters of the algorithms that
the agents are using. Moreover, let T0 = maxi∈[n] δi · T/γA. Notice that since δi = o(1), ∀i ∈ [n],
by picking T sufficiently large we have that T0 < T. We immediately get that, for every player
i ∈ [n]

T0∑

t=1

(
ut(vi, b

t
−i)− ut(b′, bt−i)

)
≥ γA · T0 ≥ δi · T, ∀b′ 6= vi ,

no matter what the bid profile bt−i of the other bidders in every round is. Thus, for every bidder
i ∈ [n], by taking a union bound over all bids b 6= vi, we see that in round T0 + 1 the probability of
not bidding truthfully is at most ∆ · δi = o(1). Hence, we have shown the result.

Proof of Theorem 4.4. Let δ, . . . , δn be the mean-based parameters of the algorithms that the agents
are using. Recall that these parameters do depend on T. Assume without loss of generality that δ1
is the slowest one, i.e., limT→∞ δi/δ1 ≤ C, ∀i ∈ [n], where C is some discretization-dependent

constant. Let Ã be a strictly IC auction and define

γÃ = min
i∈[n],v∈B∆,b−i∈Bn−1

∆
,b∈B∆:b6=v

{ũi(v, b−i)− ũi(b, b−i)} .

Similarly as in the previous proof, notice that γÃ does not depend on T. Consider the qT -mixture

of the auctions A, Ã and let us denote this auction by A′. Let x, x̃, x′ be the allocation rules of

A, Ã, A′, respectively, and let us define the payment rules in a symmetric way. Notice that since
x′(·) = qT x̃(·) + (1− qT )x(·), p′(·) = qT p̃(·) + (1− qT )p(·), it follows immediately that

γA′ ≥ qT · γÃ .

Moreover, notice that

|x′(·)− x(·)| ≤ qT · |x̃(·)− x(·)| ≤ qT

|p′(·)− p(·)| ≤ qT · |p̃(·)− p(·)| ≤ qT .
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Let us focus on agent 1 since it is the one that has the slowest convergence. After T0 rounds of the
game we have that

T0∑

t=1

(
ut(v1, b

t
−1)− ut(b′, bt−1)

)
≥ γA′ · T0 ≥ qT · γÃ · T0, ∀b′ 6= v1 ,

no matter what the bid profile of the rest of the bidders in every round is. Thus, in order for the
mean-based guarantee of the algorithm of the first bidder to give us the desired convergence we see
that we need T0 ≥ δ1·T/qT ·γ

Ã
. Since T0 ≤ T, this places a constraint on the choice of qT , namely

that qT ≥ δ1/γ
Ã
. Thus, since this is the only constraint that we have on the choice of qT we see that

choosing qT = 2δ1/γ
Ã
= o(1) suffices to get the result.

Proof of Corollary 4.5. Let A′ be the output of Theorem 4.4 when the input auction is Myerson’s
revenue-optimal auction for F. For any fixed valuation profile v ∈ Bn

∆, for sufficiently large T, each
bidder i ∈ [n] will be bidding vi except with probability o(1). Moreover, the payments in these two
auctions differ by some o(1). Thus,

E
b1∼bT1 ,...,bn∼bTn

[
lim

T→∞
Rev(A; b1, . . . , bn)

]
≥ Rev(Myerson; v1, . . . , vn)− o(1) .

The result follows by taking the expectation over the random draw of v1, . . . , vn.

We present the formal result about the equilibria of the meta-game below.

Corollary E.1 (Equilibria of Meta-Game). Let A be an IC, IR auction. Let T be the number of
interactions. Assume that n agents use mean-based no-regret learning algorithms to bid in these
repeated auctions. Then, there is an auction A′ such that

• |xi(b)− x′
i(b)| = o(1), |pi(b)− p′i(b)| = o(1), ∀i ∈ [n], ∀b ∈ Bn

∆.

• In the meta-game that is induced by A′ every agent can gain at most o(1) utility by misre-
porting its value to the bidding algorithm.

