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Abstract. We describe a fast algorithm for computing discrete Hankel transforms of moderate
orders from n nonuniform points to m nonuniform frequencies in O

(
(m+n) logmin(n,m)

)
operations.

Our approach combines local and asymptotic Bessel function expansions with nonuniform fast Fourier
transforms. The order of each expansion is adjusted automatically according to error analysis to
obtain any desired precision ε. Several numerical examples are provided which demonstrate the speed
and accuracy of the algorithm in multiple regimes and applications.
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1. Introduction. The fast Fourier transform (FFT) has revolutionized a wide
range of applications across mathematics, statistics, and the physical sciences by
enabling signal processing and Fourier analysis tasks to be performed using a compu-
tational cost which scales quasi-linearly with the number of data points n. However,
the FFT requires that the input signal be sampled at equispaced points in time and
that the desired output frequencies are equispaced on the integers. These assumptions
are frequently not met in applications such as adaptive numerical partial differential
equation (PDE) solvers [3, 19, 4, 30], magnetic resonance imaging [16, 7, 9], and
various signal processing tasks [1, 38]. To overcome this setback, nonuniform FFT
(NUFFT) algorithms have been developed [13, 15] which achieve near-FFT speeds in
one dimension, assuming that the distribution of time samples and frequency outputs
is not pathological. In higher dimensions, NUFFTs are less competitive with standard
FFTs, but the computational task at hand is also significantly harder.

The FFT and NUFFT grew out of a need to perform Fourier transforms in
Cartesian coordinates. However, depending on the particular problem, the relevant
continuous Fourier analysis might be better suited to other coordinate systems. One
such commonly encountered situation is computing the Fourier transform of radially
symmetric functions in dimensions d ≥ 2. For example, in two dimensions the Fourier
transform of a function f is given by

(1.1) g(ω1, ω2) =
1

4π2

∫∫
R2

f(x1, x2) e
−i(ω1x1+ω2x2) dx1 dx2.

Transforming to polar coordinates (ω1, ω2) 7→ (ω, α) and (x1, x2) 7→ (r, θ) the above
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expression becomes

(1.2)

g(ω, α) =
1

4π2

∫ 2π

0

∫ ∞

0

f(r, θ) e−iωr(cosα cos θ+sinα sin θ) r dr dθ

=
1

4π2

∫ 2π

0

∫ ∞

0

f(r, θ) e−iωr cos(α−θ) r dr dθ.

Furthermore, if f is radially symmetric, i.e. f(r, θ) = f(r), then the above transform
can be written as

(1.3)

g(ω, α) =
1

4π2

∫ ∞

0

f(r) r

∫ 2π

0

e−iωr cos(α−θ) dθ dr

=
1

2π

∫ ∞

0

f(r) J0(ωr) r dr,

where we have used the integral representation of the zeroth-order Bessel function [32]

(1.4) J0(x) =
1

π

∫ π

0

cos (x cos θ) dθ.

The final integral involving J0 in equation (1.3) is known as a Hankel Transform of
order 0 — usually referred to simply as a Hankel Transform.

In higher ambient dimensions, the Fourier transform of radially symmetric functions
reduces to a Hankel transform of higher order. Similarly, if the function f in (1.2) has
a particular periodic dependence in θ so that f(r, θ) = f(r)eiνθ with ν ∈ Z, then we
have

(1.5)

g(ω, α) =
1

4π2

∫ ∞

0

f(r) r

∫ 2π

0

e−iωr cos(α−θ) eiνθ dθ dr

=
iν

2π

∫ ∞

0

f(r) r Jν(ωr) dr,

where, again, we have invoked an integral representation for Jν [32].
In order to numerically compute g in (1.3) or (1.5) at a collection of m “frequen-

cies” ωj , the Hankel transform must be discretized using an appropriate quadrature
rule with nodes rk and weights wk which depend on the particular class of f for which
the integral is desired. In general this results in the need for computing

(1.6)

g(ωj) ≈ gj :=

n∑
k=1

wk f(rk) rk Jν(ωjrk)

=

n∑
k=1

ck Jν(ωjrk) for j = 1, . . . ,m.

The above sum will be referred to as the Discrete Hankel Transform (DHT) of order ν.
In our motivating example — computing the continuous Fourier transform — the

DHT arises from the discretization of the radially symmetric Fourier integral. The DHT
also appears in a wide range of applications including imaging [18, 42, 28], statistics [26,
14], and separation of variables methods in partial differential equations [6, 2, 43]. In
many such applications, a fully nonuniform DHT is desired, as the relevant frequencies
ωj may not be equispaced, and the most efficient quadrature rule for discretizing (1.3)
may have nodes rk which are also not equispaced.
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The algorithm of this work allows for arbitrary selection of the frequencies ωj

and nodes rk, in contrast to other algorithms which require some structure to their
location (e.g. equispaced or exponentially distributed). There are a few types of
commonly encountered DHTs, all of which our algorithm can address. Schlömilch
expansions [24, 39] take frequencies ωj = jπ. Fourier-Bessel expansions — often
used in separation of variables calculations for PDEs — take frequencies ωj = βν,j ,
where βν,j denotes the jth root of Jν . In the most restrictive cases [21], one fixes
both ωj = βν,j and rk = βν,k/βν,k+1.

Existing methods. A number of methods exist in the literature to evaluate (1.3)
and (1.6). These include series expansion methods [27, 10, 11], convolutional approaches
[37, 20, 29, 25], and projection-slice or Abel transform-based methods [34, 17, 22].
See [12] for a review of many of these early computational approaches. Unfortunately,
these existing methods are either not applicable to the discrete case, require a particular
choice of ωj or rk due to the constraints of interpolation or quadrature subroutines,
or suffer from low accuracy as a result of intermediate approximations. Therefore,
extending these schemes to compute the fully nonuniform DHT with controllable
accuracy is not straightforward.

