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Abstract

In this work, we focus on the early design phase of cruise ship hulls, where the design-
ers are tasked with ensuring the structural resilience of the ship against extreme waves while
reducing steel usage and respecting safety and manufacturing constraints. The ship’s geom-
etry is already finalized and the designer can choose the thickness of the primary structural
elements, such as decks, bulkheads, and the shell. Reduced order modeling and black-box
optimization techniques reduce the use of expensive finite element analysis to only validate
the most promising configurations, thanks to the efficient exploration of the domain of decision
variables. However, the quality of the results heavily relies on the problem formulation, and
on how the structural elements are assigned to the decision variables. A parameterization
that does not capture well the stress configuration of the model prevents the optimization
procedure from achieving the most efficient allocation of the steel.

To address this issue, we extended an existing pipeline for the structural optimization
of cruise ships developed in collaboration with Fincantieri S.p.A. with a novel data-driven
reparameterization procedure, based on the optimization of a series of sub-problems. Moreover,
we implemented a multi-objective optimization module to provide the designers with insights
into the efficient trade-offs between competing quantities of interest and enhanced the single-
objective Bayesian optimization module.

The new pipeline is tested on a simplified midship section and a full ship hull, comparing
the automated reparameterization to a baseline model provided by the designers. The tests
show that the iterative refinement outperforms the baseline on the more complex hull, proving
that the pipeline streamlines the initial design phase, and helps the designers tackle more
innovative projects.
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1 Introduction

The shipbuilding industry faces continuously evolving requirements, as the rise in environmental
consciousness prescribes reducing operational costs and adopting new engine technologies [43]. The
hull design should reflect a lower resource usage during the manufacturing and operational phase,
while at the same time accommodating new machinery such as liquid hydrogen tanks or batter-
ies. All of these innovations must then observe the structural stability constraints imposed by the
classification societies, which guarantee the safety and durability of the ship. The implementation
of flexible and efficient optimization procedures during the initial design phase thus represents a
crucial factor for innovation and competitiveness. However, the formulation of the optimization
problem is a delicate task. When facing a project with novel characteristics, the designers might
not anticipate the emergence of fringe behaviors and corner cases for which their initial formula-
tion produces underwhelming results. In this work, we minimize the total mass of a cruise ship
during the initial design phase, combining surrogates-assisted optimization and an automatic re-
fining strategy for the optimization problem. The validation of the optimized designs is carried
out through Finite Elements Analysis (FEA), integrating the tools and pipelines familiar to the
designers.

FEA is widespread in industry [34], and commercial solvers are available for the certification of
industrial designs. However, the computational cost of FEA is incompatible with rapid iterations of
optimization steps in the initial design phase of large-scale projects. Advanced FEA codes provide
adjoint-based optimizers [20], but the implementation of complex and sometimes intractable rules
from the classification societies hinder their adoption into the design workflow. Recent works on
the structural optimization of marine artifacts have been focused on the use of either simplified an-
alytical formulations, or FEA of small, incomplete models. In [4], a single hull ring was optimized
to reduce mass and structural instability with a multi-objective genetic algorithm, with objectives
and constraints computed by FEA. Finite differences of the simplified expressions for yielding and
buckling were employed to find search directions for the optimization of a semi-submersible floater
in [26]. FEA of a coarse mesh, combined with a simplified analytical model for the stiffeners struc-
tures, was optimized with particle swarm optimization in [32]. A collection of recent publications
on design methods for the marine industry, including structural and topology optimization, can be
found in the report of the International Ship and Offshore Structures Congress [25].

Reduced order models (ROMs) [6, 23, 9] provide an alternative to FEA in the initial design
phase, enabling the designers to quickly iterate changes to parameter values and shape configura-
tions, with the expensive validations being performed only on the most promising configurations.
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Non-intrusive approaches [7, 28] are able to separate the optimization procedure from the underly-
ing physical model, a crucial requirement for workflows relying on closed-source commercial codes.
Still, the optimization results are heavily dependent on the problem formulation, which when kept
simple might be hindered by the designers’ bias or inexperience with novel technologies, or on the
other end could scale poorly when too complex.

In this work, we present an automated reparameterization procedure in the context of struc-
tural optimization, where the problem formulation is refined hierarchically through an integer linear
problem (ILP) [37] based on the structural responses observed near the best-known configuration.
The procedure extends an existing automated optimization pipeline for the optimization of passen-
ger ship hulls [44], developed in collaboration with Fincantieri S.p.A., where data-driven surrogates
based on proper orthogonal decomposition (POD) and Gaussian process regression (GPR) [33, 21]
are optimized using Bayesian optimization (BO) [38]. Moreover, the framework is extended with
the addition of multi-objective optimization through genetic algorithm (GA) [39, 17, 47, 14], and
the integration of constraints for the vertical center of gravity (VCG) in the BO procedure. Single-
objective optimization is further refined with a specialization for the discrete parametric domain,
and a greedy heuristic that we call principal dimension search (PDS). Figure 1 shows the end-to-
end pipeline, from the initial parameterization to the optimal hull. The process begins with an
initial formulation of the optimization problem and the high-fidelity evaluation of a randomized
sampling of the parametric space. The high-fidelity evaluations are used to build surrogates for
the cheap evaluation of the quantities of interest (QoIs). The following optimization steps, multi
and single-objective, employ the surrogates to efficiently select promising parameter configurations
to expand the high-fidelity evaluations and refine the surrogates. Then an automatic refinement
of the problem formulation is performed, increasing the capability of reaching better values of the
QoIs at the cost of introducing more decision variables. After the problem refinement, the sequence
of surrogates construction and optimization is started again, until the users are satisfied with the
QoIs of the high-fidelity optimum.

Figure 1: Optimization pipeline implementing the NAND approach. The operations start with
an initial problem formulation (1) and a corresponding sampling of the parametric space. The
configurations are processed during the analysis phase (2) to build a database of high-fidelity
snapshots. The design phase consists of the construction of surrogates (3), and their optimization
both multi-objective (4) and single-objective (5). The optimization results are then validated
by (1), updating the snapshots database, and the design phase starts again. If the optimization
doesn’t find a new optimum candidate, the user can either accept the current optimum, or refine
the parameterization (6) and re-enter the pipeline with a more expressive problem.

The paper is organized as follows. The problem formulation for the initial design phase is
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described in Section 2, along with the proposed solution for an automatic optimization pipeline.
In Section 3 we discuss the numerical methods for the implementation of the optimization pipeline.
The pipeline is applied to two test cases, a simplified midship section and a full ship model, with
the results being analyzed in Section 4. Finally, we draw conclusions in Section 5.

2 Problem definition

The design phase of cruise ships can take more than one year to be completed, and is subdivided
into multiple sub-phases which deal with increasing levels of detail. In this work, we concentrate on
the early design phase, where the designers are tasked with ensuring the structural resilience of the
ship against extreme waves, while reducing steel usage and respecting safety and manufacturing
constraints. At this point in the project, the design of decks, shells, cabins, and functional areas
has been finalized at a coarse level, defining the 2D geometry of the steel plates that constitute the
primary structural components of the ship. To modify the structural response of the model, the
designers can act on the thickness and the steel type used in the primary structural components,
or they can change the configuration of the secondary structural components (such as beams and
flanges) by varying their size and spacing.

Every configuration needs to be validated through a computationally expensive FEA simulation.
Combined with the large variability in the design of cruise ship, which often include ad-hoc elements
such as theaters, elevators disposition, or open areas, the initial design phase usually lasts several
months. In this work, we implement an optimization framework to speed up the design process
and provide the designers with optimal configurations.

In Section 2.1 we present the FEA setup and the QoIs extracted by a simulation. In Section 2.2
we present the optimization pipeline.

2.1 Structural problem formulation

The global model of a ship hull employs quadrilateral and triangular shell elements for the primary
structural members (decks, bulkheads and shell), while the secondary stiffeners also use beam
elements. The shell elements have principal dimensions of approximately 700 mm. The load
conditions applied to the mesh come from two extreme waves, as defined by the classification
society: the hogging condition corresponds to the wave’s crest being placed at the ship’s mid-
length, while in the sagging condition the ship’s middle point is placed above the trough. Figure 2
shows the two load conditions applied to the model of a full ship. The model loads are then
completed by the machinery and furniture.

