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Abstract. This paper addresses the computation of ground states of multicomponent Bose–Einstein
condensates, defined as the global minimiser of an energy functional on an infinite-dimensional ge-
neralised oblique manifold. We establish the existence of the ground state, prove its uniqueness up
to scaling, and characterise it as the solution to a coupled nonlinear eigenvector problem. By equip-
ping the manifold with several Riemannian metrics, we introduce a suite of Riemannian gradient
descent and Riemannian Newton methods. Metrics that incorporate first- or second-order infor-
mation about the energy are particularly advantageous, effectively preconditioning the resulting
methods. For a Riemannian gradient descent method with an energy-adaptive metric, we provide a
qualitative global and quantitative local convergence analysis, confirming its reliability and robust-
ness with respect to the choice of the spatial discretisation. Numerical experiments highlight the
computational efficiency of both the Riemannian gradient descent and Newton methods.
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1. Introduction

This paper is devoted to the numerical approximation of ground states of multicomponent Bose–
Einstein condensates (BECs), where p different species of matter can condense into one single
internal state with p components; see [13, 25, 26] for an introduction. For the special case of two
species and two components, we refer to [14, 49] and [15, Sect. 9.2]. Multicomponent systems can
also be obtained, under some simplifying assumptions, from spinor BECs which provide a valuable
tool for exploring complex quantum phenomena [16, 18].

Mathematically, a stationary quantum state of a p-component condensate can be modelled as
a wave function φ = (φ1, . . . , φp), defined in a domain Ω ⊂ Rd, d = 1, 2, 3. The components of
the wave function φ are square integrable with square integrable weak derivatives. Their squared
L2-norms represent the masses of the components which are subject to the constraints

(1.1) ∥φj∥2L2(Ω) = Nj > 0, j = 1, . . . , p,

where Nj is the given number of particles in the j-th condensate component, and N1+. . .+Np is the
total number of particles of the condensate. The set of admissible quantum states of the condensates
thus forms an infinite-dimensional generalised oblique manifold. Given the finite mass, the wave
function is well approximated in a sufficiently large but bounded domain Ω with homogeneous
Dirichlet boundary conditions. Furthermore, the linear combinations ρ1(φ), . . . , ρp(φ) of the density
functions |φi|2 are given by

ρj(φ) =

p∑
i=1

κij |φi|2, j = 1, . . . , p,

where the parameters κij ∈ R, κij = κji, characterise the strength of particle interactions between
the i-th and j-th condensate components. These interactions can be either attractive (κij < 0) or
repulsive (κij > 0).

The energy of the condensate is given by the functional

(1.2) E(φ) =
p∑

j=1

∫
Ω

1

2
∥∇φj∥2 +

1

2
Vj(x) |φj |2 +

1

4
ρj(φ) |φj |2 dx,
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where V1, . . . , Vp denote the external potentials, which can be, for example, harmonic traps or
periodic potentials created by optical lattices or realisations of random potentials created by laser
speckles. The first term in (1.2) represents the kinetic energy of the j-th component, the second
term is the potential energy, and the last term characterises the energy resulting from particle
interactions. The coupling is encoded in the nonlinearities ρj and driven by the parameters κij ,
whose relative variation can significantly impact the ground state. In the two-component case p = 2,
for example, the parameter

∆misc =
κ11κ22
κ212

− 1

describes the miscibility of the condensate. For ∆misc > 0, ground states with substantially over-
lapping components are expected, whereas for ∆misc < 0, the components are mostly separated in
space according to the Gross–Pitaevskii model; see, e.g., [58]. In this paper, we focus on the regime
where ∆misc > 0.

We are interested in global minimisers of the energy (1.2) subject to the mass constraints (1.1)
on the components. These minimisers are the ground states that represent the most stable con-
figurations of the system. The existence of a ground state for p = 2 in the full-space problem has
been shown in [14]. Building on the approach used to establish the existence and uniqueness in the
single-component case [23, 48], we extend these results to general p and bounded domains under
suitable assumptions on the potentials Vj and the interaction matrix K = [κij ]

p
i,j=1.

The ground state of a multicomponent BEC with p interacting components is further characterised
as the solution to the nonlinear eigenvector problem (NLEVP) given by the coupled (dimensionless)
Gross–Pitaevskii equations

(1.3) −∆φj + Vjφj + ρj(φ)φj = λjφj , j = 1, . . . , p,

where the eigenvalues λ1, . . . , λp ∈ R represent the chemical potentials of the components. We show
that, similar to the single-component case [23], each component of the ground state is associated
with the eigenfunction corresponding to the smallest eigenvalue for the corresponding condensate
component. This relationship is crucial in proving both the uniqueness of the ground state, up to
a global sign change of its components, and a second-order necessary optimality condition.

Various numerical methods have been proposed for computing ground states of the Gross–
Pitaevskii equation in the single-component case, based on either energy minimisation or eigenvalue
characterisation. These methods include self-consistent field iterations [24, 31], discrete normalised
gradient flows [17, 19], (projected) Sobolev gradient methods [28, 29, 36, 41, 45], the J-method
[5, 44], Riemannian optimisation methods in both discrete and continuous settings [9, 12, 30], and
Newton-type methods [20, 32, 60]. For more details and an extended overview, we refer to [39].
Although the computation of ground states for multicomponent BECs is also important in practice,
it has received significantly less attention. Among the methods proposed for these problems are
gradient flow-based approaches [10, 13], a Newton-like method with an approximate line search
strategy [22], and more recently Newton-based alternating methods [43].

This paper promotes Riemannian gradient descent and Newton-type methods for multicompo-
nent BECs, emphasising their robustness across different spatial discretisation methods by working
within an infinite-dimensional framework. Consequently, the convergence properties of selected op-
timisation schemes are asymptotically independent when the resolution in the spatial discretisation
is increased, such as mesh refinement in finite element methods. In contrast, conventional conver-
gence proofs in Riemannian optimisation for discrete models often lack an explicit dependence on
the dimension of the problem, limiting their applicability to discretised partial differential equations
where the dimension is critical and increases with increasing spatial resolution. Furthermore, we
provide a rigorous global convergence analysis and quantify the local convergence behaviour of a se-
lected Riemannian gradient descent scheme, demonstrating its effectiveness in reliably identifying
accurate initial values for empirically more efficient Riemannian Newton methods within sufficiently
close neighbourhoods of the ground state.

The paper is organised as follows. Section 2 introduces the functional analytical framework for
constrained energy minimisation and proves the existence of a ground state. Section 3 establishes the
connection to NLEVPs and shows the uniqueness of the ground state. In Section 4, we characterise
the tangent and normal spaces of the infinite-dimensional generalised oblique manifold, deriving
formulae for Riemannian gradients and Hessians based on the chosen metric. Section 5 presents
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the Riemannian gradient descent and Newton methods, followed by the convergence analysis of
the energy-adaptive Riemannian gradient descent method in Section 6. Section 7 discusses the
finite element discretisation and the discrete geometric ingredients. Finally, Section 8 reports on
numerical experiments.

Notation. The set of p× p real diagonal matrices is denoted by D(p). For M ∈ Rp×p, the trace
ofM is denoted by traceM . In addition, we denote by diag(v) the diagonal matrix with components
of a vector v ∈ Rp on the diagonal and by ddiag(M) the diagonal matrix whose diagonal elements are
the same as that of M . The p× p identity and zero matrices are denoted by Ip and 0p, respectively.
The Euclidean vector norm is denoted by ∥ · ∥ and the spectral matrix norm is denoted by ∥ · ∥2.

2. Constrained energy minimisation and existence of a ground state

The ground states are precisely defined by a mathematical model of constrained energy minimi-
sation. Their existence is then proved under appropriate assumptions on the model parameters.

2.1. Energy-related mathematical model. Let Ω ⊂ Rd with d = 1, 2, 3 be a bounded convex
Lipschitz domain. Consider the Hilbert space L2(Ω) with the inner product ( · , · )L2(Ω) and the

Sobolev space H1
0 (Ω) with the inner product ( · , · )H1(Ω). For p ≥ 1, we define the Hilbert spaces

L = [L2(Ω)]p and H = [H1
0 (Ω)]

p of p-frames which form a Gelfand triple H ⊂ L ⊂ H∗, where
H∗ = [H−1(Ω)]p denotes the dual space of H. On the pivot space L, we define an inner product

(v,w)L =

p∑
j=1

(vj , wj)L2(Ω)

for v = (v1, . . . , vp),w = (w1, . . . , wp) ∈ L, which induces the norm ∥v∥L =
√

(v,v)L. In addition,
we introduce the diagonal matrix

⟨⟨v,w⟩⟩ = diag
(
(v1, w1)L2(Ω), . . . , (vp, wp)L2(Ω)

)
of the component-wise L2-inner products of v,w ∈ L. Due to the symmetry of the L2-inner product,
we have ⟨⟨v,w⟩⟩ = ⟨⟨w,v⟩⟩. Moreover, it holds (v,w)L = trace ⟨⟨v,w⟩⟩.

We consider the energy functional E : H → R from (1.2), which can also be written as

(2.1) E(φ) =
∫
Ω

1

2
trace

(
(∇φ)T∇φ

)
+

1

2
(φ ◦φ)V (x) +

1

4
(φ ◦φ)K(φ ◦φ)T dx,

where φ ◦ v = (φ1v1, . . . , φpvp) denotes the Hadamard (component-wise) product of two p-frames,
V = [V1, . . . , Vp]

T , and K = [κij ]
p
i,j=1 ∈ Rp×p. Our aim is to compute a global minimiser of E ,

a so-called ground state, on the manifold

(2.2) OBN (p,H) =
{
φ ∈ H : ⟨⟨φ,φ⟩⟩ = N

}
of admissible states that respect the prescribed masses of the individual components, encoded in
the diagonal matrix N = diag(N1, . . . , Np); see also (1.1). This manifold is known as the infinite-
dimensional generalised oblique manifold. The resulting constrained energy minimisation problem
can then shortly be written as

(2.3) min
φ∈OBN (p,H)

E(φ).

For simplicity, the restriction of E to OBN (p,H) will also be denoted by E in what follows.

Remark 2.1 (Scaling invariance of E and non-uniqueness of ground state). The energy functional
satisfies E(φΣ±1) = E(φ) for all φ ∈ OBN (p,H) and Σ±1 ∈ D(p) with ±1 on the diagonal. Thus,
any global or local minimiser of (2.3), if it exists, is not unique in the strict sense. A proper concept
of uniqueness will be introduced later in Section 3.

Throughout this paper, we make the following assumptions on the model parameters Vj and K:

A1: The external potentials satisfy Vj ∈ L∞(Ω) with Vj(x) ≥ 0 for almost all x ∈ Ω.

A2: The interaction matrix K is symmetric and positive definite.
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Assumption A1 allows us to equip the space H with the potential-dependent inner product

(v,w)H =

p∑
j=1

∫
Ω
(∇vj)T∇wj + Vj(x) vjwj dx

and the induced norm ∥v∥H =
√
(v,v)H , which is equivalent to the canonical norm of H. Note

that, for p = 2, Assumption A2 corresponds to the miscible regime ∆misc > 0. In Section 2.3 below,
we show that these assumptions ensure the existence of a ground state. In the proof and throughout
the paper, we will frequently use several Sobolev embedding inequalities [53, Sec. 7.10.4.],

d ≥ 1 : ∥v∥[L2(Ω)]p ≤ C2 ∥v∥H for all v ∈ H,(2.4)

d ≤ 3 : ∥v∥[L4(Ω)]p ≤ C4 ∥v∥H for all v ∈ H,(2.5)

d = 3 : ∥v∥[L6(Ω)]p ≤ C6 ∥v∥H for all v ∈ H,(2.6)

with constants C2, C4, C6 > 0.

2.2. Properties of the derivative of the energy. The energy functional E is Fréchet differen-
tiable on H. Its directional derivative at φ ∈ H along w ∈ H is given by

D E(φ)[w] = aφ(φ,w)

with the bilinear form aφ : H ×H → R,

aφ(v,w) =

p∑
j=1

∫
Ω
(∇vj)T∇wj + Vj(x) vjwj + ρj(φ) vjwj dx(2.7)

=

∫
Ω
trace

(
(∇v)T∇w

)
+ (v ◦w)V (x) + (φ ◦φ)K(v ◦w)T dx.

The following lemma establishes some useful properties of aφ.

Proposition 2.2. Consider φ ∈ H and let Assumption A1 be fulfilled. Then the bilinear form aφ
defined in (2.7) is symmetric, bounded, and satisfies a G̊arding inequality.

Proof. The proofs of symmetry and boundedness are straightforward. In order to prove the G̊arding
inequality for d = 3, we first observe that the interpolation inequality [33, App. B2] and the Sobolev
embedding inequality (2.6) imply that

(2.8) ∥v∥[L4(Ω)]p ≤ ∥v∥1/4L ∥v∥3/4
[L6(Ω)]p

≤ C
3/4
6 ∥v∥1/4L ∥v∥3/4H .