Proof of Corollary E.1. Let v1, . . . , vn be the values of the agents and let v̂1, . . . , v̂n be the reports to
the bidding algorithms. Let A′ be auction obtained by feeding the auction A into the transformation
described in Theorem 4.4. The guarantees of this result show that

• |xi(b)− x′
i(b)| = o(1), |pi(b)− p′i(b)| = o(1), ∀i ∈ [n]∀b ∈ B∆,

• Pr[bTi 6= v̂i] = o(1), ∀i ∈ [n],

where bTi is the bid of the i-th agent in round T. Thus, with high probability after a large enough
number of rounds, for every agent i ∈ [n] the algorithm is bidding the reported value v̂i no matter
what the other reports v̂−i are. Since the auction A′ is truthful, the utility of each agent is maximized
when bTi = vi. Hence, the optimal strategy, up to o(1), is to report vi = v̂i, ∀i ∈ [n]. To be more
formal, the expected utility of the i−th agent in round T is

E
[
u′
i(b

T
i , b

T
−i)
]
= u′

i(v̂i, v̂−i) + o(1) ,

thus, since A′ is truthful, this quantity is maximized for v̂i = vi, up to the o(1) term.

F Omitted Details from Section 5

Proof of Proposition 5.1. Let AT = pT ·A+(1−pT ) ·SPA, where A is some auction with γA > 0
and some pT that will be defined shortly. Notice that

γAT
≥ pT · γA + (1− pT ) · γSPA ≥ pT · γA .

Since the bidders are mean-based no-regret learners, we know that when

T0∑

τ=1

vi · xi(vi, bτ )− pi(vi, bτ ) ≥
T0∑

τ=1

vi · xi(b
′, bτ )− pi(b

′, bτ ) + δT · T, ∀i ∈ {0, 1}, ∀b′ ∈ B∆ ,
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they will be bidding truthfully with probability at least 1−∆ · ηT . We know that in every round

vi · xi(vi, bτ )− pi(vi, bτ ) ≥ vi · xi(b
′, bτ )− pi(b

′, bτ ) + γAT

≥ vi · xi(b
′, bτ )− pi(b

′, bτ ) + pT · γA, ∀i ∈ {0, 1}, bτ , b′ ∈ B2
∆, b

′ 6= vi

Thus, we define T0 = min{t ∈ N : pT · γA · t ≥ δT · T } = δT ·T/pT ·γA. The regret is

R̃egT (AT ; vL, vH) = R̃egT0
(AT ; vL, vH) +

(
T∑

t=1

Rev(vL, vH ; SP)−E

[
T∑

t=T0+1

Rev(btL, b
t
H ;A)

])

≤ vL · T0 + vL · (T − T0) · (2∆ · δT ) · (1− pT ) + (T − T0) · pT · vL
≤ vL · (T0 + 2∆ · δT · T · (1− pT ) + T · pT )

≤ vL ·
(

δT · T
pT · γA

+ 2∆ · δT · T + pT · T
)

≤ vL ·
(
2∆ · δT · T
pT · γA

+ pT · T
)

,

where the first inequality follows from the fact that after the first T0 rounds the auctioneer regret is
bounded the sum of the probabilities that the auction is SPA and the bidders do not bid truthfully,
which is at most (1− p) · 2∆ · ηT , and the probability that auction is not SPA, which is pT . The rest

of the inequalities are just algebraic manipulations. Thus, by setting pT =
√

2∆·δT/γA we get that

R̃egT (AT ; vL, vH) ≤ vL ·
(
3 ·
√

2∆ · δT
γA

· T
)

,

which concludes the proof.

Proof of Proposition 5.2. Consider the vL, vH pairs of the form vH = vL + 1/∆, such that both
are bounded away from 0 and 1. Then, Myerson’s payment formula shows that pH(vH , vL) ≤
(vH − 1/∆) · xH(vH , vL) = vL · xH(vH , vL). We first argue that xH(vH , vL) < 1. Indeed, suppose
that xH(vH , vL) = 1. Then the low type gets no signal about their bid and hence bids uniformly at
random between [0, vL]. In particular, with some C∆ probability that is independent of T, the low
type bids the value bL = vL/2. Now the only way for the auctionAT to generate (vL−o(1)) revenue
from such rounds is if xH(vH , vL/2)−xH(vL, vL/2) = 1−o(1).But if this is the case, then consider
the valuation pair (vL/2, vL/2+1/∆): the auctioneer allocates at most xH(vL/2+1/∆, vL/2) ≤ o(1)
per round, and gets almost no revenue from the high type. Moreover, the low type will generate
at most vL/2 revenue, so the the regret of the auctioneer is at linear in T ; this gives the desired
contradiction.