A notable contribution is [25], which describes a fully nonuniform fast Hankel
transform. This work takes the popular convolutional approach, using a change of
variables to reformulate the Hankel transform as a convolution with a known kernel
which can be evaluated using the NUFFT. However, its accuracy is limited by the
need for a quadrature rule on the nonuniform points rk. The authors use an irregular
trapezoidal rule for this purpose, which is not high-order accurate. This method
also requires the computation of the inverse NUFFT using conjugate gradients. For
even moderately clustered points or frequencies, this inverse problem is extremely
ill-conditioned, and thus the number of required iterations can be prohibitive. This
method is therefore suitable for “quasi-equispaced” points and frequencies, but is not
tractable in general.

More recently, butterfly algorithms [33, 23, 35] were introduced as a broadly
applicable methodology for rapidly computing oscillatory transforms including the
nonuniform DHT. However, these algorithms require a precomputation or factorization
stage for each new set of ωj and rk. Such precomputations can, unfortunately,
be a bottleneck for applications in which these evaluation points change with each
iteration or application of the transform. In order to provide a precomputation-free
fast DHT, [39] employs a combination of asymptotic expansions and Bessel function
identities evaluated using the equispaced FFT. The resulting scheme is applicable to
equispaced or perturbed “quasi-equispaced” grids in space and frequency, for example
ωj = β0,j and rk = β0,k/β0,n+1.

Novelty of this work. We describe here a precomputation-free nonuniform fast
Hankel transform (NUFHT) which generalizes [39] to the fully nonuniform setting
in a number of ways. First, we employ an adaptive partitioning scheme which, for
any choice of ωj and rk, subdivides the matrix with entries Jν(ωjrk) into blocks for
which matrix-vector products can be evaluated efficiently. Second, we use the NUFFT
to evaluate asymptotic expansions for nonuniform rk and ωj . Finally, we utilize the
low-rank expansion of Jν given in [41] in the local regime where asymptotic expansions
are not applicable. We derive error bounds for this low-rank expansion, allowing us to
choose all approximation parameters automatically by analysis which guarantees that
the resulting error is bounded by the user-specified tolerance ε.
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Fig. 1: Bessel function J0(z) and pointwise relative error in approximating J0(z) using
31-term local and 4-term asymptotic expansions. Dotted vertical line shows crossover point
where both expansions are accurate to ε = 10−12.

Outline of the paper. The paper is organized as follows. In Section 2 we give a
high level view of our algorithm, omitting technical details. Then in Section 3 we study
the local and asymptotic expansions of Bessel functions which serve as the key building
blocks of the algorithm. Afterward, in Section 4, we provide a detailed description of
the algorithm and its associated complexity. Various numerical examples are provided
in Section 5, and we conclude with some additional discussion in Section 6.

2. Overview of the algorithm. To more concisely describe our approach, we
write the DHT (1.6) as the equivalent matrix-vector product with A ∈ Rm×n

(2.1) g = Af, A(j, k) = Jν(ωjrk).

The matrix A is in general full rank and possesses complex oscillatory structure. As a
result, no straightforward fast algorithm exists to apply the full matrix A to a vector.
However, we design an NUFHT by noting that certain blocks A(j0 : j1, k0 : k1) are
able to be applied to a vector rapidly using analytical expansions of the underlying
Bessel function Jν .

When the argument ωjrk is small, Jν is smooth and essentially non-oscillatory,
and we use a closed-form local expansion which approximates Jν in terms of Chebyshev
polynomials, yielding a low-rank approximation to various matrix blocks that can
be applied to a vector in linear time. When the argument ωjrk is large, we use a
classical asymptotic expansion which expresses Jν as a sum of a small number of
decaying sinusoids, and can therefore be applied to a vector in quasilinear time using
the NUFFT. Figure 1 shows the oscillatory behavior of J0, as well as the accuracy of
these local and asymptotic expansions.

By analyzing the error in these two expansions, we can choose a crossover point z
such that an L-term local expansion and an M -term asymptotic expansion are both
guaranteed to be accurate to the desired tolerance ε in the regions ωjrk ≤ z and
ωjrk > z respectively. Next, we adaptively subdivide A into disjoint blocks so that
either ωjrk ≤ z or ωjrk > z for all ωj and all rk in each block. This leaves only a few
small blocks with ωjrk ≈ z whose entries can be directly computed, and which can
be directly applied. Figure 2 shows a Hankel transform matrix A divided into local
and asymptotic entries along the curve ωr = z, as well as the corresponding adaptive
subdivision of the matrix into blocks which can be rapidly applied. Following the



A NONUNIFORM FAST HANKEL TRANSFORM 5

Local

Asymptotic

r1 < . . . < rn

ω1

∧
...

∧
ωm

Level 1 Level 2 Level 3

Fig. 2: Splitting of Hankel transform matrix A along the curve ωr = z into local and
asymptotic regions. Adaptive subdivision of A into corresponding local (red), asymptotic
(blue), and mixed (gray) sub-blocks at various levels.

subdivision step, all that remains is to apply each of the disjoint blocks of A to f using
the corresponding fast method.

3. Bessel function approximations. We now describe local and asymptotic
expansions of the Bessel function Jν(ωr), and provide error analysis by which one can
select the number of terms needed in each expansion to assure ε accuracy in both
regimes.