Using the Cauchy–Schwarz and Hölder inequalities (see, e.g., [33, App. B2]) as well as (2.8), we
then obtain

∥v∥2H = aφ(v,v)−
∫
Ω
(φ ◦φ)K(v ◦ v)T dx ≤ aφ(v,v) + ∥K∥2 ∥φ ◦φ∥L∥v ◦ v∥L

≤ aφ(v,v) + C
3/2
6 ∥K∥2 ∥φ∥2[L4(Ω)]p∥v∥

1/2
L ∥v∥3/2H .

Applying Young’s inequality [33, App. B2] twice, we get

C
3/2
6 ∥K∥2 ∥φ∥2[L4(Ω)]p∥v∥

1/2
L ∥v∥3/2H = 2

(
C

3/2
6 ∥K∥2∥φ∥2[L4(Ω)]p∥v∥

1/2
L ∥v∥1/2H

)(
1
2 ∥v∥H

)
≤ C3

6∥K∥22∥φ∥4[L4(Ω)]p∥v∥L∥v∥H + 1
4 ∥v∥

2
H

≤ C6
6∥K∥42∥φ∥8[L4(Ω)]p∥v∥

2
L + 1

2 ∥v∥
2
H .

Finally, combining the previous inequalities implies the G̊arding inequality

aφ(v,v) ≥ 1
2 ∥v∥

2
H − C6

6 ∥K∥42 ∥φ∥8[L4(Ω)]p∥v∥
2
L.

For d = 2, a similar argument can be made using the Ladyzhenskaya inequality [47],

∥v∥[L4(Ω)]p ≤ CL ∥v∥1/2L ∥∇v∥1/2L ≤ CL ∥v∥1/2L ∥v∥1/2H

with a constant CL > 0. For d = 1, we can directly apply the embedding H1
0 (Ω) ↪→ L∞(Ω). □
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Remark 2.3 (Coercivity of aφ for non-negative K). If all entries in the interaction matrix K are
non-negative, then the integrand (φ◦φ)K(v ◦v)T in the nonlinear term of aφ(v,v) is non-negative
almost everywhere. Hence, aφ is coercive with a coercivity constant of 1, which means that for all
v ∈ H, we have aφ(v,v) ≥ ∥v∥2H .

In the remainder of this paper, we assume without loss of generality that the bilinear form aφ is
coercive. If this is not the case, based on Proposition 2.2, we replace it by aφ(v,w) + Cφ(v,w)L with
an appropriately chosen constant Cφ > 0, which may depend on φ. In terms of the minimisation
problem, this corresponds to a (constant) shift of the external potentials Vj by Cφ. Due to the
constraint imposed by the generalised oblique manifold, this translates into a constant shift in
energy that does not affect the minimisers of (2.3).

For any fixed φ ∈ H, the coercive bilinear form aφ defines another inner product on H and

induces the norm ∥v∥aφ =
√
aφ(v,v), which is equivalent to the H-norm in the sense that there

exists a constant CH > 0 such that for all v ∈ H,

CH∥v∥aφ ≤ ∥v∥H ≤ ∥v∥aφ .

Moreover, the bilinear form aφ defines the Gross–Pitaevskii Hamiltonian Aφ : H → H∗ given by

(2.9) ⟨Aφv,w⟩ = aφ(v,w) for all v,w ∈ H,

where ⟨ · , · ⟩ denotes the duality pairing on H∗ ×H. In particular, we have D E(φ)[w] = ⟨Aφφ,w⟩
for all w ∈ H. The coercivity property of the bilinear form aφ further implies the existence of the
inverse operator A−1

φ : H∗ → H. Throughout this paper, this operator will mostly be applied to
functions in H, which is well-defined due to the canonical inclusion H ⊆ H∗.

Due to the additive structure of aφ in (2.7), the operator Aφ can be represented as

(2.10a) ⟨Aφv,w⟩ =
p∑

j=1

⟨Aφ,jvj , wj⟩ for all v,w ∈ H,

where the component operators Aφ,j : H
1
0 (Ω) → H−1(Ω) are given by

(2.10b) ⟨Aφ,jvj , wj⟩ =
∫
Ω
(∇vj)T∇wj + Vj(x) vjwj + ρj(φ) vjwj dx, j = 1, . . . , p.

Note that, for fixed φ, the operator Aφ,j is simply the weak form of the Laplacian shifted by
a bounded potential Vj + ρj(φ). Formula (2.10a) shows that the operator Aφ acts component-wise
on a p-frame, i.e.,

(2.11) Aφv = (Aφ,1v1, . . . ,Aφ,pvp).

Hence, for all v ∈ H and Λ ∈ D(p), we have Aφ(vΛ) = (Aφv)Λ. Such properties are also present
in the Hartree–Fock and Kohn–Sham Hamiltonians studied in [8, 54]. Unlike these Hamiltonians,
however, the individual operators Aφ,j in (2.11) vary between the components, making the analysis
of multicomponent BECs more difficult.

2.3. Existence of a ground state. The following theorem generalises the existence of ground
states for two-component BECs from [14, Th. 2.6] to the multicomponent case. However, even in
the case p = 2, there are slight differences in the assumptions. Specifically, [14] considers the entire
space Rd, whereas we focus on bounded spatial domains.

Theorem 2.4 (Existence of a ground state). Let Assumptions A1 and A2 be satisfied. Then there
exists a ground state φ∗ ∈ OBN (p,H), i.e., a global minimiser of the constrained minimisation
problem (2.3).

Proof. The proof essentially follows the approach of [23, Lem. 2], to which we refer for details
that we omit here for the sake of brevity. Due to Assumptions A1 and A2, the energy func-
tional E in (2.1) is bounded from below (by zero). Hence, there exists a minimising sequence φn

in OBN (p,H) ⊂ H. Since this sequence is bounded in H, there exists a weak limit φ∞ ∈ H such
that (up to a subsequence) for each component, we have

φn
j ⇀ φ∞

j in H1
0 (Ω), j = 1, . . . , p.
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The compact embedding H1
0 (Ω) ↪→ L2(Ω) then implies strong convergence φn

j → φ∞
j of the compo-

nents in L2(Ω) and hence

∥φ∞
j ∥2L2(Ω) = lim

n→∞
∥φn

j ∥2L2(Ω) = Nj , j = 1, . . . , p,

proving the feasibility of φ∞ ∈ OBN (p,H). The weak lower semi-continuity of the functional E
on H shows that φ∗ = φ∞ is a global minimiser. □

Remark 2.5 (Non-negative ground state). Analogously to the proof of [48, Th. A.4], we have that
if φ∗ ∈ OBN (p,H), then |φ∗| ∈ OBN (p,H) and E(|φ∗|) ≤ E(φ∗), where |φ∗| is the p-frame
with absolute values in the components. This implies that with φ∗ also |φ∗| is a ground state.
Hence, there exists a non-negative ground state φ∗ ≥ 0, where the inequality is understood to be
component-wise.

3. Nonlinear eigenvector problem and uniqueness of the ground state

This section aims to derive the necessary first-order and second-order optimality conditions of
the ground state. In particular, we will characterise the constrained critical points of the energy as
solutions to the NLEVP (1.3) representing the critical points of the Lagrangian.

3.1. Critical points and nonlinear eigenvector problem. To establish a relation between the
coupled Gross–Pitaevskii eigenvalue problem (1.3) and the energy minimisation problem (2.3), we
consider the Lagrange functional

(3.1) L(φ,Λ) = E(φ)− 1

2
trace

(
Λ
(
⟨⟨φ,φ⟩⟩ −N

))
with a Lagrange multiplier Λ ∈ D(p). The directional derivative of L with respect to φ ∈ H along
w ∈ H is given by

Dφ L(φ,Λ)[w] = D E(φ)[w]− (φΛ,w)L = ⟨Aφφ,w⟩ − (φΛ,w)L.

A p-frame φ ∈ H is called a constrained critical point of the energy functional E if φ ∈ OBN (p,H)
is feasible and if it is a critical point of the Lagrangian, i.e., there exists a Lagrange multiplier
Λ ∈ D(p) such that Dφ L(φ,Λ)[w] = 0 for all w ∈ H, or, equivalently,

(3.2) ⟨Aφφ,w⟩ = (φΛ,w)L for all w ∈ H.

Note in particular that a ground state φ∗ is a constrained critical point of E . The computation
of critical points for the constrained energy minimisation problem (2.3) is therefore linked to the
NLEVP (3.2). Using (2.10a), the NLEVP (3.2) can equivalently be written component-wise as

(3.3) ⟨Aφ,jφj , wj⟩ = λj(φj , wj)L2(Ω) for all wj ∈ H1
0 (Ω).

This equals the weak formulation of the coupled Gross–Pitaevskii eigenvalue problem previously
stated in (1.3). Given a pair consisting of a p-frame φ and a diagonal matrix Λ = diag(λ1, . . . , λp)
that solves (3.2), we call φ an eigenvector corresponding to eigenvalues λ1, . . . , λp.

For a constrained critical point φ ∈ OBN (p,H), the corresponding Lagrange multiplier Λ can
be determined as Λ = ⟨⟨Aφφ,φ⟩⟩N−1, which is well-defined due to the assumed Gelfand triple
H ⊂ L ⊂ H∗. This particularly implies that the diagonal entries λj of Λ are given by the Rayleigh
quotients

λj =
⟨Aφ,jφj , φj⟩
(φj , φj)L2(Ω)

, j = 1, . . . , p,

of the component operators Aφ,j .

Lemma 3.1 (Eigenvalues and eigenfunctions of Aφ,j). Let Assumption A1 be fulfilled. Then
for fixed φ ∈ OBN (p,H) and j = 1, . . . , p, the operator Aφ,j introduced in (2.10b) has an L2-
orthogonal basis of eigenfunctions vj,1, vj,2, . . . in H1

0 (Ω) corresponding to the real eigenvalues
λ1(Aφ,j) < λ2(Aφ,j) ≤ . . . ordered increasingly. Furthermore, the smallest eigenvalue λ1(Aφ,j) is
simple and the corresponding eigenfunction satisfies |vj,1| > 0 in Ω.
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Proof. For fixed φ ∈ OBN (p,H), the operator Aφ,j corresponds to the linear Schrödinger operator
with external potential Vj + ρj(φ). By Proposition 2.2, we know that there exists a constant
Cφ > 0 such that aφ,j(v, w) := ⟨Aφ,jv, w⟩ + Cφ (v, w)L2(Ω) defines a symmetric, bounded, and
coercive bilinear form. This implies that Aφ,j = A|φ|,j has a countably infinite number of real
eigenvalues such that the smallest eigenvalue is simple. The corresponding eigenfunctions form an
L2-orthogonal basis in H1

0 (Ω). Moreover, according to the proof of [23, Lem. 2], vj,1 is Hölder
continuous and can be chosen to be positive in Ω. □

The subsequent result connects the eigenvalues of the component operators with the diagonal
elements of the Lagrange multiplier corresponding to the ground state.

Proposition 3.2 (Characterisation of Lagrange multipliers as eigenvalues of components). Let
Assumptions A1 and A2 be fulfilled and let φ∗ ∈ OBN (p,H) with φ∗ ≥ 0 be a ground state of the
energy functional E in (1.2) with the Lagrange multiplier Λ∗ = diag(λ∗,1, . . . , λ∗,p). Then, for all
j = 1, . . . , p, the smallest eigenvalue λ1(Aφ∗,j) of Aφ∗,j coincides with λ∗,j, i.e., λ1(Aφ∗,j) = λ∗,j.

Proof. For a ground state φ∗ = (φ∗,1, . . . , φ∗,p) ∈ OBN (p,H) with φ∗ ≥ 0, we obtain from (3.3)
that λ∗,j is an eigenvalue of the operator Aφ∗,j and φ∗,j is the corresponding eigenfunction. Then
the required result follows from the proof of [23, Lem. 2]. □

3.2. Uniqueness of the ground state. Given that the ground state as a global minimiser of (2.3)
is also an eigenvector of the NLEVP (3.2) with component-wise minimality properties as established
in Proposition 3.2, we can now state a uniqueness result for the ground state.

Theorem 3.3 (Uniqueness of the ground state). Let Assumptions A1 and A2 be fulfilled. Then
the ground state is unique up to the global signs of its components. We can, therefore, choose the
ground state φ∗ to be component-wise positive in Ω.

