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Abstract

Bootstrapping and rollout are two fundamental principles for value function estimation in
reinforcement learning (RL). We introduce a novel class of Bellman operators, called subgraph
Bellman operators, that interpolate between bootstrapping and rollout methods. Our estimator,
derived by solving the fixed point of the empirical subgraph Bellman operator, combines the
strengths of the bootstrapping-based temporal difference (TD) estimator and the rollout-based
Monte Carlo (MC) methods. Specifically, the error upper bound of our estimator approaches the
optimal variance achieved by TD, with an additional term depending on the exit probability of
a selected subset of the state space. At the same time, the estimator exhibits the finite-sample
adaptivity of MC, with sample complexity depending only on the occupancy measure of this
subset. We complement the upper bound with an information-theoretic lower bound, showing
that the additional term is unavoidable given a reasonable sample size. Together, these results
establish subgraph Bellman estimators as an optimal and adaptive framework for reconciling TD
and MC methods in policy evaluation.

1 Introduction

The key feature that distinguishes reinforcement learning (RL) from statistical learning and bandit
problems is the dynamic nature of the decision-making environment. To bridge RL with traditional
machine learning algorithms, the value functions play a central role. In Markov decision processes, value
functions can be defined in two equivalent ways – as the unique fixed point of a Bellman operator; or
as the expected reward-to-go function from a certain state. For practical data-driven RL applications,
the value functions need to be estimated from empirical data. The two definitions motivate two
fundamental ideas that prevail in value learning literature.

• Bootstrapping methods use the fixed-point representation, and estimate the value function by
finding the fixed-point of the (projected) empirical Bellman operator.

• Rollout methods start from the reward-to-go representation, and estimate the value function by
directly averaging (and optimizing) the rollout reward in observed trajectories.

The two ideas represent different perspectives towards the dynamic nature of reinforcement learning:
bootstrap methods focus on the recursive aspects of the value function, and aim to capture structures
in the one-step transition dynamics; by way of contrast, rollout methods ignore Markovian structures,
but exploit the information from entire trajectories of the processes.

Bootstrapping and rollout methods are so central in the design of RL algorithms, that most prac-
tical algorithms are developed based on one of the approaches – or a combination of both. When
applied to policy evaluation problems, bootstrapping corresponds to Temporal difference (TD) meth-
ods (Sutton, 1988; Bradtke and Barto, 1996), and rollout corresponds to Monte Carlo (MC) meth-
ods (Curtiss, 1954; Barto and Duff, 1993). Both methods allow flexible choice of function approxima-
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tions (Bradtke and Barto, 1996; Boyan and Moore, 1994; Maei et al., 2009), making them applicable
to large or infinite state-action spaces. When only off-policy observational data are available, a long line
of research extends TD and MC methods to facilitate efficient estimation (Precup et al., 2000, 2001;
Sutton et al., 2008, 2016). Moving from policy evaluation to policy optimization, several algorithms
have been developed as instantiations of the two basic ideas. Building upon the bootstrapping idea,
Q-learning (Watkins and Dayan, 1992) and SARSA (Rummery and Niranjan, 1994) solve empirical
versions of the non-linear Bellman optimality equations. On the other hand, REINFORCE algorithm
and policy gradient methods (Williams, 1992; Sutton et al., 1999) directly optimize Monte Carlo roll-
out rewards. Additionally, temporal difference methods are often used in conjunction with actor-critic
methods (Konda and Tsitsiklis, 2000) to optimize the estimated value functions. A large class of RL al-
gorithms have been developed by interpolating between bootstrapping and rollout methods, including
multi-step algorithms (Watkins, 1989; van Seijen, 2016; De Asis et al., 2018), as well as their weighted
average versions, the λ-return methods (Sutton, 1988; Peng and Williams, 1994). These algorithms
lay the foundation of modern applied RL research; see the monograph by Sutton and Barto (2018) for
a comprehensive survey.

Despite the encouraging progress, when faced with a zoo of RL algorithms, a practioner could easily be
confused about the optimal choices. A folklore belief is that rollout methods have small or no biases
and require less data and computation; whereas bootstrapping methods could significantly reduce
the variance, albeit being biased and more expensive. The number of bootstrapping steps and the
λ parameter can be used to address the trade-off, yet the choices can be ad hoc. This practical
consideration gives rise to a theoretical question:

What is the statistically optimal way of interpolating between bootstrapping and rollout?

To address this question, in this paper, we focus on a basic on-policy evaluation problem in a tabular
Markov reward process (MRP), with trajectory observations. Under such a setup, both TD and MC
achieves an optimal worst-case rate, while the practical performances can be drastically different.

• For every state in the MRP, the TD method achieves a smaller asymptotic variance when the sam-
ple size goes to infinity. Indeed, it is optimal in the sense of local asymptotic minimax (Le Cam,
1953; Hájek, 1972).

• As long as a state is likely to be visited (i.e., the sample size exceeds its inverse occupancy
measure), MC outputs an estimator with

?
n-rate for the value of this particular state. This

requires much smaller sample size for frequently-visited states, and therefore making MC adaptive
to the occupancy measure of different states.

The gap between TD’s and MC’s variances can be large in practice. In particular, Cheikhi and Russo
(2023) uses a trajectory pooling coefficient to illustrate the benefit of TD: unlike MC, it is capable of
combining information of trajectories from different sources, a property important in online advertising
applications. However, TD may break down when the sample size is smaller than the cardinality of
the state space. The general question of optimal interpolation therefore turns to a concrete one —
to construct a finite-sample best-of-both-worlds estimator that achieves near-optimal variance while
adapting to the occupancy measure of each states.

The main contribution of this paper is an affirmative answer to this question. Our main contribution
is summarized as follows.

• We construct a new class of Bellman operators, subgraph Bellman operators, indexed by a subset
of the state space, which interpolates between TD and MC method. For a given subset, the fixed-
point to the subgraph Bellman operator can be solved through sample averaging or stochastic
approximation, with an easily implementable algorithm.

• We establish non-asymptotic error guarantees for the subgraph Bellman algorithm. The guar-
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antee only requires a sample size larger than the inverse occupancy measure for states in the
relevant subset. In addition to the optimal TD variance, the error depends on a term governed
by the local structure of the Markov transition kernel. In many cases, the additional term is
much smaller than the variance of MC.

• We also establish an instance-dependent minimax lower bound to complement the upper bound
for subgraph Bellman algorithm. The lower bound shows that the structure-dependent term is
information-theoretically unavoidable, unless the sample size grows with the state space.

• We provide data-driven approaches to choose the indexing subset in subgraph Bellman algorithm.
A key ingredient in such a methodology is a variance estimator for our point estimator, with sharp
non-asymptotic guarantees.

The rest of this paper is organized as follows: we first introduce notations and discuss additional related
work. The formal problem setup and observation models are described in Section 2. Section 3 reviews
the TD and MC estimators by demonstrating their theoretical guarantees as well as failure modes. The
main estimator and its theoretical analysis are presented in Section 4, while the complementing lower
bounds are in Section 5. Section 6 collects the proofs, and we conclude the paper with a discussion of
future directions in Section 7.

Notations: For any transition matrix Q over the augmented state space S Y H and any two sets
S 1,S2 Ă S, we denote the partial transition of Q from S 1 to S2 by QS1,S2 ps2|s1q “ Qps2|s1q1s1PS1,s2PS2 .
We also adopt the shorthand QS1 “ QS1,S1 . For any reward function r : S Ñ R, we denote the partial
reward function r : S 1 Ñ R of r on any subset S 1 by rS1 “ r1sPS1 . Given a finite collection A, we
denote the empirical expectation operator

pEArfpXqs :“ 1

|A|
ÿ

xPA
fpxq.

We also use X „ A as a shorthand notation for the uniform distribution X „ UnifpAq. Given
a probability distribution µ on a countable index set I, we use } ¨ }µ as a shorthand notation for
} ¨ }ℓ2pµ;Iq, i.e., xx, yyµ :“ ř

iPI µixiyi and }x}µ :“
a

xx, xyµ. Furthermore, for any linear operator A
that maps ℓ2pµ; Iq to itself, we use |||A|||µ to denote its operator norm under ℓ2pµ; Iq, i.e.,

|||A|||µ :“ sup
x‰0

}Ax}µ
}x}µ

.

For a pair A,B of real symmetric matrices, we use A ď B (and equivalently B ě A) to denote the
domination relation in positive semidefinite ordering, i.e., A ď B indicates the fact that B ´ A is a
positive semidefinite matrix.

Given a pair pµ, νq of probability distributions, we use dTVpµ, νq to denotes their total variation
distance, and use DKLpµ } νq to denote their Kullback–Leibler divergence. We also use D8 pµ||νq :“
max

ˇ̌
ˇlog dµ

dν

ˇ̌
ˇ to denote the max divergence. For an integer n ą 0, we use µbn to denote the n-fold

product of µ.

1.1 Additional related work

Let us summarize some existing literature and their connection to the current paper.

Theoretical analysis of TD and fixed-point estimation: Our work involves computing the fixed-
point to subgraph Bellman operators using empirical data. Here we summarize algorithms and statis-
tical analyses for such fixed-point problems in existing literature. A sequence of earlier work (Sutton,
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1988; Jaakkola et al., 1993; Tsitsiklis and Van Roy, 1997) established the asymptotic convergence of
temporal difference and Q-learning algorithms, where the fixed points are solved using stochastic ap-
proximation. A recent paper by Cheikhi and Russo (2023) provides closed-form characterization for the
variances of TD and MC estimators, highlighting their gap captured by a trajectory pooling coefficient.
Motivated by the study of practical finite-sample performance, a recent line of research (Chen et al.,
2020, 2021; Khamaru et al., 2020; Mou et al., 2022a) provide sharp non-asymptotic guarantees for
various stochastic approximation schemes with contractive fixed-point problems under general norms.
When applied with the ℓ8-norm structures of TD and Q-learning problems, they can achieve optimal
finite-sample guarantees under a generative model (i.e., reward and transition observations for each
state-action pair). Our methods adapt the stochastic approximation tools from Mou et al. (2022a) and
generalize them to the case of trajectory data.

Methods that reconciles TD and MC: As discussed above, a standard approach to interpo-
late between bootstrapping and rollout methods is weighted averaging, which includes TDpλq in
the policy evaluation setting (Sutton, 1988), and Qpλq for policy optimization (Peng and Williams,
1994). Ever since being proposed, these algorithms attract a lot of research attention about the
selection of the tuning parameter λ. Several tuning procedures have been proposed based on theo-
retical bounds (Kearns and Singh, 2000; Tsitsiklis and Van Roy, 1997; Chen et al., 2021; Mou et al.,
2024) and data-driven heuristics (White and White, 2016; Mann et al., 2016; Amiranashvili et al.,
2018). Several alternative re-weighting and/or aggregation schemes for multi-step returns have been
proposed and empirically studied (Konidaris et al., 2011; Thomas et al., 2015; Sharma et al., 2017;
Downey and Sanner, 2010; Daley et al., 2024). These method do not exploit the structures in the
Markovian transition kernel, and therefore do not achieve the instance-dependent optimality guar-
antees. The re-weighting scheme was also explored in off-policy problems (Thomas and Brunskill,
2016), where transition kernel estimation and importance sampling are combined. Beyond re-weighting
schemes, Riquelme et al. (2019) studies an adaptive switching scheme that decides to use TD or MC
upates based on state-specific estimation of biases and variances. Their method is close to ours in
spirit, while we focus on finite-sample statistical optimality guarantees.