Figure 2: A full ship model under hogging load condition on the left, and sagging on the right.
Displacements are magnified, colors represent the value of the von Mises yielding criterion.

MSC NASTRAN [24] assembles a linear static analysis problem for a given parameter configu-
ration, that is a parameterized hull, using thin plate theory for the constitutive equations of shell
elements. The outputs of interest of the simulation comprise the three-dimensional displacements
of the mesh nodes and the in-plane stress tensors evaluated at the centroids of the shells’ faces. The
stress tensors of each shell face are averaged and transformed to the global coordinate reference
system for further analysis. At this point, the stress tensors are collected as

Sl
e =

σx τxy τxz
τxy σy τyz
τxz τyz σz,

 , (1)

where l denotes the load condition, e the shell element index, σ the direct stresses, and τ the shear
components. Subscripts to the stress components identify the axis, or plane, of action.

4



To quantify the structural integrity of the ship under the given load conditions, the stress tensor
fields are post-processed to compute the yielding and buckling states of each element, according to
the rules imposed by the classification society. In this paper, the structural criteria come from the
Det Norske Veritas (DNV) specifications for ships of length of 100 meters and above. The yielding
state is obtained by comparing the stress tensor components with the appropriate allowable value
and evaluating the von Mises yielding criterion, that is:

|σi| ≤ 245, for i ∈ {x, y, z}, (2a)

|τi| ≤ 153, for i ∈ {xy, xz, yz}, (2b)

σVM =

√
(σx − σy)2 + (σy − σz)2 + (σz − σx)2

2
+ 3(τ2xy + τ2xz + τ2yz) ≤ 307, (2c)

where the critical values refer to high strength structural steel (AH36). An element is marked as
yielded if any of Equation (2) is not satisfied for at least one load condition.

Although the used shell elements do not model out-of-plane stresses, the DNV specifies buckling
criteria [16] computed from the stress tensor components and the geometry of the panel the element
is part of. These criteria are based on general elastic buckling formulae, corrected in the plastic
range, and result in 11 usage factors. An element is marked as buckled if any of these usage factors
is above a certain threshold for at least one load condition.

Both yielding and buckling phenomena can be corrected with additional manufacturing actions,
albeit at the cost of increased build time and resource usage. Regardless of the potential saving in
terms of total mass, these corrections are undesirable, and the designers specify critical thresholds
on the number of yielded and buckled elements, above which a design is to be penalized. These
thresholds provide the main constraints of the initial design phase, and the total number of yielded
and buckled elements constitute the first QoIs obtained from a high-fidelity simulation. The mass
and cost of the model are computed from the volume of the steel used and the amount of adopted
corrective measures. In this work, we only consider buckling correction through the application of
secondary stiffeners, which affect both total mass and cost.

The vertical deflection is computed as the maximum absolute vertical displacement of a selected
mesh node, and is interpreted as an index of the structural stiffness of the hull. Lower vertical
deflection values correspond to more resilient ships. The vertical center of gravity (VCG), computed
for the structural components of the ship weight, is required to be lower than a critical value
determined by the geometry of the hull.

The list of QoIs computed from a simulation is thus composed of five scalars: number of
yielded elements, number of buckled elements, total mass considering the corrective actions, vertical
deflection, and VCG.

The decision variables for the mass optimization problem are the thickness of selected shell
elements. The domain T for these variables is discrete, since it is limited to commercially available
sizes. A subset of the available thicknesses Di ⊆ T is assigned to the i-th group of elements to
be controlled by the parameter xi, since regulations can specify different minimum thicknesses
depending on the part of the ship. In this work, only primary members can be controlled by
parameters, while the thickness of secondary stiffeners and the rest of the material properties are
fixed. The evaluation of a single parameters configuration requires assembling and solving the
corresponding FEA problem, followed by post-processing of the results to obtain the QoIs.

2.2 Optimization pipeline

We follow what has been done in [44], where the authors use the nested analysis and design
(NAND) methodology [2, 3] to implement an automatic pipeline for the optimization of the initial
ship design, employing data-driven surrogates and Bayesian optimization to minimize the model’s
total mass. The NAND approach iterates two phases, with the analysis phase being the high-
fidelity simulation of one or more parameter configurations, and the design phase constituted by
the selection of new configurations to be simulated, chosen through optimization of the surrogates.
The high-fidelity simulations are computationally expensive, thus it is assumed that only a limited
number of runs are possible at each iteration. The design phase builds data-driven surrogates based
on the high-fidelity simulations, with the following optimizations employing a black-box approach.
The closed-source high-fidelity FEA solver employed does not allow access to the implementation
details, preventing intrusive approaches to model order reduction. The loop of analysis and design
is interrupted upon the design phase being unable to further select promising candidates.
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In this work, we expand the existing pipeline with additional steps in the design phase, namely
a multi-objective optimization module and a reparameterization module, to implement a NAND
workflow as depicted in Figure 1. The analysis step consists in the high-fidelity evaluation of one
or more parameter configurations, and is represented by section (2) in Figure 1. The design step
consists in the construction and optimization of the surrogates, and with our recent contribution,
in the usage of the surrogates to refine the problem formulation. These procedures are represented
by the sections (3), (4), (5), and (6) in Figure 1.

Multi-objective optimization provides an effective tool for the exploration of the model capa-
bilities through the discovery of optimal trade-offs between contrasting QoIs, such as total mass
and vertical deflection, enabling better informed decisions on the project constraints. Without
this module, the designers would only rely on their experience, and on a random sampling of the
parametric domain.

The reparameterization module aims to reformulate the optimization problem itself, by increas-
ing the parameters to improve on the best known configuration. Indeed, the initial parameteri-
zation of the model often proves to be a limiting factor in the efficacy of the optimization, either
due to being usually based on simplified beam theory or due to the model having complex or novel
structures. The reparameterization procedure identifies whether a group of elements controlled by
the same parameter can be split, creating new independent parameters so that different thickness
values can be assigned to the subgroups. The following optimization is then able to reduce the
mass of elements exhibiting less yielding and buckling phenomena, while increasing the stiffness
of highly stressed parts of the hull. The designers are not limited anymore by the chosen initial
parameterization, where a modification would require a tedious manual reconfiguration and data
transfer.

Finally, a number of improvements to the single-objective optimization module enable a more
efficient exploration of the parametric domain, which becomes necessary to handle the growing
number of parameters coming from the reparameterization step.

3 Numerical methods

This section presents the numerical methods used in the automatic optimization pipeline. Sec-
tion 3.1 discusses the implementation of data-driven ROMs to compute the QoIs, Section 3.2
illustrates the optimization procedures enabled by the surrogates, and Section 3.3 describes the
parameterization refinement process.

3.1 Model order reduction

To implement a computationally cheap and accurate surrogate of the stress tensor field for different
load conditions, we combine POD and GPR. In this subsection, we briefly present these two
methods.

