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Abstract
Eigenvalues of parameter-dependent quadratic eigenvalue problems form eigencurves. The critical
points on these curves, where the derivative vanishes, are of practical interest. A particular example is
found in the dispersion curves of elastic waveguides, where such points are called zero-group-velocity
(ZGV) points. Recently, it was revealed that the problem of computing ZGV points can be modeled
as a multiparameter eigenvalue problem (MEP), and several numerical methods were devised. Due
to their complexity, these methods are feasible only for problems involving small matrices. In this
paper, we improve the efficiency of these methods by exploiting the link to the Sylvester equation.
This approach enables the computation of ZGV points for problems with much larger matrices, such
as multi-layered plates and three-dimensional structures of complex cross-sections.
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1 Introduction
In many physics and engineering applications, we encounter parameter-dependent quadratic eigenvalue
problems (QEP) of the form

W (k, ω)u :=
(
(ik)2L2 + ikL1 + L0 + ω2M

)
u = 0, (1)

where L0, L1, L2, M are real n × n matrices, which are usually obtained by a (semi-)discretization of a
boundary value problem. The solutions (k, ω) form eigencurves ω(k), and we are interested in locating
the critical points on these curves, where ω′(k) = ∂ω

∂k = 0. Although solutions of (1) can be complex, we
consider the important case where ω and k are both real.
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This work is motivated by the study of (anisotropic) elastic waveguides (see, e.g., [23, 35]), where
ω denotes the angular frequency and k the wavenumber. In this context, the eigencurves are referred
to as dispersion curves. The slope cg = ω′ is called group velocity, which is of practical relevance, as it
describes the propagation of energy. Points (k∗, ω∗) on the dispersion curves where the group velocity
vanishes are called zero-group-velocity (ZGV) points. Often, the term is used exclusively for solutions at
finite wavenumber k∗, as this is the non-trivial case, but here we use the designation for solutions at any
k∗. In the light of this motivating practical application, we will generally refer to points on the curves
formed by eigenvalues of parameter-dependent eigenvalue problems that satisfy ω′(k) = 0 as ZGV points,
irrespective of their physical interpretation.

Recently, a numerical algorithm for the computation of ZGV points in anisotropic elastic waveguides
was introduced [23] that can be applied to a general problem of the form (1). The method is based
on a generalization of the method of fixed relative distance (MFRD) from [19], which provides good
initial approximations that can be refined by a locally convergent Newton-type method. Inspired by the
Sylvester-Arnoldi method from [28], we show in this contribution that sophisticated tools from linear
algebra substantially speed up the algorithm and reduce its memory requirements. This enables us to
solve problems with larger matrices and tackle more complex problems such as multi-layered plates as
well as waveguides of arbitrary two-dimensional cross-sections.

In the following, we first discuss properties of ZGV points in Section 2. In Section 3, we introduce
several tools we will use in the following section; the presentation is intertwined with their application
to the computation of ZGV points: the Sylvester equation, multiparameter eigenvalue problems, and
the MFRD. Our main contributions are included in Section 4, where we show how we can exploit the
structure of the Sylvester equation to apply the MFRD more efficiently, and in Section 5, where we
present a scanning algorithm for the computation of ZGV points that combines the MFRD and a locally
convergent Gauss-Newton method. In Section 6, we introduce a waveguide model that is used in the
numerical experiments in the following section, where we demonstrate the strength of the proposed
method. Finally, we discuss possible generalizations and give a conclusion in Sections 8 and 9.

2 Theory on ZGV points
If we assume that u = u(k) and ω = ω(k) are differentiable, then, by differentiating (1), we obtain

(−2kL2 + iL1 + 2ω(k)ω′(k)M)u(k) + W (k, ω(k))u′(k) = 0,

where, in general, •′ = ∂•
∂k . If (k∗, ω∗) is a ZGV point, then ω′(k∗) = 0, and it follows that

(−2k∗L2 + iL1)u∗ + W (k∗, ω∗)v∗ = 0, (2)

where u∗ = u(k∗) and v∗ = u′(k∗). Let z∗ be the corresponding left eigenvector of (1) at (k∗, ω∗), i.e.,
zH

∗ W (k∗, ω∗) = 0. By multiplying (2) by zH
∗ from the left, we get the following necessary condition for a

ZGV point:
zH

∗ (−2k∗L2 + iL1)u∗ = zH
∗ W ′(k∗, ω∗)u∗ = 0. (3)

Lemma 2.1. If (k∗, ω∗) is a ZGV point of the parameter-dependent QEP (1), then k∗ is a multiple
eigenvalue of the QEP

Q(k)u :=
(
(ik)2L2 + ikL1 + L0 + ω2

∗M
)

u = 0 (4)
that we get by fixing ω in (1) to ω∗.

Proof. If z and u are the left and right eigenvector of a simple eigenvalue k of the QEP Q(k)u = 0, then
it is well-known that zHQ′(k)u ̸= 0, see, e.g., [31, Prop. 1] or [1, Thm. 3.2]. But, since (3) holds at a
ZGV point, it thus follows that k∗ is a multiple eigenvalue of (4).

Lemma 2.1 gives a necessary condition, but not every point (k∗, ω∗) such that k∗ is a multiple
eigenvalue of (4) for a fixed ω = ω∗, corresponds to a ZGV point. In addition, (2) must hold as well, and
this means that v∗ is a root vector of height two1. This is possible only if the algebraic multiplicity ma of

1An eigenvalue λ∗ of a quadratic matrix polynomial Q(λ) is defective if and only if there exist an eigenvector (a root vector of
height one) v ̸= 0 and a root vector of height two w such that Q(λ∗)v = 0 and Q(λ∗)w + Q′(λ∗)v = 0, see, e.g., [12, Sec. 2.2].
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k∗ as an eigenvalue of (4) is strictly greater than the geometric multiplicity mg = dim(Ker(Q(k∗))). Also,
to make sure that ω(k) is analytic in a neighborhood of k∗, we require that ω∗ is a simple eigenvalue of
W (k∗, ω), i.e., the generalized eigenvalue problem (GEP) that we get by fixing k to k∗ in (1). Note that
in some cases, it is possible to extend the dispersion curves so that they remain analytical also in points
where the curves cross and multiple eigenvalues appear, see, e.g., [27]. To keep things concise, we will
keep the requirement that ω∗ is a simple eigenvalue of W (k∗, ω) and thus exclude points from candidates
for ZGV points where two or more dispersion curves cross.
Example 2.2. We take

L2 =

2 1 0
1 1 0
0 0 1

 , L1 =

 0 3 0
−3 0 0

0 0 0

 , L0 =

−1.75 1 0
1 −1.75 0
0 0 −0.25

 , M =

3 1 0
1 4 0
0 0 3.5

 .