Since xH(vH , vL) < 1, let q := 1 − xH(vH , vL). Then, xL(vL, vH) ≤ q and so uL(vL, vH) −
uL(vL − 1/∆, vH) ≤ q · 1/∆ ≤ q. In order to cancel the effect of the learning rate of ηT , we need
to wait for T0 := Ω(1)/(q·ηT ) rounds. For some C′

∆ fraction of these T0 rounds the agent of low type
will bid vL/2, and an argument similar the previous paragraph shows that the revenue of the auction
will be at least 1/∆− o(1) less than vL. Thus, the regret in these T0 rounds will be Ω(T0), where
we are hiding constants depending on ∆. Let us assume that after T0 rounds the low type starts
bidding truthfully. Then, the total regret in this period due to allocation of the item to the low type
is Ω ((T − T0) · q). Summing up the two terms we get a regret of Ω (1/(qηT ) + q · T − 1/ηT ) . Since

ηT = Θ(1/
√
T ), this is Ω(

√
T/q + qT −

√
T ), which for any choice of q is Ω

(
T 3/4

)
.

Proof of Theorem 5.3. We will upper bound the auctioneer regret in the two epochs {1, . . . , T0},
and {T0 + 1, . . . , T }, separately, where T0 ∈ [T ] is a parameter of the design which we will define
shortly. For the first epoch, we will use the simple upper bound of vL · T0.

Let us consider the bid distribution of the two bidders after T0 rounds. Since they are mean-based
no-regret learners we know that if

T0∑

τ=1

vi · xi(vi, bτ )− pi(vi, bτ ) ≥
T0∑

τ=1

vi · xi(b
′, bτ )− pi(b

′, bτ ) + δT · T, ∀i ∈ {1, 2}, ∀b′ ∈ B∆ ,
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then, by a union bound over the possible bids, they will both be bidding truthfully with probability
at least 1− 2∆ · ηT .
We know that in every round τ ∈ [T0] we have that

vi · xi(vi, bτ )− pi(vi, bτ ) ≥ vi · xi(b
′, bτ )− pi(b

′, bτ ) + γA, ∀i ∈ {0, 1}, bτ , b′ ∈ B2
∆, b

′ 6= vi .

Therefore, we set T0 = min{t ∈ N : t · γA · t ≥ δT · T } = δT ·T/γA. Thus, we can upper bound the
cumulative auctioneer regret by

R̃eg(A, . . . , A, SPA, . . . , SPA; vL, vH) ≤ vL · T0 + vL · (T − T0) · 2∆ · ηT

≤ vL · δT · T
γA

+ vL · T · 2∆ · ηT

= O

(
δT · T ·

(
1

γA
+∆

))
,

where the first inequality follows from the fact that with probability at most 2∆ · ηT one of the two
bidders will not be truthful in the last (T − T0) rounds, and the other inequalities are just algebraic
manipulations.

Proof of Proposition 5.4. It is not hard to see that in the setting we are working on the auctioneer
cannot have negative auctioneer regret in any interval of the interaction. For instance, when vH =
vL − 1/∆, the SPA performs optimally. Since every At, t ∈ [T ], is a truthful auction, Myerson’s
lemma shows that

ut
i(vi, b−i)−ut

i(b
′, b−i) =

∫ vi

z=b′
xt
i(z, b−i)dz−(vi − b′)·xt

i(b
′, b−i), ∀i ∈ {1, 2}, ∀vi, b′, b−i ∈ B3

∆ ,

so for b′ = vi − 1/∆ we get that

ut
i(vi, b−i)− ut

i(vi − 1/∆, b−i) ≤
1

∆
, ∀vi, b′, b−i ∈ B3

∆ .

Thus, in every iteration the utility gain of bidding vi is at most 1/∆ greater than bidding vi − 1/∆.
Summing up over the first T0 iterations, we get that

T0∑

t=1

(
ut
i(vi, b−i)− ut

i(vi − 1/∆, b−i)
)
≤ T0

∆
, ∀vi, b′, b−i ∈ B3

∆ .

Let us now shift our attention to the weights that MWU puts on vi− 1/∆, vi, after T0 iterations. We
have

Pr[bT0

i = vi]

Pr[bT0 = vi − 1/∆]
= eηT

∑T0
t=1(u

t
i(vi,b

t
−i)−ut

i(vi−1/∆,bt
−i))

≤ eηT ·T0
∆ ,

so for T0 = ∆/ηT we have that

Pr[bT0 = vi − 1/∆] ≥ Pr[bT0

i = vi]

e
.

This immediately implies that

Pr[bt = vi − 1/∆] ≥ Pr[bti = vi]

e
, ∀t ∈ [T0] .