3.1. The Wimp expansion. Near the origin, Jν(z) is a smooth and essentially
non-oscillatory function of z. As a result, Jν(xy) is a numerically low-rank function
of all sufficiently small inputs x and y. Fortuitously, one such low-rank expansion —
which we refer to as the Wimp expansion — is available in closed form for integer ν [41].
In the case that ν is even, we have

(3.1)

Jν(xy) =

∞∑
ℓ=0

Cℓ(x)T2ℓ(y)

Cℓ(x) = δℓ J ν
2+ℓ(x) J ν

2−ℓ(x)

δℓ =

{
1 ℓ = 0

2 otherwise

for all |y| ≤ 1. A similar expansion exists for ν odd [41, 2.23].
In order to employ the Wimp expansion to compute local terms within the Hankel

transform, we must determine the number of terms L needed to construct an ε-accurate
approximation to Jν(ωr) on a given rectangle (ω, r) ∈ [0,Ω] × [0, R]. The following
lemma provides a bound on the induced truncation error in the Wimp expansion as a
function of the order ν, the space-frequency product ΩR, and the number of retained
terms L.

Lemma 3.1. Truncating the Wimp expansion after L terms gives

∣∣∣∣∣Jν(ωr)−
L∑

ℓ=0

Cℓ(ωR)T2ℓ

( r
R

)∣∣∣∣∣ ≤ 2 exp
{

ν
2 (β − γ) + (L+ 1)(β + γ)

}
1− eβ+γ

=: B loc

ν,L(ΩR)

(3.2)
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for all ω ∈ [0,Ω], r ∈ [0, R], where

ψ(p) := log p+
√
1− p2 − log

(
1 +

√
1− p2

)
(3.3)

β := ψ

(
ΩR

2L+ 2 + ν

)
(3.4)

γ :=

{
ψ
(

ΩR
2L+2−ν

)
L+ 1 ≥ ν

2

0 otherwise
(3.5)

Proof. For ν even, the truncation error after L terms is bounded by∣∣∣∣∣
∞∑

ℓ=L+1

Cℓ(ωR)T2ℓ

( r
R

)∣∣∣∣∣ ≤ 2

∞∑
ℓ=L+1

∣∣∣∣J ν
2+ℓ

(
ωR

2

)∣∣∣∣ ∣∣∣∣J ν
2−ℓ

(
ωR

2

)∣∣∣∣ .(3.6)

Define pℓ(ω) := ωR/(ν + 2ℓ). Then by Siegel’s bound [32, 10.14.5] we have∣∣∣∣J ν
2+ℓ

(
ωR

2

)∣∣∣∣ = ∣∣∣∣J ν
2+ℓ

((ν
2
+ ℓ
)
pℓ(ω)

)∣∣∣∣(3.7)

≤ exp
{(ν

2
+ ℓ
)
ψ
(
pℓ(ω)

)}
(3.8)

≤ exp
{(ν

2
+ ℓ
)
β
}
,(3.9)

where the last inequality follows from the fact that ψ is an increasing function on
(0, 1), and thus ψ

(
pℓ(ω)

)
≤ β < 0 for all ℓ ≥ L+ 1 and all ω ∈ [0,Ω].

If L+ 1 ≥ ν
2 , we define qℓ(ω) := ωR/(2ℓ− ν) and apply Siegel’s bound again to

obtain ∣∣∣∣J ν
2−ℓ

(
ωR

2

)∣∣∣∣ = ∣∣∣∣Jℓ− ν
2

((
ℓ− ν

2

)
qℓ(ω)

)∣∣∣∣ ≤ exp
{(
ℓ− ν

2

)
γ
}
.(3.10)

If L + 1 < ν
2 , Siegel’s bound does not apply and we use instead the simple bound∣∣J ν

2−ℓ

(
ωR
2

)∣∣ ≤ 1, which is equivalent to taking γ = 0.
All that remains is to apply a geometric series argument∣∣∣∣∣Jν(ωr)−

L∑
ℓ=0

Cℓ(ωR)T2ℓ

( r
R

)∣∣∣∣∣ ≤ 2
∞∑

ℓ=L+1

exp
{(ν

2
+ ℓ
)
β +

(
ℓ− ν

2

)
γ
}

(3.11)

= 2 exp
{ν
2
(β − γ)

} ∞∑
ℓ=L+1

(
eβ+γ

)ℓ
(3.12)

=
2 exp

{
ν
2 (β − γ) + (L+ 1)(β + γ)

}
1− eβ+γ

(3.13)

A similar calculation can be carried out for ν odd.

Lemma 3.1 is rather opaque regarding the impact of the various parameters on
the error because we have not utilized any simplifying bounds on the function ψ, as
done in [36, Lemma 1] for large ν. However, our analysis takes into account the decay
in both J ν

2+ℓ and J ν
2−ℓ, thus remaining relatively tight for small ν. It is therefore

well-suited to our purposes because, given z, L > 0, it provides a bound B loc

ν,L(z) on the
pointwise error in approximating any block of the matrix Jν(ωjrk) for which ωr ≤ z
using the L-term Wimp expansion.
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This expansion is highly beneficial from a computational perspective, as it yields
an analytical rank-L approximation to any block of A for which ωjrk is sufficiently
small

(3.14) A(j0 : j1, k0 : k1) ≈ CT⊤

where C ∈ R(j1−j0+1)×L and T ∈ R(k1−k0+1)×L with entries

(3.15) C(j, ℓ) = Cℓ−1(ωjrk1
) and T(k, ℓ) = T2ℓ−2

(
rk
rk1

)
.

For a block of A of size mb × nb, the low-rank approximation given by the Wimp
expansion can be applied to a vector in O

(
L(mb + nb)

)
time by first applying T⊤

then applying C.