We selected the matrices so that L0 is symmetric, L1 is skew-symmetric, and L2, M are symmetric
positive definite. This way, the matrices have the same properties as the larger matrices in [23], where
ZGV points of Lamb waves in an austenitic steel plate are computed.

The corresponding eigenvalue problem (1) has five real ZGV points (0, 0.2673), (0, 0.4074), (0, 1.0628),
and (±1.0642, 0.2393), such that ω > 0, which are shown together with the real dispersion curves in Fig. 1.
We consider only the solutions with ω > 0 since each dispersion curve ω(k) has its counterpart −ω(k) and
the same holds for the ZGV points. Note that the points (±0.4236, 0.3503), where the dispersion curves
cross, are not ZGV points, although k∗ = ±0.4236 is a double eigenvalue of (4) for a fixed w∗ = 0.3503.

Due to the structure of the matrices, the dispersion curves are also symmetric with respect to the ω-
axis and there exist trivial ZGV points at k = 0, which can be computed from the GEP (L0 +ω2M)u = 0.
Nontrivial ZGV points come in pairs (±k∗, ω∗) and we are interested in solutions where k∗ > 0.

Fig. 1: Real dispersion curves ω(k) and ZGV points of Example 2.2.

3 Auxiliary results
In this section, we introduce some related results and numerical methods that we will use in the following
sections to construct an efficient numerical method for finding the ZGV points of (1).
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3.1 Sylvester equation
The Kronecker product A ⊗ B of matrices A ∈ Cn×m and B ∈ Cp×q is a matrix of size np × mq of the
block form

A ⊗ B =

a11B · · · a1mB
...

...
an1B · · · anmB

 .

For a matrix X ∈ Cm×n, vec(X) ∈ Cmn is a vectorization of matrix X, i.e, the vector obtained by
stacking all columns of X on top of each other. Our results are based on the well-known equality (see,
e.g., [16, Lem. 4.3.1]):

vec(AXB) = (BT ⊗ A) vec(X), (5)
which holds for A ∈ Cm×m, B ∈ Cn×n, and X ∈ Cm×n. Suppose that we are looking for a matrix
X ∈ Cm×n that satisfies the Sylvester equation

AX + XB = C (6)

for given matrices A ∈ Cm×m, B ∈ Cn×n, and C ∈ Cm×n. It follows from (5) that (6) is equivalent to

(In ⊗ A + BT ⊗ Im)vec(X) = vec(C). (7)

The Sylvester equation is therefore uniquely solvable when In ⊗A+BT ⊗Im is nonsingular, which is true
if and only if λ + µ ̸= 0 for all possible pairs (λ, µ), where λ is an eigenvalue of A and µ is an eigenvalue
of B, see, e.g., [16, Thm. 4.4.6]. We could apply (7) to numerically solve (6), but this is not efficient since
it, in general, leads to complexity O(m3n3) due to a matrix of size mn × mn in (7).

There exist more efficient numerical methods for the Sylvester equation, for instance, the Bartels-
Stewart algorithm [3], which is appropriate in our setting, where we have to solve many Sylvester
equations with the same matrices A, B and different right-hand sides C. In the Bartels-Stewart algorithm,
we first compute two Schur decompositions

A = QRQH, B = USUH,

where matrices Q, U are unitary, and matrices S, R are upper triangular. Applying the above Schur
decompositions to (6), we obtain a new Sylvester equation with upper triangular matrices

RY + Y S = D, (8)

where D = QHCU and Y = QHXU . The columns of Y =
[
y1 · · · yn

]
can now be computed from left to

right as solutions of upper triangular linear systems

(R + siiI)yi = di −
i−1∑
k=1

skiyk, i = 1, . . . , n,

and then X = QY UH. If the Sylvester equation is nonsingular, then R + siiI is nonsingular for all
i = 1, . . . , n. With the above approach, we can efficiently solve the Sylvester equation (6) in complexity
O(m3 + n3), which is much less than O(m3n3), the complexity of solving (7) as a large linear system.

3.2 Multiparameter eigenvalue problems
A d-parameter eigenvalue problem has the form

A10x1 = λ1A11x1 + · · · + λdA1dx1

... (9)
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Ad0xd = λ1Ad1xd + · · · + λdAddxd,

where Aij is an ni × ni complex matrix, and xi ̸= 0 are vectors for i = 1, . . . , d. If (9) holds, then
(λ1, . . . , λd) ∈ Cd is an eigenvalue and x1 ⊗ · · · ⊗ xd is the corresponding eigenvector. A generic multipa-
rameter eigenvalue problem (MEP) (9) has N = n1 · · · nd eigenvalues, which are roots of a system of d
multivariate characteristic polynomials

pi(λ1, . . . , λd) := det(Ai0 − λ1Ai1 − · · · − λdAid) = 0, i = 1, . . . , d. (10)

The problem (9) is related to a system of GEPs

∆1z = λ1∆0z, . . . , ∆dz = λd∆0z, (11)

where z = x1 ⊗ · · · ⊗ xd, and the N × N matrices

∆0 =

∣∣∣∣∣∣∣
A11 · · · A1d

...
...

Ad1 · · · Add

∣∣∣∣∣∣∣
⊗

:=
∑

σ∈Sd

sgn(σ) A1σ1 ⊗ A2σ2 ⊗ · · · ⊗ Adσd
(12)

∆i =

∣∣∣∣∣∣∣
A11 · · · A1,i−1 A10 A1,i+1 · · · A1d

...
...

...
...