Balancing asymptotic efficiency and sharp sample complexity: Our upper and lower bounds
in conjunction exhibit a tradeoff between asymptotic efficiency and sample size requirement for es-
timators, a phenomenon previously discovered under various different contexts. In many statistical
estimation problems, the asymptotically optimal estimator may suffer from poor non-asymptotic per-
formance, while there also exists a “cheap” estimator that is viable with a small sample size, yet
weaker in the asymptotic regime. Examples of this phenomenon include mis-specified density estima-
tion problems (Chan et al., 2014; Zhu et al., 2020), estimation of average traetment effect in causal
observational studies (Robins and Ritov, 1997; Mou et al., 2022b), and policy evaluation in RL with
function approximations (Tsitsiklis and Van Roy, 1997; Mou et al., 2023). We hope our results could
shed light on the trade-off questions in these problems through the shared statistical structures.

2 Problem setup

We study the problem of estimating the value function in Markov reward processes (MRPs). A Markov
reward process (MRP) is specified by the tuple M “ pS YtHu, P,R, µq, which consists of a state space,
transition kernel, reward distribution, and an initial ditribution µ on the state space. In this context,
P denotes a transition kernel (matrix) over the augmented state space S Y H, defining the probability
P ps1 | sq of transitioning from s to s1. We assume that a special terminal state H P S exists in the
state space, such that P pH,Hq “ 1, and the Markov chain starting from any state s P S will hit
the terminal state within finite many steps. The reward distribution R is a map from states to the
distributions of rewards where Rpdr|sq “ PpR “ dr | S “ sq with a mean value of rpsq. It is assumed
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that RpHq “ 0.

A trajectory in a Markov reward process is a Markovian sequence:

τ “ pS0, R0, ..., ST´1, RT´1, ST “ H, RT “ 0q (1)

The sequence starts from the initial state S0 „ µ and proceeds with Rt “ RpStq and St`1 „ P p¨|Stq
for t “ 0, 1, ...T ´ 1 until ST “ H for the first time. Recall that at each time step t, with probability
1´ γ, the next state St`1 “ H would be the termination state. Consequently, the termination time T
follows a geometric distribution with a parameter of 1 ´ γ.

The value function for any state s P S is defined as

V ˚psq “ E

«
8ÿ

t“1

Rt | S0 “ s

ff
“ E

«
Tÿ

t“1

rpStq | S0 “ s

ff

is defined as the accumulative rewards in expectation before termination when starting from s.

We consider the value function estimation problem with trajectory data. Specifically, the learner is
given n i.i.d. trajectories

D “ tτi “ pSpiq
0 , R

piq
0 , ..., S

piq
Ti
, R

piq
Ti
,HquiPrns

each generated following Equation (1). The aim of the learner is to produce an estimator pV for V ˚ps0q
for a given target state s0 P S, the quality of which is evaluated by the mean squared error

E

„´
V ˚ps0q ´ pV

¯2

.

Throughout this paper, we assume a uniform upper bound on the effective horizon of the Markov
chain, in the form of sub-exponential concentration as follows.

(Effphq) For any s P SztHu, let pStqtě0 be the Markov chain starting from S0 “ s, and denote
TH :“ inftt ą 0 : St “ Hu. For any p P N`, we have

E
“
T
p
H
‰

ď pphqp.

For example, Assumption (Effphq) is satisfied with h “ 1
1´γ for γ-discounted MRPs, and for finite-

horizon MRPs, the constant h is bounded by the total horizon.

Additionally, we assume bounded reward throughout the paper. Without loss of generality, we assume

|Rt| ď 1, almost surely, for any t ě 0. (2)

As we will see in the next section, the occupancy measure plays a central role in our analysis, as it
determines the complexity of value function estimation for a state. For any state s P SztHu, we define

νpsq :“
`8ÿ

t“0

PµpSt “ sq “ EµrNpsqs, (3)

where we denote the number of visits

Npsq :“
`8ÿ

t“0

1St“s. (4)
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Note that under Assumption (Effphq), for any reachable state s P S, we have

0 ă νpsq ď
`8ÿ

t“0

PµpSt ‰ Hq “ ErTHs ď h ă `8,

so that the occupancy measure is well-defined and positive on all the reachable states.

3 Two classical estimators

Before introducing the novel estimator, let us revisit two classical estimators widely used in literature,
and study their theoretical properties.

Given a collection pτ piqqni“1 of observed trajectories, we define a pooled dataset formed by sub-trajectories.

Dn :“
!

pSpiq
t , R

piq
t , S

piq
t`1, R

piq
t`1, ¨ ¨ ¨ , Spiq

Ti
, R

piq
Ti
,Hq : i P rns, t P r0, Tis

)
. (5)

The TD estimator solves the empirically-estimated Bellman fixed-point equation

pVTDpsq “ pEτ„Dn

“
R0pτq | S0pτq “ s

‰
` pEτ„Dn

“pVTD

`
S1pτq

˘
| S0pτq “ s

‰
(6a)

When specialized to discounted MRPs, we do not need to estimate the transition probabilities to the
terminal state H. So the TD estimator takes the form

pVTDpsq “ pEτ„Dn

“
R0pτq | S0pτq “ s

‰
` γpEτ„Dn

“pVTD

`
S1pτq

˘
| S0pτq “ s, S1pτq ‰ H

‰
.

We use the convention 0{0 “ 0 in computing the conditional expectations.

We consider an every-visit version of the MC estimator, by computing the average of the rollout rewads.

pVMC “ pEτ„Dn

” `8ÿ

ℓ“1

Rℓpτq | S0pτq “ s
ı

(6b)

An alternative version of the MC estimator uses only the first visit of the target state in every trajectory.
The results for every-visit MC and first-visit MC are qualitively similar (see Sutton and Barto (2018),
Chapter 5). We focus on the every-visit MC estimator for simplicity.

3.1 Theoretical guarantees of TD and MC

Let us first present the asymptotic convergence properties of the TD and MC estimators. To start
with, we introduce a few notations.

Definition 1 (One-step variance). We define the the one-step vaiance for any state s P S as

σ2
V ˚ psq “ VarrR0 ` V ˚pS1q | S0 “ ss,

where V ˚ is the value function.

Recall from Eq (4) the definition of Npsq. Based on existing literature, we can derive the asymptotic

distribution of the estimator pVTD as follows.

Proposition 1 (Corollary B.6 of Cheikhi and Russo (2023)). The TD estimator converges asymptot-
ical in distribution, i.e.,

?
npV ˚ ´ pVTDq dÝÑ N

`
0, pI ´ P q´1Σ˚

TDpI ´ P q
˘
,
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where Σ˚
TD “ diag

`
σ2
V ˚psq{νpsq

˘
sPS . More concretely, for any s P S, we have

?
npV ˚psq ´ pVTDpsqq dÝÑ N

˜
0,
ÿ

s1

E
“
Nps1q | S0 “ s

‰2
σ2
V ˚ps1q{νps1q

¸
.

As we will show in Section 5 to follow, the limiting normal distribution is locally asymptotic mini-
max optimal for estimating V ˚psq, for any s P S. Nevertheless, the asymptotic guarantee does not
necessarily lead to a strong non-asymptotic bound.

Meanwhile the every-visit MC estimator has the following asymptotical convergence result.

Proposition 2. The MC estimator converges asymptotical in distribution, i.e.,

?
n
´
V ˚ ´ pVMC

¯
dÝÑ N p0,Σ˚

MCq,

where for any s, s1 P S,

Σ˚
MCps, s1q “ 1

νpsqνps1q
8ÿ

t“1

8ÿ

t1“1

8ÿ

j“t1_t

ÿ

s2PS
PpSt1 “ s1, St “ s, Sj “ s2q ¨ σ2

V ˚ ps2q.

This result is a special case of Lemma 1 to follow, and we will prove the general version in Section 6.2.

Throughout the rest of this paper, we use σ2
TDpsq and σ2

MCpsq to denote the asymptotic variance of
the TD and MC estimators applied to state s, respectively, i.e.,

σ2
TDpsq “

“
pI ´ P q´1Σ˚

TDpI ´ P q
‰
s,s
, and σ2

MCpsq “ Σ˚
MCps, sq.

A notable feature of the MC estimator is that it satisfies non-asymptotic guarantees adaptive to the
occupancy measure of each state.

Proposition 3. Given a state s0 P S and a scalar δ P p0, 1q, for sample size satisfying n ě 16h logp2{δq
νps0q ,

with probability 1 ´ δ, we have

ˇ̌
ˇV ˚ps0q ´ pVMCps0q

ˇ̌
ˇ ď

d
4h3 logp2{δq
νps0qn ` 4h2 logp2{δq

νps0qn

See Section 6.1.2 for its proof. A few remarks are in order. First, we note that the theoretical guarantees
in Proposition 3 is non-asymptotic and adaptive to the visitation measure of any target state s0. In
other words, as long as the state s0 is likely to be visited, MC enjoys a non-asymptotic guarantee
depending on its probability of being visited. Clearly Ω

`
1{νps0q

˘
samples are needed in order to have

any sensible estimation of the value V ˚ps0q. So when seeing h as a constant, the sample complexity
in Proposition 3 is optimal. Note that this sample size requirement can be much smaller than the
cardinality of the state space S.

On the other hand, the leading-order variance for the MC estimator in Propositions 2 and 3 is larger
than the one by TD estimator, as the later is asymptotically optimal (see Proposition 8). It’s also
worth noticing that the non-asymptotic bound in Proposition 3 is near-tight for the MC estimator.
Indeed, we have

σ2
MCpsq “ νpsq´1 var

´ Tÿ

t“0

Rt | S0 “ s
¯
.

As long as the reward sequence from s is stochastic, an error of order pnνps0qq´1{2 is unavoidable for
MC estimator to estimate the value V ˚ps0q. As we will show in the next section, this is not the case
for the TD estimator, and the optimal variance of TD can be much smaller.
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3.2 Asymptotic gap between TD and MC

As shown in the previous section, the TD and MC estimators converge to different asymptotic distribu-
tions – TD is asymptotically optimal, while MC is not. In this section, we discuss a concrete example
where their gap can be arbitrarily large. This example is adapted from a layered MRP constructed
by Cheikhi and Russo (2023).

Consider the following Markov reward process: for two integers k, T ą 0, we consider a state space

S Y tHu, such that S “ tsp1q
1 , s

p2q
1 , . . . , s

pkq
1 , s2, ¨ ¨ ¨ , sT u. We let the starting distribution µ be uniform

on the states tsp1q
1 , s

p2q
1 , . . . , s

pkq
1 u and define the transition probabilities as

P pspiq
1 , s2q “ 1, P psj , sj`1q “ 1, andP psT ,Hq “ 1 for i “ 1, 2, ¨ ¨ ¨ , k and j “ 2, . . . , T ´ 1.