3.2. Hankel’s expansion. Away from the origin, Jν(z) exhibits essentially
sinusoidal oscillation with period 2π. This statement is made precise by Hankel’s
asymptotic expansion, which states that for z → ∞

Jν(x) ∼
√

2

πx

(
cos (x+ ϕ)

∞∑
ℓ=0

(−1)ℓa2ℓ(ν)

x2ℓ
− sin (x+ ϕ)

∞∑
ℓ=0

(−1)ℓa2ℓ+1(ν)

x2ℓ+1

)
(3.16)

where ϕ := − (2ν+1)π
4 and

aℓ(ν) :=
(4ν2 − 1)(4ν2 − 3) . . . (4ν2 − (2ℓ− 1)2)

ℓ! 8ℓ
.(3.17)

Rearranging this expansion, we obtain an expansion which can be evaluated using two
NUFFTs and diagonal scalings, and whose remainder is bounded by the size of the
first neglected terms [40, Section 7.3]

(3.18)∣∣∣∣∣Jν(ωr)−
√

2

π

M−1∑
ℓ=0

[
(−1)ℓa2ℓ(ν)

ω2ℓ+ 1
2

Re

(
ei(ωr+ϕ)

r2ℓ+
1
2

)
− (−1)ℓa2ℓ+1(ν)

ω2ℓ+ 3
2

Im

(
ei(ωr+ϕ)

r2ℓ+
3
2

)] ∣∣∣∣∣
≤
√

2

π

(
|a2M (ν)|
(ωr)2M+ 1

2

+
|a2M+1(ν)|
(ωr)2M+ 3

2

)
=: B asy

ν,M (z)

The computational advantage of this expansion is that the 2M -term asymptotic
expansion of any block of A can be rapidly applied to a vector x using 2M Type-III
NUFFTs

(3.19) A(j0 : j1, k0 : k1)x ≈
√

2

π

M−1∑
ℓ=0

(−1)ℓ

[
a2ℓ(ν)D

−2ℓ− 1
2

ω Re
(
eiϕFD

−2ℓ− 1
2

r x
)

− a2ℓ+1(ν)D
−2ℓ− 3

2
ω Im

(
eiϕFD

−2ℓ− 3
2

r x
)]

where F ∈ C(j1−j0+1)×(k1−k0+1) is the Type-III nonuniform DFT matrix corresponding
to frequencies ωj0 , . . . , ωj1 and points rk0

, . . . , rk1
, and the diagonal scaling matrices

are given by Dω := diag(ωj0 , . . . , ωj1), and Dr := diag(rk0
, . . . , rk1

).
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3.3. Determining order of expansions and crossover point. With these
error bounds in hand, we precompute the parameters zMν,ε and LM

ν,ε for tolerances
ε = 10−4, . . . , 10−15, orders ν = 1, . . . , 100, and number of asymptotic expansion terms
M = 1, . . . , 20:

• zMν,ε such that M -term Hankel expansion of Jν(ωr) is ε-accurate ∀ ωr > zMν,ε,

• LM
ν,ε such that LM

ν,ε-term Wimp expansion of Jν(ωr) is ε-accurate ∀ ωr ≤ zMν,ε.

First, the crossover points zMν,ε are computed using Newton’s method on the function

ξ(z) := B asy

ν,M (z)− ε. Then the number of local expansion terms LM
ν,ε are taken to be

the smallest integer such that B loc

ν,L

(
zMν,ε
)
< ε. These tables are precomputed once

when the library is installed, and even this precomputation requires only a few seconds
on a laptop.

With these tables stored, for any order ν we can look up a pair of complementary
local and asymptotic expansions with error everywhere bounded by the requested
tolerance ε. The only remaining free parameter is the number of asymptotic terms M .
This parameter is selected based on various numerical experiments which maximize
speed by balancing the cost of the local, asymptotic, and direct evaluations. In our
implementation, we use the heuristic

(3.20) M = min

(⌊
1 +

ν

5
− log10(ε)

4

⌋
, 20

)
.

4. The Nonuniform Fast Hankel Transform. We now describe our NUFHT
algorithm in detail, emphasizing the process by which A is adaptively subdivided into
blocks using the results of the above error analysis.

4.1. Subdividing the matrix into blocks by expansion. Having established
error bounds which allow us to automatically select the number of asymptotic termsM ,
local terms L, and crossover point z given a tolerance ε and order ν, we subdivide the
matrix A into three sets of blocks, each of which can be efficiently applied to a vector
as described above:

• Local blocks L =
{
A(j0 : j1, k0 : k1) | ωjrk ≤ z ∀ j0 ≤ j ≤ j1, k0 ≤ k ≤ k1

}
• Asymptotic blocks A =

{
A(j0 : j1, k0 : k1) | ωjrk > z ∀ j0 ≤ j ≤ j1, k0 ≤ k ≤ k1

}
• Direct blocks D which are small enough that no fast expansion is needed

In order to determine a subdivision of A into blocks of these three types, we
initialize a set of mixed blocks M = {(1 : m, 1 : n)}, each of which contains a mix of
local and asymptotic entries. We then chose an index pair (j, k) such that ωjrk ≈ z.
This index subdivides the block into four new sub-blocks with (j, k) at the center, so
that the upper left block can be applied using the local expansion and is appended to
L , and the lower right block using the asymptotic expansion and is appended to A .

The remaining lower left and upper right blocks each still contain a mix of local and
asymptotic entries. If they are of sufficiently small size mb×nb with mbnb < min size

— a user-defined parameter which is taken to be 1024 by default — they can be
evaluated directly and are appended to D . Otherwise they are appended back to M ,
and we continue the subdivision process recursively.