...
Ad1 · · · Ad,i−1 Ad0 Ad,i+1 · · · Add

∣∣∣∣∣∣∣
⊗

, i = 1, . . . , d,

are called operator determinants, which uses the Kronecker product for multiplication. For details see,
e.g., [2]. If ∆0 is nonsingular, then we say that (9) is regular. In such cases, the matrices Γi := ∆−1

0 ∆i,
i = 1, . . . , d, commute, and the eigenvalues of (9) are the joint eigenvalues of commuting matrices
Γ1, . . . , Γd. Hence, if N is not too large, a standard numerical approach to computing the eigenvalues
of (9) is to explicitly compute Γ1, . . . , Γd and then solve a joint eigenvalue problem. Alternatively, if we
prefer not to multiply by ∆−1

0 , we may solve a joint system of GEPs (11), see, e.g., [15].
If all linear combinations of matrices ∆0, ∆1, . . . , ∆d are singular, then (9) is a singular MEP, which is

much more difficult to solve. In such case, it is still possible that the polynomial system (10) has finitely
many roots that are the eigenvalues of (9). Then, (11) is a joint system of d singular matrix pencils
whose regular eigenvalues are the solutions of (9). For more details, see, e.g., [24]. To solve a singular
MEP numerically, we can apply a generalized staircase-type algorithm [30], which returns matrices Q

and Z with orthonormal columns that yield projected smaller matrices ∆̂i = Q∗∆iZ for i = 0, . . . , d

such that ∆̂0 is nonsingular, matrices ∆̂−1
0 ∆̂i, i = 1, . . . , d, commute, and their joint eigenvalues are the

eigenvalues of (9).
The above approach for singular problems is used in [23], where it is shown that ZGV points of (1)

correspond to the eigenvalues of a singular three-parameter eigenvalue problem (3EP)

(ηC2 + λC1 + C0)w = 0
(ηL2 + λL1 + L0 + µM)u = 0 (13)
(ηL̃2 + λL̃1 + L̃0 + µM̃)v = 0,

where λ = ik, µ = ω2, η = (ik)2,

L̃2 =
[
L2 0
0 L2

]
, L̃1 =

[
L1 0
2L2 L1

]
, L̃0 =

[
L0 0
L1 L0

]
, M̃ =

[
M 0
0 M

]
,

and
C2 =

[
1 0
0 0

]
, C1 =

[
0 −1

−1 0

]
, C0 =

[
0 0
0 1

]
. (14)
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Note that the matrices (14) incorporate the relation between λ and η since det(ηC2 +λC1 +C0) = η −λ2.
This gives the first known numerical method that can compute all ZGV points without any initial
approximations. However, since we first have to explicitly compute the corresponding ∆ matrices of size
4n2 ×4n2 and then use expensive numerical methods for singular problems, this approach is feasible only
for problems (1) with small matrices.

Let us remark that solvers for MEPs are not included in standard numerical packages for problems in
linear algebra, but several numerical methods, also for singular problems, are implemented in the Matlab
toolbox MultiParEig [33].

3.3 Method of fixed relative distance
Instead of solving (13), which gives exact solutions, we can solve a simpler regular 3EP that returns
approximations of candidates for ZGV points. From each individual candidate, we can then compute the
exact ZGV point by applying the locally convergent Gauss-Newton method that we provide in Section
5.1. This approach, presented first in [23] for Hermitian problems, is based on Lemma 2.1 and the method
of fixed relative distance (MFRD) from [19].

We know from Lemma 2.1 that at ω∗ corresponding to a ZGV point, the QEP in the variable λ = ik
with fixed µ∗ = ω2

∗, i.e., (
λ2L2 + λL1 + L0 + µ∗M

)
u = 0 , (15)

has a multiple (generically double) eigenvalue λ∗ = ik∗. Therefore, for certain µ̃ ̸= µ∗ but close to µ∗,
the QEP (

λ2L2 + λL1 + L0 + µ̃M
)

u = 0 (16)
has at least two different solutions close to λ∗. The MFRD, adapted to (15) in [23], introduces the 3EP

(ηC2 + λC1 + C0)w = 0
(ηL2 + λL1 + L0 + µM)u = 0 (17)(

η(1 + δ)2L2 + λ(1 + δ)L1 + L0 + µM
)

v = 0

in µ = ω2, λ = ik, η = λ2, and C0, C1, C2 as in (14). Therein, δ > 0 specifies the relative distance between
the sought λ and serves as a regularization parameter. The 3EP (17) has an eigenvalue (λ̃, µ̃, η̃), where(√

µ̃, −iλ̃
)

is close to a ZGV point, such that λ̃ and λ̃(1 + δ) are eigenvalues of the initial problem (16).
Solutions of (17) can be obtained from a transformation into the corresponding system of GEPs (11).

The problem (17) is regular since the corresponding 2n2 × 2n2 matrix

∆0 =

∣∣∣∣∣∣
C2 C1 0
L2 L1 M

(1 + δ)2L2 (1 + δ)L1 M

∣∣∣∣∣∣
⊗

(18)

is nonsingular for δ > 0. Hence, we can solve the GEP given by

∆1z = λ∆0z, (19)

where

∆1 = (−1)

∣∣∣∣∣∣
C2 C0 0
L2 L0 M

(1 + δ)2L2 L0 M

∣∣∣∣∣∣
⊗

, (20)

by a standard numerical method for GEPs. In the ensuing, the obtained eigenvector z is used in the GEP
associated with µ, namely,

∆M z = µ∆0z, (21)
with ∆0 defined before and

∆M = (−1)

∣∣∣∣∣∣
C2 C1 C0
L2 L1 L0

(1 + δ)2L2 (1 + δ)L1 L0

∣∣∣∣∣∣
⊗

, (22)
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to obtain µ from the Rayleigh quotient

µ = zH∆M z

zH∆0 z
. (23)

Even for small values of n, computing all eigenvalues of (19) is very demanding. Instead, we can apply
a subspace iterative method (for instance, eigs in Matlab) to find eigenvalues of (19) close to a target
ik0. We can apply this several times using different targets k0 and, thus, scan an interval [ka, kb] for ZGV
points (k∗, ω∗); for more details, see Section 5 and [23]. In the next section, we will show how we can
exploit the structure of the matrices (18) and (20) to find eigenvalues of (19) close to a target ik0 much
more efficiently. This improvement enables the computation of ZGV points for much larger matrices than
in the original algorithm from [23].