The rewards on every state are uniformly distributed on r´1, 1s. According to Propositions 1 and 2,
we can calculate the asymptotic variances as

σ2
MCpsp1q

1 q “ E

« 8ÿ

t“0

σ2
V ˚ pStq | S0 “ s

p1q
1

ff
{νpsp1q

1 q “ kT {3, and

σ2
TDpsp1q

1 q “
ÿ

s1

E

”
Nps1q | S0 “ s

p1q
1

ı2
σ2
V ˚ps1q{νps1q “ pk ` T ´ 1q{3.

So their gap can be arbitrarily large. As discussed in the paper Cheikhi and Russo (2023), the gap
between TD and MC is captured by an inverse trajectory pooling coefficient. Intuitively, TD methods
are able to pool trajectories from different sources together to reduce the variance, while MC can only
use trajectories from the target state, leading to its suboptimal behavior.

3.3 Finite-sample failure of TD learning

Despite the asymptotic advantage, when the sample size is not sufficient to estimate the entire Markov
chain transition kernel, TD method may suffer from a large bias. We illustrate this phenomenon by
presenting a simple example.

Consider the following Markov reward process: for an integer N ą 0, we consider a state space SYtHu,
such that S “ ts0, s1, s2, ¨ ¨ ¨ , sN , s1

1, s
1
2, ¨ ¨ ¨ , s1

N , s´1u. We let s0 to be the starting state, and define
the transition probabilities as

P ps0, siq “ γ

N
, P psi, siq “ γ

2
, P psi, s1

iq “ γ

2
, P ps1

i, s´1q “ γ, P ps´1, s´1q “ γ, for i “ 1, 2, ¨ ¨ ¨ , N .

Note that the transition probabilities sum up to the discount factor γ. As explained in the problem
setup above, the remaining p1 ´ γq probability mass goes to the terminal state H.

We further define the reward function r as rps1
iq “ 1 for i P rN s, and rpsq “ 0 for s R ts1

1, ¨ ¨ ¨ , s1
Nu. Let

the reward observations be deterministic, i.e., Rt ” rpStq for any t. Throughout this section, we work
with the special case of γ “ 1{2.
Under above setup, we can easily compute the true value function at s0 as

V ˚ps0q “ γ2

2 ´ γ
“ 1

6
.

Furthermore, since we have νps0q “ 1, by Proposition 3, we have that
ˇ̌
ˇV ˚ps0q ´ pVMCps0q

ˇ̌
ˇ À 1{?

n with

high probability, independent of the size parameter N . On the other hand, the following proposition
reveals the failure of the TD method, with a finite sample size.
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Proposition 4. Under above setup, if N ě 40n2 and n ě 106, with probability 0.8, we have
ˇ̌
ˇV ˚ps0q ´ pVTDps0q

ˇ̌
ˇ ě 0.08.

See Section 6.1.3 for the proof of this proposition.

Complementary to Section 3.2, Proposition 4 provides an example where MC significantly outperforms
TD with a finite sample size – for this class of MRPs, the MC estimator achieves a non-asymptotic

?
n-

rate independent of the cardinality N , while the TD estimator suffers from a constant error when N
is large. This is due to the biased induced by TD when solving fixed-point equations whose dimension
is much larger than the sample size.

In general, for TD to generate a reasonable estimator for V ˚ps0q, a sample size of n "
`
minsPS νpsq

˘´1

is required, even if the state s0 is visited much more often than the worst case. Consequently, despite
aforementioned asymptotic advantages, the sample complexity of TD is not adaptive to the difficulty
of each states.

4 The subgraph Bellman algorithm and its analysis

In this section, we introduce the subgraph Bellman estimator and analyze its asymptotic and non-
asymptotic performance. We start by working with a fixed subset G Ď S of the state space, given
as an input of the algorithm. At the end of this section, we will discuss data-driven approaches to
construct a desirable subset.

To start with, we consider a fixed-point equation satisfied by the true value function. For any state
s P G, we have

V ˚psq “ PGV
˚psq ` PG,SzGV

˚psq ` rpsq

“ rpsq ` PGV
˚psq ` E

”
1S1RG

Tÿ

t“1

rpStq | S0 “ s
ı

(7)

In other words, Eq (7) combines the two strategies based on the location of the next state: when the
next state lies in the subset G, we use TD-like estimates and substitute with the value function itself;
when the next state is outside of the subset, we take a Monte-Carlo estimate for the reward-to-go. We
can then estimate the value function by solving the fixed-point equation

pVGpsq “ pEτ„Dn

“
1S1pτqPGR0pτq | S0pτq “ s

‰
` pEτ„Dn

“
1S1pτqPG ¨ pVG

`
S1pτq

˘
| S0pτq “ s

‰

` pEτ„Dn

”
1S1pτqRG ¨

`8ÿ

ℓ“1

Rℓpτq | S0pτq “ s
ı
.

More specifically, let pPG and prG be the empirical transition matrix restricted to G and the empirical
reward function estimated with data from D and then restricted to G. Let

pVG,out :“ pEτ„DMC
n pGq

”
1S1pτqRG ¨

`8ÿ

ℓ“1

Rℓpτq | S0pτq “ s
ı

which is the every-visit MC estimator for the rewards obtained outside the subgraph G. Thus the
subgraph Bellman estimator can be rewritten as solving the following fixed-point equation

pVG “ prG ` pPG
pVG ` pVG,out. (8)

In the following we present asymptotic and non-asymptotic analysis of the subgraph Bellman estimator,
as well as efficient algorithms for solving it. We will start with the case of fixed subgraph G, and then
discuss data-driven methodologies for choosing it.
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4.1 Asymptotic variance of the subgraph Bellman estimator

Let us first establish the asymptotic distribution of our estimator in the limit n Ñ `8. The asymptotic
variance of the estimator pVG defined as Equation (8) can be expressed as cumulative one-step variances
with respect to probabilities of certain events.

Define a G ˆ G asymptotic covariance matrix

Σ˚
G :“ diagpp1{νpsqqsPGqΛ˚

G diagpp1{νpsqqsPGq, (9)

where Λ˚
G
is a conditional covariance matrix that is equivalent to Σ˚

G
only up to the occupancy measure.

The specific form of Λ˚
G is provided in Equation (24) in the proof of Lemma 1. To better understand

the conditional covariance matrix Λ˚
G
, we introduce the conditional covariance matrix Λ˚

X,G for the TD
part in our estimator and Λ˚

Y,G for the MC part. More specifically, for any s, s1 P G, we define the s, s1

element of Λ˚
X,G and Λ˚

Y,G are respectively

Λ˚
X,Gps, s1q “ 1s“s1νpsqσ2

V ˚ psq and (10a)

Λ˚
Y,Gps, s1q “

8ÿ

t“0

8ÿ

t1“0

8ÿ

j“pt1_tq`1

ÿ

s2PS
PpSt1 “ s1, St “ s, St1`1, St`1 R G, Sj “ s2q ¨ σ2

V ˚ ps2q. (10b)

In words, Λ˚
X,G is a diagonal matrix of the one-step variance at state s multiplied by the occupancy

measure. This corresponds to the TD part of the subgraph Bellman estimator as it reflects the one-
step variance. On the other hand, Λ˚

Y,Gps, s1q corresponds to the MC part of the subgraph Bellman
estimator because it measures the correlation between sub-trajectories that step out of the subgraph
at states s and s1. Compared to the MC variance in Proposition 2, the probabilities in Λ˚

Y,Gps, s1q
contains additional conditions that St1`1, St`1 R G. This is because only the trajectories going outside
the subgraph G are counted in the covariance. In Proposition 5 to follow, we will see that this term
admits an upper bound involving the exit probability of G

These two matrices offers an upper bound for the conditional covariance matrix

Λ˚
G ď 2Λ˚

X,G ` 2Λ˚
Y,G, (11)

With these, we state our main asymptotic lemma.

Lemma 1. Let G Ă S be a subset that contains s0. Suppose the probability of visiting all states in G

before exiting G is positive, that is, νpsq ą 0 for all s P G. Asymptotically, we have

?
npV ˚

G ´ pVGq Ñ N p0, pI ´ PGq´1Σ˚
GpI ´ PGq´1q.

See Section 6.2 for the proof of this lemma. This lemma serves as the asymptotic benchmark for our
finite-sample algorithms and anlaysis. Note that the covariance matrix in Lemma 1 is larger than
the covariance of TD presented in Proposition 1, as the latter is asymptotically optimal. Nevertheless,
in Theorem 1 and Theorem 2 to follow, we will show that such a covariance is achieved by the subgraph
Bellman estimator, with a near-optimal sample complexity depending on the visitation measure of the
states in G. This is in contrast with the standard TD estimator, which is shown to fail with a large
state space, as shown in Proposition 4. Moreover, under many settings, the achievable covariance
in Lemma 1 is still able to capture the trajectory pooling phenomena discussed in Section 3.2, even
without learning the transition structure of the entire statespace. We will give a concrete example in
Section 4.1.1 to follow.

The asymptotic covariance Λ˚
Y,G takes a complicated form. In order to better understand the MC part

of the asymptotic variance, we provide a simplified expression using the occupancy measure, in the
spirit of Proposition 3.

10



Proposition 5. Under Assumption (Effphq), we have

Σ˚
G ď diag

´
2
σ2
V ˚psq
νpsq ` c

PpS1 R G | S0 “ sq
νpsq h3 log3

`
h{νminpGq

˘¯
sPG

,

where c ą 0 is a universal constant, and νminpGq :“ minsPG νpsq.
See Appendix A.3 for the proof of this proposition.

From Proposition 5, we can observe two terms that governs the asymptotic covariance: the one-step

variance term
σ2

V ˚ psq
νpsq which also appears in TD’s optimal asymptotic covariance in Proposition 1. With

the presence of trajectory pooling, the one-step variance σ2
V ˚ psq may be much smaller than the scale

of reward, and can be zero for certain states. An additional term depends on 1{νpsq, coupled with a
pre-factor given by the probability of exiting G from state s, up to effective horizon and logarithmic
factors.

Following the derivation in Cheikhi and Russo (2023), by defining NGps1q as the number of visit to s1

before exiting the subgraph G, we can further re-write the variance at target state s0 as

“
pI ´ PGq´1Σ˚

GpI ´ PGq´1
‰
s0,s0

À
ÿ

s1

E
“
NGps1q | S0 “ s

‰2
νps1q´1

!
σ2
V ˚ ps1q ` PpS1 R G | S0 “ s1qh3

)
,

(12)

up to logarithmic factors. As a result, the one-step variance and exit probabilities of states in the
subgraph G are propagated to paths from s within the subgraph. Intuitively, in order to make this
bound small, we need to choose the subgraph G so that the process exits G at “trajectory-pooling”
states, i.e., states that are more often visited. Apparently, this is not always possible, and will depend
on the local structures of the Markovian transition kernel P . On the other hand, in Theorem 3 to
follow, we show that the improved variance is not possible when we cannot exit the subgraph through

frequently-visited states. Indeed, we show a minimax lower bound of order PpS1RG|S0“sq
νpsq , even if the

TD optimal variance is much smaller.