This method yields a valid partition for any choice of (j, k), but for efficiency these
indices are chosen to maximize the number of matrix entries which can be applied
using a fast expansion, i.e. the sizes of the upper left and lower right blocks. This is
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Algorithm 1: Block subdivision of Hankel transform matrix

1 Subdivide(r,ω, z, min size):
2 L = A = D = ∅
3 M = {(1 : m, 1 : n)}
4 while M ̸= ∅ do
5 Pop an element (j0 : j1, k0 : k1) from M
6 (j, k) = SplitIndices(rj0 , . . . , rj1 , ωk0

, . . . , ωk1
, z)

7 Append (j0 : j, k0 : k) to L
8 Append (j + 1 : j1, k + 1 : k1) to A
9 Append (j0 : j, k + 1 : k1) to M if (j − j0 + 1)(k1 − k) > min size

else D
10 Append (j + 1 : j1, k0 : k) to M if (j1 − j)(k1 − k + 1) > min size

else D
11 end
12 return (L ,A ,D)

done by solving the following constrained optimization problem

(j, k) = SplitIndices(r1, . . . , rn, ω1, . . . , ωm, z)(4.1)

:=


argmax

j,k∈Z
(j − j0)(k1 − k) + (j1 − j)(k − k0)

subject to j0 ≤ j ≤ j1
k0 ≤ k ≤ k1
ωjrk ≤ z

(4.2)

This problem can be solved exactly in O(j1 − j0 + k1 − k0) time. However, computing
the exact optimal splitting indices for every box gives a negligible speedup to the
overarching Hankel transform compared to a simpler, quasi-optimal scheme. In practice
it is sufficient to choose a small number of equispaced indices j ∈ {j0, . . . , j1}, compute
the corresponding k = argmax{k | rk ≤ z

ωj
} for each j, and choose (j, k) as the pair

which minimizes the objective function of (4.2) among this small collection.

4.2. Complexity analysis. We now analyze the computational complexity of
the proposed approach. In order to do so, we must first comment on the complexity
of the NUFFT, which is an important subroutine in our method. Most analysis-based
NUFFT codes — including the FINUFFT library [5] which we use in our NUFHT
implementation — consist of three steps. First, delta masses centered at each non-
uniform point are convolved with a spreading function which smears them onto a fine
N -point uniform grid. Then, a standard equispaced FFT is computed on the fine
grid. Finally, a diagonal de-convolution with the Fourier transform of the spreading
function is applied to reverse the effect of the original smearing. For a more complete
description of this NUFFT method, see [13, 15, 5]. For n points rk and m frequencies
ωj , spreading the input points to a finer grid is O(n), the FFT on the finer grid is
O(N logN), and the global deconvolution at the output frequencies is O(m). For
the Type-III NUFFT, the size N of the fine grid typically scales linearly with the
space-frequency product p := (ωm − ω1)(rn − r1) [5, 15]. Therefore the total cost of
the NUFFT is O(n+m+ p log p). Applying this fact in each asymptotic block in the
Hankel transform matrix, and adding the cost of applying local and direct blocks, we
can now analyze the complexity of the entire NUFHT method.
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Algorithm 2: Nonuniform fast Hankel transform

1 NUFHT(ν, ε, r, c,ω):
2 g = 0
3 Choose M using (3.20)

4 Look up L = LM
ν,ε and z = zMν,ε from pre-computed tables

5 Choose min size from numerical experiments (e.g. default 1024)
(L ,A ,D) = Subdivide(r1, . . . , rn, ω1, . . . , ωm, z, min size)

6 for B ∈ (L ,A ,D) do
7 for (j0 : j1, k0 : k1) ∈ B do
8 g(j0 : j1) += A(j0 : j1, k0 : k1)c(k0 : k1) using corresponding

expansion
9 end

10 end
11 return g

Theorem 4.1. Take ω1 < · · · < ωm ∈ [0,∞) and r1 < · · · < rn ∈ [0,∞) and
define the space-frequency product p := (ωm − ω1)(rn − r1). Then the complexity of
computing the NUFHT of order ν to tolerance ε using Algorithm 2 is

O
(
(L+M)(m+ n) logmin(n,m) +Mp log p

)
,

where L and M are the number of local and asymptotic terms respectively chosen
according to ν and ε.

Proof. For notational clarity we suppress the dependence of zMν,ε on its parameters
and simply denote it as z. If ωjrk ≤ z for all j = 1, . . . , n and k = 1, . . . ,m then only
the L-term low-rank local expansion is used, which can be applied in O(L(m+ n))
time. If instead ωjrk > z everywhere, then only the M -term asymptotic expansion
is used, which can be applied using the Type-III NUFFT in O(M(m+ n+ p log p))
complexity.

Otherwise consider the case where A contains both local and asymptotic en-
tries. First, note that the number of levels Nlevel scales like O(logmin(n,m)). The
cost of determining the splitting indices (j, k) for each box A(j0 : j1, k0 : k1)
is O(j1 − j0 + k1 − k0), and thus the total cost of subdivision at each level is O(m+n).
Therefore the total cost of subdividing A is O((m+ n) logmin(n,m)).

Now, without loss of generality, assume ω1 ≤ z/rn < ω2 and r1 ≤ z/ωm < r2.
If this were not the case, we would have blocks which can be evaluated using a
single expansion as described above without affecting the complexity. After step ℓ of
subdividing every mixed block, we obtain 2ℓ new mixed blocks, 2ℓ−1 new local blocks,

and 2ℓ−1 new asymptotic blocks. Let the local blocks be of size m
(loc)
ℓ,b × n

(loc)
ℓ,b for

b = 1, . . . , 2ℓ−1. Then,

(4.3)

2ℓ−1∑
b=1

m
(loc)
ℓ,b ≤ m, and

2ℓ−1∑
b=1

n
(loc)
ℓ,b ≤ n.

An analogous fact holds for the asymptotic blocks.
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Therefore, the total cost of local evaluation is

(4.4)

Nlevel∑
ℓ=1

2ℓ−1∑
b=1

O
(
L
(
m

(loc)
ℓ,b + n

(loc)
ℓ,b

))
=

Nlevel∑
ℓ=1

O(L(m+ n))

= O
(
L(m+ n) logmin(n,m)

)
.