3.1.1 Proper orthogonal decomposition

POD decomposes a matrix of high-fidelity snapshots to obtain an orthogonal basis for the span of
the column space. Let M ∈ Rn×m be a matrix collecting the m snapshots as columns of n features,
and assume n ≫ m which corresponds to operating in a large-scale scenario. Then, the singular
value decomposition (SVD) of M, that is M = UΣVT , uniquely determines U ∈ Rn×n the matrix
with the left singular vectors of M as columns, Σ ∈ Rn×m the diagonal matrix of singular values,
and VT ∈ Rm×m the transpose of the matrix with the right singular vectors of M as columns.
Uniqueness is achieved by sorting the singular values in decreasing order, up to a change of sign of
the basis vectors or a change in positions corresponding to repeated singular values. By choosing
a truncation rank r < m, one can introduce the truncated SVD

M ≈ M̃ = ŨΣ̃ṼT , (3)

which constructs Ũ and Ṽ by selecting the r leftmost columns of U and V, and the corresponding
r largest singular values form the diagonal matrix Σ̃. The reconstruction error in the Frobenius
norm is quantified by the discarded singular values as

∥M− M̃∥F =

m∑
i=r+1

σ2
i , (4)
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where σi is the i-th singular value. The columns of Ũ thus give a basis of size r, optimal in the sense
of the Frobenius norm, for the reconstruction of the original snapshots. The reduced coefficients
can be computed through the projection of the snapshots matrix M unto the basis Ũ, with the
matrix C = ŨTM holding as i-th column the reduced coefficients of for the i-th snapshot in M.
As each snapshot is associated to a parameter configuration, the reduced coefficients provide the
ground truth for the construction of a map from the parametric domain to the space of reduced
coefficients. In this paper, the snapshots are obtained through the execution of closed-source
commercial codes, thus regression can only be carried out by data-driven methods. Successful
approaches that have been leveraged in the past are radial basis functions interpolation, Gaussian
process regression and artificial neural networks, among others [42, 15, 19, 22].

3.1.2 Gaussian process regression

GPR assumes that any set of observations of the QoI is sampled from a multivariate normal
distribution. Let y be a vector of observations yi = f(x(i)), and y ∼ N (µ,K). The vector of
marginal means µ and the covariance matrix K are defined as:

µi = E [yi] = E
[
f(x(i))

]
, (5)

Kij = Kji = E [(yi − µi)(yj − µj)] = Cov [yi,yj ] = Cov
[
f(x(i)), f(x(j))

]
. (6)

The conditional distribution of a subset of observations L, on past outcomes H, can be obtained
by leveraging the joint distribution[

yH

yL

]
∼ N

([
µH

µL

]
,

[
KHH KHL

KLH KLL

])
, (7)

to obtain
yL|H ∼ N (µL|H ,KL|H), (8)

where the conditioned terms are expressed in terms of mean and covariance matrix of the process’
distribution as

µL|H = µL +KLHK−1
HH(yH − µH), (9)

KL|H = KLL −KLHK−1
HHKHL. (10)

The crucial component of a GPR is the construction of two functions µ(x(i)) and kern(x(i),x(j))
to generate the entries of µ and K, respectively, so that past observations are reproduced with
high confidence and extrapolation beyond the observed instances gives a coherent probability
distribution. The mean function, which encodes any prior knowledge about the output, is usually
set to zero. Indeed, in Equation (9) the covariance-dependent terms act as a correction, weighting
the observed deviations from the prior. For the covariance function, which is required to generate
a symmetric semi-definite positive matrix, a popular choice is the squared exponential kernel with
automatic relevance determination:

Kij = kern(x(i),x(j)) = σ2exp

(
−1

2

∑
d

(x
(i)
d − x

(j)
d )2

l2d

)
, (11)

where σ2 is a scaling factor, and ld is the length scale associated to the dimension d of the parametric
domain.

To fit the covariance matrix Kθ parameterized by the vector of hyperparameters θ, the log
likelihood is maximized through gradient ascent. For the case of zero prior and the kernel function
in Equation (11), with X =

[
x(1), . . . ,x(m)

]
, it reads

log p(y | X,θ) = −m

2
log 2π − 1

2
log |Kθ| −

1

2
yTK−1

θ y, (12)

where |Kθ| is the determinant of the covariance matrix.
We emphasize that it is possible to precompute K−1

HH(yH − µH) in Equation (9), since it
only depends on the snapshots. Thus, the online query for the conditioned mean requires only
the computation of the kernel function between the snapshots samples, and the query point. The
execution time of a GPR query on a single point scales with the product of the number of snapshots
samples, output dimensions, and kernel function complexity.
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3.1.3 Implementation of the surrogates

In this paper, we aim to find a computationally inexpensive map from the parameters configuration
to the stress tensor fields. We leverage POD to reduce the dimensionality of the output space,
and employ GPR to map the parameter configurations to the reduced coefficients, thus obtaining
a much simpler problem setup. This approach is known as POD-GPR in the literature, and has
been successfully employed in solid mechanics [22, 12, 10]. In particular, for each combination of
load condition and stress tensor component, we perform POD of the high fidelity snapshots and
build a vector-valued GPR for the prediction of the reduced coefficients. In the following, we omit
the indices for load condition and stress tensor component to lighten the notation.

Let S ∈ Rn×m be the matrix collecting the snapshots vectors s(i) := s(x(i)) of the current stress
tensor component and load condition, associated to the parameter configuration x(i). Let Ũ be
the basis matrix obtained by the SVD of S, truncated at rank r. We obtain the parameterized
reduced coefficients through the projection

c(i) := c(x(i)) = ŨT s(i), (13)

For each vector of r reduced coefficients, we train a different GPR on the m pairs (x(i), c(i)), so
that the approximated quantities, denoted by a hat, for the coefficients and the original field satisfy

s(i) ≈ ŝ(i) = Ũĉ(i), (14)

where the hat denotes the result of an approximation.
In this paper, we consider 2 load conditions (hogging and sagging) and the unique 6 elements

of the Cauchy stress tensor Equation (1), therefore the total number of GPR being fitted is 12. We
employ vector-valued GPRs, each mapping a parameter configuration to the r POD coefficients
corresponding to a different combination of load condition and stress tensor component. We also
observe that the decay of singular values consistently achieves residual energy below 1% for rank
r higher than, but close to, the number of parameters. This behavior results in an effective model
order reduction and limits the complexity of the GPRs’ train phase. Additionally, the construction
of the GPRs for each stress tensor component and load condition is embarrassingly parallel, once
the tensor fields are decomposed and each component stored separately.

The post-processing steps for the computation of the yielding and buckling states of each
element only require the stress tensor components and metadata of the element, leading to an
efficient vectorized implementation. The same holds for the aggregation to compute the total
number of yielded and buckled elements, from which the derivation of total mass and cost is
straightforward.

We remark that the use of an efficient post-processing step, instead of the direct implementation
of surrogates for the QoIs, results in a much lower error in the prediction, as was shown in [44].
For the surrogate of the vertical deflection, we construct a single GPR for each load condition and
take the maximum of the absolute value of the predictions.

Overall, the computational complexity of querying our surrogates scales as O(r(n + md)),
where d is the number of parameters. With both m≪ n and d≪ n, the cost of a surrogate query
is much lower than the O(n2) required by a high-fidelity FEA for a sparse linear system. This
enables the use of the surrogates in many-query and quasi-real time applications, such as black-box
optimization procedures and graphical user interfaces.

3.2 Surrogate-assisted optimization

The surrogates for the stress field, combining POD and GPR, allow a large number of inexpensive
queries on the parametric domain. Only the most favorable configurations, selected by optimiza-
tion, will be validated with an expensive full order simulation. However, as in many industrial
applications, the parametric domain is large enough that exhaustive exploration is still unfeasible,
and an infill criterion is required. We propose a combination of a multi-objective genetic algorithm,
Bayesian optimization, and a heuristic local search to guide the exploration of the parametric do-
main and perform full order simulations only for the most promising configurations.

In Section 3.2.1, we present the genetic algorithm for multi-objective optimization, and an
infill criterion which leverages the uncertainty quantification provided by the GPR component of
our surrogates. Section 3.2.2 presents a specialization of BO, discussing the choice of objective
function and the implementation of additional constraints and heuristics. Section 3.2.3 illustrates
the black-box local heuristic used to further refine the optimum found by BO.
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3.2.1 Multi-objective optimization

Often, multiple QoIs are used as objective functions and it is not clear whether a global criterion
for the prioritization of one over another exists. In this case, the experts are interested in obtaining
not a single optimal configuration, but rather a set of configurations exhibiting the best trade-offs
between the different QoIs. Such a set is called the Pareto set (PS) of the problem, and its image
is the Pareto frontier (PF). By analyzing the PF, the experts can compromise between the various
needs and impose stricter or laxer constraints for future single-objective optimization tasks.