4.1.1 Transient subgraphs

When the underlying Markov chain possess special structures, the asymptotic variance in Lemma 1
can be greatly simplified. In this section, we consider transient subsets of the Markov chain.

Definition 2 (Transient subgraph). A subgraph G is transient if it is not possible to return to G after
leaving G, i.e., for any t ě 1, we have

PpSt P G | S0 P G, S1 R Gq “ 0.

For example, if the underlying transition kernel P is given by a directed acyclic graph and the subgraph
G is formed by all the paths from one state to another, the resulting subgraph is transient.

When G is transient, the MC part of the estimator has no correlation with the TD part, and we have
Λ˚
G “ Λ˚

X,G `Λ˚
Y,G. Moreover, the every-visit MC estimator is equivalent to the first-visit MC estimator

which simplies also the variance term of Λ˚
Y,G . Concretely, we have the following corollary.

Corollary 1 (Asymptotic covariance matrix for transient subgraph). Let σ2
outpsq “ Erř8

t“1 σ
2
V ˚ pStq |

S0 “ s, S1 R Gs. Suppose the subgraph G is transient, then we have

?
npV ˚

G ´ pVGq Ñ N p0, pI ´ PGq´1Σ˚
GpI ´ PGq´1q

11



where Σ˚
G can be simplied to be

Σ˚
G “ diag

ˆ´!
σ2
V ˚ psq ` PpS1 R G | S0 “ sqσ2

outpsq
)

{νpsq
¯
sPG

˙
.

More concretely, we have for any s P G,

?
npV ˚

G psq ´ pVGpsqq Ñ N

˜
0,

ÿ

s1PG
E
“
Nps1q | S0 “ s

‰2σ2
V ˚ ps1q ` PpS1 R G | S0 “ s1qσ2

outps1q
νps1q

¸
.

See Appendix A.2 for the proof of this corollary. The asymptotic covariance in Corollary 1 takes a
form similar to Proposition 5 and Equation (12), with the effective variance at each state depending
on the one-step variance and an MC variance multiplied with the exit probability. By considering
the special case of transient subgraphs, Corollary 1 provides an exact characterization of the variance,
instead of worst-case upper bounds. The term σ2

outpsq exactly corresponds to the MC variance going
outside the subgraph, as we have the following result.

Proposition 6 (Proposition B.4 of Cheikhi and Russo (2023)). For any state s P G such that tsu is
a transient subgraph, we have

?
npV ˚psq ´ pVMCpsqq Ñ N

˜
0,E

« 8ÿ

t“0

σ2
V ˚ pStq | S0 “ s

ff
{νpsq

¸
.

Based on our exact expressions for the asymptotic variance, it is illustrative to revisit the example in
Section 3.2, and investigate the benfit of the subgraph Bellman operator compared to the näıve Monte
Carlo methods.

Benefits compared to the MC estimator: For the layered MRP considered in Section 3.2, we

can choose the subgraph to be G “ tsp1q
1 , s

p2q
1 , . . . , s

pkq
1 u Y ts2u. For this subgraph, the asymptotical

variance of the subgraph Bellman estimator is by Corollary 1,

ÿ

s1

E

”
Nps1q | S0 “ s

p1q
1

ı2
pσ2
V ˚ ps1q ` PpS1 R G | S0 “ s1qσ2

outps1qq{νps1q “ pk ` T ´ 1q{3.

The above calculation asserts that the subgraph Bellman estimator has the same asymptotic variance
as the TD estimator which is asymptotically optimal. Moreover, it achieves a vast improvements
asymptotically compared to the MC estimator when number k is large.

We mention in passing that there are other ways to interpolate between the MC estimator and the
TD estimator. Most notably, the TD(λ) estimator is created to geometrically mix the n-step TD
estimators, where the 8-step TD estimator is exactly the MC estimator. However, the TDpλq does
not optimally interpolate between TD and MC estimators – indeed, it still needs to solve a fixed-point
equation of dimension |S|, costing a high sample complexity even for frequently-visited states; on the
other hand, the asymptotic variance of TDpλq retains an additive component from the MC estimator,
thus never achieving asymptotic optimality.

4.2 ℓ
2-error guarantees for the plug-in estimator

Now we consider the finite-sample behavior of the subgraph Bellman estimator. Since we do not assume
any structures on the value function V ˚ or the MDP dynamics, in order to learn any information about

12



V ˚psq at a state s, such a state needs to be visited at least once. Under our observation model, for
any s P G, it is easy to see that

E

” ˇ̌ 
τ P DnpGq : τ starts with s

(ˇ̌ ı
“ nνpsq.

Throughout this paper, we define the minimum occupancy measure νminpGq :“ minsPG νpsq, and we
use the shorthand notation νmin “ νminpGq when it is clear from the context. For a prescribed failure
probability 1 ´ δ, we need the following sample size condition

n

log4pn{δq
ě c1h

3{νmin (13)

Theorem 1. Under above setup, there exists universal constants c, c1 ą 0, such that when the sample
size n satisfies Eq (13), for any state s P G, with probability 1 ´ δ, we have the upper bound

}pVG ´ V ˚
G }νpGq ď c ¨

´ ÿ

sPG
νpsq

“
pI ´ PGq´1Σ˚

GpI ´ PGq´J‰
s,s

¯1{2
c

logp1{δq
n

` c
h3

n
?
νmin

log3
´ n

δνmin

¯
.

See Section 6.3 for the proof of this theorem.

A few remarks are in order. First, the non-asymptotic guarantees in Theorem 1 matches the asymptotic
ℓ2pνpGqq-risk of the limiting normal random variable in Lemma 1, up to a universal constant factor
and high-order terms. Indeed, the high-order terms can be removed at a cost of weaker dependence
on the tail probabilities. With constant probability, we have

}pVG ´ V ˚
G }νpGq ď c?

n

´ ÿ

sPG
νpsq

“
pI ´ PGq´1Σ˚

GpI ´ PGq´J‰
s,s

¯1{2
.

See Eq (28) in the proof for details.

Second, we note that the sample size requirement in Eq (13) has a linear dependence on the inverse
occupancy measure 1{νmin “ maxsPG 1{νpsq, and the high-order term in Theorem 1 becomes op1{?

nq
under such a sample size condition. This threshold is naturally the best we can hope for – we need to
visit a state at least once to learn about its value function, without additional structures imposed. For
Markov chains that do not explore the statespace evenly, such a quantity can be much smaller than
the worst-case inverse occupancy measure maxsPS 1{νpsq. As we will discuss in the next sections, the
subset G is chosen adaptively based on the sample size n, so as to ensure Eq (13) holds true.

Finally, we remark that the cubic dependence on the effective horizon h is a coarse worst-case bound,
which is likely to be improvable. These factors come from various sources – including the operator
norm |||pI´PGq´1|||νpGq, and the expected length of the MC trajectory after exiting the subgraph G. In
practice, these quantities can be much smaller than the effective horizon itself. In our analysis, we do
not optimize the h-dependence, and focus on the dependence on occupancy measure and the optimal
variance. It is an interesting research direction to exploit these more refined expressions for the horizon
dependence, especially with applications to average-reward problems.

4.3 Functional estimation: guarantees with ROOT-SA

Though Theorem 1 gives sharp guarantees in ℓ2pνpGqq-norm, this does not provide a satisfactory answer
to our original problem – to generate an estimator for the value V ˚ps0q with near-optimal variance
and sample complexity, for every target state s0. If we simply apply Theorem 1 In practice, we may
be interested in estimating a linear functional of the value function, such as the value at a single
state, or the difference of values at two states. Instead, we use the optimal variance-reduced stochastic
approximation scheme in Mou et al. (2022a) to solve the fixed-point in an online fashion.
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The ROOT-SA algorithm: For completeness, let us first briefly describe the ROOT-SA algorithm.
Consider an operator f in a finite-dimensional space Rd. The goal is to find the fixed point θ˚ of f
(which is assumed to exist and to be unique) using stochastic observations pFtqt“1,2,¨¨¨. We assume
that the stochastic operators are i.i.d., satisfying

ErFtpθqs “ fpθq, for any θ P Rd, (14a)

}Ftpθ1q ´ Ftpθ2q}8 ď L}θ1 ´ θ2}8, for any θ1, θ2 P Rd, (14b)

}Ftpθ˚q}8 ď b8 (14c)

We work with a special case of the results in Mou et al. (2022a), where the operator f is linear and
multi-step contractive, i.e.,

}fpθ1q ´ fpθ2q}8 ď }θ1 ´ θ2}8, }f pkqpθ1q ´ f pkqpθ2q}8 ď 1

2
}θ1 ´ θ2}8, for any θ1, θ2 P Rd. (15)

where f pkq :“ f ˝ f ˝ ¨ ¨ ¨ flooooomooooon
k

is the k-step composition of the operator f .

In Algorithm 1, we describe the ROOT-SA algorithm from Mou et al. (2022a). The algorithm updates
the parameter θ in an online fashion, using one stochastic oracle at each time.

Algorithm 1 ROOT-SA : A recursive SA algorithm

1: Given (a) Initialization θ0 P Rd, (b) Burn-in B0 ě 2, and (c) stepsize η ą 0
2: for k “ 1, 2, ¨ ¨ ¨ do
3: if t ď B0 then
4: ut “ 1

B0

řB0

t“1 tFtpθ0q ´ θ0u , and θt “ θ0.
5: else
6: ut “

`
Ftpθt´1q ´ θt´1

˘
` t´1

t

!
ut´1 ´

`
Ftpθt´2q ´ θt´2

˘)
,

7: θt “ θt´1 ` ηut.
8: end if
9: end for

10: return θT

Construction of the oracles: Now we describe the construction of the (population-level) fixed-
point equation and stochastic oracles. First, for any t ě 0, we can rewrite Equation (7) in the form

PpSt “ sqV ˚psq “ E

”
1St“s,St`1PGV

˚psq
ı

` E

”
1St“s,St`1RG

`8ÿ

ℓ“t`1

Rℓ

ı
` E

”
Rt1St“s

ı
.

Summing the equation up over t P N, given a vector w P RG of positive entries, we have

wpsq ¨ E
”`8ÿ

t“0

1St“sV
˚psq

ı
“ wpsq

!
E

”`8ÿ

t“0

1St“s,St`1PGV
˚psq

ı
` E

”`8ÿ

t“0

1St“s,St`1RG

`8ÿ

ℓ“t`1

Rℓ

ı
` E

”`8ÿ

t“0

Rt1St“s
ı)
.

Based on this identity, we can define the population-level operator

fpθq :“ θ ` w d ν d
!
PGθ ` PG,SzGV

˚ ` r ´ θ
)
. (16a)
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For the empirical version, we use a mini-batched ROOT-SA algorithm. Given a batch size m, we define
the stochastic operator

Ftpθqpsq :“ θpsq ` wpsq
m

mÿ

i“1

Tiÿ

t“0

!
1
S

piq
t “s,Spiq

t`1
PGθpSpiq

t`1q ` 1
S

piq
t “s,Spiq

t`1
RG

Tiÿ

ℓ“t`1

R
piq
ℓ ` 1

S
piq
t “sR

piq
t ´ 1

S
piq
t “sθpsq

)
.