Let pℓ,b be the space-frequency product of box b at level ℓ. The total space frequency
product p is the area of the rectangle R := [ω1, ωm]× [r1, rn], and all asymptotic boxes
occupy disjoint sub-rectangles of R. Therefore the sum of their areas is bounded by
the area of R, so that

Nlevel∑
ℓ=1

2ℓ−1∑
b=1

pℓ,b ≤ p.

Then by Hölder’s inequality we obtain

Nlevel∑
ℓ=1

2ℓ−1∑
b=1

pℓ,b log pℓ,b ≤

Nlevel∑
ℓ=1

2ℓ−1∑
b=1

pℓ,b

(max
ℓ,b

log pℓ,b

)
≤ p log p.(4.5)

The total cost of asymptotic evaluation via the Type-III NUFFT is therefore

(4.6)

Nlevel∑
ℓ=1

2ℓ−1∑
b=1

O
(
M
(
m

(asy)
ℓ,b + n

(asy)
ℓ,b + p

(asy)
ℓ,b log p

(asy)
ℓ,b

))

=

Nlevel∑
ℓ=1

O(M(m+ n)) +

Nlevel∑
ℓ=1

2ℓ−1∑
b=1

O
(
M
(
p
(asy)
ℓ,b log p

(asy)
ℓ,b

))
= O

(
M(m+ n) logmin(n,m) +Mp log p

)
.

We subdivide until all direct blocks are all of size mb×nb with mbnb = O(1). Thus the
cost of computing the dense matvec with each direct block is O(1), and the number
of direct blocks is O(m+ n). Therefore the total direct evaluation cost is O(m+ n).
Summing the cost of matrix subdivision, as well as local, asymptotic, and direct
evaluation gives the result.

In typical applications the maximum point rn is fixed by, for example, the support
of the function f whose Fourier transform is desired, and the maximum frequency ωm

at which the transform is computed grows linearly with n. The following corollary
studies this common scenario, which includes Schlömilch expansions and Fourier-Bessel
series. For notational conciseness, we consider the number of terms L and M in each
expansion as constants here.

Corollary 4.2. Take ω1 < · · · < ωn ∈ [0,∞) and r1 < · · · < rn ∈ [0,∞) such
that the space-frequency product p = O(n). Then the complexity of computing the
NUFHT using Algorithm 2 is O(n log n).

Remark 4.3. There exist butterfly factorization-based NUFFT methods that could
be used to remove the dependence on the space-frequency product p in Theorem 4.1
using linear algebraic approximations [35]. However, we find that the asymptotic
dependence on p is generally seen only in pathological cases, and thus choose to avoid
the precomputations associated with butterfly methods.



12 PAUL G. BECKMAN AND MICHAEL O’NEIL

O(n) O(m) O(p log p)

Fig. 3: Scaling with n, m, and p respectively, with the other variables held constant.

5. Numerical experiments. In the following section, we perform a number of
numerical experiments to validate the accuracy and complexity of our method. We
close with two applications from Fourier analysis and numerical PDEs.

5.1. Comparison to direct evaluation. We start by empirically verifying the
error analysis in Sections 3.1 and 3.2, and the asymptotic scaling analysis in Section 4.2
by comparing to direct evaluation of the Hankel transform.

5.1.1. Asymptotic scaling. In order to study the impact of each of the relevant
parameters in the scaling analysis of Theorem 4.1 independently, we take n equispaced
points rk in the interval [0,

√
105] and m equispaced frequencies ωj in the interval

[0, p/
√
105]. First, we fixm = 103 and p = 105 while increasing n. Then, we fix n = 103

and p = 105, this time increasing m. Finally, we fix both n = m = 103 while increasing
p. Figure 3 shows the CPU time for the NUFHT as well as for direct summation in
each of these scenarios. We observe the linear or quasilinear scaling expected from
Theorem 4.1 with each of n,m, and p. Note in particular that the NUFHT scales with
p while direct summation does not. Therefore, if a DHT is desired with relatively few
points with a very large space-frequency product, direct summation may give superior
performance, although such circumstances are rare in practice.

Next, we study the more typical scenario where the space-frequency product p
grows linearly with n, as discussed in Corollary 4.2. Here we study two cases. First,
we consider the Fourier-Bessel expansion where ωj = jν,j and rk = jν,k/jν,n+1 with
n = m. This is the direct analogue of the discrete Fourier transform as the points and
frequencies are the scaled roots of the basis, and the resulting points and frequencies
are quasi-equispaced for small to moderate ν.

We also consider the case of exponentially distributed points and frequencies
ωj = rj = 10log10(j)−log10(n)/2 with n = m. This is a somewhat pathological worst case
scenario for our algorithm, as the simple calculation

(5.1)

√
Ωz

R
= argmax

z
R≤ω≤Ω

(Ω− ω)
(
R− z

ω

)
shows that if we subdivide a block with space frequency product ΩR at a point (ω, r)
which lies on the curve ωr = z, then the largest possible space-frequency product p
for the resulting lower right asymptotic block is achieved by taking ω to be the mid-
point of [z/R,Ω] on a log scale. In other words, points and frequencies which are
exponentially distributed result in the highest possible space-frequency product p for
every asymptotic block at every level. From Theorem 4.1, maximizing p drives the
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O(n logn)

O
(
n2

)

Fig. 4: Scaling with n for p = O(n) test cases. In the first plot, we fix ν = 0, ε = 10−8

and time the NUFHT for both the Fourier-Bessel and exponentially distributed cases. In
the second and third plots, we consider the Fourier-Bessel series only, and fix one of the
parameters ν = 0 and ε = 10−8 while varying the other. The timings of direct summation
and Fourier-Bessel series from the first plot are repeated in the other two plots for reference.

cost of the NUFHT. This distribution of points and frequencies is also challenging
because it leads to equally-sized square blocks at every level, which guarantees that
all blocks are subdivided the maximum number of times before yielding sufficiently
small direct blocks.