We remark that it is not possible to apply a similar approach with a subspace iteration to the 3EP
(13) because this problem is singular.

4 Exploiting the structure
When employing a subspace iterative method such as the Krylov-Schur method [36] or the implicitly
restarted Arnoldi method [25] for the solution of the GEP (21), the computational bottleneck in each
step is the solution of a linear system of the form

(∆1 − σ∆0)z = ∆0y. (24)

Even for sparse matrices L0, L1, L2, M , which we obtain using, e.g., the finite element method, this makes
the computation slow already for modest matrix size n. By exploiting the structure of the matrices ∆0
and ∆1 in a similar way as in [28], we can solve the linear system (24) much more efficiently.

First, we note the block structure

∆0 =
[
G1 G2
G2 0

]
, ∆1 =

[
−G0 0

0 G2

]
, (25)

where

G0 = L0 ⊗ M − M ⊗ L0,

G1 = L1 ⊗ M − (1 + δ)M ⊗ L1, (26)
G2 = L2 ⊗ M − (1 + δ)2M ⊗ L2.

Introducing the block notation z =
[
z1
z2

]
and y =

[
y1
y2

]
, we can rewrite (24) as

[
−G0 − σG1 −σG2

−σG2 G2

] [
z1
z2

]
=

[
G1y1 + G2y2

G2y1

]
. (27)

If we add the second block row, multiplied by σ, to the first block row, we get an equivalent lower block
triangular system [

−G0 − σG1 − σ2G2 0
−σG2 G2

] [
z1
z2

]
=

[
(G1 + σG2)y1 + G2y2

G2y1

]
. (28)

Hence, we can compute z1 using the first block row

(G0 + σG1 + σ2G2)z1 = −(G1 + σG2)y1 − G2y2, (29)

and it follows from the second equation and nonsingularity of G2 that z2 = y1 + σz1.
To solve (29) efficiently, we transform it into a Sylvester equation using the equalities from Subsec-

tion 3.1. First, let w := −(G1 + σG2)y1 − G2y2. If y1 = vec(Y1) and y2 = vec(Y2), then it follows from

7



(26) that the right-hand side of (29) is w = vec(W ), where

W = MY1(L1 + σL2)T − ((1 + δ)L1 + (1 + δ)2L2)Y1MT − MY2L2 + (1 + δ)2L2Y2MT.

In a similar way, we get from (26) that

G0 + σG1 + σ2G2 = L(0) ⊗ M − M ⊗ L(δ),

where L(δ) := L0 + (1 + δ)σL1 + (1 + δ)2σ2L2. Thus, (29) is equivalent to

MZ1L(0)T − L(δ)Z1MT = W, (30)

where z1 = vec(Z1). Since M is nonsingular, we can write the above as a Sylvester equation

Z1L(0)TM−T − M−1L(δ)Z1 = W̃ , (31)

where W̃ = M−1WM−T = Y1(L1 +σL2)TM−T −M−1((1+δ)L1 +(1+δ)2L2)Y1 −Y2L2M−T +M−1(1+
δ)2L2Y2. As we can solve the above Sylvester equation in complexity O(n3), this is also the complexity
of solving (24).

Let us remark that we can exploit the structure of ∆0 and ∆M to compute µ in (23) in complexity
O(n3) as well. Namely, we have

∆M =
[
G3 G4
G4 G5

]
with

G3 = −L1 ⊗ L0 + (1 + δ)L0 ⊗ L1,

G4 = (1 + δ)2L0 ⊗ L2 − L2 ⊗ L0,

G5 = −(1 + δ)L2 ⊗ L1 + (1 + δ)2L1 ⊗ L2.

To obtain (23), we compute matrices

T1 = −L0Z1LT
1 + (1 + δ)L1Z1LT

0 + (1 + δ)2L2Z2LT
0 − L0Z2LT

2 ,

T2 = (1 + δ)2L2Z1LT
0 − L0Z1LT

2 − (1 + δ)L1Z2LT
2 + (1 + δ)2L2Z2LT

1 ,

T3 = MZ1LT
1 − (1 + δ)L1Z1MT + MZ2LT

2 − (1 + δ)2L2Z2MT,

T4 = MZ1LT
2 − (1 + δ)2L2Z1MT

and compute µ as

µ = zH
1 t1 + zH

2 t2

zH
1 t3 + zH

2 t4
, (32)

where ti = vec(Ti) for i = 1, . . . , 4. As this computation involves only multiplications by n × n matrices,
its complexity is O(n3).

5 Algorithm
For large problems, we suggest applying the MFRD to provide good initial approximations, which we
subsequently refine using the local convergent method presented next.

5.1 Gauss-Newton method
If we introduce λ = ik and µ = ω2 similarly to (15), then we know from Section 2 that for a ZGV point
of (1), we have to find λ, µ ∈ C and u, z ∈ Cn such that

(λ2L2 + λL1 + L0 + µM)u = 0

8



zH(λ2L2 + λL1 + L0 + µM) = 0
zH(2λL2 + L1)u = 0 (33)

(uHu − 1)/2 = 0
(zHz − 1)/2 = 0.

The number of equations exceeds the number of unknowns by one in (33); hence, this is an overdetermined
nonlinear system. However, it is a zero-residual system because if (k, ω) is a ZGV point, and u and z are
the corresponding right and left eigenvector, then all equations in (33) are satisfied.