(16b)

Intuitively, for f to be a multi-step contraction under the ℓ8-norm, we need w˝ν to be almost a constant
vector. Therefore, a natural choice of w is by inverting the empirical estimator for the occupancy
measure ν. In order to make the construction independent of stochastic operators pFtqt“1,2,¨¨¨, we
use an auxiliary dataset prτiqnA

i“1 with some given sample size nA to be specified. When n ě 2nA, we
can use the first nA observed trajectories to construct the weight vector w, and use the rest n ´ nA
trajectories to run the ROOT-SA algorithm and compute the fixed point. Such a modification will inflate
the constant factor in Theorem 2 by at most 2.

Given the auxiliary dataset
`
rτi “ prSpiq

0 , rRpiq
0 , rSpiq

1 , rRpiq
1 , ¨ ¨ ¨ , rSpiq

rTi

q
˘nA

i“1
, we define

wpsq :“ 1

2

! 1

nA

nAÿ

i“1

rTiÿ

t“0

1 rSpiq
t “s

)´1

, for any s P G. (17)

In words, we first construct an empirical estimator pνA for the occupancy measure ν using the auxiliary
dataset, and then take w as 1

2pνA . Intuitively, through such a pre-conditioned scheme, we enforce faster
updates for less-visited states, and slower updates for frequently visited ones. It is worth noting that
our pre-conditioning method is closely related to state-dependent adaptive stepsizes, which exist in
the early stochastic approximation literature (Bertsekas (1996), Section 4.1), and have been exploited
in modern RL contexts (Murthy et al., 2024). Under our setup, the fast-slow updates allow us to
established sharp guarantees for any target state, as opposed to the weighted average error bounds.
This new technical ingredient in stochastic approximation algorithms might be of independent interest.

Finally, it has been noted in Mou et al. (2022a) that the vanilla ROOT-SA algorithm forgets the initial
condition relatively slowly. In order to overcome this slow rate, we restart the algorithm multiple
times. Combining these ingredients together, we arrive at our complete algorithm, which is described
in Algorithm 2.

Algorithm 2 ROOT-SA for subgraph Bellman operator

1: Given tuning parameters pη,m,B0,Krestartq and datasets prτiqnA

i“1, pτiqni“1.
2: Use auxiliary dataset prτiqnA

i“1 to compute the weight vector w via Eq (17).
3: Let θp0q :“ 0.
4: for ℓ “ 1, 2, ¨ ¨ ¨ ,Krestart do
5: Use 2B0m data points to run ROOT-SA with stochastic operator F given by Eq (16b), starting

point θpℓ´1q and tuning parameters pη,m,B0q for 2B0 rounds, and generate the final iterate θ2B0
.

6: Let θpℓq “ θ2B0
.

7: end for
8: Use the remaining n´ 2B0mKrestart data points to run ROOT-SA with stochastic operator F given

by Eq (16b), starting point θpKrestartq and tuning parameters pη,m,B0q, and generate the final
iterate θfinal.

9: return Output pV ROOT
G :“ θfinal.

Non-asymptotic guarantees: Now we are ready to state the main non-asymptotic guarantees for
the ROOT-SA algorithm.
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We use the following choice of parameters

nA “ ch

νmin

log
`
n{δ

˘
, m “ ch

νmin

log
`
n{δ

˘
, η “

c
m

n
, B0 “ c1h

η
log

`
n
δ

˘
, and Krestart “ 3 logn.

(18)

Theorem 2. Given a sample size satisfying Equation (13), under the parameter choices given by
Eq (18), there exists universal constants c, c1 ą 0, such that for any vector a0 P RG with }a0}1 ď 1,

with probability 1 ´ δ, Algorithm 2 outputs a value function pV ROOT
G that satisfies

ˇ̌
ˇxa0, pV ROOT

G y ´ xa0, V ˚y
ˇ̌
ˇ ď c

´
aJ
0 pI ´ PGq´1Σ˚

GpI ´ PGq´Ja0
¯1{2

c
logp1{δq

n

` c
!´ h3

νminn

¯1{4
¨ h?

n
max
s

Σ˚
Gps, sq1{2 ` h3

νminn

)
log5pn{δq.

See Section 6.4 for the proof of this theorem.

A few remarks are in order. First, by applying Theorem 2 with the indicator vector a0 “ es0 , we
obtain a bound of the form

ˇ̌
ˇ pV ROOT

G ps0q ´ V ˚ps0q
ˇ̌
ˇ ď c

c
logp1{δq

n

“
pI ´ PGq´1Σ˚

G
pI ´ PGq´J

‰
s0,s0

` high order terms,

which achieves the asymptotic variance of Lemma 1 in its leading-order term (c.f. Proposition 5 and
Equation (12) for upper bounds and interpretation of such quantities). Yet, Theorem 2 applies to
more general ℓ1-bounded linear functionals. For example, for policy evaluation in Markov decision
processes, the state space S in our notation corresponds to the state-action space, and the ℓ1-bounded
linear functionals include the difference in the value of two actions at a single state, and the advantage
function of a state-action pair. For any such functionals, the output of our ROOT-SA algorithm achieves
the precise variance in the asymptotic distribution in Lemma 1, with the same sample size requirement
as in Theorem 1.

There are two high-order terms in Theorem 2, containing an instance-dependent term depending on
the largest entry of the covariance Σ˚

G , and a worst-case term depending on the inverse occupancy

measure 1{νmin. These two terms decay at rates n´3{4 and n´1, respectively. When the sample size
satisfies the lower bound n Á h3{νmin, both high-order terms are of order op1q and decays faster than
the first term. So the variance-dependent leading-order term will dominate. Such type of statistical
guarantees with instance-dependent leading-order term and worst-case-optimal high-order terms have
been explored in our previous works (Mou et al., 2024, 2023). Compared with these previous works,
we use the smallest occupancy measure νminpGq of the subgraph, instead of the problem dimension,
to characterize the worst-case complexity. This is unavaoidable under our observational model, as we
need to observe a state at least once in order to make use of its structural information.

Finally, we note that Theorem 2 provides error guarantees for a class of estimators indexed by the
subgraph G targeted at the same scalar V ˚ps0q. Each choice of the subgraph G leads to a different risk
bound depending on rpI ´PGq´1Σ˚

GpI ´PGq´Jss0,s0 . This allows us to use choose the set G adaptively
so as to minimize such functionals. The following section provides a data-driven method to do so.

4.4 Learning the subgraph from data

According to Lemma 1 and Theorem 2, for a fixed state s P S, the asymptotic risk of the sub-graph
Bellman algorithm for estimating V ˚psq is governed by the risk functional ς2Gpsq :“

“
pI ´PGq´1Σ˚

G
pI ´
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PGq´J‰
s,s

. In order to minimize such a risk functional, we need to compute it for any subset G of the

state space. In the following, we describe a data-driven method to estimate such a risk functional. Our
method uses an auxiliary dataset pτiqn0

i“1 and a tuning parameter L P N`. To describe the procedure,
we define the pooled dataset for any a, b P rn0s.

Dra,bs :“
!

pSpiq
t , R

piq
t , S

piq
t`1, R

piq
t`1, ¨ ¨ ¨ , Spiq

Ti
, R

piq
Ti
,Hq : i P ra, bs, t P r0, Tis

)

We consider the following multi-stage procedure. Our method is in spirit similar to the variance
estimator in Xia et al. (2023).

Step I: Generate a subgraph value function estimator pVn0{4 : G Ñ R via Algorithm 2 with parameter
choice (18) and dataset size n “ n0{4.
Step II: For ℓ “ 1, 2, ¨ ¨ ¨ , L, use the second fold of the dataset to generate the transition estimators

pP pℓq
G ps, s1q :“ pPDrn0{4`1,n0{2s

´
Sℓ “ s1, S0, S1, ¨ ¨ ¨ , Sℓ P G | S0 “ s

¯
, for any s, s1 P G. (19a)

Generate independent copies qP pℓq
G with the dataset Drn0{2`1,3n0{4s following the same expression.

Step III: Use the last part pτiqn0

i“3n0{4`1
of the auxiliary dataset to compute the covariance matrix

estimator

pΣGps, s1q :“ 4

n0pνpsqpνps1q

n0ÿ

i“3n0{4`1

sεipsqsεips1q, (19b)

where we define

sεipsq :“
Tiÿ

t“0

1
S

piq
t “s

!
R

piq
t ` 1

S
piq
t`1

PG
pVn0{4pSpiq

t`1q ` 1
S

piq
t`1

PG

Tiÿ

ℓ“t`1

R
piq
ℓ ´ pVn0{4psq

)
, for s P G. (19c)

and pνpsq :“ 4
n0

řn0

i“3n0{4`1

ˇ̌
ˇtt P r0, Tis : S

piq
t “ su

ˇ̌
ˇ.

Finally, we estimate the variance

pς2ps0q :“
”`
I ` pP p1q

G
` pP p2q

G
` ¨ ¨ ¨ ` pP pLq

G

˘pΣG

`
I ` qP p1q

G
` qP p2q

G
` ¨ ¨ ¨ ` qP pLq

G

˘Jı
s0,s0

. (19d)

We have the following theoretical guarantees for such an estimator.

Proposition 7. Under above setup, given a sample size n0 satisfying Eq (13), given L “ 2h logphn0q,
with probability 1 ´ δ, we have

ˇ̌
pς2ps0q ´ ς2Gps0q

ˇ̌
ď c

νmin

d
h11 log13

`
n0{δ

˘

n0νmin

.

See Appendix B for the proof of this proposition.

A few remarks are in order. First, note that the target variance ς2Gps0q scales as 1{νmin in the worst-case.
By seeing the effecive horizon h as a constant, we need a sample complexity of order n Á 1{νmin to
make the estimation error smaller than the worst-case scaling of the target. Such a sample complexity
is worst-case optimal in terms of 1{νmin. We do not optimize the dependence on the effective horizon h
in our analysis, and it is likely that the h11 factor in our bound can be improved. Second, the estimator
pς2ps0q we constructed utilizes multi-fold sample splitting techniques, and a polynomial approximation
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to the matrix inverse pI´PGq´1. We do so to simplify our theoretical analysis. In practice, the simple
empirical plug-in estimators for the variance may work as well, and we conjecture that they satisfy
similar theoretical guarantees.

Based on the variance estimator, we can design the following greedy algorithm for choosing the sub-
graph G in using empirical data.

Algorithm 3 Data-driven construction of the subgraph G

1: Given a holdout dataset pτiqn0

i“1, a target state s0, and the final sample size n.
2: Use part of the holdout dataset to form an empirical estimator pν for the occupancy measure ν over

the entire state space S.

3: Choose the candidate set C :“
 
s P S : pνpsq ě c1h

3 log4pnq
n

(
, with the constant c1 given by Eq (13).

4: Initialize with Gp0q :“ ts0u.
5: for t “ 1, 2, ¨ ¨ ¨ do
6: For each s P CzGpt´1q, generate estimator pς2

Gpt´1qYtsups0q for the variance ς2
Gpt´1qYtsups0q.