Proof. Similarly to the single-component case [23, 48], we introduce a convex problem by considering
the modified functional E(

√
•) acting on the convex set of densities

Υ =
{
ρ ∈ L : ρ ≥ 0 and

√
ρ ∈ OBN (p,H)

}
,

where ρ ≥ 0 means that all components of ρ are non-negative point-wise almost everywhere, and

the square root is taken component-wise. Given ρ[1],ρ[2] ∈ Υ, define φ[i] =
√

ρ[i] ∈ OBN (p,H) for
i = 1, 2. First note that φ = (φ1, . . . , φp) with components

φj =

√
αρ

[1]
j + (1− α) ρ

[2]
j , α ∈ (0, 1),

satisfies ⟨⟨φ,φ⟩⟩ = N and, hence, φ ∈ OBN (p,H). Hence, [48, Lem. A.1] implies that∥∥∇φj

∥∥2 ≤ α
∥∥∇φ[1]

j

∥∥2 + (1− α)
∥∥∇φ[2]

j

∥∥2, j = 1, . . . , p.

Therefore, the first term of E(
√
•) involving the gradients is convex on Υ. In addition, the second

term containing the potential V is linear and the last term with the positive definite interaction
matrix K is quadratic. As the sum of three (strictly) convex functionals, E(

√
•) is therefore strictly

convex on the convex set Υ. For φ∗ ≥ 0, its density ρ∗ = φ∗◦φ∗ ∈ Υminimises the functional E(
√
•)

on Υ. The strict convexity of E(
√
•) on the convex feasible set Υ, as shown above, implies the

uniqueness of the density. By Lemma 3.1, the components of any ground state have no sign change
in Ω by a maximum principle. This, in turn, shows that the only remaining degree of freedom is
a global sign change in the components, which is the strongest possible form of uniqueness according
to Remark 2.1. □

Based on Proposition 3.2, under Assumptions A1 and A2, the unique positive ground state φ∗
is an eigenvector of the NLEVP (3.2) corresponding to the p smallest eigenvalues λ∗,1, . . . , λ∗,p of
the component operators Aφ,1, . . . ,Aφ,p, respectively. There exists a spectral gap in the following
sense.

Remark 3.4 (Spectral gap). Generalising the proof for the single-component case given in [23,
p. 117] to the multicomponent case, one can show that if φ ∈ OBN (p,H) is an eigenvector of the
NLEVP (3.2) corresponding to the eigenvalues λ1, . . . , λp, then either λj = λ∗,j for j = 1, . . . , p and
φ = φ∗Σ±1, or there exists an index j0 ∈ {1, . . . , p} such that λj0 > λ∗,j0 .
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3.3. Second-order derivatives and optimality condition. The second (directional) derivative
of E at φ in the direction of v,w ∈ H can be computed as

D2 E(φ)[v,w] = lim
t→0

1
t

〈
Aφ+tv(φ+ tv)−Aφφ,w

〉
=

〈
Aφ v + Bφ(v,φ),w

〉
,(3.4)

where the operator Bφ : H ×H → H∗ is given by

(3.5a) ⟨Bφ(v,u),w⟩ =
p∑

i,j=1

⟨Bφ,ij(vi, uj), wj⟩ for all u,v,w ∈ H

with

(3.5b) ⟨Bφ,ij(vi, uj), wj⟩ = 2

∫
Ω
κij φivi ujwj dx, i, j = 1, . . . , p.

Similar to (2.1), we can also express Bφ compactly as〈
Bφ(v,u),w

〉
= 2

∫
Ω
(φ ◦ v)K(u ◦w)T dx.(3.6)

We now turn to the second-order derivative of the Lagrangian L in (3.1) with respect to the first
variable. It reads

D2
φφ L(φ,Λ)[v,w] = D2 E(φ)[v,w]− (vΛ,w)L

= ⟨Aφ v,w⟩+ ⟨Bφ(v,φ),w⟩ − (vΛ,w)L, v,w ∈ H.(3.7)

The following theorem presents a second-order necessary optimality condition by showing that the
second-order derivative of the Lagrangian at a ground state is positive definite on the tangent space
to the set of constraints described by (1.1).

Theorem 3.5 (Second-order necessary optimality condition). Let Assumptions A1 and A2 be
fulfilled and let φ∗ ∈ OBN (p,H) with φ∗ ≥ 0 be a ground state of E with the corresponding Lagrange
multiplier Λ∗ = ⟨⟨φ∗,Aφ∗φ∗⟩⟩N−1. Then

D2
φφ L(φ∗,Λ∗)[z, z] > 0

for all nonzero z ∈ H such that ⟨⟨φ∗, z⟩⟩ = 0.

Proof. Let φ∗ = (φ∗,1, . . . , φ∗,p) ≥ 0 be a ground state of the functional E with the Lagrange mul-
tiplier Λ∗ = diag(λ∗,1, . . . , λ∗,p). Furthermore, let vj,1, vj,2, . . . be the eigenfunctions of Aφ∗,j which
form an L2-orthogonal basis of H1

0 (Ω) and let λ1(Aφ∗,j) < λ2(Aφ∗,j) ≤ . . . be the corresponding
eigenvalues. By Proposition 3.2, we know that vj,1 = ±φ∗,j and λ1(Aφ∗,j) = λ∗,j for j = 1, . . . , p.
For any z ∈ H, we obtain from Assumption A2 and the relation (3.6) that ⟨Bφ∗(z,φ∗), z⟩ ≥ 0.
Together with (3.7), this yields

D2
φφ L(φ∗,Λ∗)[z, z] = ⟨Aφ∗z, z⟩+ ⟨Bφ∗(z,φ∗), z⟩ − (z Λ∗, z)L

≥ ⟨Aφ∗z, z⟩ − trace ⟨⟨z Λ∗, z⟩⟩.

If ⟨⟨φ∗, z⟩⟩ = 0, then each component zj of z can be represented as zj =
∑

ℓ≥2 αj,ℓvj,ℓ with αj,ℓ ∈ R.
For nonzero z, this finally implies that

D2
φφ L(φ∗,Λ∗)[z, z] ≥

p∑
j=1

⟨Aφ∗,jzj , zj⟩ − λ∗,j(zj , zj)L2(Ω)

=

p∑
j=1

∑
ℓ≥2

λℓ(Aφ∗,j) (αj,ℓvj,ℓ, zj)L2(Ω) − λ1(Aφ∗,j)(zj , zj)L2(Ω)

≥
p∑

j=1

(
λ2(Aφ∗,j)− λ1(Aφ∗,j)

)
(zj , zj)L2(Ω) > 0. □

It immediately follows from the proof of Theorem 3.5 that D2
φφ L(φ∗,Λ∗) is coercive on the tangent

space of the constraint set with the coercivity constant γ = min
j=1,...,p

(λ2(Aφ∗,j)− λ1(Aφ∗,j)) > 0.
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4. Generalised oblique manifold

The ground state problem of multicomponent BECs is naturally connected to the infinite-dimen-
sional generalised oblique manifold OBN (p,H) defined in (2.2). In the finite-dimensional case, such
a manifold with N = Ip has been investigated in [1, 21, 55] in the context of the approximate joint
diagonalisation problem, which frequently arises in data science and engineering. Here, we extend
the results on the manifold geometry from these works to the infinite-dimensional setting.

First of all, note that OBN (p,H) can be represented as the product manifold

(4.1) OBN (p,H) = SN1 × . . .× SNp

with the spheres SNj = {φ ∈ H1
0 (Ω) : ∥φ∥2L2(Ω) = Nj} for j = 1, . . . , p. The geometric structure

of SNj , which is a particular case of the infinite-dimensional Stiefel manifold, has been studied in [8].

4.1. Tangent and normal spaces. The generalised oblique manifold OBN (p,H) admits a sub-
manifold structure on the ambient space H.

Proposition 4.1. The generalised oblique manifold OBN (p,H) is a closed embedded submanifold
of the Hilbert space H of co-dimension p.

Proof. We consider the map F : H → D(p) given by

F (φ) = ⟨⟨φ,φ⟩⟩ −N.

Then it holdsOBN (p,H) = F−1(0p). This implies thatOBN (p,H) is closed, since it is the pre-image
of the closed set {0p} for the continuous map F . We now show that F is a submersion or, equiva-
lently, that for all φ ∈ OBN (p,H), the Fréchet derivative of F at φ given by DF (φ)[v] = 2 ⟨⟨φ,v⟩⟩
is surjective. Let Σ ∈ D(p). Then, for v = 1

2φΣN−1 ∈ H, we obtain

DF (φ)[v] = ⟨⟨φ,φΣN−1⟩⟩ = Σ.

Thus, by the submersion theorem [2, Prop. 3.3.3], OBN (p,H) is an embedded submanifold of H
and its co-dimension coincides with dim(D(p)) = p. □

The kernel of DF (φ) defines the tangent space TφOBN (p,H) to OBN (p,H) at φ. It is given by

TφOBN (p,H) = ker
(
DF (φ)

)
=

{
z ∈ H : ⟨⟨φ, z⟩⟩ = 0p

}
.

In order to introduce a Riemmanian metric on OBN (p,H), we consider a symmetric, bounded,
and coercive bilinear form gφ : H × H → R which defines an inner product on H. Further, let
Gφ : H → H∗ be the linear bounded operator given by

⟨Gφv,w⟩ = gφ(v,w) for all v,w ∈ H.

Due to the coercivity of gφ, there exists the inverse G−1
φ : H∗ → H of Gφ, which is also linear.

Since the generalised oblique manifold OBN (p,H) is an embedded submanifold of H, the restric-
tion gφ : TφOBN (p,H)×TφOBN (p,H) → R, provided that it depends smoothly on φ ∈ H, defines
a Riemannian metric on OBN (p,H) which turns OBN (p,H) into a Riemannian manifold. Then the
normal space to OBN (p,H) at φ with respect to this metric is defined as(

TφOBN (p,H)
)⊥
gφ

=
{
η ∈ H : gφ(η, z) = 0 for all z ∈ TφOBN (p,H)

}
.

Using the inverse operator G−1
φ , this space can be characterised as follows.

Proposition 4.2 (Characterisation of the normal space). The normal space to OBN (p,H) at
φ ∈ OBN (p,H) with respect to the metric gφ is given by(

TφOBN (p,H)
)⊥
gφ

=
{
G−1
φ

(
φΣ

)
∈ H : Σ ∈ D(p)

}
.

Proof. For all z ∈ TφOBN (p,H) and Σ ∈ D(p), we see that

gφ(G−1
φ

(
φΣ

)
, z) = (φΣ, z)L = trace ⟨⟨φΣ, z⟩⟩ = trace

(
Σ ⟨⟨φ, z⟩⟩

)
= 0.

This implies that {G−1
φ (φΣ) ∈ H : Σ ∈ D(p)} ⊆ (TφOBN (p,H))⊥gφ . The equality follows since

both spaces have dimension p. □

The orthogonal projection Pφ : H → TφOBN (p,H) with respect to the metric gφ will be called
the gφ-orthogonal projection and is characterised in terms of the inverse operator below.
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Proposition 4.3. Let φ ∈ OBN (p,H). Then the gφ-orthogonal projection onto the tangent space
TφOBN (p,H) is given by

(4.2) Pφ(u) = u− G−1
φ

(
φΣφ,u

)
, u ∈ H,

where Σφ,u ∈ D(p) is the unique solution to the equation

(4.3) ⟨⟨φ,G−1
φ (φΣφ,u)⟩⟩ = ⟨⟨φ,u⟩⟩.

Proof. First, we show that equation (4.3) is uniquely solvable and provide its explicit solution. Let
φ ∈ OBN (p,H) and Σφ,u = diag(σ1, . . . , σp). For every component φj of φ, we define the p-frame
φ̂j = (0, . . . , 0, φj , 0 . . . , 0) for j = 1, . . . , p. Then, due to the linearity of G−1

φ , we obtain that

G−1
φ (φΣφ,u) =

∑p
i=1 σi G−1

φ φ̂i. In this case, equation (4.3) can equivalently be written as a linear

system Ĝσ = û with an unknown vector σ = [σ1, . . . , σp]
T and given

(4.4) Ĝ =


(
φ1, (G−1

φ φ̂1)1
)
L2(Ω)

· · ·
(
φ1, (G−1

φ φ̂p)1
)
L2(Ω)

...
. . .

...(
φp, (G−1

φ φ̂1)p
)
L2(Ω)

· · ·
(
φp, (G−1

φ φ̂p)p
)
L2(Ω)

 , û =


(φ1, u1)L2(Ω)

...