For solving (33) from a good initial approximation, we apply the Gauss-Newton method [5, 32]. To
overcome the obstacle that the third equation in (33) is not complex differentiable in z, we define y = z,
where • denotes the complex conjugate, and rewrite (33) as

F (u, y, λ, µ) :=


(λ2L2 + λL1 + L0 + µM)u

(λ2L2 + λL1 + L0 + µM)Ty
yT(2λL2 + L1)u

(uHu − 1)/2
(yHy − 1)/2

 = 0. (34)

Suppose that (uk, yk, λk, µk) is an approximation to the solution of (34). If F (u, y, λ, µ) = 0 then also
F (αu, βy, λ, µ) = 0 for arbitrary α, β ∈ C such that |α| = |β| = 1. Because of that, the vectors u and y
are not uniquely defined and, although the last two equations in (34) are not complex differentiable, as
explained in [26], we can obtain a correction (∆uk, ∆yk, ∆λk, ∆µk) for the update

(uk+1, yk+1, λk+1, µk+1) = (uk, yk, λk, µk) + (∆uk, ∆yk, ∆λk, ∆µk)

as a solution of the (2n + 3) × (2n + 2) least squares problem

JF (uk, yk, λk, µk)∆sk = −F (uk, yk, λk, µk),

where ∆sk =
[
∆uT

k ∆yT
k ∆λk ∆µk

]T, and the Jacobian JF (uk, yk, λk, µk) is
λ2

kL2 + λkL1 + L0 + µkM 0 (2λkL2 + L1)uk Muk

0 (λ2
kL2 + λkL1 + L0 + µkM)T (2λkL2 + L1)Tyk MTyk

yT
k (2λkL2 + L1) uT

k (2λkL2 + L1)T 2yT
k L2uk 0

uH 0 0 0
0 yH 0 0

 . (35)

Besides an initial approximation (k0, ω0) for the ZGV point, the method requires initial approximation
for the right and left eigenvector as well. If we do not have them, then usually a good choice is to use a
random vector from the space spanned by the right and left singular vectors that belong to a few of the
smallest singular values of W (k0, ω0).

The Gauss-Newton method converges locally quadratically for a zero-residual problem if the Jacobian
JF has full rank at the solution, see, e.g., [5, Section 4.3.2] or [32, Section 10.4]. We can show that the
Jacobian JF (u∗, y∗, λ∗, µ∗) has full rank at a generic ZGV point, where k∗ = −iλ∗ is a double eigenvalue
of (4) for ω = √

µ∗, and u∗ and y∗ are the corresponding right and left eigenvector. For the proof, see
Lemma A.1 in the appendix. If ZGV points exist where the multiplicity of k∗ is higher than two, then,
at such points, we can expect a linear convergence.

Let us note that the above Gauss-Newton method also converges to points (λ, µ) where there exists
a solution of (33), and these include the points where the dispersion curves cross. At such points, we can
also expect a linear convergence. If the method has converged to a zero-residual solution, then we can
verify if a computed point is a ZGV point by checking if ω∗ is indeed a simple eigenvalue of W (k∗, ω).

We also remark that for a special case when W (k, ω) is Hermitian for real values k, the left eigenvector
corresponding to a right eigenvector u is uH, which happens, for example, in the case when the matrices
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Li are alternately symmetric/anti-symmetric and M is symmetric positive definite. For such problems,
we can use a more efficient Newton’s method, see [23, Sec. IV].

5.2 Scanning method
The following algorithm uses the MFRD from Section 3.3 to scan a wavenumber interval [ka, kb] and
compute ZGV points (k∗, ω∗) such that k ∈ [ka, kb]. The matrices ∆0, ∆1 and ∆M refer to (18), (20)
and (22), respectively, but we do not have to compute them explicitly.

Algorithm 1: Scanning method for ZGV points
Input: n × n matrices L2, L1, L0, M , interval [ka, kb], default step size ∆k
Output: ZGV points (k∗, ω∗)

1: set k0 = ka

2: while k0 < kb

3: find m eigenvalues of ∆1z = λ∆0z closest to λ0 = ik0
4: for each λ and eigenvector z
5: compute µ = zH∆M z/zH∆0z
6: if |Re(λ)| and |Im(µ)| are both small then
7: apply Gauss-Newton method to solve (33) with initial guess (Im(λ), Re(µ))
8: if the method converged to (λ∗, µ∗), and (3) holds then
9: add (k∗, ω∗) = (−iλ∗,

√
µ∗) to the list of ZGV points

10: set k0 = max(k0 + ∆k, 0.95 · max{k∗ ∈ ZGV points})

In the following, we provide additional details about Algorithm 1.
• In line 3, we can apply any subspace method, for instance eigs in Matlab. Thereby, it is important

that we do not generate the matrices ∆0 and ∆1 explicitly. Internally, the eigs function iteratively
solves the linear system (∆1 − σ∆0)z = ∆0y, and it is possible to provide a pointer to a custom
implementation thereof. We do so, thereby exploiting the relation with the Sylvester equation from
Section 4.

• Alternatively, if n is small enough, we can compute all eigenvalues of ∆1z = λ∆0z. This approach
gives all ZGV points in just one run; hence, the scanning is not needed, and it could be more efficient
than solving the related singular 3EP (13).

• In line 5, we compute µ using (32), which avoids generating ∆0 and ∆M . Note that this expression
might not return correct µ if λ is a multiple eigenvalue of ∆1z = λ∆0z, e.g., when there exist different
ZGV points with the same k = −iλ. This is very unlikely to appear, except for the trivial ZGV points
at λ = 0. This makes ZGV points with k∗ close to zero very difficult to compute.

• For an initial approximation for the left and right eigenvector, we take the left and right singular vector
for the smallest singular value of λ2L2 + λL1 + L0 + µM .

• In line 10, we update the target k0 in such a way that it is unlikely that the method will miss ZGV points
in the interval. We assume that if the subspace iteration method in line 3 returns some approximations,
it does not miss any of the closest ZGV points. The idea is to increase the target either for a default
step ∆k or use a larger step if some ZGV points were found in the last loop.

It is difficult to provide the best values for the parameters ka, kb, ∆k, m, as they are problem-dependent.
For a sensible choice when treating guided waves in plates, see the implementation in the package
GEWtool [21] and the numerical examples in Section 7.

6 Waveguide model
While the proposed approach can be applied, quite generally, to compute critical points on eigencurves of
parameter-dependent quadratic eigenvalue problems, this work is motivated by a particular application,
namely the modeling of elastic waves propagating along structures of constant cross-section, commonly
referred to as waveguides. In this context, a finite-element discretization of the cross-section yields matri-
ces with the properties discussed above. Hence, we will briefly summarize the formulation that has been
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deployed to obtain the matrices used in our numerical experiments. Consider a waveguide of linearly
elastic material and arbitrary cross-section Γ as depicted in Fig. 2a. Its mass density is denoted as ρ,
and its 4th-order stiffness tensor c is of arbitrary anisotropy. In absence of external loads, the mechanical
displacements ũ(x, y, z, t) are governed by the boundary-value problem

∇ · c : ∇ũ − ρ∂2
t ũ = 0 in Γ × R , (36a)
ũ = 0 on ∂ΓD × R , (36b)

en · c : ∇ũ = 0 on ∂ΓN × R . (36c)

Therein, ∂t is the partial derivative with respect to time t, and ∇ = ei∂i is the Nabla operator. ∂ΓD and
∂ΓN denote the parts of the cross-sectional boundary where Dirichlet and Neumann boundary conditions
are imposed, respectively. Lastly, en is the outward unit normal vector.