Let Dbe a parametric domain, and f a vector of QoIs {fi : D → R}ni=1 which must be all
minimized. A configuration x̄ ∈ D is called dominated if there is at least one x ∈ D such that
fi(x) ≤ fi(x̄) for all i, and fi(x) < fi(x̄) for at least one i. A dominated configuration is of no
interest in the optimization since there exists another configuration which performs no worse on
all QoIs, and is strictly better for at least one QoI. Given a population of configurations, the PS is
then taken as the subset of non-dominated individuals. To approximate this subset, many popular
approaches employ genetic algorithms [39, 17, 47] in which an initial population is iteratively grown
through crossover and mutation of its best individuals, and the least desirable elements are selected
for removal. The generic structure is outlined in Algorithm 1.

Algorithm 1 Template of a genetic algorithm.

Input: initial population X, fitness function f , crossover and mutation functions, maximum pop-
ulation p, number of generations q

Output: final population
i← 0
while i < q do

Xparents ← select from X according to f
Xchildren ← crossover of Xparents

Xchildren ← mutation of Xchildren

X← Xparents ∪Xchildren

X← the p best performing individuals from X according to f
i← i+ 1

end while
return X

Multi-objective optimization lacks a scalar fitness function, so that the selection of parents and
the removal of the least fit individuals cannot be reduced to the usual sorting of the values.

We use the non-dominated sorting strategy proposed in the NSGA family of algorithms [14, 13].
The individuals are ranked by their degree of domination with Algorithm 2.

Algorithm 2 Non-dominated sorting.

Input: list of objective functions evaluations Y =
{
y(i)
}m
i=1

Output: list L of non-dominated layers as set of indices
L← empty list
R← {i = 1, ...,m}
while |R| > 0 do

YR ← {y(i) | i ∈ R}
M ← {i | y(i) is not dominated in YR}
L← L ∪M
R← R \M

end while
return L

The selection of the fittest individuals is performed by taking the union of non-dominated
subsets, starting from the first, until the limit of population size is reached. If the number of selected
individuals exceeds the limit, the subset with the most dominated individuals is downsampled with
the niching strategy from NSGA-III [13], to prevent overcrowding in the QoIs space.

Due to the use of surrogates, the final PF is only an approximation of the true set of non-
dominated QoIs. An infill criterion is needed to select a reduced number of individuals to be
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validated by the high-fidelity solver, so that further multi-objective optimizations yield a more
accurate PF. The approximated PS comprises the high-fidelity samples already validated and
which contribute to the construction of the surrogates, and the low-fidelity samples which can
be added to the high-fidelity set to increase the accuracy of the surrogates. For an individual
to be chosen, it is required that its addition to the high-fidelity samples maximally improve the
predictions at the location of the remaining low-fidelity members of the PF. This approach is
similar to [35], which adapts the idea of maximizing the conditioned uncertainty reduction from
[29] and the integration of an uncertainty measure over a domain of interest from [11], to the case
of GPR. We choose to measure the covariance between the samples in the reduced coefficient space,
since the corresponding GPRs have been thoroughly validated as providing accurate predictions of
the stress tensors, from which the QoIs are derived. Differently from the procedure in [35], which
would explicitly estimate the reduction in uncertainty, we estimate the increment in covariance,
which only requires the evaluation of the kernel and is thus cheap compared with Equation (10).
Moreover, we operate on a set of GPRs, so that an aggregation strategy becomes necessary.

The infill procedure starts by constructing the covariance matrices between the elements in
XL, and between those in XL and XH. We aggregate over reduced coefficients and load conditions
by taking the maximum, then sum over the stress tensor components to obtain CLL ∈ Rn×n,
symmetric, and CLH ∈ Rn×m.

Let {K(l,s,c)
LL } be the set of covariance matrices of the GPR corresponding to the reduced

coefficient c of the stress tensor component s under the load condition l, evaluated between the
samples in XL. Then, the element (i, j) of the aggregation matrix is computed as

CLL
ij =

∑
c

max
l,s

[(
K

(l,s,c)
LL

)
ij

]
, ∀ i, j = 1, . . . , n, (15)

giving a scalar measure of the mutual information between the samples inXL. The same expression
is used for the construction of CLH. A vector ∆ is built by computing, for the i-th sample in XL,
the total positive relative increase over the maximum high-fidelity contribution to the rest of the
low-fidelity PF as

∆i =

∑
j ̸=i

(CLL
ij −max

h
CLH

jh )+∑
j ̸=i

max
h

CLH
jh

, ∀ i = 1, . . . , n, (16)

where (·)+ = max(·, 0). The high-fidelity set is then enriched by adding the i∗-th sample deter-
mined by

i∗ = argmax
i

∆. (17)

The choice of the aggregation functions in Equation (15) can be viewed as constructing the
best case scenario for the mean covariance increase across the stress tensor components. If more
than one configuration can be selected for the high-fidelity validation, the matrices CLL and CLH

can be updated by simulating the addition of the sample i∗ to the high-fidelity set, as summarized
in Figure 3. In particular, the i∗-th row (and column) is removed from CLL, its elements are used
to build the column m + 1 in CLH, and finally the i∗-th row of CLH is removed. The resulting
matrices have thus size n − 1 × n − 1 and n − 1 ×m + 1 respectively, and the selection can take
place after computing the updated ∆ vector.

Assuming that the covariance function kern(·, ·) of the GPRs remains the same after fitting
the updated high-fidelity snapshots, the covariance matrix blocks KHH and KHL that appear in
Equation (7) will contain larger entries in the rows and columns corresponding to the elements
from the infill set. Thus, when queried on x from the surrogate PS, a more effective correction
of the prior will be applied in Equation (9) and likewise a larger reduction of the variance will
come from Equation (10). In practice, this infill criterion proves effective in generating a sparse
sampling of the surrogate PS, and the rate of change of ∆i∗ provides a convergence criterion for
early stopping of the multi-objective optimization.

3.2.2 Bayesian optimization

BO aims to optimize an expensive black box objective function, using a low number of function
evaluations. The procedure builds a surrogate and updates it iteratively, selecting the next sample
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max infill
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new HF

CLL

i∗
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Figure 3: On the left, position i∗ in the low-fidelity Pareto Frontier is selected as maximizer of the
infill criterion ∆ evaluated on matrices CLL and CLH using Equation (16). The addition of the
i∗-th sample to the high-fidelity set is simulated with the removal of row (and column) i∗ from
CLL, its addition to CLH, followed by the removal of row i∗. The next sample is selected using the
updated matrices.

as the most promising for improving on the best known configuration. A GPR is built on an
initial set of objective function evaluations, and the selection of the samples is carried out by
optimizing an easy to compute acquisition function, which leverages both the predicted value and
the associated uncertainty [21]. The sampling of the parametric domain refines the GPR, thus
effectively finding good configurations. This sampling balances between the so-called exploration
(regions with high uncertainty) and exploitation (regions close to the current optimum).

The acquisition function represents the uncertain gain in terms of objective function, so its
maximization will select the next sample for the validation. Several formulations have been pro-
posed, which vary in terms of exploratory or exploitative proclivity. Here we briefly describe the
negative lower confidence bound, the expected improvement, and the probability of improvement.

Negative lower confidence bound (NLCB) [41] is an exploratory acquisition function for mini-
mization problems, expressed as

αNLCB(x) = −(µ(x)− βσ(x)), (18)

where µ is the mean and σ is the standard deviation from the GPR posterior, with β ≥ 0 weighting
optimistically the contribution from the estimated uncertainty.

Expected improvement (EI) [46] is an exploratory acquisition function defined as

αEI(x, y
∗) = E[(y∗ − µ(x))+] = (y∗ − µ(x))Φ

(
y∗ − µ(x)

σ(x)

)
+ σ(x)ϕ

(
y∗ − µ(x)

σ(x)

)
, (19)

where y∗ denotes the best known value of the objective function, ϕ and Φ are the probability
density function and the cumulative distribution function, respectively, for the standard normal.