7: Choose the state ps :“ argminsPCzGpt´1q pς2
Gpt´1qYtsups0q.

8: if pς2
Gpt´1qYtsups0q ă pς2

Gpt´1q ps0q then

9: Let Gptq :“ Gpt´1q Y tpsu.
10: end if
11: if The subset Gptq is not updated in this iteration then
12: Output Gptq, and exit.
13: end if
14: end for

Algorithm 3 uses greedy heuristics to add states to the subset G one by one, so as to minimize the
estimated variance. It also uses the candidate set C to filter states based on its estimated visitation
measure. In general, such an algorithm may not always converge to the optimal subgraph G, and it is
an interesting future direction to study theoretical properties of algorithms that search for G.

5 Minimax lower bounds

We present some minimax lower bounds that complement the upper bounds in Section 4.

5.1 Local asymptotic minimax theory

To start with, let us first certify the asymptotic optimality of the TD estimator in the n Ñ `8 limit.
Given a Markov chain transition kernel P and a reward function r, we consider associated ε-local
neighborhood

Nrwdpr0, εq :“
!
r : }r ´ r0}8 ď ε

)
, and (20a)

NtranpP0, εq :“
!
P : sup

sPS
D8 pP0ps, ¨q||P ps, ¨qq ď ε

)
. (20b)

We also assume that the data are coming from trajectory observations in the form of Eq (1), starting
from S0 with a given initial distribution. Note that the pair pP, rq does not fully describe the probability
distribution of observations, as the distribution of stochastic reward is not specified yet. In doing so,
we consider the class of noise distributions that satisfy the equation varpRtpStq | St “ sq “ σ2

r psq for
each state s P S, for a given function σr . (Indeed, we only use Gaussian noise in our proof. So the
lower bound holds true with a smaller class of MRPs under Gaussian noise).
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In the following proposition, we provide a minimax lower bound on the asymptotic risk in this local
neighborhood

Proposition 8. Under above setup, for any estimator pVn that maps n trajectories to a value function,
we have

sup
∆ą0

lim inf
nÑ`8

sup
PPNtranpP0,∆{?

nq
rPNrwdpr0,∆{?

nq

n ¨ E
” ˇ̌
ˇpVnps0q ´ V ˚

P,rps0q
ˇ̌
ˇ
2 ı

ě
”
pI ´ P q´1 diagpσV ˚psq2{νpsqqsPSpI ´ P q´J

ı
s0,s0

,

for any s P S.

See Appendix C for the proof of this proposition. The rationale behind this proposition is simple:
since the TD estimator is constructed by plugging in the empirical mean estimator for the underlying
MRP, the asymptotic optimality for estimating the later implies asymptotic optimality for estimating
the former.

The local asymptotic minimax theory guarantees that the TD estimator optimally adapts to the
structure of the underlying MRP in a strong sense: even by restricting our attention to a small
neighborhood of a given problem instance, the TD variance is still unavoidable. Nevertheless, such an
adaptivity may not be always possible with finite sample size, as we will show in the next subsection.

5.2 Finite-sample lower bounds

Though the optimal risk functional in Proposition 8 is asymptotically achieved by pVTD when we have
n Ñ `8, such an estimator requires a sample size of at least n Á |S|, as shown in Proposition 4.
When the Markov chain possesses certain local structures, the subgraph Bellman operator introduced
in Section 4 achieves an improved variance that interpolates between the variances of TD and MC. It
is natural to ask whether such an interpolation is optimal and whether the local structure is necessary.
In this section, we answer the questions affirmatively by providing a matching minimax lower bound.

In order to set up the lower bound, we need to first define a class of problem instances. On the one
hand, if we consider the class of all MRPs, the worst-case complexity is not able to distinguish the
performance of TD and MC methods, let alone their interpolation; on the other hand, by restricting
to a local class, the asymptotically optimal risk in Proposition 8 may not be achievable for when the
sample size is small. This dilemma motivates us to consider a class of MRPs with certain structures.
Inspired by Proposition 5, we use three quantities to characterize the complexity of value estimation
associated to a certain state: the TD variance, the occupancy measure, and an exit probability. Based
on these quantities, we can define the suitable function class as follows.

Recall that σTD denotes the asymptotic variance for the TD estimator. Given a state space S and a
state s0 P S, for scalars pν0, σ˚, h, δ, qq, we define

Cpν0, σ˚, h, δ, qq :“
!`
P,LpRq

˘
:

Assumption (Effphq) holds, maxsPS |Rpsq| ď 1 a.s.
νps0q ě ν0, σTDps0q ď σ˚, P

`
νpS1q ď δ | S0 “ s

˘
ď q

)
.

The problem class Cpν0, σ˚, h, δ, qq imposes 5 conditions on the underlying MRP. The first two con-
ditions are the standard setup we work with throughout the paper, and we impose three additional
restrictions corresponding to the three key quantities in Proposition 5.

• The occupancy measure of the target state needs to be at least ν0. For MRPs within such a
class, MC could achieve an MSE bound of order O

`
1{pnν0q

˘
.

• Asymptotically, TD is achieving a variance smaller than σ2
˚. When σ2

˚ ! 1
ν0
, this corresponds

to a regime of our interest: the TD method achieves much smaller variance than the worst-case
bound achieved by MC.
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• Additionally, starting from the target state s0, the Markov chain transitions to a “small occupancy
state” with probability less than a prescribed level q. We use the parameter δ to characterize
the occupancy measure of these states. When δ is small, it is not possible to estimate the value
of these states with a reasonable sample size, so these states cannot be included in the subgraph
G for estimation. As a result, the parameter q provides a lower bound on the exit probability
P
`
S1 R G | S0 “ s0

˘
for any viable choice of G.

Having set up the problem class, we are ready to state the finite sample minimax lower bound.

Theorem 3. Under the observation model in Section 2, there exist positive universal constants pc, c1, c2q,
such that if σ2

˚ P p5, 1{ν0q and δ “ 2{|S|, for any n ě c1{ν20 and q P r0, 1s, when |S| ě c2n
2, we have

inf
pVn

sup
pP,LpRqqPCpν0,σ˚,2,δ,qq

E

” ˇ̌
ˇpVnps0q ´ V ˚ps0q

ˇ̌
ˇ
2 ı

ě c

n

!
σ2

˚ ` q

ν0

)
.

See Section 6.5 for the proof of this theorem.

A few remarks are in order. First, Theorem 3 holds true in the regime ν´2
0 À n À

a
|S|. This is the

regime of our interest: the sample size is sufficiently large so that we observe the target state multiple
times in our trajectories, but not large enough to cover the entire statespace.2 We consider small
occupancy states with occupancy measure δ “ 2{|S|, so that each of these states is unlikely to be
visited in n trajectories, while the collection of these states still constitutes a substantial mass. Finally,
as we focus on occupancy measure and TD variance as the main complexities, we do not try to track
the effective horizon dependence in our lower bound, so we simply consider the class of problems with
h “ 2. It is an interesting future direction to settle down the optimal dependence on effective horizon
in both upper and lower bounds.

Under such a regime, the minimax risk lower bound contains two terms: the TD variance σ2
˚ is a

standard risk lower bound that also appeared in Proposition 8. What makes the lower bound more
interesting is the second term q{ν0: first, if we remove the exit probability constraint by setting q “ 1,
the lower bound will become of order 1{ν0, regardless of the value of σ2

˚. This establishes the role
of 1{ν0 as the correct worst-case finite sample complexity – even if the TD variance is much smaller,
an estimator still needs to pay for a variance scaling with the inverse occupancy measure, unless the
sample size is extremely large. In such a case, though the trajectory pooling effect exists, it cannot be
exploitted with a reasonable sample size, and the näıve MC estimator is already optimal.

By introducing the exit probability parameter q, Theorem 3 provides a more fine-grained characteriza-
tion. Since a small-occupancy state has an occupancy measure of 2{|S| ! 1{n, it cannot be added to
the subset G in the subgraph Bellman estimator. Therefore, for the subgraph Bellman estimator, the

risk bounds in Proposition 5 and Equation (12) have to contain a term of order PpS1RG|S0“s0q
νps0q ě q

νps0q .
Theorem 3 shows that such a term is information-theoretically unavoidable for any estimator. Com-
bining our upper and lower bounds, we establish that the “small exit probability” structure discussed
in Proposition 5 is necessary and sufficient to make use of trajectory pooling and improve the variance,
with a finite sample size.

6 Proofs

We collect the proofs of the results in this section. Some technical proofs are deferred to appendices.

2Ideally, this corresponds to the regime ν
´1

0
À n À |S|, while our lower bound holds in a narrower regime with a

polynomial gap. We conjecture that a similar lower bound holds true in the wider regime.
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6.1 Proof in Section 3

In this section, we prove the results from Section 3.

6.1.1 Proof of Proposition 2

Let Bpsq “ tpi, tq | Spiq
t “ su are all the trajectory and time indices where state s is reached. Further-

more, let

Z
piq
t psq “ 1

S
piq
t “s

˜
V ˚pSpiq

t q ´
˜ 8ÿ

t1“t
R

piq
t1

¸¸
.

Thus, the deviation of the MC estimator satisfies

?
n
´
V ˚psq ´ pVMCpsq

¯
“

?
n

Bpsq

nÿ

i“1

8ÿ

t“1

Z
piq
t psq

“ n

Bpsq ¨
?
n ¨ 1

n

nÿ

i“1

8ÿ

t“1

Z
piq
t psq.

Now we show that the covariance for any s, s1 P S is bounded as

cov

˜ 8ÿ

t“1

Z
p1q
t psq,

8ÿ

t“1

Z
p1q
t ps1q

¸
“ E

« 8ÿ

t“1

Z
p1q
t psq ¨

8ÿ

t1“1

Z
p1q
t1 ps1q

ff

“
8ÿ

t“1

8ÿ

t1“1

E

”
Z

p1q
t psqZp1q

t1 ps1q
ı
.

We further have

Z
p1q
t psq “ 1

S
piq
t “s

8ÿ

τ“t

´
V ˚pSp1q

τ q ´Rp1q
τ ´ V ˚pSp1q

τ`1q
¯
.

Thus we have

E

”
Z

p1q
t psqZp1q

t1 ps1q
ı

“ E

«
1
S

piq
t “s

8ÿ

τ“t

´
V ˚pSp1q

τ q ´Rp1q
τ ´ V ˚pSp1q

τ`1q
¯

¨ 1
S

piq

t1 “s1

8ÿ

τ 1“t1

´
V ˚pSp1q

τ 1 q ´R
p1q
τ 1 ´ V ˚pSp1q

τ 1`1q
¯ff

“
8ÿ

j“t1_t

ÿ

s2PS
PpSt1 “ s1, St “ s, Sj “ s2q ¨ σ2

V ˚ ps2q.