(a) arbitrary 2d cross-section

Γ

c, ρ∂ΓD

∂ΓN

en

.

k
ey

ez

ex

(b) plate (1d cross-section)

Γ

∂ΓN

∂ΓD

hc, ρkex

ey

ez

Fig. 2: Waveguide geometries. The waveguides extend infinitely along ex, which corresponds to the wave
vector orientation. (a) Arbitrary two-dimensional cross-section. (b) A plate confines waves only in the
one-dimensional thickness direction. Γ: cross-sectional domain, ∂ΓD Dirichlet boundary, ∂ΓN : Neumann
boundary, en: unit normal to the boundary, c: stiffness tensor, ρ: density, k: wave vector, h: thickness.

Due to the translational invariance in time t and the axial coordinate x, modal solutions are of the
form ũ(x, y, z, t) = u(k, y, z, ω) ei(kx−ωt). Inserting into (36), we obtain the waveguide problem[

(ik)2L2 + ikL1 + L0 + ω2ρI
]

u = 0 in Γ , (37a)
u = 0 on ∂ΓD , (37b)

[ikB1 + B0] u = 0 on ∂ΓN , (37c)

which describes the plane harmonic guided wave solutions (k, ω, u) of interest. In the above, Li and Bj

are differential operators, which are explicitly given, using the 2nd-order tensors cij = ei · c · ej , as

L2 = cxx , (38a)
L1 = (cxy + cyx)∂y + (cxz + czx)∂z , (38b)
L0 = cyy∂2

y + (cyz + czy)∂y∂z + czz∂2
z , (38c)

and

B1 = cnx , (39a)
B0 = cny∂y + cnz∂z . (39b)

Equations (37)-(39) are also valid for the special case of the infinite plate as depicted in Fig. 2b (the
reader may refer to [23] for a succinct derivation). A plane strain field should be assumed in this case,
i.e., all terms in ∂z vanish while the equations remain otherwise unaffected. The waveguide’s cross-section
can thereby be modeled by a one-dimensional discretization, as the displacements do not depend on z.
Furthermore, by expressing the problem in cylindrical coordinates, a similar formulation can be obtained
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for waves propagating along full or hollow cylinders. We also note that the above vector-field problem
can be reduced to the scalar wave equation representing waves in a fluid medium, i.e., scalar acoustics.

The waveguide problem in (37) represents a differential eigenvalue problem, which we discretize
using a Galerkin finite-element procedure [20, 17, 6, 14, 11].2 This numerical formulation yields matrices
Li, M ∈ Rn×n such that

W (k, ω)u :=
[
(ik)2L2 + ikL1 + L0 + ω2M

]
u = 0 (40)

approximates the original problem (37a) and respects the boundary conditions (37b) and (37c). Therein,
u is the vector of coefficients corresponding to the chosen discretization. Note that, for a nondissipa-
tive material and real-valued parameters k and ω, the waveguide operator W (k, ω) is Hermitian, and,
furthermore, M is positive definite.

Elastic guided waves as described by (40) usually exhibit several ZGV points (k∗, ω∗). As the ∆-
matrices scale as 4n2 × 4n2 (in eq. (13)) or 2n2 × 2n2 (in eq. (17)), large waveguide problems quickly
lead to prohibitively large computational demands, effectively rendering the methods from [23] unusable.
There are mainly two crucial situations where this is the case: (i) plates and cylinders with many layers,
and (ii) waveguides of two-dimensional cross-section. In the following, we demonstrate that the method
presented in Section 4 is capable of computing ZGV points even for such complex structures.

7 Numerical experiments
All numerical experiments are performed on an Apple M1 Pro notebook with 32 GB of memory. The
regularization parameter of the MFRD method is chosen as δ = 10−2 for all computations.

7.1 Austenitic steel plate
An orthotropic austenitic steel plate exhibits many ZGV points. They were computed in [23] with an
MFRD algorithm that uses eigs from Matlab to compute eigenvalues of (19) close to a target ik0. The
matrices ∆1 and ∆0 were computed explicitly and are represented as sparse matrices. The method in
Matlab first computes an LU sparse factorization, which is then used to solve (24) in each step of the
method. The example given in the mentioned reference is of size n = 39, which yields ∆i-matrices of size
3042 × 3042. The computational time with the old method was 12 s.

Instead, we can use the approach proposed in Section 4 to solve (24) without explicitly constructing
the matrices ∆1 and ∆0. In the initial phase, we compute the Schur decompositions of L(0)TM−T and
M−1L(δ) from (31) and then use them to solve (31) and, thus, obtain the solution of (24). In this way,
we never use matrices larger than n × n. Applying this procedure to the numerical example of [23] with
n = 39 finds all 18 ZGV points in 0.5 s, which is more than twenty times faster than with the previous
method. Note that the computational times are difficult to compare, as the strategy to update the target
wavenumber also changed. More importantly, our new procedure scales favorably with the problem size,
which is demonstrated by the following examples.

7.2 Fluid-filled pipe
The following example, taken from Cui et al. [4], consists of a water-filled steel pipe with a wall thickness
of h = 0.5 mm and an inner radius of 9.5 mm, see Fig. 3a. The steel pipe is characterized by shear
and longitudinal wave speeds of ct = 3200 m

s , cℓ = 5900 m
s and a mass density of 7900 kg

m3 . The water
inside the pipe has a mass density of 1000 kg

m3 and a bulk wave speed of 1500 m
s . As the fluid domain is

relatively large compared to the bulk wavelength in water, this problem requires a considerable number of
degrees of freedom. Specifically, we used one element of 7th order (eight nodes) to discretize the pipe wall,
while the fluid domain required a polynomial degree of 140 to yield accurate results within the selected
frequency range.3 In the pipe wall, we assume displacements u(r) ei(kx+nφφ+ωt) of integer circumferential

2Specifically, we opt, in this work, for a particular type of high-order polynomial interpolation (sometimes referred to as spectral
elements) for one-dimensional cross-sections [11, 7] and for nonuniform rational B-splines (NURBS) [8] to discretize complex 2D
cross-sections. A review of various shape functions in the context of semi-analytical methods is given in [10].