(φp, up)L2(Ω)

 .
We now verify that the matrix Ĝ is nonsingular. Assume that there exists a vector α = [α1, . . . , αp]

T

such that Ĝα = 0. This implies that(
φi, (G−1

φ (φdiag(α)))i
)
L2(Ω)

=

p∑
j=1

αj

(
φi, (G−1

φ φ̂j)i
)
L2(Ω)

= 0, i = 1, . . . , p,

and, hence, G−1
φ (φ diag(α)) ∈ TφOBN (p,H). On the other hand, due to Proposition 4.2, we have

G−1
φ (φdiag(α)) ∈

(
TφOBN (p,H)

)⊥
gφ

and thus G−1
φ (φdiag(α)) = 0. This yields that α = 0 which

implies that Ĝ is nonsingular and Σφ,u = diag(σ) = diag(Ĝ−1û) is the unique solution of (4.3).
Next, we prove that Pφ maps on TφOBN (p,H). Indeed, it follows from (4.3) that

⟨⟨φ,Pφ(u)⟩⟩ = ⟨⟨φ,u− G−1
φ (φΣφ,u)⟩⟩ = 0

and, hence, Pφ(u) ∈ TφOBN (p,H) for all u ∈ H.
Further, taking into account that for all u ∈ TφOBN (p,H), equation (4.3) has only the trivial

solution Σφ,u = 0p, we obtain that

Pφ

(
Pφ(u)

)
= Pφ(u)− G−1

φ

(
φΣφ,Pφ(u)

)
= Pφ(u).

This shows that Pφ is a projection. Finally, it follows from Proposition 4.2 that

u− Pφ(u) = G−1
φ (φΣφ,u) ∈ (TφOBN (p,H))⊥gφ

implying the gφ-orthogonality property. □

The computation of the projection Pφ in (4.2) requires multiple inversions of the operator Gφ,
which can be computationally expensive in practice. To reduce the computational cost, we exploit
the product structure of the generalised oblique manifold in (4.1) and, inspired by [35], equip it
with a Riemannian metric defined as a sum of the metrics gφ,j on each component SNj , i.e.,

(4.5) g×φ(z,y) = gφ,1(z1, y1) + . . .+ gφ,p(zp, yp)

for z = (z1, . . . , zp), y = (y1, . . . , yp) ∈ TφOBN (p,H). Here,

gφ,j(zj , yj) = ⟨G×
φ,j yj , zj⟩ for all zj , yj ∈ TφjSNj

with appropriate operators G×
φ,j : H

1
0 (Ω) → H−1(Ω), j = 1, . . . , p, smoothly depending on φ ∈ H.

The metric g×φ has an advantage over gφ in that all computations can be performed component-wise,
which facilitates parallel computing. As a consequence of Proposition 4.3, by exploiting the additive
structure of the metric g×φ in (4.5), we obtain the following representation for the g×φ -orthogonal
projection onto TφOBN (p,H).

Corollary 4.4. Define the operator G×
φv = (G×

φ,1v1, . . . ,G×
φ,pvp) for v ∈ H. Then the g×φ-orthogonal

projection onto Tφ (OBN (p,H) is given by P×
φ (u) = u − (G×

φ )
−1φΣ×

φ,u with the diagonal matrix

Σ×
φ,u = ⟨⟨φ, (G×

φ )
−1φ⟩⟩−1⟨⟨φ,u⟩⟩.
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Proof. The result follows from Proposition 4.3 by using the fact that for the metric g×φ in (4.5), the

matrix Ĝ given in (4.4) is diagonal with entries (φj , (G×
φ,j)

−1φj)L2(Ω) on the diagonal. □

4.2. Riemannian gradients and Hessians. The Riemannian gradient of a Fréchet differentiable
functional E defined on OBN (p,H) with respect to the metric gφ is the unique element grad E(φ)
in the tangent space TφOBN (p,H) which satisfies the condition

gφ(grad E(φ), z) = D E(φ)[z] for all z ∈ TφOBN (p,H).

The Riemannian gradient of the energy functional E in (1.2) with respect to gφ can be represented as

(4.6) grad E(φ) = Pφ

(
G−1
φ D E(φ)

)
= G−1

φ Aφφ− G−1
φ

(
φΣφ,G−1

φ Aφφ

)
,

where Σφ,G−1
φ Aφφ is as in Proposition 4.3 with u = G−1

φ Aφφ.

Consider the linear operator Rφ : H → H∗ defined by Rφ v = Aφ v − φ⟨⟨φ,Aφ v⟩⟩N−1. Just
as Aφ, the operator Rφ acts component-wise with the component operators denoted by Rφ,j . For
all v ∈ H with Aφ v ∈ H, we have ⟨⟨φ,Rφ v⟩⟩ = 0 implying that Rφ v ∈ TφOBN (p,H). Note
that Rφφ gives the residual of the NLEVP (3.2). It can also be used to obtain an alternative
representation for the Riemannian gradient, namely

grad E(φ) = Pφ

(
G−1
φ Rφφ

)
= G−1

φ Rφφ− G−1
φ (φΣφ,G−1

φ Rφφ),

where Σφ,G−1
φ Rφφ is as in Proposition 4.3 with u = G−1

φ Rφφ.

Let the Riemannian manifold (OBN (p,H), gφ) be endowed with the Riemannian connection ∇.
The Riemannian Hessian of a twice differentiable functional E , denoted by Hess E(φ), is the linear
mapping Hess E(φ) : TφOBN (p,H) → TφOBN (p,H) given by

Hess E(φ)[z] = ∇z grad E(φ) for all z ∈ TφOBN (p,H),

where ∇z denotes the covariant derivative along z with respect to the connection ∇. If the metric
does not depend on φ, the Riemannian Hessian admits the expression

(4.7) Hess E(φ)[z] = Pφ

(
Dgrad E(φ)[z]

)
,

which can be shown similarly to the finite-dimensional case [2, Prop. 5.3.2].

4.3. Choices of metric. We introduce several metrics on the manifold OBN (p,H) and discuss the
corresponding geometric concepts. In particular, using first- and second-order information of the
energy, we construct specific metrics that possess a preconditioning effect when used in Riemannian
optimisation.

4.3.1. L2-metric. Let GL : H → H∗ denote the canonical identification operator defined by

⟨GLv,w⟩ = (v,w)L for all v,w ∈ H.

This allows us to equip the generalised oblique manifold OBN (p,H) with the L2-metric

(4.8) gL(z,y) = ⟨GLz,y⟩, z,y ∈ TφOBN (p,H),

which is independent of φ. Note that this metric violates our assumptions above, as it is not coercive
with respect to the H-norm. As a consequence, the operator GL is not necessarily invertible and
the Riemannian gradient with respect to gL may not exist for all φ. In this subsection, however,
we will always assume that all formulas are well-defined and, in particular, that φ ∈ H is such that
Aφφ ∈ H.

As the metric gL is of the additive form (4.5), the L2-orthogonal projection onto TφOBN (p,H)
reads

(4.9) Pφ,L(u) = u−φ⟨⟨φ,u⟩⟩N−1, u ∈ H.

The Riemannian gradient of E in (1.2) with respect to gL then takes the form

gradL E(φ) = Pφ,L

(
D E(φ)

)
= Aφφ−φ ⟨⟨φ,Aφφ⟩⟩N−1 = Rφφ.(4.10)

Furthermore, using (3.4), we obtain from (4.7) the Riemannian Hessian

HessL E(φ)[z] = Pφ,L

(
Aφ z + Bφ(z,φ)− z⟨⟨φ,Aφφ⟩⟩N−1

)
= Aφ z + Bφ(z,φ)−φ⟨⟨φ,Aφ z + Bφ(z,φ)⟩⟩N−1 − z ⟨⟨φ,Aφφ⟩⟩N−1.(4.11)
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Note that for a constrained critical point φ∗ ∈ OBN (p,H) of E and the corresponding Lagrange
multiplier Λ∗, the Riemannian Hessian of E and the second-order derivative of the Lagrange func-
tional L are related to each other via HessL E(φ∗)[z] = Pφ∗, L

(
D2
φφ L(φ∗,Λ∗)[z]

)
for all tangent

vectors z ∈ Tφ∗OBN (p,H). Moreover, it follows from Theorem 3.5 that for a ground state φ∗, the
Riemannian Hessian HessL E(φ∗) is positive definite on the tangent space Tφ∗OBN (p,H).

4.3.2. Energy-adaptive metric. By using the inner product aφ( · , · ) introduced in (2.7), we define
an alternative Riemannian metric on the manifold OBN (p,H), namely

(4.12) gφ,a(z,y) = aφ(z,y) for all z,y ∈ TφOBN (p,H).

It is referred to as the energy-adaptive metric. As discussed in the wake of Proposition 2.2, coercivity
of aφ can, in general, be achieved only by a shift in the potential with a constant Cφ depending
on φ. For the iterative optimisation method presented in Section 5.1.2, we will show in Section 6.1
that such a shift can be chosen relying on the initial guess only.

It follows from Corollary 4.4 with G×
φ = Aφ, which obviously acts component-wise, that the

aφ-orthogonal projection onto the tangent space TφOBN (p,H) is given by

Pφ,a(u) = u−A−1
φ φ⟨⟨φ,u⟩⟩⟨⟨φ,A−1

φ φ⟩⟩−1.

Furthermore, using (4.6), the Riemannian gradient of E in (1.2) with respect to the energy-adaptive
metric gφ,a is determined as

grada E(φ) = Pφ,a(φ) = φ−A−1
φ φN⟨⟨φ,A−1

φ φ⟩⟩−1 = Pφ,a

(
A−1

φ Rφφ
)
.(4.13)

Using the relation A−1
φ φ =

(
φ−A−1

φ Rφφ
)
⟨⟨φ,Aφφ⟩⟩−1N , which follows directly from the defini-

tion of Rφφ, it can further be represented as

(4.14) grada E(φ) = φ−
(
φ−A−1

φ Rφφ
)(
Ip −N−1⟨⟨φ,A−1

φ Rφφ⟩⟩
)−1

.

The Riemannian Hessian with respect to gφ,a can be calculated with the help of [51, Th. 3.1].
This, however, is beyond the scope of the present paper.

4.3.3. Lagrangian-based metric. In [46, 50, 56], different strategies for constructing Riemannian
metrics have been proposed in the context of Riemannian preconditioning for solving various opti-
misation problems on matrix manifolds. They all aim to speed up the convergence of Riemannian
optimisation methods by exploiting the second-order information of the cost functional and possibly
constraints. Here, we adapt the approaches from [50] and [35] to the infinite-dimensional setting
with product manifold structure and develop a new family of Riemannian metrics by considering the
second-order derivative of a regularised Lagrange functional and neglecting its off-diagonal blocks
with a goal to trade-off between the computational cost and efficiency.

Let us start with introducing a regularised Lagrange functional

Lω(φ,Λ) = E(φ)− ω

2
trace

(
Λ
(
⟨⟨φ,φ⟩⟩ −N

))
with an appropriately chosen regularisation parameter ω ≥ 0. Note that for ω = 1, Lω coincides
with the Lagrangian L in (3.1). The second-order derivative of Lω with respect to φ has the form

(4.15) D2
φφ Lω(φ,Λ)[v] = Aφv + Bφ(v,φ)− ω vΛ

with Aφ and Bφ given in (2.10) and (3.5), respectively. We define now an operator Gφ,ω : H → H∗

acting component-wise, i.e., Gφ,ωv = (Gφ,ω,1v1, . . . ,Gφ,ω,pvp), where

Gφ,ω,jvj = Aφ,jvj + Bφ,jj(vj , φj)− ω λjvj , j = 1, . . . , p,

are obtained from (4.15) by neglecting Bφ,ij with i ̸= j and setting the diagonal elements of Λ to
λj = ⟨Aφ,jφj , φj⟩/Nj , j = 1, . . . , p. Since aφ( · , · ) is assumed to be coercive and for all vj ∈ H1

0 (Ω)
it holds that ⟨Bφ,jj(vj , φj), vj⟩ ≥ 0, choosing the parameter ω sufficiently small guarantees that the
bilinear form gφ,ω(v,w) = ⟨Gφ,ωv,w⟩ is coercive. This allows us to define a new metric on the
generalised oblique manifold OBN (p,H) via

(4.16) gφ,ω(z,y) = ⟨Gφ,ω z,y⟩ =
p∑

j=1

⟨Gφ,ω,jzj , yj⟩ for all z,y ∈ TφOBN (p,H).



RIEMANNIAN OPTIMISATION METHODS FOR MULTICOMPONENT BEC 13

Due to the additive structure of this metric, the corresponding Riemannian gradient of the energy
functional E is given by

gradω E(φ) = G−1
φ,ωRφφ− G−1

φ,ω φ ⟨⟨φ,G−1
φ,ωRφφ⟩⟩⟨⟨φ,G−1

φ,ω φ⟩⟩−1.

In summary, we see that different metrics result in distinct Riemannian gradients. The choice of
the metric, as we will see in what follows, significantly influences the performance of the Riemannian
optimisation schemes. A carefully chosen metric enables efficient optimisation by ensuring that the
geometry of the generalised oblique manifold OBN (p,H) is respected in every optimisation step.

5. Riemannian optimisation methods

This section presents several Riemannian optimisation schemes for solving the energy minimisa-
tion problem (2.3). To facilitate this, we need a retraction, which allows movement in a tangent
direction while remaining on the manifold. This can be realised by using a component-wise normali-
sation operator N : H → OBN (p,H) defined as

(5.1) N (v) = v⟨⟨v,v⟩⟩−1/2N1/2, v ∈ H.