In all, we obtain

cov

˜ 8ÿ

t“1

Z
p1q
t psq,

8ÿ

t“1

Z
p1q
t ps1q

¸
“

8ÿ

t“1

8ÿ

t1“1

8ÿ

j“t1_t

ÿ

s2PS
PpSt1 “ s1, St “ s, Sj “ s2q ¨ σ2

V ˚ps2q

ď h3 max
sPS

σ2
V ˚ psq,

where the last inequality is by Assumption (Effphq). Moreover, since
8ř
t“1

Z
piq
t psq are i.i.d. random

variables for i P rns and we have

?
n ¨ 1

n

nÿ

i“1

8ÿ

t“1

Z
piq
t psq Ñ N p0,Λ˚

MCq,
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where for any s, s1 P S,

Λ˚
MCps, s1q “

8ÿ

t“1

8ÿ

t1“1

8ÿ

j“t1_t

ÿ

s2PS
PpSt1 “ s1, St “ s, Sj “ s2q ¨ σ2

V ˚ ps2q.

Furthermore, by law of large numbers, n
Bpsq converges to 1{νpsq almost surely. Hence by Slutsky’s

theorem, we have

?
n
´
V ˚ ´ pVMC

¯
Ñ N p0,Σ˚

MCq,

where for any s, s1 P S,

Σ˚
MCps, s1q “ 1

νpsqνps1q
8ÿ

t“1

8ÿ

t1“1

8ÿ

j“t1_t

ÿ

s2PS
PpSt1 “ s1, St “ s, Sj “ s2q ¨ σ2

V ˚ ps2q.

6.1.2 Proof of Proposition 3

We start by relating the visitation probability to the occupancy measure. Define the hitting time
T ps0q :“ inftt ě 0 : St “ s0u, which becomes infinite if s0 R τ . Note that

νps0q “ E

”
|tt ě 0 : St “ s0u|

ı

“ E

”
|tt ě T ps0q : St “ s0u|

ˇ̌
ˇ T ps0q ă `8

ı
¨ P

`
s0 P τ

˘

ď E

”
|tt ě T ps0q : St ‰ Hu|

ˇ̌
ˇ T ps0q ă `8

ı
¨ P

`
s0 P τ

˘

piq“ E
“
T
‰

¨ P
`
s0 P τ

˘
“ hP

`
s0 P τ

˘
. (21)

where in step piq, we use strong Markov property.

For i P rns such that s0 P τ piq, we define the roll-out total rewards

V
piq
MCps0q :“

Tiÿ

t“Tips0q
R

piq
t .

The Monte Carlo estimator is given by pVMCps0q “
ˇ̌
ti P rns : s0 P τ piqu

ˇ̌´1 ¨ ři:s0Pτ piq v
piq
MCps0q. By

strong Markov property, conditionally on the set ti P rns : s0 P τ piqu, the collection of random variables`
v

piq
MCps0q

˘
i:s0Pτ piq are i.i.d., and we have that

E
“
V

piq
MCps0q

‰
“ V ˚ps0q, and |V piq

MCps0q| ď Ti ´ Tips0q ď Ti.

Each random variable V
piq
MCps0q has sub-exponential tail behavior. Invoking a Bernstein-type inequality,

we have the conditional tail bound

P

´ˇ̌pVMCps0q ´ V ˚ps0q
ˇ̌

ě ε
ˇ̌
ˇ
 
i P rns : s0 P τ piq(¯ ď

$
&
%
exp

´
´ 1

2h2 ε
2 ¨

ˇ̌ 
i P rns : s0 P τ piq(ˇ̌

¯
ε ď h,

exp
´

´ 1
2h
ε ¨

ˇ̌ 
i P rns : s0 P τ piq(ˇ̌

¯
ε ą h.

Furthermore, by Chernoff bound, we have

P

´ˇ̌ 
i P rns : s0 P τ piq(ˇ̌ ď n

2
Pps0 P τq

¯
ď exp

´
´ nDKLp1

2
Pps0 P τq } Pps0 P τqq

¯
ď exp

´
´ n

16
Pps0 P τq

¯
.
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Combining the bounds (21) with the concentration inequalities above, given a sample size n ě
16 logp2{δq
p1´γqνps0q , with probability 1 ´ δ we have

ˇ̌ pVMCps0q ´ V ˚ps0q
ˇ̌

ď
d

2h2 logp2{δqˇ̌ 
i P rns : s0 P τ piq

(ˇ̌ ` 2h logp2{δqˇ̌ 
i P rns : s0 P τ piq

(ˇ̌

ď
d

4h3 logp2{δq
νps0qn ` 4h2 logp2{δq

νps0qn ,

which proves the proposition.

6.1.3 Proof of Proposition 4

By our construction, for any trajectory τ “ pS0, R0, ..., ST , RT ,Hq such that T ě 1, we have S0 “ s0,

R0 “ 0, and S1 P ts1, s2, ¨ ¨ ¨ , sNu. Let the random integer ξi be the index of S
piq
1 , i.e., we have

S
piq
1 “ sξi . In the degenerate case of T piq “ 0, the trajectory does not contain transition information

used in TD learning, and we let ξi “ 0 in such a case. We claim the following fact

PpE q ě 9

10
, where E :“

!
@i, j P rns, if ξi, ξj ą 0, then ξi ‰ ξj

)
. (22)

Conditionally on the indices pξ1, ξ2, ¨ ¨ ¨ , ξnq, on the event E , we can characterize the rest of trajectories
for non-zero ξi’s as follows

• Draw geometric random variables M piq „ Geom
`
1 ´ γ

2

˘
independently for each i with ξi ą 0,

and generate a trajectory

`
sξi , 0, sξi , 0, ¨ ¨ ¨ , sξi , 0loooooooooooomoooooooooooon

pMpiq`1q times

˘

• Draw Zpiq „ Ber
`

γ
2´γ

˘
independent of M piq, i.i.d. for each i with ξi ą 0. If Zpiq “ 0, end the

trajectory immediately. If Zpiq “ 1, visit the state s1
ξi

and generate reward 1; and then with
probability 1 ´ γ, visit the state s´1 and generate reward 0.

Consequently, the estimated reward is given by prnpsξiq “ 0, prnps1
ξi

q “ 1. The estimated transition
kernel becomes

pPnpsξi , sξiq “ γM piq

M piq ` Zpiq ,
pPnpsξi , s1

ξi
q “ γZpiq

M piq ` Zpiq ,

If Zpiq “ 1, we further have pPnps1
ξi
, s´1q “ γ.

We can therefore compute the TD estimate for the states psξiq, for indices i with ξi ą 0.

pVTD,npsξiq “ γM piq

M piq ` Zpiq
pVTD,npsξiq ` γZpiq

M piq ` Zpiq
pVTD,nps1

ξi
q

“ γM piq

M piq ` Zpiq
pVTD,npsξiq ` γZpiq

M piq ` Zpiq .

Solving such an equation, we obtain that

pVTD,npsξiq “ γZpiq

p1 ´ γqM piq ` Zpiq , for each i such that ξi ą 0.
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Define Y :“ |ti P rns : ξi ą 0u|, i.e., the number of trajectories that does not terminate immediately.
Clearly, we have Y „ Binompn, γq.
For the initial state s0, on the event E , we have

pVTD,nps0q “ γ

Y

ÿ

i:ξią0

pVTD,npsξiq.

Conditionally on the collection
`
ξi
˘n
i“1

, on the event E X tY ą 0u, we have

E

”
pVTD,nps0q |

`
ξi
˘n
i“1

ı
“ γE

“pVTD,nps1q | ξ1 “ 1
‰

“ γE
” γZp1q

p1 ´ γqM p1q ` Zp1q

ı
“: m0.

Given the discount factor γ “ 1
2
, we have

m0 “ E

” γ2Zpiq

p1 ´ γqM piq ` Zpiq

ı
“ 1

12
E

” 1

1 `M piq{2
ı

“ 1

16

`8ÿ

m“0

4´m

1 `m{2 “ 2 lnp4{3q ´ 1

2
.

On the other hand, conditionally on
`
ξi
˘n
i“1

, on the event E X tY ą 0u, the pM piq, Zpiqqi:ξią0 are i.i.d.

random pairs. Since each term γ2Zpiq

p1´γqMpiq`Zpiq is bounded almost surely by 1, by Hoeffding’s inequality,

we have

P

!ˇ̌pVTD,nps0q ´m0

ˇ̌
ě t

ˇ̌
ˇ
`
ξi
˘n
i“1

)
ď 2e´2t2Y , for any t ą 0.

Furthermore, by Chernoff bound, we have

P
`
Y ď n

4

˘
ď exp

`
´ nDKLp1{4 } 1{2q

˘
ď e´n{10.

Therefore, when n ą 106, we have

P

!ˇ̌pVTD,nps0q ´m0

ˇ̌
ě 10´2

)
ď P

!ˇ̌pVTD,nps0q ´m0

ˇ̌
ě t

ˇ̌
ˇ
`
ξi
˘n
i“1

, E , Y ą n{4
)

` PpE cq ` PpY ă n{4q

ď 2 ¨ e´ n
20000 ` 1

10
` e´n{10 ď 1

5
.

Note that |V ˚ps0q ´ m0| ą 0.09, we conclude that |pVTD,nps0q ´ V ˚ps0q| ą 0.08 with probability 0.8,
which proves Proposition 4.

Proof of Eq (22): By union bound, we have

PpE cq “ P

!
Di, j P rns, ξi, ξj ą 0, and ξi “ ξj

)

ď
ÿ

i,jPrns
P
`
ξi, ξj ą 0, and ξi “ ξj

˘

“ n2 ¨ 1
4

¨ 1

N
.

When N ě 40n2, we conclude that proof of Eq (22).
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6.2 Proof of Lemma 1

For any s P G, let V ˚
G,outpsq “ E

”
1S1RG

řT
t“1 rpStq | S0 “ s

ı
. The true value function V ˚

G
and our

estimator pVG satisfies

V ˚
G “ rG ` V ˚

G,out ` PGV
˚
G and pVG “ prG ` pVG,out ` pPG ¨ pVG .

Subtracting the two equalities above and reorganize, we obtain

?
npV ˚

G ´ pVGq “
?
npI ´ PGq´1

´
prG ´ prGq ` pV ˚

G,out ´ pVG,outq ` pPG ´ pPGqV ˚
G

¯

`
?
npI ´ PGq´1pPG ´ pPGqppVG ´ V ˚

G q.
(23)

The second term on the right-hand side of Equation (23) is a lower order term vanishing asymptotically
as shown by the following lemma.

Lemma 2. Under the above setup, we have

?
npI ´ PGq´1pPG ´ pPGqppVG ´ V ˚

G q Ñ 0 as n Ñ 8.

See Section 6.2.1 for its proof.

Hereafter, we focus on bounding the first term on the right-hand side of Equation (23). We have for
any state s P G,

?
npI ´ PGq´1

´
prG ´ prGq ` pV ˚

G,out ´ pVG,outq ` pPG ´ pPGqV ˚
G

¯
psq

“ pI ´ PGq´1
´?

npV ˚
G ´ prG ´ pVG,out ´ pPGV

˚
G q

¯
psq.

Let Bpsq “ tpi, tq | Spiq
t “ su are all the trajectory and time indices where state s is reached. Recall

the definition of

prGpsq “ 1

|Bpsq|
ÿ

pi,tqPBpsq
R

piq
t , pPG “ 1

|Bpsq|
ÿ

pi,tqPBpsq
1
S

piq
t`1

PG ,

and pVG,out “ 1

|Bpsq|
ÿ

pi,tqPBpsq

˜ 8ÿ

t1“t`1

R
piq
t1

¸
1
S

piq
t`1

RG .