Figure 4 shows the CPU time needed to evaluate the NUFHT in the Fourier-
Bessel and exponentially-distributed cases with ν = 0 and ε = 10−8. Both cases
eventually demonstrate the expected O(n log n) scaling. As a result of the challenges
just discussed for the exponentially-distributed case, its runtime is up to an order of
magnitude slower than the Fourier-Bessel series.

5.1.2. Impact of the order and tolerance on runtime. As the order ν
increases or the tolerance ε decreases, the number of necessary terms L and M in
the local and asymptotic expansions, respectively, both grow. From Theorem 4.1,
we expect the runtime to grow linearly with L+M . Figure 4 shows the runtime of
our method for various ε with ν = 0 held constant, as well as for multiple ν with
ε = 10−8 fixed. The O(n log n) scaling of the algorithm is similar in all cases, while the
prefactors vary; a transform with ε = 10−15 is about an order of magnitude slower than
using ε = 10−4, and an order ν = 100 transform is almost two orders of magnitude
slower than the order ν = 0 equivalent.

5.1.3. Approximation error. Finally, we study the relative error in the output
g as a function of the desired tolerance ε. To do this, we fix n and form a sparse vector
f ∈ Rn with 1000 nonzero entries whose indices are selected at random and whose
values are independent standard Gaussian. We evaluate the Fourier-Bessel series using
the NUFHT with the full vector f as input, and denote the output as g̃. We then
use direct summation on only the nonzero entries to generate a reference result g.
Figure 5 shows the 2-norm relative error ∥g − g̃∥2 / ∥g∥2 between the NUFHT and the
reference. For small transforms with n = 103, the relative error demonstrates excellent
agreement with the tolerance ε down to ε = 10−14 or so. This suggests that the
analysis used in Section 3 to determine the necessary number of local and asymptotic
terms is fairly tight. For larger transforms, however, the error saturates, and regardless
of the tolerance ε our method gives at most 9 digits of accuracy for transforms of size
n = 107. This is a well-known limitation of existing NUFFT methods, for which the
error generally scales like n times machine precision [5, Remark 9].
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Fig. 5: Relative 2-norm error ∥g − g̃∥2 / ∥g∥2 as a function of tolerance ε for a NUFHT of
order ν = 0 for various n.

5.2. Computing Fourier transforms of radial functions. For radial functions
f(r) = f(∥r∥) in Rd, one can integrate out the radial variables analytically, reducing
the d-dimensional Fourier integral to a single Hankel transform

f̂(ω) =

∫
Rd

f(∥r∥) eiω
⊤r dr =

(2π)
d
2

ω
d
2−1

∫ ∞

0

f(r) J d
2−1(ωr) r

d
2 dr.(5.2)

We compare two methods of computing f̂ for the indicator function of the unit
disk f(r) = 1{0≤r≤1} to absolute error ε = 10−12 at n equispaced points ωj ∈ [0, ωmax].
First, we use a Gauss-Legendre quadrature rule on [0, 1] with nodes rk and weights wk.
We utilize the NUFHT to compute the resulting sum

(5.3)

f̂(ω) = 2π

∫ 1

0

f(r) J0(ωr) r dr

≈ 2π

m∑
k=1

wk f(rk) J0(ωrk) rk,

doubling the number of nodes m until the error in the computed integral is less than ε.
Second, we build a two-dimensional quadrature rule in polar coordinates, using the
same m-point Gauss-Legendre rule in r and a tk-node trapezoidal rule in θ on each
circle of radius rk. We double the number of trapezoidal nodes tk in each circle until
the error in the corresponding radial integral is less than ε. We then utilize the 2D
NUFFT to compute the resulting double sum

f̂(ω) =
1

4π2

∫ 2π

0

∫ 1

0

f(r) e−iωr cos θ r dr dθ(5.4)

≈ 1

4π2

m∑
k=1

wk rk f(rk)
2π

tk

tk∑
s=1

exp

{
−iωrk cos

(
2πs

tk

)}
.(5.5)

If only low frequencies ω are desired, e.g. ωmax = 64, the integrands are only mildly
oscillatory and few trapezoidal nodes are required. In combination with the relative
ease of amortizing costs in the NUFFT, the two-dimensional transform is often faster
than the NUFHT. However, for larger ωmax the integrands become more oscillatory,
and in two dimensions m = O(ω2

max) nodes are needed to resolve these oscillations.
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log2 ωmax

Fig. 6: Example two-dimensional quadrature nodes for the NUFFT, with one-dimensional
radial Gauss-Legendre quadrature on [0, 1] for the NUFHT emphasized. Runtime comparison
between NUFHT and 2D NUFFT for various choices of the maximum frequency ωmax and
the number of evaluation points n. Solid lines indicate the NUFHT, and the corresponding
dashed lines indicate the 2D NUFFT.

Therefore the O(m) spreading step in the NUFFT becomes prohibitively expensive.
However, by using radial symmetry to reduce to a one-dimensional integral, the
NUFHT requires only O(ωmax) quadrature nodes, avoiding the curse of dimensionality.
Figure 6 shows an example quadrature and runtimes for both the NUFFT and NUFHT
approaches. Note that for ωmax = 215 the 2D NUFFT is orders of magnitude slower
than the NUFHT for most n, and for even larger ωmax the quadratic scaling of the
2D NUFFT with frequency makes the computation intractable on a laptop, while the
NUFHT’s linear scaling with frequency allows evaluation of the Fourier transform at
significantly higher frequencies at an only moderately increased cost.