Clearly, for all φ ∈ OBN (p,H) and z ∈ TφOBN (p,H), N (φ + z) is well-defined, as the matrix
⟨⟨φ+ z,φ+ z⟩⟩ = N + ⟨⟨z, z⟩⟩ is invertible. Moreover, for the origin 0φ ∈ TφOBN (p,H), we have

N (φ + 0φ) = φ, and for all z ∈ TφOBN (p,H), the local rigidity condition d
dtN (φ + tz)

∣∣
t=0

= z
is satisfied. This shows that the mapping (φ, z) 7→ N (φ+ z) on the tangent bundle of OBN (p,H)
indeed defines a retraction on this manifold.

5.1. Preconditioned Riemannian gradient descent methods. A simple first-order optimi-
sation scheme is the gradient descent method. In the context of Riemannian optimisation, this
iterative procedure consists of the following steps: move in the tangent space along a descent di-
rection given by the negative Riemannian gradient with a certain step size and then retract the
resulting tangent vector back onto the manifold. In a general setting, the Riemannian gradient
descent (RGD) method is described in Algorithm 1.

Algorithm 1 Riemannian gradient descent method

Require: Metric gφ on OBN (p,H), initial guess φ0 ∈ OBN (p,H).

for k = 0, 1, . . . do
Compute a search direction zk = − grad E(φk).
Choose a step size τk > 0.
Update φk+1 = N (φk + τkzk).

end for

The convergence of the RGD method is strongly influenced by the step size, which can be adap-
tively determined using, e.g., the non-monotone line search procedure combined with the alternating
Barzilai–Borwein step size strategy [59, 61]. It should also be noted that the RGD method depends
on the choice of retraction and, most importantly, on the selected metric. In what follows, we briefly
describe the resulting RGD schemes for the energy minimisation problem (2.3) based on the metrics
considered in Section 4.3 and highlight relationships between them.

5.1.1. Preconditioned L2–Riemannian gradient descent method. The choice of the L2-metric gL de-
fined in (4.8) in Algorithm 1 yields the L2-RGDmethod which can be interpreted as a power iteration
with shifting. In electronic structure calculations, this method is also known as the direct minimi-
sation algorithm [52, 54]. However, due to its explicit nature, it generally requires preconditioning
which leads to the iteration

φk+1 = N
(
φk − τk Pφk,L

(
C−1
φk

(
Aφk

φk −φk⟨⟨φk,Aφk
φk⟩⟩N−1

)))
with a preconditioner Cφk

. Formally, this scheme requires a sufficiently smooth starting value to
be well-defined. Different physics-based preconditioners related to the Laplace and Thomas–Fermi
approximations have been developed in the literature [11, 12]. Alternatively, following [8], we
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propose the preconditioner Cφk
= Aφk

. Then using expression (4.9), we obtain the energy-precon-
ditioned L2-RGD method

(5.2) φk+1 = N
(
φk − τk

(
φk −A−1

φk
φkN⟨⟨φk,A−1

φk
φk⟩⟩−1)Θφk

)
with the diagonal matrix Θφk

= N−1⟨⟨φk,A−1
φk

φk⟩⟩⟨⟨φk,Aφk
φk⟩⟩N−1.

5.1.2. Energy-adaptive Riemannian gradient descent method. EndowingOBN (p,H) with the energy-
adaptive metric gφ,a defined in (4.12) and using (4.13) and (4.14), we obtain the energy-adaptive
Riemannian gradient descent (eaRGD) method

φk+1 = N
(
φk − τk

(
φk −A−1

φk
φkN⟨⟨φk,A−1

φk
φk⟩⟩−1))(5.3)

= N
(
φk − τk

(
φk −

(
φk −A−1

φk
Rφk

φk

)(
Ip −N−1⟨⟨φk,A−1

φk
Rφk

φk⟩⟩
)−1))

.(5.4)

This method can be interpreted as the inverse subspace iteration for Aφ enhanced with adaptive
damping, where τk represents the damping parameter; see [38, 41] for the case p = 1. For τk = 1,
it reduces to the inverse subspace iteration method, known also as the A-method. Very similar
schemes, such as the discrete normalised gradient flows [19], result from an implicit–explicit time
discretisation of the continuous L2-Riemannian gradient flow; see also [30, 39].

The eaRGD method (5.3) differs from the particular preconditioned L2 -RGD iteration (5.2) only
by the diagonal matrix Θφk

. Since at a critical point, Aφφ = φΛ and A−1
φ φ = φΛ−1, the RGD

methods (5.2) and (5.3) are even asymptotically equivalent. In numerical experiments in Section 8,
we implement (5.4), as it explicitly includes the residual Rφk

φk.

5.1.3. Lagrangian-based Riemannian gradient descent method. By considering the Lagrangian-based
metric gφ,ω as defined in (4.16), we derive the Lagrangian-based Riemannian gradient descent
(LgrRGD) method

(5.5) φk+1 = N
(
φk − τk

(
G−1
φk,ωk

Rφk
φk − G−1

φk,ωk
φk Σφk,ωk

))
with the diagonal matrix Σφk,ωk

= ⟨⟨φk,G−1
φk,ωk

Rφk
φk⟩⟩⟨⟨φk,G−1

φk,ωk
φk⟩⟩−1 and the regularisation

parameter ωk ∈ (0, 1] guaranteeing that Gφk,ωk
is invertible. A possible choice for ωk can be found

in [50]. In practice, however, we observed that after initialising the algorithm sufficiently close
to a ground state (e.g. by applying a few steps of eaRGD first), simply choosing ωk = 1 usually
works well. Comparing the computational complexity of the eaRGD method (5.4) and the LgrRGD
method (5.5), we see that each iteration of the latter requires the solution of two linear operator
equations with the same operator Gφk,ω and the right-hand sides Rφk

φk and φk, while the former
involves the solution of a single equation with the operator Aφk

and the right-hand side Rφk
φk.

5.2. Alternating Riemannian gradient descent method. In the above RGD schemes, the
metric is of additive form (4.5), so that the components φk+1,j of the new iteration φk+1 can be
calculated independently, giving rise to possible parallelisation. Alternatively, inspired by the alter-
nating approach presented in [43], the components of the new iteration can be computed sequentially
using the components most recently calculated. This leads to the alternating RGD method presented
in Algorithm 2, which is formulated for a general metric g×φ of the form (4.5) induced by an opera-

tor G×
φ acting component-wise. By taking either G×

φ = Aφ or G×
φ = Gφ,ω, we get the corresponding

alternating versions of the eaRGD and LgrRGD methods, where for the eaRGD method, we can use
(5.3) or (5.4) to reduce the number of linear systems to be solved per alternating step by one. The
alternating LgrRGD method is similar to the alternating Newton–Noda method presented in [43],
but with a different choice for the Lagrange multiplier.

5.3. Riemannian Newton and Newton-type methods. In the Riemannian Newton (RN)
method, for given φk ∈ OBN (p,H), the search direction zk ∈ Tφk

OBN (p,H) is computed by
solving the Newton equation

(5.6) Hess E(φk)[zk] = − grad E(φk),

leading to the next iterate φk+1 = N
(
φk + zk

)
. The resulting method is given in Algorithm 3.

In the L2-metric, due to (4.10) and (4.11), the Newton equation (5.6) takes the form

(5.7) Pφk,L

(
Aφk

zk + Bφk
(zk,φk)− zk⟨⟨φk,Aφk

φk⟩⟩N−1
)
= −Rφk

φk.
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Algorithm 2 Alternating Riemannian gradient descent method

Require: Operator G×
φ defining the metric g×φ on OBN (p,H), initial guess φ0 ∈ OBN (p,H).

for k = 0, 1, . . . do
Set φk+1 = φk.
for j = 1, . . . , p do

Solve G×
φk+1,j

v = Rφk+1,j φk,j for v.

Solve G×
φk+1,j

w = φk,j for w.

Compute z = v −
(φk,j ,v)L2(Ω)

(φk,j ,w)L2(Ω)
w.

Choose a step size τk > 0.

Update φk+1,j =
√
Nj

φk,j+τkz
∥φk,j+τkz∥L2(Ω)

.

end for
end for

Algorithm 3 Riemannian Newton method

Require: Metric gφ on OBN (p,H), initial guess φ0 ∈ OBN (p,H).

for k = 0, 1, . . . do
Solve Hess E(φk)[zk] = − grad E(φk) for zk ∈ Tφk

OBN (p,H).
Update φk+1 = N

(
φk + zk

)
.

end for

As in Section 5.1.1, it needs to hold Aφk
φk ∈ H. Similarly to [9], we can show that the resulting

RN method is equivalent to the Lagrange–Newton method [3] and the Newton–Noda iteration [32]
with modified update φk+1 = N

(
φk + zk

)
and Λk+1 = ⟨⟨φk+1,Aφk+1

φk+1⟩⟩N−1.
It is well-known that Newton methods have a local nature. Hence, the convergence to a minimal

solution can only be expected in a small neighbourhood of this solution, where the Hessian is positive
definite. To circumvent this difficulty, inspired by the second-order derivative of the regularised
Lagrangian Lω given in (4.15), the Riemannian Hessian can be parametrised by ω ∈ [0, 1] yielding
the operator

Hφ,ωz = Pφ,L

(
Aφz + Bφ(z,φ)− ωz⟨⟨φ,Aφφ⟩⟩N−1

)
, z ∈ Tφk

OBN (p,H).

For ω = 0, this operator is positive definite on Tφk
OBN (p,H) due to Assumptions A1 and A2,

while for ω = 1, we recover the Riemannian Hessian HessL E(φ). Therefore, we can view ω as
a regularisation parameter. Solving the equation

Hφk,ωk
zk = −Rφk

φk

instead of the Newton equation (5.7) leads to the regularised Riemannian Newton (regRN) method.
In practice, we found that even for ω very close to 1, the convergence radius of the regRN method
is much larger than that of the RN iteration. Comparing the regRN method with the LgrRGD
iteration (5.5), in the case of weak inter-component interactions, the operator Gφ,ω can be considered
as an approximation to Hφ,ω, and, hence, (5.5) can be interpreted as a Riemannian quasi-Newton
method. It should also be noted that our regRN method differs from the adaptive regularised
Newton method presented in [57, 60], which approximates the Hessian by a quadratic functional.

In all above methods, scalar parameters such as the step size τk or the regularisation parameter ωk

can be chosen for each component individually, resulting in vector-valued parameters. Also, other
Riemannian optimisation methods such as the Riemannian conjugate gradient, trust region, or
quasi-Newton methods, see, e.g. [2, Chap. 7 & 8], can be extended to multicomponent infinite-
dimensional BEC models in a similar way by introducing a vector transport between the different
tangent spaces.

6. Convergence analysis of energy-adaptive Riemannian gradient descent

This section aims to demonstrate the reliability that arises from the problem-adaptive choice of
the metric in RGD schemes. For the eaRGD method, we adapt the global qualitative and local
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quantitative convergence results of the single-component case [38, 41, 42] to the multicomponent
model under Assumptions A1 and A2. This reliability makes the method a prime choice for the
globalisation of the other schemes, in particular, the potentially locally faster RN methods.

6.1. Global convergence. First, we collect some technical results that are needed to prove the
global convergence of the eaRGD method (5.3).

Lemma 6.1. For all φ ∈ OBN (p,H), z ∈ TφOBN (p,H), and τ ≥ 0, the Riemannian gradient
grada E(φ) can be bounded by ∥ grada E(φ)∥aφ ≤ ∥φ∥aφ and the normalisation operator (5.1)
satisfies

(6.1) ∥N (φ+ τz)− (φ+ τz)∥aφ ≤ τ2

2
∥N−1∥2∥z∥2L∥φ+ τz∥aφ .

Proof. The estimate for the Riemannian gradient grada E(φ) follows from (4.13) by using the same
arguments as in the proof of [28, Lem. 4.2]. The bound (6.1) can be proved analogously to [8,
Prop. 3.11] and [28, Lem. 4.3]. □

Lemma 6.2. Let Assumptions A1 and A2 be fulfilled. For all φ,v ∈ H, it holds that∣∣E(φ+ v)− E(φ)
∣∣ ≤ ∥φ∥aφ∥v∥aφ + 1

2 ∥v∥
2
aφ + CK

(
∥φ∥2H∥v∥2H + ∥φ∥H∥v∥3H + 1

4 ∥v∥
4
H

)
with CK = C4

4∥K∥2 and C4 as in (2.5).

Proof. We have

E(φ+ v)− E(φ) = aφ(φ,v) +
1

2
aφ(v,v)

+

∫
Ω
(φ ◦ v)K(φ ◦ v)T + (φ ◦ v)K(v ◦ v)T +

1

4
(v ◦ v)K(v ◦ v)T dx.