3While such large polynomial degrees are generally uncommon in the Finite Element Method, they have been found to be
remarkably efficient in this particular context of waveguide modeling. This is because the bottleneck in the computation of the
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order nφ (similarly for the acoustic pressure in the fluid). This enables us to discretize only a radial
line as sketched in Fig. 3a. As an additional challenge, the pressure-displacement formulation leads to
non-Hermitian matrices, and a complex formulation of the Newton-iteration refinement as described in
Section 5.1 is required. For comparison with the literature, we choose nφ = 0 and u = uxex + urer to
obtain the so-called longitudinal modes L(0, m) [4]. Overall, this results in matrices Li and M in (40) of
size 157 × 157 and ∆-matrices of size 49298 × 49298. As demonstrated by Cui et al. [4], multiple ZGV
points are found in the frequency region close to the backward wave of the empty pipe, i.e., the curve
with negative slope in Fig. 3b. Using parameters m = 8, kah = 0.01, kbh = 2, ∆kh = 0.05, our algorithm
locates all 15 ZGV points in 11 s. The result is depicted in Fig. 3b.

pipe wall fluid

line of discretization Γ er
eφ

ex

(a) (b)

Fig. 3: Longitudinal waves in a water-filled steel pipe. (a) Geometry: cross-section of the water-filled
circular steel pipe of inner radius 9.5 mm and outer radius 10 mm. (b) Dispersion curves of longitudinal
modes, i.e., ux-ur-polarized waves. The dispersion curves of the empty pipe are shown for comparison.
The fluid-filled pipe exhibits 15 ZGV points close to the backward wave of the free pipe.

7.3 Composite plate
A plate consisting of many layers requires a large number of degrees of freedom to describe guided waves
since each layer is represented by at least one finite element. We use the proposed method to compute
ZGV points in a composite plate consisting of 400 layers with a total thickness of h = 50 mm. Such
materials are used in the aerospace industry, and this particular example is taken from [18]. The plate is
composed of a symmetric layup of a T800/913 carbon fiber reinforced polymer (CFRP) as depicted in
Fig. 4a. The mass density is given as ρ = 1550 kg/m3, and the stiffness in Voigt notation reads

C =


154 3.7 3.7 0 0 0

9.5 5.2 0 0 0
9.5 0 0 0

2.15 0 0
sym. 4.2 0

4.2

 GPa .

In order to consistently nondimensionalize the results, we define the smallest shear wave velocity as
ct =

√
C44/ρ. For the frequency range of interest, it is sufficient to discretize each layer with one linear

dispersion relations is the (complete) solution of an eigenvalue problem. The costs for this solution for moderate matrix sizes depend
mainly on the matrix size rather than its sparsity. Hence, in contrast to most finite element applications, which require mainly the
solution of linear systems of equations, it is, in this case, desired to obtain small matrices, even if they are dense. The advantage
of such large element orders was described in [11] and discussed in more detail in [7].
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0◦

90◦

45◦

−45◦

[0/90/45/-45]50s

ex

ey

ez

(a) (b)

Fig. 4: Composite plate of symmetric layup [0/90/45/-45]50s. (a) Geometry: the fibers in each layer
are oriented at angle θ as indicated; thereby, θ represents the angular coordinate rotating around ey

and measured from ex. All 400 layers are of the same thickness and amount to a total of 50 mm. (b)
Dispersion curves for wave vectors k = kex, i.e., θ = 0◦. One point exists where the axial group velocity
component ∂ω/∂k vanishes, and it is marked in the plot.

finite element. Symmetric and anti-symmetric waves decouple, and we consider symmetric waves only.
This is achieved by representing one-half of the geometry and fixing the uy displacement at the center
node. Lamb and shear-horizontal polarizations are coupled due to anisotropy. This requires modeling
all three displacement components in the equations of motion (37). Proceeding as described previously
yields the matrices Li and M from (40) of size 602 × 602. Note that the corresponding ∆i-matrices are
of size 724 808 × 724 808, which is considerable.

The dispersion curves corresponding to propagation along ex are shown in Fig. 4b. There exists a
point where ∂ω/∂k = 0, and it is marked therein. Using the parameters m = 8, kah = 0.2, kbh = 2,
∆kh = 0.1, our algorithm was able to successfully locate it in 43 s. It is important to remark that the
group velocity is a vector parallel to the xz-plane. For anisotropic plates, it is not necessarily collinear to
the wave vector k. The derivative ∂ω/∂k represents the group velocity component along the wave vector
k. Since our numerical methods compute points such that ∂ω/∂k = 0, we find the waves whose group
velocity is orthogonal to the wave vector or vanishes altogether. This was exploited in [22] to find waves
with a power flux transverse to their wave vector. As a side note, we also remark that the dispersion
curves in Fig. 4b do not exhibit crossings. Instead, they get very close and then veer apart; see [9] for
details on this phenomenon.

7.4 Rail
In this numerical experiment, we compute ZGV points of a relatively complex three-dimensional struc-
ture, namely a rail with the cross-section depicted in Fig. 5a. Rails are typical examples of guided wave
propagation in three-dimensional structures, and their dynamic properties are often investigated due to
the relevance of acoustic emission and ultrasonic material testing, see, e.g., [6, 13, 37, 38] and the ref-
erences therein. This particular geometry has been studied in [8], where dispersion curves have already
been computed based on the semi-analytical formulation outlined in Section 6. Instead of conventional
finite elements, the cross-section is discretized by means of non-uniform rational B-splines (NURBS),
which allow for the exact description of this shape without introducing geometry approximation errors.
Furthermore, NURBS are very robust at high frequencies. However, for the discussion in this paper,
these differences are of lesser significance, as the obtained matrices possess the same relevant properties
compared to using high-order polynomials. For computing the ZGV points, we use the discretization
suggested in [8] for computing dispersion curves for the first nine modes up to a frequency of 10 kHz.