Thus, the probability of bidding truthfully of both algorithms is bounded by 9/10. Thus, when
vH = vL + 1/∆ when both bidders are not bidding truthfully the revenue loss compared to SPA
is at least 1/∆. Putting it together, we can see that within the first T0 rounds the total revenue loss

compared to SPA is at least C · 1/∆ ·T0 = C · ηT = C ·
√
T , for some absolute constant C > 0.

Next, we show that the auction we defined in Definition 5.5 is optimal, in terms of its parameter γA.
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Lemma F.1. In the setting with two bidders it holds that the optimal choice of the parameter γA is
Θ(1/∆2) . Moreover, the auction defined in Definition 5.5 achieves that bound.

Proof of Lemma F.1. Consider some auction A and fix the bid of the second bidder to be b′ ∈ B∆.
Then, x1(·, b′) is a non-decreasing function, with 0 ≤ x1(b, b

′) ≤ 1, ∀b ∈ B∆. Notice that for any
consecutive bids, Myerson’s lemma shows that

u1(b, b
′)− u1(b− 1/∆, b′) ≤ 1/∆ · (x1(b, b

′)− x1(b− 1/∆, b′)) .

Since there are 1/∆ different b ∈ B∆ and the function x1(·, b′) is monotone and bounded between
[0, 1] we have

∑

b>0

x1(b, b
′)− x1(b− 1/∆, b′) = x1(1, b

′)− x1(0, b
′)

≤ 1 ,

and since there are 1/∆ terms in the summation, all of which are non-negative at least one of them
must be at most 1/∆. Let b∗1 ∈ B∆ be such that x(b∗1, b

′) − x(b∗ − 1/∆, b′) ≤ 1
∆ . Then, picking

v1 = b∗1 witnesses that γA ≤ 1
∆2 .

G Extensions

In this section we discuss potential extensions of our model and adaptations of our results.

Extension to partial feedback setting. Our results can be adapted to the partial feedback setting,
with different quantitative bounds. In particular, there are mean-based no-regret algorithms such as

EXP3 (Braverman et al., 2018) with ηT = Õ(T 1/4). Notice that our positive results are stated for
mean-based learners, so the guarantees hold in this setting as well.

Extension to multiple bidders. We underline that our results in Section 4 are already stated and
proven for multiple bidders. For our upper bounds in Section 5 there is a 1/n degradation to the
auctioneer regret bound. When we are dealing with n bidders we can create a strictly IC auction
A by building upon our “staircase auction” approach for two bidders in the following way: we
select some bidder i ∈ [n] uniformly at random (independently of their bids) and then we allocate to
bidder i with probability bi. Thus, for each bidder i ∈ [n] their allocation probability xi(b) is a linear
function with xi(0) = 0, xi(1) = 1/n.Hence, Myerson’s lemma shows that ui(vi)−ui(vi−1/∆) =
Θ(1/(n∆2)), thus, γA = Θ(1/(n∆2)). Recall that in the two-bidder case we have shown that this
auction gives γA = Θ(1/∆2), so the degradation in γA by 1/n leads to a degradation of the same
factor in the auctioneer regret compared to the two-bidder setting.

Extension of regret bounds to the distributional setting. In Section 5 we consider a setting
where the auctioneer does not have any distributional knowledge about the valuation of the bidders.
Notice that our lower bounds are witnessed by valuation pairs of the low type, high type, of the form
vL = v, vH = v + 1/∆. Let us now consider a distributional setting where v1, v2 are drawn from
distributions D1,D2, and then the two bidders participate in repeated second-price auctions using
MWU parametrized by these valuations. Similarly as in the prior-free setting, the goal of the auction-
eer is to have small expected regret, where the expectation is over the random draw of the valuations
and the random behavior of MWU. Notice that the cumulative revenue of SPA when the bidders are
truthful is T · Ev1∼D1,v2∼D2

[min{v1, v2}], so this is the benchmark the auctioneer competes with
(in this setting, we can modify the benchmark to be SPA with personalized reserves with the same
arguments). If these distributions D1,D2, place some constant probability (i.e., independent of T )
on every element of {0, 1/∆, 2/∆, . . . , 1} then with some constant probability we will see a draw
of the form vL = v, vH = v + 1/∆, so these pairs will be contributing a constant fraction of the ex-
pected revenue of the second-price auction, i.e., the term Ev1∼D1,v2∼D2

[min{v1, v2}]. Thus, if the
auctioneer wants to have expected regret at most O(RT ), they need to have regret at most O(RT )
for all such valuation pairs, where in the notation O(·) we are suppressing all the parameters that do
not depend on T.
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