Therefore, ∣∣E(φ+ v)− E(φ)
∣∣ ≤ ∥φ∥aφ∥v∥aφ + 1

2 ∥v∥
2
aφ + ∥K∥2∥φ∥2[L4(Ω)]p∥v∥

2
[L4(Ω)]p

+ ∥K∥2∥φ∥[L4(Ω)]p∥v∥3[L4(Ω)]p +
1
4 ∥K∥2∥v∥4[L4(Ω)]p .

Using the Sobolev embedding inequality (2.5), we then obtain the required estimate. □

Lemma 6.3. Let Assumptions A1 and A2 be fulfilled. For φ ∈ H, let Aφ be the operator defined
in (2.9) with the corresponding bilinear form aφ being coercive. Then for any v ∈ H with v ≥ 0,
the p-frame A−1

φ v only has non-negative components, i.e., A−1
φ v ≥ 0.

Proof. First, we observe that A−1
φ v is the unique minimiser of the convex cost functional

F(u) =
1

2
aφ(u,u)− (v,u)L, u ∈ H.

Further, due to v ≥ 0 and (v,u)L ≤ (v, |u|)L for all u ∈ H, we obtain that F(|A−1
φ v|) ≤ F(A−1

φ v).

This immediately implies that A−1
φ v = |A−1

φ v| ≥ 0. □

The following theorem shows that the iterates of the eaRGD method (5.3) are uniformly bounded
and the energy functional E decays for sufficiently small step sizes.

Theorem 6.4 (Energy decay). Let {φk}∞k=0 ⊂ OBN (p,H) be a sequence generated by the eaRGD
method (5.3). Then there exist constants C0 > 0 and 0 < Cτ ≤ 1 depending on Ω, d, ∥K∥2, and
∥φ0∥aφ0

such that for any step size 0 < τmin ≤ τk ≤ τmax ≤ Cτ and any k ≥ 0, the following
relations hold:

(i) ∥φk∥aφk
≤ C0,

(ii) E(φk)− E(φk+1) ≥ 1
2 τmin ∥ grada E(φk)∥2aφk

.

Proof. We prove the estimates by mathematical induction adapting the proof of [28, Th. 3.1] to the
multicomponent setting and the energy-adaptive norm.
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Set C0 =
(
2 + CK∥φ0∥2H

)1/2∥φ0∥aφ0
with CK as defined in Lemma 6.2. For k = 0, we obvi-

ously have ∥φ0∥aφ0
≤ C0. Now assume that (i) holds for 0, 1, . . . , k. Define gk = grada E(φk),

φ̃k = φk − τkgk, and

rk = φk+1 − φ̃k = N (φk − τkgk)− (φk − τkgk).

Then using Lemma 6.1 and (2.4), we estimate ∥gk∥aφk
≤ C0, ∥φ̃k∥aφk

≤ 2C0, and

∥rk∥aφk
≤
τ2k
2

∥N−1∥2 ∥gk∥2L ∥φ̃k∥aφk
≤ τ2k CN ∥gk∥2aφk

with CN = C0C
2
2∥N−1∥2. It further follows from Lemma 6.2 and its proof with appropriately chosen

φ and v that ∣∣E(φk − τkgk)− E(φk)− aφk
(φk,−τkgk)

∣∣ ≤ τ2k
(
1
2 + 9

4 CKC
2
0

)
∥gk∥2aφk

,∣∣E(φ̃k)− E(φ̃k + rk)
∣∣ ≤ τ2k C1 ∥gk∥2aφk

with C1 = 2C0CN + 1
2C

2
0C

2
N + CK

(
4C4

0C
2
N + 2C5

0C
3
N + 1

4C
6
0C

4
N

)
. Using these estimates and the

relation aφk
(φk, gk) = ∥gk∥2aφk

, we have

E(φk)− E(φk+1) ≥ τk aφk
(φk, gk)−

∣∣E(φ̃k)− E(φ̃k + rk)
∣∣

−
∣∣E(φk − τkgk)− E(φk)− aφk

(φk,−τkgk)
∣∣

≥ τk ∥gk∥2aφk
− τ2k

(
1
2 + 9

4CKC
2
0 + C1

)
∥gk∥2aφk

≥ τmin

2
∥gk∥2aφk

,

provided that τmax

(
1
2 + 9

4CKC
2
0 + C1

)
≤ 1

2 , which is guaranteed by τmax ≤ Cτ for some sufficiently
small Cτ . This proves (ii) and, in particular, E(φk+1) ≤ E(φk). In order to show (i) for k + 1, we
estimate

∥φk+1∥2aφk+1
= 2 E(φk+1) +

1

2

∫
Ω
(φk+1 ◦φk+1)K(φk+1 ◦φk+1)

T dx ≤ 4 E(φk+1)

≤ 4 E(φ0) ≤ 2 ∥φ0∥2H + ∥K∥2∥φ0∥4[L4(Ω)]p ≤
(
2 + CK∥φ0∥2H

)
∥φ0∥2aφ0

. □

In order to guarantee the feasibility of the eaRGD iteration (5.3) in the case when K has negative
entries, we need to ensure that Aφk

is invertible in every iteration. This can be achieved by
shifting âφk

(v,w) = aφk
(v,w) + C(v,w)L with a sufficiently large constant C > 0 which can be

chosen due to Theorem 6.4 independently of φk. In fact, in the three-dimensional case, taking
C ≥ Ĉ8

0C
8
4C

6
6∥K∥42 with Ĉ0 = ∥φ0∥H for k = 0 and Ĉ0 = (2 + CK∥φ0∥2H)1/2∥φ0∥âφ0

otherwise, we

obtain similarly to Theorem 6.4 that ∥φk∥âφ0
≤ Ĉ0 for all k ≥ 0. Then, by Proposition 2.2, the

bilinear form âφk
is coercive for all k ≥ 0 and, hence, the corresponding operator is invertible. The

cases d = 1, 2 can be treated analogously.
We are now ready to prove the global convergence result for the eaRGD iteration.

Theorem 6.5 (Global convergence to the ground state). Let Assumptions A1 and A2 be fulfilled.
Let {φk}∞k=0 ⊂ OBN (p,H) be a sequence generated by the eaRGD method (5.3) with step sizes
0 < τmin ≤ τk ≤ τmax ≤ Cτ ≤ 1 as in Theorem 6.4, and a starting guess φ0 ∈ OBN (p,H) with
φ0 ≥ 0. Then this sequence converges strongly in H to the unique ground state φ∗≥ 0.

Proof. Starting with φ0 ≥ 0, we apply Lemma 6.3 recursively. Given φk ≥ 0, we get

φ̃k = φk − τk
(
φk −A−1

φk
φkN⟨⟨φk,A−1

φk
φk⟩⟩−1)

= (1− τk)φk + τkA−1
φk

φkN⟨⟨φk,A−1
φk

φk⟩⟩−1 ≥ 0.

This then implies φk+1 = φ̃k⟨⟨φ̃k, φ̃k⟩⟩−1/2N1/2 ≥ 0. Hence, the eaRGD iteration (5.3) preserves
the non-negativity of the components.

By using Proposition 3.2 and the uniform boundedness of {φk} shown in Theorem 6.4, similarly
to [41, Th. 4.9 & Th. 5.1], we can prove that there exists a subsequence {φkl} converging strongly
in L and H to a ground state φ∗ ∈ OBN (p,H) with φ∗ ≥ 0 and E(φ∗) = lim

k→∞
E(φk). Let Λ∗ denote
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the associated Lagrange multiplier. Then for any φ ∈ OBN (p,H), we have

aφ∗(φ∗,φ∗) = (φ∗Λ∗,φ∗)L =

p∑
j=1

Njλ∗,j =

p∑
j=1

∥φj∥2L2(Ω)λ∗,j = (φΛ∗,φ)L.

Hence, due to the definition of the smallest eigenvalues of the operators Aφ∗,j for j = 1, . . . , p, and
the matrix K, it holds that

E(φ)− E(φ∗) =
1
2

(
aφ∗(φ,φ)− aφ∗(φ∗,φ∗)

)
+

1

4

∫
Ω
(φ ◦φ)K(φ ◦φ)T − 2 (φ∗ ◦φ∗)K(φ ◦φ)T + (φ∗ ◦φ∗)K(φ∗ ◦φ∗)

T dx

= 1
2 aφ∗(φ−φ∗,φ−φ∗)− 1

2

(
(φ−φ∗)Λ∗,φ−φ∗

)
L

+
1

4

∫
Ω
(φ ◦φ−φ∗ ◦φ∗)K(φ ◦φ−φ∗ ◦φ∗)

T dx

≥ λmin(K)

4

∫
Ω
(φ ◦φ−φ∗ ◦φ∗)(φ ◦φ−φ∗ ◦φ∗)

T dx

=
λmin(K)

4

p∑
j=1

∫
Ω

(
|φj |2 − |φ∗,j |2

)2
dx.

The above relation with φ = φk = (φk,1, . . . , φk,p) implies that

p∑
j=1

∫
Ω

(
|φk,j |2 − |φ∗,j |2

)2
dx ≤ 4

λmin(K)

(
E(φk)− E(φ∗)

)
−→
k→∞

0.

Finally, taking into account that φk ≥ 0 and φ∗ ≥ 0, we conclude that the whole sequence {φk}
converges strongly to φ∗ in L as well as in H. □

6.2. Local convergence. Our goal is to characterise the local convergence rate of the eaRGD
iteration (5.3) with constant step size τk = τ and element-wise non-negative interaction matrix K.
To this end, we observe that this iteration can equivalently be written as the fixed point iteration
φk+1 = ψτ (φk) with the mapping ψτ : H → H,

ψτ (φ) = ψ̃τ (φ)⟨⟨ψ̃τ (φ), ψ̃τ (φ)⟩⟩−1/2N1/2,

where ψ̃τ (φ) = (1 − τ)φ + τA−1
φ φN⟨⟨φ,A−1

φ φ⟩⟩−1. For a ground state φ∗ ∈ OBN (p,H), we have

ψ̃τ (φ∗) = φ∗ = ψτ (φ∗) showing that φ∗ is a fixed point of ψτ . Proving that the spectral radius of
the Fréchet derivative Dψτ (φ∗), denoted by ϱ∗ := ϱ(Dψτ (φ∗)), is smaller than 1, local convergence
with rate ϱ∗ follows from Ostrowski’s theorem, see, e.g., [5, Prop. 1].

To proceed, we introduce the mappings ζ(φ) = A−1
φ φ and Ξ(φ) = ⟨⟨φ, ζ(φ)⟩⟩−1. Their directional

derivatives at any φ ∈ H \ {0} along v ∈ H are given by

D ζ(φ)[v] = A−1
φ v −A−1

φ Bφ(v,A−1
φ φ),

DΞ(φ)[v] = −
(
⟨⟨v,A−1

φ φ⟩⟩+ ⟨⟨φ,A−1
φ v −A−1

φ Bφ(v,A−1
φ φ)⟩⟩

)
⟨⟨φ,A−1

φ φ⟩⟩−2.

Since the linear operators D ζ(φ) and DΞ(φ) are both continuous in a neighbourhood of φ∗, which
excludes the zero element, ζ(φ) and Ξ(φ) are Fréchet differentiable in this neighbourhood. This

implies that ψ̃τ (φ) = (1− τ)φ+ τζ(φ)NΞ(φ) and ψτ (φ) are also Fréchet differentiable in a neigh-
bourhood of φ∗. In particular, evaluating ζ(φ), Ξ(φ) and their derivatives at the ground state φ∗
and taking into account that A−1

φ∗φ∗ = φ∗Λ
−1
∗ with Λ∗ = ⟨⟨φ∗,Aφ∗φ∗⟩⟩N−1, we obtain that

ζ(φ∗) = φ∗Λ
−1
∗ , D ζ(φ∗)[v] = A−1

φ∗v −A−1
φ∗Bφ∗(v,φ∗Λ

−1
∗ ),

Ξ(φ∗) = Λ∗N
−1, DΞ(φ∗)[v] = −

(
⟨⟨v,φ∗⟩⟩Λ−1

∗ + ⟨⟨φ∗,A−1
φ∗v −A−1

φ∗Bφ∗(v,φ∗Λ
−1
∗ )⟩⟩

)
Λ2
∗N

−2.



RIEMANNIAN OPTIMISATION METHODS FOR MULTICOMPONENT BEC 19

Then the derivatives of ψ̃τ and ψτ at φ∗ are computed as

D ψ̃τ (φ∗)[v] = (1− τ)v + τ
(
D ζ(φ∗)[v]NΞ(φ∗) + ζ(φ∗)N DΞ(φ∗)[v]

)
,

Dψτ (φ∗)[v] = D ψ̃τ (φ∗)[v]⟨⟨ψ̃τ (φ∗), ψ̃τ (φ∗)⟩⟩−1/2N1/2

− ψ̃τ (φ∗)⟨⟨ψ̃τ (φ∗), ψ̃τ (φ∗)⟩⟩−3/2⟨⟨D ψ̃τ (φ∗)[v], ψ̃τ (φ∗)⟩⟩N1/2

= D ψ̃τ (φ∗)[v]−φ∗⟨⟨D ψ̃τ (φ∗)[v],φ∗⟩⟩N−1.