Probability of improvement (PI) [27] is an exploitative acquisition function defined as

αPI(x, y
∗) = Φ

(
y∗ − ϵ− µ(x)

σ(x)

)
, (20)

where ϵ > 0 prevents the acquisition function from selecting candidates excessively close to the
best-known solution. A representation of a search step in BO, using different acquisition functions,
is given in Figure 4.

In this work, the objective function to minimize is the physical mass of the ship. We consider
three contributions: the mass of the elements controlled by a decision variable, the mass of the
elements which are fixed, and the mass of the reinforcement bars applied to correct buckling
phenomena. To the physical mass, we add a penalization term to handle constraints on the QoIs
that do not have a practical expression in terms of the parameters. In particular, the number of
yielded and buckled elements are required to fall below some thresholds ycrit and bcrit, respectively,
specified by the designers to guarantee ease of manufacturing of the design. The penalized objective
function is

f(x) = mfixed + d · x+mbarnb(x) + fpen(x), (21)

where mfixed represents the mass of elements not controlled by any parameter, d is the vector col-
lecting the linear density of each parameterized section, mbar is the average mass of a reinforcement
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Figure 4: On the left, the GPR prediction with its uncertainty on the top and the acquisition
functions at the bottom. On the right, the updated GPR after the addition of the previously
selected sample, for each acquisition function.

bar, and nb(·) is the function that returns the number of buckled elements for a given parameter
configuration. The penalization term fpen(x) is defined as

fpen(x) = cy(ny(x)− ycrit)
2
+ + cb(nb(x)− bcrit)

2
+, (22)

where cb and cy are some positive constants to be chosen, and ny(·) is the function that returns the
number of yielded elements for a given configuration. Equation (22) can be extended to include
constraints on other QoIs, such as the vertical deflection.

We use the Emukit [31, 30] implementation of BO, where the optimization of the acquisition
function is carried out by the trust-constr method from SciPy [45]. The trust-constr method
leverages the algorithm from [8], which is a barrier method that employs sequential quadratic pro-
gramming and trust regions to support generic inequality constraints. We leverage this capability
to efficiently restrict the search space at runtime, by producing a bound on the linear part of the
penalized objective function.

Let x∗ be the current best solution. Then, since nb(x) ≥ 0 and fpen(x) ≥ 0, a better optimum
can only be found in the half-space where x satisfies

f(x∗) ≥ f(x) ≥ mfixed + d · x, (23)

giving a linear inequality that will be updated each time f(x∗) decreases. This bound can be lax
depending on the penalization term, but in practice it is crucial to reduce the search space and
achieve good optimization performances.

The constraint on the maximum VCG allows a linear inequality formulation as well, by omitting
the mass contribution of reinforcement bars:

VCG(x) =
VCGfixedmfixed +

∑
i VCGidixi

mfixed +
∑

i dixi
≥ 0, (24)

where VCGfixed is the VCG of elements not controlled by any parameter, and VCGi is the VCG
of the i-th parameterized region. VCG is assumed positive due to the conventions in the definition
of the model. Then bounding from above with the critical value VCGcrit gives

VCGcrit ≥
VCGfixedmfixed +

∑
i VCGidixi

mfixed +
∑

i dixi
,

VCGcrit

(
mfixed +

∑
i

dixi

)
≥ VCGfixedmfixed +

∑
i

VCGidixi,

(VCGcrit −VCGfixed)mfixed ≥
∑
i

(VCGi −VCGcrit)dixi. (25)
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As an additional heuristic, we balance exploration and exploitation by switching between different
acquisition functions after a number of iterations with no decrease in the current optimum.

The BO formulation used so far considers a continuous domain, but we are constrained to
use commercially available thicknesses, resulting in a discrete domain. A naive implementation
would optimize the acquisition and round to the closest domain point, but this approach is prone
to repeated selection of the same configuration, and does not take into account the feasibility
constraint on VCG. To solve the first issue, we convert the candidate point coordinates to a vector
of indices of feasible values, then encode the vector in a single integer identifier, stored in a set
for fast lookup. On detection of a duplicate sample, or if the sample is unfeasible, we solve an
integer linear program (ILP) [37] to find a new configuration that satisfies all constraints and with
minimal distance from the original one.

Let x̄ be the current duplicate or infeasible candidate, I be the set of parameter indices, T be
the set of possible parameter values, and xit be the binary decision variable which takes value 1
when xi = t, and 0 otherwise. The next sample is retrieved by solving the following optimization
problem

minimize
∑
i∈I

∑
t∈Di

xit|t− x̄i|2, (26)

subject to
∑
t∈Di

xit = 1, ∀i ∈ I,

∑
i,t|x̄i=t

xit ≤ |I| − 1,

∑
i∈I

∑
t∈Di

xitdit ≤ mUB −mfixed,∑
i∈I

∑
t∈Di

xit(VCGi −VCGcrit)dit ≤ (VCGcrit −VCGfixed)mfixed,

xit ∈ {0, 1}, ∀i ∈ I, ∀t ∈ T,

where di is the linear density of the i-th parameter and mUB the penalized mass of the current
optimum. The first constraint ensures consistency, the second one guarantees that the new sample
will not be a duplicate of x̄, and the rest replicate the constraint of the BO. If the newly found
candidate is still a duplicate, we apply a random disturbance until an actual unvisited configuration
is generated, or a maximum number of attempts is reached. For the solution of the ILP, we use
the COIN-OR Branch-and-Cut solver (CBC) [18] through the python-mip library [36]. This ILP
has a small size, comprising only |T ||I| integer variables and |I|+3 constraints, and is often solved
to optimality by the preprocessing of the solver.

BO selects new candidate configurations until a computational budget is expended, given as the
number of iterations or total execution time. The complete procedure is reported in Algorithm 3.

If the search finds no candidate that improves on the current best solution, the optimization is
concluded. Otherwise, a high-fidelity simulation is required to validate such result and the search
is repeated. In practice, even with the available refinements to reduce the search space, BO on a
large parameter space is only able to perform several rounds before failing to find new promising
candidates.

3.2.3 Principal dimensions search

To overcome the limitations of repeated BO on our large parameter space, we propose a more
principled greedy heuristic, based on the exhaustive exploration of the neighborhood of the best
candidate configuration. By leveraging the cheap surrogates, it is possible to evaluate all con-
figurations that differ for one parameter from the chosen candidate. This approach is related to
the cyclic coordinate search but performs a full scan of each parameter, thus the name principal
dimensions search (PDS). The maximum number of surrogate evaluations is O(

∑
i∈I |Di|−1), but

in practice it is much lower due to the enforcement of Equation (23) and Equation (25). If no
improvement is found, the search is concluded. Otherwise, the best configuration is used as the
starting point of a new PDS until a computational budget is exhausted, and the best results are
validated by the high-fidelity solver. The entire process is detailed in Algorithm 4.
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Algorithm 3 Specialized BO implementation.

Input: objective function f , high-fidelity parameters X, and evaluations y
Output: returns the configuration that minimizes f

train GP on X, y
x∗ ← argminx∈X f(x)
α← one of {αNLCB, αEI, αPI}
while number of iterations ≤ iter limit do

x← argmaxx α(x) subject to Equation (23), Equation (25)
x← round(x) ▷ could be provided by the BO framework
while x is infeasible or x ∈ X do

x← solution to ILP (26)
end while
if f(x) < f(x∗) then

x∗ ← x
update f(x∗) in Equation (23)

end if
X← X ∪ {x∗}
y← y ∪ {f(x∗)}
train GP on X, y
if y∗ did not decrease in the last 100 iterations then

α← another one of {αNLCB, αEI, αPI}
end if

end while
return x∗

This greedy heuristic is strongly exploitative of the current best solution and proves effective
in finding new candidates, but is limited in its exploratory capabilities.

3.3 Parameterization refinement

The results of the optimization procedure are determined by the problem formulation, that is, by
the parameterization chosen for the model. While a human designer is able to, in principle, assign
the thickness of each element independently, the optimization of a model with so many decision
variables would be impractical even for problems of moderate scale. On the other hand, a model
which only uses few parameters will be limited in its ability to balance the optimization of total
mass and the reduction of structural failure phenomena.