5.3. A Helmholtz solver using Fourier-Bessel expansions. Finally, we
demonstrate the application of the nonuniform Hankel transform to solving partial
differential equations on the disk using Fourier-Bessel expansions. Consider the
following inhomogeneous Helmholtz problem on the unit disk D

(5.6)
(∆ + κ2)u(r, θ) = f(r, θ), for r ∈ [0, 1), θ ∈ [0, 2π),

u(1, θ) = 0 for θ ∈ [0, 2π).

Note that the functions ψjℓ(r, θ) := Jℓ(jℓ,jr)e
iℓθ are the eigenfunctions of the Laplacian

on the unit disk with homogeneous Dirichlet boundary condition, so that

(5.7) ∆ψjℓ(r, θ) = λjℓψjℓ(r, θ),

where λjℓ = −j2ℓ,j [8, 40]. Therefore, writing the forcing function f and solution u in
terms of their respective Fourier-Bessel expansions

(5.8) f(r, θ) =

∞∑
ℓ=−∞

∞∑
j=1

αjℓ Jℓ(jℓ,jr) e
iℓθ, u(r, θ) =

∞∑
ℓ=−∞

∞∑
j=1

βjℓ Jℓ(jℓ,jr) e
iℓθ

decouples (5.6) into a system of diagonal equations resulting in an explicit formula for
the coefficients βjℓ:

(5.9) βjℓ =
αjℓ

λjℓ + κ2
.
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Due to the orthogonality of the Bessel functions Jℓ, the Fourier-Bessel coefficients of
the forcing f can be computed as:

(5.10) αjℓ =
2

Jℓ+1(jℓ,j)2

∫ 2π

0

∫ 1

0

f(r, θ) Jℓ(jℓ,jr) e
−iℓθ r dr dθ,

and the Fourier-Bessel expansion of the solution u can then be written explicitly

(5.11) u(r, θ) =

∞∑
ℓ=−∞

∞∑
j=1

αjℓ

λjℓ + κ2
Jℓ(jℓ,jr) e

iℓθ.

By diagonalizing the Laplacian, this Fourier-Bessel solver thus provides a direct
analogue in the Dirichlet disk setting of spectral methods on a periodic rectangle using
bivariate Fourier expansions, and inherits many of the merits of spectral methods.
First, if f and all its derivatives go to zero at r = 1 and f is smooth in the interior
of D, then |αjℓ| → 0 exponentially fast in both j and ℓ [8]. In addition, solutions for
arbitrary κ can be evaluated without additional computations involving f , assuming
that κ2 is not itself a Dirichlet eigenvalue of the Laplacian on D.

To compute the Fourier-Bessel coefficients αjℓ of f using (5.10), we use an m-point
Gauss-Legendre rule in r and a t-point trapezoidal rule in θ. We iteratively double the
number of nodes in each rule until the relative norm difference in computed coefficients
between iterations is less than ε (controlling the discretization error) and the relative
norm of the coefficients appended in the last iteration is less than ε (controlling the
truncation error). Computing all αjℓ at each iteration requires t NUFHTs of size m
and m FFTs of size t, resulting in O(tm logm+mt log t) total complexity. Figure 7
shows an example random forcing f , the magnitude of its Fourier-Bessel coefficients
αjℓ, and the corresponding solution u to the Helmholtz equation (5.6) compute to
relative precision ε = 10−8.

This approach does, however, have two main limitations. First is that the co-
efficients of f decrease only algebraically in j if f has nonzero derivatives at r = 1.
More precisely, if ∆qf(r)|r=1 = 0 for all 0 ≤ q ≤ p − 1, then |αjℓ| ∼ j−2p− 1

2 , with
exponential convergence only possible if ∆qf(r)|r=1 = 0 for all integer q [8]. This is a
fundamental property of the Fourier-Bessel expansion, and does not depend on the
numerical method used to evaluate the Hankel transform. The second limitation is the
increase in computational cost of our NUFHT with the order ℓ, as demonstrated in
Figure 4. As αjℓ decrease spectrally in ℓ for smooth functions f , very large ℓ are not
often needed. However, as in any spectral method, functions with sharp features or
discontinuous derivatives will yield only algebraic decay in ℓ, requiring more Fourier
bases. In such cases the corresponding high order NUFHTs become intractable using
the method described here.

6. Discussion. In this manuscript we have presented a fast algorithm for com-
puting discrete Hankel transforms of moderate orders from n nonuniform points to m
nonuniform frequencies in O

(
(m+ n) logmin(n,m)

)
operations. The algorithm relies

on a careful space-frequency analysis of the Bessel function kernel, judicious use of
small-argument series expansions and large-argument asymptotic expansions, as well
as a small number of direct calculations. The algorithm makes no assumptions on
the distribution of points in space and frequency — it applies to the fully nonuni-
form case — and can be used for Hankel transforms of higher order with a modest
increase in computational cost. More importantly, the algorithm does not require
any precomputation, in contrast to algorithms based on butterfly factorizations of
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f u log10 |αjℓ|

Fig. 7: Forcing f , solution u, and log magnitude of Fourier-Bessel expansion coefficients αjℓ

for (5.6) with κ = 25.

the Hankel transform matrix. Significant speedups over the direct calculation have
been demonstrated, as well as asymptotic scaling of the computational complexity.
An implementation of the algorithm of this paper is available as an open-source Julia
package at github.com/pbeckman/FastHankelTransform.jl.

In order to efficiently extend our algorithm to compute arbitrarily high-order
Hankel transforms which are needed for higher-order Fourier-Bessel expansions and
in various high-dimensional statistical settings [26, 31], alternative expansions and
asymptotics of Jν need to be used or derived. This is the focus of ongoing research.
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