We now consider the following linear eigenvalue problem: find an eigenfunction vτ,i ∈ H and
an eigenvalue µτ,i ∈ R such that

(6.2) Dψτ (φ∗)[vτ,i] = µτ,ivτ,i.

We show that all eigenfunctions of Dψτ (φ∗) corresponding to nonzero eigenvalues belong to the
tangent space Tφ∗OBN (p,H).

Lemma 6.6. Let Assumptions A1 and A2 be fulfilled and let φ∗ ∈ OBN (p,H) be a ground state.
Then all eigenfunctions vτ,i of (6.2) corresponding to µτ,i ̸= 0 satisfy vτ,i ∈ Tφ∗OBN (p,H).

Proof. For all v ∈ H, we have

⟨⟨Dψτ (φ∗)[v],φ∗⟩⟩ = ⟨⟨D ψ̃τ (φ∗)[v],φ∗⟩⟩ − ⟨⟨φ∗⟨⟨D ψ̃τ (φ∗)[v],φ∗⟩⟩N−1,φ∗⟩⟩

= ⟨⟨D ψ̃τ (φ∗)[v],φ∗⟩⟩ − ⟨⟨φ∗,φ∗⟩⟩⟨⟨D ψ̃τ (φ∗)[v],φ∗⟩⟩N−1 = 0p.

From (6.2), we hence obtain for all eigenfunctions vτ,i ∈ H of Dψτ (φ∗) that

0p = ⟨⟨Dψτ (φ∗)[vτ,i],φ∗⟩⟩ = µτ,i ⟨⟨vτ,i,φ∗⟩⟩.

This yields ⟨⟨vτ,i,φ∗⟩⟩ = 0 or, equivalently, vτ,i ∈ Tφ∗OBN (p,H) whenever µτ,i ̸= 0. □

Since zero eigenvalues are not relevant for the spectral radius of Dψτ (φ∗), we restrict the eigen-
value problem (6.2) to Tφ∗OBN (p,H). In order to estimate ϱ∗, we first investigate an auxiliary
linear eigenvalue problem: find vi ∈ Tφ∗OBN (p,H) with ⟨⟨vi,vi⟩⟩ = Ip and µi ∈ R such that

(6.3) A−1
φ∗

(
vi − Bφ∗(vi,φ∗Λ

−1
∗ )

)
Λ∗ = µivi.

The following lemma provides estimates for the eigenvalues µi.

Lemma 6.7. Let Assumptions A1 and A2 be fulfilled and let φ∗ ∈ OBN (p,H) be a ground state.
Then all eigenvalues µi of (6.3) are real and satisfy

µi ≤
∑p

j=1 λ1(Aφ∗,j)∑p
j=1 λ2(Aφ∗,j)

< 1.

If, additionally, all entries of the interaction matrix K are non-negative, then µi > −2 for all i ∈ N.

Proof. It immediately follows from (6.3) that

µi ⟨Aφ∗vi,vi⟩ = (viΛ∗,vi)L −
〈
Bφ∗(vi,φ∗Λ

−1
∗ )Λ∗,vi

〉
= (viΛ∗,vi)L −

〈
Bφ∗(vi,φ∗),vi

〉
and, hence, the µi are real. Furthermore, the Courant–Fischer theorem implies together with the
orthogonality ⟨⟨vi,φ∗⟩⟩ = 0 that

⟨Aφ∗vi,vi⟩ =
p∑

j=1

⟨Aφ∗,jvi,j , vi,j⟩ ≥
p∑

j=1

λ2(Aφ∗,j) ∥vi,j∥2L2(Ω) =

p∑
j=1

λ2(Aφ∗,j),

where vi,j denotes the j-th component of vi. Then Proposition 3.2 together with ⟨Bφ∗(vi,φ∗),vi⟩≥0
yields that

µi =

(
viΛ∗,vi

)
L
− ⟨Bφ∗(vi,φ∗),vi⟩

⟨Aφ∗vi,vi⟩
≤ (vi,viΛ∗)L

⟨Aφ∗vi,vi⟩
≤

∑p
j=1 λ1(Aφ∗,j)∑p
j=1 λ2(Aφ∗,j)

< 1

due to λ1(Aφ∗,j) < λ2(Aφ∗,j) for j = 1, . . . , p. On the other hand, we can estimate

−µi ≤
⟨Bφ∗(vi,φ∗),vi⟩

⟨Aφ∗vi,vi⟩
=

2
∫
Ω(φ∗ ◦ vi)K(φ∗ ◦ vi)T dx

∥vi∥2H +
∫
Ω(φ∗ ◦φ∗)K(vi ◦ vi)T dx

< 2.
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The last inequality follows from∫
Ω
(φ∗ ◦ vi)K(φ∗ ◦ vi)T dx ≤

∫
Ω
(φ∗ ◦φ∗)K(vi ◦ vi)T dx,

provided that all entries of the interaction matrix K are non-negative. □

We are now ready to prove that the eaRGD method (5.3) converges locally linear in H to the
ground state φ∗ and to specify the convergence rate.

Theorem 6.8 (Local convergence rate). Let Assumptions A1 and A2 be fulfilled and let K be
component-wise non-negative. Further, let φ∗ ∈ OBN (p,H) be a ground state and the eigenval-
ues µi of (6.3) be ordered decreasingly in magnitude, i.e., |µ1| ≥ |µ2| ≥ . . . . Then the spectral
radius ϱ∗ = ϱ(Dψτ (φ∗)) satisfies

(6.4) ϱ∗ < 1 for all τ ∈
{

(0, τ∗), if µ1 > 0,(
0, 2

1+|µ1|
)
, if µ1 < 0,

where

τ∗ =
2
∑p

j=1 λ2(Aφ∗,j)∑p
j=1

(
λ1(Aφ∗,j) + λ2(Aφ∗,j)

) > 1.

Furthermore, for every ϵ > 0, there exists a neighbourhood Uϵ of φ∗ in OBN (p,H) and a positive
constant Cϵ such that for all starting functions φ0 ∈ Uϵ, the sequence {φk} generated by the eaRGD
method (5.3) with the constant step size τk = τ fulfills

∥φk −φ∗∥H ≤ Cϵ |ϱ∗ + ϵ|k ∥φ0 −φ∗∥H for all k ≥ 1,

meaning that the eaRGD iteration (5.3) converges locally linear with rate ϱ∗.

Proof. Let µτ,i ̸= 0 be an eigenvalue of Dψτ (φ∗) and vτ,i ∈ Tφ∗OBN (p,H) be the corresponding
eigenfunction. Then for all w ∈ Tφ∗OBN (p,H), (6.2) and the formulae of the directional derivatives
imply

µτ,i (vτ,i,w)L =
(
Dψτ (φ∗)[vτ,i],w

)
L
=

(
D ψ̃τ (φ∗)[vτ,i],w

)
L

= (1− τ)(vτ,i,w)L + τ
(
A−1

φ∗

(
vτ,i − Bφ∗(vτ,i,φ∗Λ

−1
∗ ))Λ∗,w

)
L
.

This shows that µτ,i ̸= 0 is an eigenvalue of Dψτ (φ∗) if and only if µi = (µτ,i − 1 + τ)/τ is
an eigenvalue of (6.3). Lemma 6.7 yields that −2 < µ1 < 1. Then using the same arguments
as in the proof of [42, Lem. 5.8], we obtain that the spectral radius of Dψτ (φ∗) defined as ϱ∗ =
maxi∈N |1−τ+τµi| satisfies (6.4). Therefore, the local convergence estimate follows from Ostrowski’s
theorem [5, Prop. 1]. □

Remark 6.9. Since τ∗ > 1 and 1+|µ1| < 3, the restriction for τ in (6.4) can be replaced by a stronger
condition τ ∈ (0, 23 ], which is much simpler to verify than (6.4).

Despite the favorable global convergence and local linear convergence rate for the eaRGD method
presented above, the convergence analysis of other Riemannian optimisation methods for multicom-
ponent BECs remains largely unexplored, particularly concerning local quantitative convergence
results. Previously, the preconditioned L2-RGD method has been studied in [54] for Hartree–Fock
and Kohn–Sham problems. More recently, RGD methods with a canonical H1-metric have been
rigorously analyzed in [28]. Additionally, RN methods have been numerically proven to exhibit local
quadratic convergence for Gross–Pitaevskii and Kohn–Sham problems [9]; see also [62] for the con-
vergence analysis of the RN scheme for the discretised simplified Kohn–Sham model. However, the
generalisation of these convergence results to multicomponent BECs is non-trivial and far beyond
the scope of this paper.

7. Finite element discretisation

Due to the general infinite-dimensional formulation of our optimisation schemes, we may employ
any appropriate spatial discretisation technique to discretise the minimisation problem (2.3) and
the associated NLEVP (3.2). This includes (mixed) finite elements, multiscale, spectral, or pseu-
dospectral methods [15, 23, 34, 40]. For illustration purposes, a finite element discretisation with
n ∈ N degrees of freedom is considered in the following, which is also used in numerical experiments
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in Section 8. Let Φ = [ϕ1, . . . , ϕp], U = [u1, . . . , up], and W = [w1, . . . , wp] denote the discrete
tuples with ϕj , uj , wj ∈ Rn, j = 1, . . . , p, corresponding to the components of the p-frames φ, u
and w, respectively. Note that, here and in the following, ϕj , uj and wj will always refer to the
discrete vectors in Rn rather than their continuous counterparts in H1

0 (Ω) considered in the previous
sections.

The discretised version of the minimisation problem (2.3) takes the form

min
Φ∈OBN,M (p,n)

E(Φ),

where the generalised oblique matrix manifold is given by

OBN,M (p, n) =
{
Φ ∈ Rn×p : ddiag(ΦTMΦ) = N

}
and the discretised energy functional reads

E(Φ) =

p∑
j=1

ϕTj

(
1
2 S + 1

2 MVj +
1
4 Mρj(Φ)

)
ϕj .

Here, M is the L2-mass matrix, S is the stiffness matrix, Mρj(Φ) =
∑p

i=1 κijMϕiϕi
with the discre-

tised density functions ρj(Φ), and MVj and Mϕiϕi
are weighted mass matrices, where ϕiϕi should

be understood as the element-wise product.
The discrete version of the bilinear form aφ in (2.7) reads

aΦ(U,W ) = ⟨AΦ(U),W ⟩M = trace
(
W TMAΦ(U)

)
with the linear operator AΦ : Rn×p → Rn×p given by

AΦ(U) =
[
M−1AΦ,1u1, . . . ,M

−1AΦ,pup
]
,

where AΦ,j = S +MVj +Mρj(Φ) for j = 1, . . . , p. Furthermore, the discretisation of the operator

Bφ(u,φ) in (3.5) is given by

BΦ(U,Φ) =

[
M−1

p∑
j=1

BΦ,1j uj , . . . , M
−1

p∑
j=1

BΦ,pj uj

]
with BΦ,ij = 2κij Mϕiϕj

for i, j = 1, . . . , p. We equip the tangent space

TΦOBN,M (p, n) =
{
Z ∈ Rn×p : ddiag(ΦTMZ) = 0p

}
with a Riemannian metric which follows the product structure

g×Φ (Z, Y ) = trace(ZTMG×
Φ(Y )), Z, Y ∈ TΦOBN,M (p, n),

where the operator G×
Φ(Y ) = [M−1GΦ,1y1, . . . ,M

−1GΦ,pyp] acts column-wise and the matrices
GΦ,j ∈ Rn×n are symmetric positive definite. As discussed in Section 4, this restriction to metrics,
that act on all components independently, allows expressions that are both simple and computa-
tionally efficient. The g×Φ -orthogonal projection onto the tangent space TΦOBN,M (p, n) is given by

P×
Φ (U) = U − (G×

Φ)
−1(Φ) ddiag

(
ΦTMU

)(
ddiag

(
ΦTM(G×

Φ)
−1(Φ)

))−1

=

[
u1 −

ϕT1Mu1

ϕT1MG−1
Φ,1Mϕ1

G−1
Φ,1Mϕ1, . . . , up −

ϕTpMup

ϕTpMG−1
Φ,pMϕp

G−1
Φ,pMϕp

]
.