We propose an automatic refinement of the parameterization based on the solution of a set of
ILPs, which will determine a division of each group of elements according to its structural response.
This approach has been inspired by a similar idea in the context of multiscale finite elements [5],
where the number of finer, expensive problems to be solved was reduced by clustering the boundary
conditions applied to the sub-elements.

In our case, we start from the best solution obtained during the optimization and the set of
surrogates constructed based on the high-fidelity evaluations collected during the pipeline execu-
tion. A number of configurations are evaluated in the vicinity of the best solution, to obtain the
yielding and buckling states of each element. The elements, however, cannot be managed individ-
ually: in the real world, the ship will be assembled using metal sheets of about 2.5m×15m, which
correspond to a group of elements in the model. The elements corresponding to the same metal
sheet are constrained to have the same thickness and constitute the minimum constituent of a
parameterization. We denote these groups of elements as patches. For each parameterized section,
an ILP is constructed to choose the best parameter value for each patch, so that an objective
function similar to the one used in BO is minimized. The resulting thickness assignments identify
the optimal refined parameterization.

Let Pi be the set of patch indices assigned to the i-th parameter xi, and Di the set of possible
parameter values. Additionally, let ypt and bpt be the number of yielded and buckled elements,
respectively, in patch p ∈ Pi when xi = t. We assume that each patch is independent of the rest
of the ship, so that ypt and bpt combine linearly and can be computed (using surrogates, and high-
fidelity evaluations when available) by enumerating t ∈ T and keeping the rest of the parameter
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Algorithm 4 Principal direction search.

Input: objective function f , high-fidelity parameters X
Output: returns a feasible solution through PDS

x∗ ← argminx∈X f(x)
while number of iterations ≤ iter limit and elapsed time ≤ time limit do

xbase ← x∗

x← xbase

for i in I do
for t ∈ Di \ {xbase

i } do
xi ← t
if x is feasible and f(x) ≤ f(x∗) then

x∗ ← x
end if

end for
xi ← xbase

i

end for
end while
return x∗, f(x∗)

values fixed. These evaluations follow the same order as in Algorithm 4.
The binary decision variables xpt express the assignments of patches to parameter values, with

xpt = 1 only if patch p has thickness t. For consistency, for each patch p, it is required that exactly
one of the xpt variables is nonzero. The upper bound on the VCG takes the same form used in
Equation (25). For the objective function, we aim to minimize the total mass of the patches in Pi,
their reinforcement bars, and penalty terms given by the sum of squares of ypt and bpt. Finally,
we fix the actual number of different parameter values nclusters ≥ 2 through the additional decision
variables ut and its consistency constraints.

We obtain the following optimization problem:

minimize
∑
p∈Pi

∑
t∈Di

xpt(dpt+mbarbpt + cyy
2
pt + cbb

2
pt), (27)

subject to
∑
t∈Di

xpt = 1, ∀p ∈ Pi,

xpt ≤ ut, ∀p ∈ Pi, ∀t ∈ Di,∑
p∈Pi

xpt ≥ ut, ∀t ∈ Di,∑
t∈Di

ut = nclusters,∑
p∈Pi

∑
t∈Di

xpt(VCGp −VCGcrit)dpt ≤ (VCGcrit −VCGres)mres,

xpt ∈ {0, 1}, ∀p ∈ Pi, ∀t ∈ Di,

ut ∈ {0, 1}, ∀t ∈ Di,

where dp is the linear density of patch p, VCGp is the VCG of patch p, and VCGres and mres are
the VCG and mass, respectively, of all elements not controlled by the current parameter.

The total number of integer variables is (|Pi|+1)|Di| and the number of constraints is |Pi||Di|+
|Pi| + |Di| + 2. This class of problems is NP-hard, but branch and cut simplex-based solvers are
extremely efficient in practice thanks to pre-solve transformations and branching rules [40, 1]. An
example of the procedure, for a simplified section composed of 6 patches, is depicted in Figure 5.

We remark that the objective functions in ILP (27) and Equation (21) are fundamentally
different in the way they handle the penalization of yielded and buckled elements, as the former
uses a sum of squares and the latter employs the square of a sum.

In ILP (27), the objective function can be split in the contributions from each patch to the
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Figure 5: The reparameterization procedure on a simplified parameterized section. The section
is composed of 6 patches, and colors represent different thicknesses. In step 1, all patches have
the same thickness as selected by the previous optimization. In step 2, different thicknesses are
evaluated to obtain the structural responses of each patch. In step 3, the structural responses
determine the reparameterization problem, and its optimal solution clusters the patches in two
groups. In step 4, the patches are assigned the optimized thicknesses, and two parameterized
sections are determined.

physical mass, due to thickness and additional stiffeners, and the penalization of failed elements as∑
p∈Pi

∑
t∈Di

xpt( dpt︸︷︷︸
patches mass

+ mbarbpt︸ ︷︷ ︸
reinforcement bars

+ cyy
2
pt + cbb

2
pt︸ ︷︷ ︸

per-patch penalty

), (28)

which is linear in the decision variables xpt. The proper reformulation of Equation (21) in terms
of xpt requires instead the quadratic programming expression∑

p∈Pi

∑
t∈Di

xpt( dpt︸︷︷︸
patches mass

+ mbarbpt︸ ︷︷ ︸
reinforcement bars

) + fpen(x), (29)

where the penalty term for the binary decision variables, corresponding to Equation (22), is

fpen(x) =

∑
p∈Pi

∑
t∈Di

xptcyypt

− ycrit

2

+︸ ︷︷ ︸
global yielding penalty

+

∑
p∈Pi

∑
t∈Di

xptcbbpt

− bcrit

2

+︸ ︷︷ ︸
global buckling penalty

. (30)

The thresholds ycrit and bcrit which in Equation (30) need to be adapted to the current i-th
parameterized section, as Equation (22) uses global values. One option would be subtracting the
yielded and buckled elements totals of the other sections from the critical values, but the combina-
tion of the separate problems could still exceed the global constraints. As an alternative, ILP (27)
needs to be reformulated as a global optimization problem, optimizing all the parameterized sec-
tions at once, which is impractical for large models. In practice, the usage of ILP (27) leads to a
more severe penalization of failure phenomena in each patch, so that the updated model will offer
better trade-offs during the optimization.

By solving ILP (27) for each parameterized section, and possibly multiple nclusters, a collection
of candidate reparameterizations is obtained. At most one refinement can be applied to each
parameterized section, including the trivial one which leaves it unchanged. Moreover, the designers
could specify a maximum number of parameters for the model. The selection of the optimal set of
refinements can be obtained by the solution of a knapsack ILP [37], where the cost of a refinement
is the number of clusters and its value is given by ILP (27).
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Since the construction of the VCG constraint assumes that all the elements outside the current
group of patches do not change mass, the parameter configuration obtained by joining the opti-
mized assignments might violate the global VCG constraint. Although an infeasible super-optimal
configuration is undesirable in principle, the goal of the procedure is to obtain an expressive pa-
rameterization, that will be leveraged by the following optimization.

Once the optimal selection of clusters has been chosen, the i-th parameterized section associated
to xi is also partitioned in a set of patch clusters {Pj}mj=1 with 1 ≤ m ≤ nclusters. The patches in
each cluster Pj>1 will be assigned to a new parameter xk, with feasible domain Di, decreasing the
number of patches assigned to xi. With the new parameterization, the configurations generated
with the coarse model can still be retrieved by enforcing the constraints

xi = xk ∀k ∈ Ki, (31)

where Ki collects the indices of them−1 parameters generated for the clusters Pj>1. This feature is
crucial for the efficiency of the optimization procedure, as all the previous high-fidelity simulations
need not be executed again. On the other hand, all the high-fidelity samples collected so far can be
viewed as coming from a constrained version of the current parameter space, where Equation (31)
reduced the feasible configurations. Due to this consideration, the surrogates must be rebuilt on
a sampling that includes a configuration where Equation (31) is not active, so that the effects of
the new parameterization are properly observed. For this task, we repeatedly perform a random
sampling of the new parameter space, keeping the candidate set which maximizes the cumulative
distance between the high-fidelity samples and the new ones.