14



(a) (b)

Fig. 5: Wave propagation along a rail. (a): Discretization of the cross-section, showing a division into
30 patches and the control points for describing the contour. (b): Dispersion curves of all propagating
modes and the two ZGV points found within the chosen frequency range.

Specifically, the interpolation relies on the 30 patches shown in Fig. 5a, each of them locally refined using
NURBS of the third order, resulting in matrices of size 1020 × 1020. For clarity, the figure only includes
the minimal number of control points required to describe the geometry. A simple isotropic linearly elas-
tic material is assumed with a Poisson’s ratio of ν = 0.2. To nondimensionalize the results for consistency
with the other examples, we define h = 172 mm as the height of the rail, i.e., the largest extent in the y-
direction. The dispersion curves are displayed in Fig. 5b, together with the two ZGV points found within
the selected frequency range. Using m = 6, kah = 0.1, kbh = 2, ∆kh = 0.2, Algorithm 1 locates the two
ZGV points in 545 s (9 min).

8 Possible generalizations
It is possible to define ZGV points for similar two-parameter eigenvalue problems. For example, in [34],
the critical points of dispersion curves for the eigenvalue problem (A + λB + µC)x = 0 are discussed.
The obtained numerical methods for this problem are very similar, and we can apply the MFRD and
the Gauss-Newton method, suitably modified to the structure of the eigenvalue problem. Specifically, we
need to modify the approach in Section 4 so that we can use a subspace method in the MFRD without
explicitly constructing large ∆ matrices for the related MEP. In a similar way, it would be possible to
define a ZGV point and extend the theory and numerical methods for a parameter-dependent polynomial
eigenvalue problem of the form

P (k, ω)u :=
(
(ik)dLd + (ik)d−1Ld−1 + · · · + ikL1 + L0 + ω2M

)
u = 0, (41)

or for a nonlinear parameter-dependent eigenvalue problem N(k, ω)u = 0, where N : C2 → Cn×n.

9 Conclusion
The improved approach enables us to tackle significantly larger problems and compute more accurate
solutions in cases where it was previously either impossible to construct the matrices ∆0, ∆1, ∆M explic-
itly, or the computation was unfeasibly slow. For even larger n, the improved algorithm also eventually
reaches its limits due to the considerable memory requirements. Namely, vectors that span the search
subspace in the subspace iteration method for the eigenvalue problem (18) are of size 2n2. If the matrices
Li and M are large, the memory required for saving a sufficient number of vectors of this size can become
prohibitively large. A possible solution that could extend the approach to large and sparse matrices Li
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and M would be to generalize the subspace iteration methods from [28], which exploit the low-rank
format of the vectors and work only on vectors of size n.
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A Quadratic convergence of the Gauss-Newton method
Lemma A.1. Let ξ ∈ Ω be an eigenvalue of algebraic multiplicity two and geometric multiplicity one of
a nonlinear eigenvalue problem N(λ)u = 0, where N : Ω → Cn×n is holomorphic on a domain Ω ⊆ C.
Let nonzero vectors u, z, s, p ∈ Cn be, respectively, the right and left eigenvector and the right and left
root vector of height two such that

N(ξ)u = 0, (42a)
N(ξ)s + N ′(ξ)u = 0, (42b)

zHN(ξ) = 0, (42c)
pHN(ξ) + zHN ′(ξ) = 0. (42d)

Then
zHN ′(ξ)s + pHN ′(ξ)u + zHN ′′(ξ)u ̸= 0.
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Proof. If we multiply (42b) by pH from the left and (42d) by s from the right, we observe the equality
zHN ′(ξ)s = pHN ′(ξ)u. Since it follows from [29, Thm. 1.6.5], see also [12, Thm. 2.5], that

zHN ′(ξ)s + zH N ′′(ξ)
2 u ̸= 0,

this completes the proof.

Lemma A.2. Let (k∗, ω∗) be a ZGV point of (1), such that the algebraic multiplicity of k∗ as an
eigenvalue of the QEP (4) is two, and the geometric multiplicity is one. Let u∗ and z∗ be the corresponding
right and left eigenvectors, y∗ = z∗, and let a and b be such vectors that aHu∗ = 1 and bHy∗ = 1. The
Jacobian JF (u∗, y∗, λ∗, µ∗), given in (35), where λ∗ = ik∗ and µ∗ = ω2

∗, has full rank.

Proof. Suppose that the Jacobian JF (u∗, y∗, λ∗, µ∗) is rank deficient. Then, there exist vectors s, t and
scalars α, β, not all being zero, such that

JF (u∗, y∗, λ∗, µ∗)
[
sT tT α β

]T = 0.

Then

(λ2
∗L2 + λ∗L1 + L0 + µ∗M)s + α(2λ∗L2 + L1)u∗ + βMu∗ = 0, (43a)

(λ2
∗L2 + λ∗L1 + L0 + µ∗M)Tt + α(2λ∗L2 + L1)y∗ + βMTy∗ = 0, (43b)

yT
∗ (2λ∗L2 + L1)s + uT

0 (2λ∗L2 + L1)Tt + 2αyT
∗ L2u0 = 0, (43c)

uH
∗ s = 0, (43d)

yH
∗ t = 0. (43e)

First, we show that β = 0. If we multiply (43a) by zH
∗ , then it follows that β = 0 because zH

∗ (2λ∗L2 +
L1)u0 = 0 due to a ZGV point and zH

∗ Mu∗ ̸= 0 because we require that ω∗ is a simple eigenvalue of
W (k∗, ω).

If α ̸= 0, then it follows from (43a) and (43b) that (1/α)s and (1/α)t are left and right root vectors
of height 2 of the QEP N(λ)u := (λ2L2 + λL1 + L0 + µ∗M)u = 0 for the eigenvalue λ∗. But then it
follows from Lemma A.2 that (43c) is not zero. Therefore, α = 0.

Since α = β = 0 it follows from (43a) that s = γu∗ for a scalar γ and then s = 0 because of (43d).
In a similar way we get from (43b) and (43e) that t = 0. This shows that the kernel of JF (u∗, y∗, λ∗, µ∗)
is trivial.
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