Further, the discretisation of Rφ u is given by

RΦ(U) =

[
M−1RΦ,1u1, . . . ,M

−1RΦ,pup

]
with RΦ,j = AΦ,j − σjM and σj =

ϕT
j AΦ,jϕj

Nj
for j = 1, . . . , p. Using the above definitions, the

corresponding Riemannian gradient of E then takes the form

gradE(Φ) = P×
Φ

(
(G×

Φ)
−1(RΦ(Φ))

)
=

[
G−1

Φ,1(RΦ,1 − θ1M)ϕ1, . . . , G
−1
Φ,p(RΦ,p − θpM)ϕp

]
,

where

θj =
ϕTj MG−1

Φ,jRΦ,jϕj

ϕTj MG−1
Φ,jMϕj

, j = 1, . . . , p.
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Using GΦ,j =M , GΦ,j = Aϕ,j or GΦ,j = GΦ,ω,j = AΦ,j +BΦ,jj − ωσjM , we obtain the Riemannian
gradients with respect to the discrete L2-, energy-adaptive or Lagrangian-based metric, respectively.
The discretisation of the Riemannian Hessian with respect to the L2-metric is given by

HessM E(Φ)[Z] =M−1
[
PΦ,M,1

(
RΦ,1z1 +

p∑
j=1

BΦ,1j zj
)
, . . . , PΦ,M,p

(
RΦ,pzp +

p∑
j=1

BΦ,pj zj
)]

with the projectors PΦ,M,j = I− 1
Nj
Mϕjϕ

T
j . These expressions can be used to construct the discrete

counterparts of the Riemannian optimisation schemes presented in Section 5.
It should be noted that the global convergence results for the eaRGD method no longer hold in

the finite-dimensional case because our particular choice of the finite element discretisation does not
satisfy a discrete maximum principle. Achieving this would require a slightly modified, stabilised
scheme as proposed in [37]. However, in practice, unless specifically triggered, a violation of the
maximum principle and potential convergence to an excited state from a positive initial guess will
typically not be observed. We also refer to [27], for recent convergence results of the RGD method
based on the H1-metric for a discretised single-component BEC.

8. Numerical experiments

We report on numerical experiments for two test examples in 1D and 2D domains, aiming
at comparing the performance of the different Riemannian optimisation schemes presented in
Section 5. For the spatial discretisation, we use the finite element method with bi-quadratic
elements on a quadrilateral mesh of width h. We impose Neumann boundary conditions in-
stead of the Dirichlet boundary conditions discussed above, but due to the strong trapping po-
tentials in the models, all values on the boundary are sufficiently close to zero in all exper-
iments. The implementation was done in the Julia programming language using the package
Ferrite.jl for the finite element discretisation. The source code is available in the GitHub
repository https://github.com/MaHermann/Riemannian-coupledGPE and relies on the following
parameter and design choices:

• Stopping criterion: We terminate the iterations once the norm of the residual
resk = (trace(RΦk

(Φk)
TMRΦk

(Φk)))
1/2 falls below the tolerance tol = 10−8.

• Initial guess: For all schemes, we use a consistent initial guess Φ0 computed by the alter-
nating eaRGD method, where each component is initialised by 1. Iterations continue until
the residual norm, as defined by the stopping criterion, falls below 10−2 in the 1D case and
10−4 in the 2D case.

• Step size: To maintain transparency in the comparison between methods, we use a constant
step size of τk = 1 for all RGD methods presented here. This approach allows a clear evalu-
ation of the inherent convergence properties of each method, without introducing variability
due to the interplay between method choice and adaptive step size strategies. In particular,
all methods show stable convergence without the need for smaller step sizes, except for the
LgrRGD scheme applied to the 2D problem with random potential (see below). The use of
an adaptive step size strategy, such as a non-monotone line search combined with the alter-
nating Barzilai–Borwein step size strategy [59, 61], could further improve the optimisation
performance, but we leave this method-specific refinement for future work.

• Linear system solvers: For solving linear systems in Riemannian gradient and Newton di-
rection calculations, we employ the preconditioned conjugate gradient method with the
preconditioner determined from the ILU decomposition of A0,j = S +MVj and an adaptive
residual tolerance tolCG for the 1D system and 10 tolCG for the 2D system, where the latter
has a weaker nonlinearity, allowing for less accurate solutions. Here, tolCG = resk as defined
above for the Newton-type methods, and the residual norm for the individual components
for the RGD methods. For the computation of the initial guess Φ0 by using the alternating
eaRGD method, we take a tolerance of 1.5 · 10−8 tolCG in the linear systems.

• Regularisation parameters: In the LgrRGD method, we take ωk = 1, as discussed in Sec-
tion 5.1.3. In the regRN method, we use ωk = 0.99, which proves to be enough to provide
convergence in the cases where the RN method (which corresponds to ωk = 1) does not
converge.

https://github.com/MaHermann/Riemannian-coupledGPE
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Figure 8.1. Two-component BEC: potential and components of the ground state
for β = 10, 100, 1000 (from left to right). The potential is rescaled by a factor of
0.0025 for plotting purposes.

Although the most canonical performance measure is probably the number of outer iterations to
a given stopping criterion, in practice other measures may play a more important role. For example,
a Newton step takes on average much longer than a gradient step, so it makes sense to also com-
pare the total CPU time required. Since the computational time depends to a large extent on the
implementation and the hardware used, we also report the average number of matrix–vector multi-
plications with n×n matrices per optimisation step, which, together with the assembly of the finite
element matrices discussed below, are the most expensive operations in all optimisation schemes.
Together, these performance measures provide sufficient insight into the individual strengths of the
different optimisation methods.

Each optimisation step requires the assembly of the finite element matricesMϕiϕj
. In the eaRGD

and LgrRGD methods, only the p matrices Mϕiϕi
are needed, while the RN and regRN methods

require all p(p+ 1)/2 combinations to compute the (regularised) Riemannian Hessian. In the cases
below with p = 2, 3, this amounts to a factor of at most two, but it should be taken into account
when applying the optimisation schemes to models with a large number of components.

Note that in both examples below, the interaction matrix K has non-negative entries, so by
Remark 2.3 there is no need to shift AΦ to ensure its invertibility.

8.1. Two-component BEC in 1D. First, we consider a well-known benchmark example from
the literature, see, e.g., [14, 43]. It describes a two-component BEC on Ω = [−16, 16] with the
potentials

V1(x) = V2(x) = 2

(
1

2
x2 + 24 cos2(x)

)
and the interaction parameters κ11 = 2.08β, κ22 = 1.94β and κ12 = κ21 = 2β, where different
values for β > 0 can be chosen. By renormalisation, we can assume, without loss of generality, that
N1 + N2 = 1, so we take N1 = α and N2 = 1 − α with α ∈ (0, 1). The differences in parameters
compared to the earlier works result from the choice of constants in the energy and the fact that the
interaction matrixK used there is not positive definite and therefore does not fit in the setting of this
paper, so we use a slightly larger κ11. In the following, we fix α = 0.8 and perform experiments for
β = 10, 100, 1000 to examine how the strength of the nonlinearity affects the individual optimisation
methods.

We choose a finite element mesh width of h = 32 · 2−10, resulting in n = 2049 degrees of freedom.
The initialisation with the alternating eaRGD method takes 5, 9, and 17 iterations for β = 10, 100,
and 1000, respectively. Figure 8.1 presents the potential and the resulting ground state components.
The convergence history of the residual norms for different optimisation methods and different values
of β is shown in Figure 8.2. To illustrate the advantage of the alternating variant of the LgrRGD
scheme, in addition to the convergence history for the alternating versions, we also include the
residual plots for the non-alternating schemes for the case β = 100. Further details on the number
of outer iterations and the average number of matrix–vector multiplications in an optimisation step
are given in Table 8.1. We do not provide time measurements for these one-dimensional experiments,
as they are all in the order of seconds, where precompilation of the Julia code and other factors
such as implementation details and processor load dominate.
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Figure 8.2. Two-component BEC: convergence history of the residuals for
β = 10, 100, 1000 (from left to right). For β = 100, the non-alternating versions
of the eaRGD and LgrRGD methods are shown as well.

Table 8.1. Two-component BEC: performance measures for different optimisation
methods

outer
iter.

aver. matr.–vec.
mult. per iter.

outer
iter.

matr.–vec. mult.
per iter.

outer
iter.

matr.–vec. mult.
per iter.

β = 10 β = 100 β = 1000

altern. eaRGD 31 12.1 1147 14.0 2225 20.3
altern. LgrRGD 5 30.4 259 60.0 629 106.6

RN 5 20.0 - - - -
regRN 5 20.0 19 53.3 34 131.9

Figure 8.2 and Table 8.1 show that the regRN method converges in significantly fewer iterations
than the alternating eaRGD method for all three parameter values of β and that the alternating
LgrRGD method is competitive to both the RN and regRN methods for β = 10. For strong
interactions (β = 100, 1000), the RN method does not converge to the ground state, as the initial
value is too far away. This could be fixed by more initial iterations with the reliable eaRGD method
or by regularisation with the regRN method.

8.2. Three-component BEC in 2D. As a second example, we consider a three-component BEC
model on the unit square Ω = [0, 1]2, uniformly partitioned with mesh width h = 2−10 in each
direction, resulting in n = 4198 401 degrees of freedom, a much larger problem size than in the
previous 1D example. The interaction parameters are κ11 = 0.5, κ22 = 5, κ33 = 10 and κij = 1
otherwise, while the number of particles is N1 = N2 = N3 = 1.

We consider two cases: a periodic potential and a piecewise random potential, both taking values
in {0, 212} and varying on a length scale of ϵ = 2−6. In both cases, to enforce small values at the
boundary, we additionally add a trapping potential

Vtrap(x1, x2) = 106max{(2x1 − 1)40, (2x2 − 1)40}.

The initialisation takes 3 and 4 eaRGD steps for the periodic and random potentials, respectively.
In our experiments, we observed that for the periodic potential, all optimisation schemes converge

to the same ground state. For the random potential, however, only the eaRGD method reliably
provides the ground state, while the other schemes find excited states with higher energy, even with
the relatively small initialisation residual of 10−4.

Comparing the computed ground states for the two models shown in Figure 8.3, we see that for
the periodic potential, the ground state remains spread over the entire domain, while for the random
potential, the condensate undergoes localisation, see [4, 6, 7] for related results for single-component
BECs. These works also justify that both cases are extremely computationally challenging, as the
spectral gaps in the lower energy spectrum are very small and scale like ϵ, which explains the need
for very accurate initial estimates to avoid approaching excited states of similar energy levels.
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(a) periodic potential (b) φ1 (c) φ2 (d) φ3

(e) random potential (f) φ1 (g) φ2 (h) φ3

Figure 8.3. Three-component BEC: random and periodic potentials and compo-
nents of the ground states computed with the alternating eaRGD method. For the
potentials, we do not depict the additional trapping potential that is used to enforce
the homogeneous Dirichlet boundary conditions.

Table 8.2. Three-component BEC: performance measures for different optimisation
methods.

outer
iter.

aver. matr.–vec.
mult. per iter.

CPU time
(minutes) energy residual

periodic potential

altern. eaRGD 206 42.8 87 4582.2 9.9016e-09
altern. LgrRGD 4 665.2 24 4582.2 4.3065e-10

RN 4 1249.5 25 4582.2 6.3026e-11
regRN 5 954.6 25 4582.2 7.5963e-09

random potential

altern. eaRGD 1503 63.5 773 2332.1 9.9942e-09

The performance measures including the computational time together with the final energy values
and residual norms for the convergent methods are collected in Table 8.2. It can be seen that for
the periodic potential, the alternating LgrRGD, RN, and regRN methods, which are based on the
second-order information, significantly outperform the alternating eaRGD method both in terms of
the number of outer iterations and the computational time. For the random potential, as reported
above, only the alternating eaRGD method provides the ground state, but requires a prohibitively
large number of iterations to achieve small target residuals and is computationally very expensive.
Therefore, a combination of the eaRGD and RN methods, exploiting both the global convergence
guarantees of the former and the fast local convergence speed of the latter, seems to be a promising
approach to compute ground states in an efficient way. In addition, the development of better
preconditioners to reduce the large number of inner iterations and suitable step size control strategies
to speed up convergence could further improve the computational performance of the optimisation
algorithms.
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9. Conclusion

In this paper, we have introduced a general framework for computing the ground state of multi-
component Bose–Einstein condensates using Riemannian optimisation methods on the infinite-
dimensional generalised oblique manifold. This problem is formulated as an energy minimisation
problem with mass conservation constraints for each condensate component. We have established
existence and uniqueness results for the ground state on a bounded spatial domain and linked it to
the coupled Gross–Pitaevskii eigenvalue problem. In addition, we have explored the Riemannian
structure of the generalised oblique manifold by defining several Riemannian metrics and computing
essential geometric tools such as gradients and Hessians.

By incorporating first- and second-order information of the energy functional, we have constructed
appropriate metrics that allow preconditioning within Riemannian optimisation, which, combined
with improvements through alternating iterations, significantly enhances optimisation performance.
Our qualitative global and quantitative local convergence results for the energy-adaptive Riemannian
gradient descent method provide a robust basis for further exploration of complex multicomponent
Bose–Einstein condensation phenomena in quantum systems.
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