At this point, the surrogates are rebuilt on the updated high-fidelity samples and the opti-
mization, both multi- and single-objective, can take place on a more expressive model. With
this approach, the parameterization is adapted as the optimization progresses and is thus able to
overcome the biases that the designers could have introduced in the initial model creation. This
presents a critical advantage when the hull features high complexity due to novel structures or
design constraints, and enables the pipeline to provide high-quality initial designs with minimal
supervision by the users.

4 Numerical results

This section presents the results from the application of our optimization pipeline to two ship
models: a simplified midship section typical of the initial design phase in Section 4.1, and a full
ship model with all environments and functional features in Section 4.2.

4.1 Midship section

For the initial development and testing of our methods, we choose a simplified model of the main
section of a typical hull. The model is depicted in Figure 6. It consists of 75192 elements, of
which, 52360 are assigned to a parameterized section as reported in Table 1. The parameterized
elements are further grouped in 582 patches. This model is a quarter of the actual hull: during
the high-fidelity simulations, it is reflected across xz and yz planes.

A NASTRAN run on this model takes about 1 minute and the query time of the surrogates
is 0.15 seconds, for a speedup factor of 400. The maximum value for the VCG is 15m. In this
experiment, the critical values for the yielding due to the stresses and the von Mises criterion are
lower than the regulatory standard, as the simplicity of this model would otherwise result in no
yielded elements. For this model, the maximum number of parameters is 20.

Table 1: Parameters description of the midship section test case. Thickness values are in mm.

Parameter Region Patches Default thickness Minimum Maximum

x1 Bottom and inner bottom 72 14.0 12.0 20.0
x2 Decks from 2 to 12 396 5.0 5.0 15.0
x3 External bulkheads 30 10.0 8.0 15.0
x4 Internal bulkheads 42 5.0 5.0 15.0
x5 Shell plating 42 8.0 8.0 15.0
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Figure 6: Full view of the midship section on the left, the initial parameterization in the middle,
and the details of the parameterized patches on the right.

We start the optimization pipeline by performing a random sampling of the parameter space,
selecting 20 configurations in addition to the default one. We remark that the choice of a small
initial sampling is motivated by the subsequent multi-objective optimization, in which high-fidelity
experiments are performed on parameter configurations sampled by the surrogate Pareto frontier.
The truncation rank chosen for the POD is 6, so that the discarded modes have normalized module
smaller than 0.01. The GPRs for the reduced coefficients employ the squared exponential kernel
with ARD and epistemic noise variance for numerical stability.
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Figure 7: Evolution of the surrogate Pareto frontier in subsequent runs (generations) of the genetic
algorithm, for the midship section with 5 parameters. Each figure depicts the 2-dimensional frontier
computed from the projection of the full 5-dimensional frontier.

The multi-objective optimization enables the designers to inspect the effective trade-offs be-
tween different QoIs, so that the critical thresholds for the constraints can be determined from a
global perspective. Figure 7 shows the progress of the surrogate PF as the pipeline repeats a se-
quence of genetic algorithm run, infill selection and high-fidelity validation, and surrogates update.
The population size is set to 2000 configurations, the number of generations is 10, and the number
of samples selected by the infill criterion is 9. For the midship section, the acceptable numbers
of yielded and buckled elements, and the maximum vertical deflection, are set to 200, 4000, and
140 mm, respectively.

Single-objective mass optimization starts with BO and a time limit of 5 minutes. The history
of the best surrogate candidates is presented in Figure 8 in terms of the percentage gap from the
theoretical lower bound (LB), that is

mgap(x) = 100
d · (x− xLB) +mbarnb(x) + fpen(x)

d · xLB
. (32)

This quantity highlights the effect on the mass actually controlled by the parameters and does not

18



depend on how extensively the model has been parameterized. In this case, mfixed = 1108.21 t and
d · xLB = 975.55 t.

Only the first round is able to find better candidates, which are then confirmed by the following
high-fidelity experiment. The second BO execution does not improve on the previous, nor do the
subsequent PDS refinements.
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Figure 8: History of the surrogate best solution during the mass optimization of the midship
section, 5 parameters.

At this point, the optimum configuration is analyzed for the parameterization refinement, as
in Section 3.3. For each parameter, the number of possible clusters is set to 2. In Figure 9, we
focus on the internal bulkheads controlled by x4. The optimal clustering selects thicknesses 6 and
9 mm, which when applied to the entire parameter give the buckling patterns in Figure 9a and
Figure 9b, respectively. The ratios of buckled elements in each patch, at different values of x4,
are represented in Figure 9c along with their separation in clusters. Finally, Figure 9c shows the
assignment of elements to the two clusters. Notably, the 3 patches in the top right corner were
assigned a lower thickness value: the ILP solution leverages the trade-off in using reinforcement
bars instead of thicker, heavier patches.

After the update of the parameterization, the situation is analogous to an initial problem formu-
lation, but with many high-fidelity configurations already available. However, these configurations
were generated from a coarser parameterization, and are not representative of the interactions
between the newly created parameters. To create the surrogate models on the new parametric
domain, we generate 20 configurations by random sampling from a uniform distribution on the
updated domain. We produce multiple candidate sets and select the one maximizing the min-
imum distance between the candidates, and between candidates and high-fidelity samples. The
candidate set is passed to the high-fidelity solver to generate the corresponding snapshots, and the
surrogates for the updated parametric domain are created. At this point, the pipeline resumes
with multi-objective and single-objective optimization as done previously, but with a higher num-
ber of decision variables and a more expressive problem formulation. The sequence of alternating
optimization and parameterization refinement can be repeated until a set number of parameters is
reached, or the prospective decrease in objective function incurs in diminishing returns.

For the midship section, we perform two reparameterization steps, the first creating 5 new
parameters for a total of 10, and the second creating 7 new parameters for a total of 17. Each
time, the truncation rank of the POD is increased by the number of added parameters. Figure 10
shows the differences in the final Pareto frontiers as the number of parameters increase. The
largest improvement in PF quality is attributed to the first reparameterization, as seen in the plots
for the number of yielded and buckled elements. The updated PF intercepts the thresholds at a
much lower total mass value, indicating that the subsequent single-objective optimizations could
find much lighter configurations with no additional drawbacks. The second refinement does not
produce an appreciable change in the PFs and thus the procedure is stopped. Figure 11 shows the
single-objective optimization of the 10 parameters problem. The finer parameterization enables
the optimizer to find better configurations, with the PDS being repeated several times. In this
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(a) Buckled elements at x4 = 6 mm. (b) Buckled elements at x4 = 9 mm.
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(c) Percentage of buckled elements for each non-trivial patch as x4 varies, and the optimal
thickness highlighted in red.

(d) Optimal clustering of patches.

Figure 9: Details of the patch clustering of x4, the internal bulkheads of the midship section.

case, the high-fidelity validation disproves a large number of optimum candidates.
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Figure 11: History of the surrogate best solution during mass optimization of the midship section
with 10 parameters.

We also test the effect of a single reparameterization exhausting the parameters budget, which
we refer to as ”one-shot”, by generating 15 new parameters from the optimal 5-parameters con-
figuration. Finally, we optimize a 20 parameters model produced by the designers to compare the
efficacy of our method. The POD truncation ranks for both cases is 21.

The evolution of optimal high-fidelity configurations for all the approaches is shown in Figure 12.
The large sequences of non-decreasing ships are due to the multi-objective optimization, in which
the penalized mass is only incidentally optimized and the focus is on obtaining better exploration
of the PF. Table 2 collects the results of the optimum for each problem formulation. Overall, all
the largest parameterizations achieve similar results in terms of gap from the lower bound, but
with a number of differences. Iterative reparameterization shows a much faster decrease, with
the 10 parameters model reaching a comparable objective value to the others, but with a much
lower number of high-fidelity simulations. The second reparameterization, with 17 parameters,
decreases the optimum only by a negligible amount. However, we observe that the number of
buckled elements is about 11% lower than the threshold value, suggesting that further rework by
a human designer could benefit from this buffer from the constraint’s critical value. The one-shot
parameterization requires a larger number of high-fidelity simulations in the multi-objective phase,
but the buffer in terms of buckled elements is even more pronounced than for the 17 parameter
model, being about 32% of the threshold value. The designer-provided reference requires a number
of high-fidelity evaluations similar to the one-shot case, but the final configuration reaches the
threshold on the number of buckled elements.
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Figure 12: Evolution of the optimal high-fidelity configuration for different parameterizations of
the midship section.
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Table 2: Optimization results for different parameterizations of the midship section. The thresholds
for the number of yielded and buckled elements are 200 and 4000, respectively. The threshold for
the deflection is 140mm and the maximum VCG is 15m.

Parameterization mgap [% LB] #yielded #buckled Deflection [mm] VCG [m]

Initial configuration > 1000 395 6211 150 14.79
Base 5 p. 15.44 196 3994 138 14.93
Our method 10 p. 7.70 33 3984 140 14.99
Our method 17 p. 7.57 11 3563 140 14.99
Our one-shot 20 p. 7.64 5 2729 140 14.99
Designer 20 p. 7.86 22 4004 140 14.99

4.2 Full ship

The full scale test model in Figure 13 comes from a ship developed by Fincantieri SpA. This
model consists of 485736 elements, of which, 270656 are linked to the parameters in Table 3 and
organized in 5005 patches. The MSC NASTRAN solution time for this model is 7 minutes, and
the surrogate prediction time is 0.5 seconds, for a speedup factor of 840. The default parameter
configuration corresponds to the minimum regulatory thickness of the parameterized sections. Due
to the increased complexity of this model, the maximum number of parameters is 40. To comply
with the proprietary constraints set by the industrial partner, we present the QoIs in a relative
format and the critical values are not shown.

Table 3: Parameters description of the full ship test case. Thickness values are in mm.

Parameter Region Patches Minimum Maximum

x1 Decks in public areas 3038 5.0 25.0
x2 Decks in machinery areas 548 6.5 25.0
x3 Lifeboat exposed deck 90 13.0 25.0
x4 Inner bottom 252 12.0 25.0
x5 Bottom 312 15.0 25.0
x6 Shell plating, above waterline 60 14.0 25.0
x7 Shell plating, below waterline 118 15.0 25.0
x8 Internal bulkheads 367 5.0 25.0
x9 External bulkheads, in super-structures 190 8.0 25.0
x10 External bulkheads 31 6.5 25.0

Figure 13: Full view of the ship on the left, initial parameterization on the right.

The initial sampling of the parameter space is limited to 20 configurations other than the default
one. The truncation rank chosen for the POD is 16, and the GPRs employ the same structure as for
the midship section case. As before, multi-objective optimization is carried out in order to identify
the appropriate thresholds for the number of yielded and buckled elements. The maximum value of
VCG is determined by the model geometry, while no constraint on the vertical deflection is specified.
We repeat the same tests from Section 4.1: a sequence of iterative reparameterizations from 10 to
40 parameters, a one-shot reparameterization from 10 to 40 parameters, and the optimization of a
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40 parameters model provided by the designers.
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Figure 14: Evolution of the surrogate Pareto frontier for the full ship, for different parameteriza-
tions. The threshold for the VCG constraint is not shown, since the PF of the projection lies well
below it.

In the iterative reparameterization test, the refinement step is performed 3 times giving models
with 16, 27 and 40 parameters each. Figure 14 shows the evolution of the surrogate PF. Each refined
model improves the previous PF, with the largest effect being achieved on the number of buckled
elements. The first reparameterization shows a more pronounced reduction of the objective, while
the third appears to have a limited effect. The threshold values for the number of yielded and
buckled elements result much more stringent than those used in Section 4.1.

The evolution of optimal high-fidelity configurations for all the approaches is shown in Figure 15,
and the details of the optimum configuration for each problem is shown in Table 4. A striking
difference from Figure 12 is the large decrease in objective function due to the reparameterizations
to 16 and 40 parameters, showing that the ILP was able to generate a highly performant and feasible
configuration. As in the case of the PFs, refinements beyond the first incur in lower gains, and the
final refinement of the incremental approach only decreases the optimum value by around 1% of
the LB defined in Equation (32). Multi and single-objective optimization of the one-shot model are
not able to achieve as large improvements as the initial ILP-optimal configuration, with the final
result being worse than the 27 parameters model by about 1% of the LB. The final configuration
of the designer model is better than the 10 parameter model and reaches its optimum with a lower
number of high-fidelity simulations compared with the other approaches, but it is only marginally
better than the ILP optimum that generated the 16 parameters model. All the parameterizations
generated through our automated procedure were able to outperform the one from the designers.
These results suggest that the high complexity of the full ship, with multiple large parameterized
groups of patches, provided a harder challenge in designing an effective parameterization, even for
an expert.

Regarding the constrained QoIs, the number of buckled elements and VCG are close to the
threshold for all instances. The number of yielded elements does so only for the models that were
iteratively refined to 27 and 40 parameters, while in the other instances it remains around half
of the threshold value. This behavior is different from what was observed in Table 2, where both
QoIs related to element failure were consistently lower than the threshold for the models above
10 parameters. Since the incremental approach is able to produce models with lower objective
function and higher activation of the constraints, we conclude that it is the most suited for the
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Figure 15: Evolution of the optimal high-fidelity configuration for different parameterizations of
the full ship.

initial design phase.

Table 4: Optimization results for different parameterizations of the full ship.

Parameterization mgap [% LB] # yielded [% crit] # buckled [% crit] VCG [% crit]

Initial configuration > 1000 789.75 636.38 96.26
Base 10 p. 34.21 46.25 100.38 99.35
Our method 16 p. 19.01 56.00 99.88 99.76
Our method 27 p. 14.12 98.25 99.29 99.71
Our method 40 p. 13.03 98.25 100.01 99.88
Our one-shot 40 p. 15.07 51.50 99.87 99.85
Designer 40 p. 23.55 55.00 100.15 99.99

5 Conclusions and perspectives

In this paper, we extended an existing pipeline for the automated structural optimization of cruise
ships, with the addition of multi-objective optimization capabilities, a specialized Bayesian opti-
mization procedure, a refinement heuristic and a parameterization refinement procedure.

The multi-objective optimization is based on the established NSGA genetic algorithm, coupled
with an infill criterion leveraging the GPR component of the surrogates. The Bayesian optimization
procedure has been enhanced with the addition of linear inequality constraints on the incumbent
and the VCG, and an ILP-based rounding procedure to overcome the rounding issues due to
the discrete nature of the parametric space. The principal dimensions search provides a local,
black-box refinement procedure to further optimize the surrogates when BO is not able to find
new candidates within the computation budget. Finally, the reparameterization module refines
the optimization problem formulation by adapting to the emergent behavior of the QoIs. New
parameters are constructed by finding a clustering of patches in each parameterized section, to
separate the responses to thickness changes in terms of yielded and buckled elements. The clusters
are determined through the solution of ILPs constructed on the surrogate models’ predictions.

The hierarchical nature of the refinement enables efficient use of past expensive high-fidelity
results. The enhanced pipeline has been tested on the mass optimization of two test cases, a midship
section and a large-scale full ship, for which an initial parameterization was refined both iteratively
and at once, and the final results were compared with a baseline given by expert designers. In the
simpler case, the pipeline results are comparable to the baseline even though a lower number of
parameters was available, suggesting the effectiveness of the approach. In the more complex case,
the pipeline was able to achieve a much lower total ship mass than the baseline, with a large gain
due to the configurations found by the clustering procedure. The proposed pipeline has proven
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effective in achieving a ship configuration with a low total mass, while respecting the safety and
manufacturing constraints imposed by the designers. The use of this pipeline can help the designers
by streamlining the initial design phase of complex or novel ships, providing good configurations
with minimal supervision.
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