Thus, we have

?
npV ˚

G ´ prG ´ pVG,out ´ pPGV
˚
G qpsq

“
?
n ¨ 1

|Bpsq|
ÿ

pi,tqPBpsq

˜
V ˚
G psq ´R

piq
t ´ V ˚

G pSpiq
t`1q1

S
piq
t`1

PG ´
˜ 8ÿ

t1“t`1

R
piq
t1

¸
1
S

piq
t`1

RG

¸
.

25



Then breaking into the two terms which corresponds to the TD and MC parts respectively, we have

?
n ¨ 1

|Bpsq|
ÿ

pi,tqPBpsq

˜
V ˚
G psq ´R

piq
t ´ V ˚pSpiq

t`1q ´ V ˚
G pSpiq

t`1q1
S

piq
t`1

PG ´
˜ 8ÿ

t1“t`1

R
piq
t1

¸
1
S

piq
t`1

RG

¸

“ n

|Bpsq|

˜
?
n ¨ 1

n

nÿ

i“1

8ÿ

t“0

1
S

piq
t “s

´
V ˚
G psq ´R

piq
t ´ V ˚pSpiq

t`1q
¯

`
?
n ¨ 1

n

nÿ

i“1

8ÿ

t“0

1
S

piq
t “s,Spiq

t`1
RG

˜
V ˚pSpiq

t`1q ´
˜ 8ÿ

t1“t`1

R
piq
t1

¸¸¸

“ n

|Bpsq|

˜
?
n ¨ 1

n

nÿ

i“1

8ÿ

t“0

pXpiq
t psq ` Y

piq
t psqq

¸
,

where

X
piq
t psq “ 1

S
piq
t “s

´
V ˚psq ´R

piq
t ´ V ˚pSpiq

t`1q
¯

and

Y
piq
t psq “ 1

S
piq
t “s,Spiq

t`1
RG

˜
V ˚pSpiq

t`1q ´
˜ 8ÿ

t1“t`1

R
piq
t1

¸¸
.

We further denote the vectors X
piq
t “ pXpiq

t psqqsPG and Y
piq
t “ pY piq

t psqqsPG with the index of s P G.

Since
8ř
t“0

pXpiq
t ` Y

piq
t q are i.i.d. mean zero random vectors for i P rns, by Central Limit Theorem of

i.i.d. random vectors, we have

?
n ¨ 1

n

nÿ

i“1

8ÿ

t“0

pXpiq
t ` Y

piq
t q Ñ N p0,Λ˚

Gq,

whenever the covariance between s and s1 is Λ˚
Gps, s1q “ Cov

ˆ 8ř
t“0

pXp1q
t psq ` Y

p1q
t psqq,

8ř
t“0

pXp1q
t ps1q ` Y

p1q
t ps1qq

˙
ă

8 for all s, s1 P G. We now proceed to simply the expression of the covariance by the Markov property
and provide upper bounds. Concretely, we have the following lemma.

Lemma 3. Under the above setup, for any pt, sq ‰ pt1, s1q both in N ˆ G, we have

E

”
X

p1q
t psqXp1q

t1 ps1q
ı

“ 0.

Meanwhile, for any t ă t1 ` 1 and s, s1 P G, we have

E

”
X

p1q
t psqY p1q

t1 ps1q
ı

“ 0.

See Section 6.2.2 for its proof.

Thus, we can simplify the covariance expression as

Cov

˜ 8ÿ

t“0

pXp1q
t psq ` Y

p1q
t psqq,

8ÿ

t“0

pXp1q
t ps1q ` Y

p1q
t ps1qq

¸

“ E

« 8ÿ

t“0

pXp1q
t psqq21s“s1 `

8ÿ

t“0

tÿ

t1“0

´
X

p1q
t psqY p1q

t1 ps1q `X
p1q
t ps1qY p1q

t1 psq
¯

`
8ÿ

t“0

8ÿ

t1“0

Y
p1q
t psqY p1q

t1 ps1q
ff
.

To further specify the covariane, we have the following lemma.
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Lemma 4. Under the above setup, for any s P G and t, we have

E

”
pXp1q

t psqq2
ı

“ PpSt “ sq ¨ σ2
V ˚ psq.

Moreover, for any s, s1 P G and 0 ď t1 ď t ´ 1, we have

E

”
X

p1q
t psqY p1q

t1 ps1q
ı

“ PpSt1 “ s1, St1`1 R G, St “ sq ¨ σ2
V ˚psq.

Furthermore, for any s, s1 P G and 0 ď t1, t ď T , we have

E

”
Y

p1q
t psqY p1q

t1 ps1q
ı

“
8ÿ

j“pt1_tq`1

ÿ

s2PS
PpSt1 “ s1, St “ s, St1`1, St`1 R G, Sj “ s2q ¨ σ2

V ˚ ps2q.

See Section 6.2.3 for its proof.

In all, we have obtained that

Λ˚
Gps, s1q

“ 1s“s1

8ÿ

t“0

PpSt “ sq ¨ σ2
V ˚ psq

`
8ÿ

t“0

t´1ÿ

t1“0

`
PpSt1 “ s1, St1`1 R G, St “ sq ¨ σ2

V ˚psq ` PpSt1 “ s, St1`1 R G, St “ s1q ¨ σ2
V ˚ ps1q

˘

`
8ÿ

t“0

8ÿ

t1“0

8ÿ

j“pt1_tq`1

ÿ

s2PS
PpSt1 “ s1, St “ s, St1`1, St`1 R G, Sj “ s2q ¨ σ2

V ˚ ps2q.

(24)

6.2.1 Proof of Lemma 2

Reorganizing the terms in Equation (23), we have

V ˚
G ´ pVG “

´
I ` pI ´ PGq´1pPG ´ pPGq

¯´1

pI ´ PGq´1
´

prG ´ prGq ` pV ˚
G,out ´ pVG,outq ` pPG ´ pPGqV ˚

G

¯
,

which is asymptotically almost surely 0 since the right hand side converges to 0 almost surely by the
law of large numbers. Then for any s, s1 P G, since

?
npPG ´ pPGqps1|sq converges in probability to a

normal distribution by the central limit theorem with mean 0, by Slutsky’s Theorem, we have our
desired result.

6.2.2 Proof of Lemma 3

From the Markovian property, we have

E

”
X

p1q
t psqXp1q

t1 ps1q
ı

“ EE

”
1
S

p1q
t “s

´
V ˚
G psq ´R

p1q
t ´ V ˚pSp1q

t`1q
¯
1
S

p1q

t1 “s1

´
V ˚
G ps1q ´R

p1q
t1 ´ V ˚pSp1q

t1`1q
¯

|Sp1q
t , S

p1q
t`1, S

p1q
t1

ı

“ 0.

Similarly, we have

E

”
X

p1q
t psqY p1q

τ ps1q
ı

“ EE

«
1
S

p1q
t “s

´
V ˚
G psq ´R

p1q
t ´ V ˚pSp1q

t`1q
¯
1
S

p1q
τ “s1,S

p1q
τ`1

RG

˜
V ˚pSp1q

τ`1q ´
˜ 8ÿ

t1“τ`1

R
p1q
t1

¸¸
|Sp1q
t , S

p1q
t`1, S

p1q
τ

ff

“ 0.
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6.2.3 Proof of Lemma 4

By the definition of one-step variance Definition 1, we have

E

”
pXp1q

t psqq2
ı

“ E

„
1
S

p1q
t “s

´
V ˚psq ´R

p1q
t ´ V ˚pSp1q

t`1q
¯2


“ E

„
1
S

p1q
t “sE

„´
V ˚pSp1q

t q ´R
p1q
t ´ V ˚pSp1q

t`1q
¯2

|Sp1q
t “ s



“ PpSt “ sq ¨ σ2
V ˚ psq.

Then we notice that for any t P rT s and s P G, we have

Y
p1q
t psq “ 1

S
p1q
t “s,Sp1q

t`1
RG

˜
V ˚pSp1q

t`1q ´
˜ 8ÿ

t1“t`1

R
p1q
t1

¸¸

“ 1
S

p1q
t “s,Sp1q

t`1
RG

8ÿ

t1“t`1

´
V ˚pSp1q

t1 q `R
p1q
t1 ´ V ˚pSp1q

t1`1q
¯
.

Thus we have

E

”
X

p1q
t psqY p1q

τ ps1q
ı

“ E

«
1
S

p1q
t “s

´
V ˚psq ´R

p1q
t ´ V ˚pSp1q

t`1q
¯
1
S

p1q
τ “s,Sp1q

τ`1
RG

8ÿ

τ 1“τ`1

´
V ˚pSp1q

τ 1 q `R
p1q
τ 1 ´ V ˚pSp1q

τ 1`1q
¯ff

“ PpSτ “ s1, Sτ`1 R G, St “ sq ¨ σ2
V ˚psq.

Similarly for E
”
Y

p1q
t psqY p1q

τ ps1q
ı
.

Lemma 5. For any random vector X and Y in Rd, let ΣX`Y , ΣX , and ΣY be the covariance matrices
for random vectors X ` Y , X, and Y , respectively. Then the covariance matrices are PSD matrices
that satisfy

ΣX`Y ď 2ΣX ` 2ΣY .

Proof of Lemma 5. For any vector a P Rd, we have

aJΣX`Y a “ VarpaJpX ` Y qq ď 2VarpaJXq ` 2VarpaJY q “ 2aJΣXa` 2aJΣY a.

6.3 Proof of Theorem 1

To start with, we define the following empirical estimates pPG P RGˆG , prG P RG , and pVG,out P RG . For
any pair s, s` P G, we let

pPGps, s`q :“ pPDnpGq
`
S1 “ s` | S0 “ s

˘
,

prGpsq :“ pEDnpGq
“
R0 | S0 “ s

‰
, and

pVG,outpsq :“ pEDnpGq
”
1S1RG

`8ÿ

t“1

Rt | S0 “ s
ı
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Defining the population-level out-of-subgraph value function V ˚
G,outpsq :“ E

“
1S1RG

ř`8
t“1Rt | S0 “ s

‰

for any s P G, it is easy to see that Er pPGs “ PG , ErprGs “ r, and ErpVG,outs “ V ˚
G,out. Furthermore,

comparing Eq (7) and Eq (8), we have

V ˚
G “ rG ` PG ¨ V ˚

G ` V ˚
G,out, and pVG “ prG ` pPG ¨ pVG ` pVG,out.

Defining the vector p∆G :“ pVG ´ V ˚
G P RG , we have the error decomposition

p∆G “ pI ´ PGq´1
!`

prG ´ rG
˘

`
` pPG ´ PG

˘
V ˚
G `

`pVG,out ´ V ˚
G,out

˘)
` pI ´ PGq´1

` pPG ´ PG

˘p∆G . (25)

In order to study the matrix difference pPG ´PG , we need to introduce some auxiliary quantities. First,
we define the empirical counts

Nnpsq :“
ˇ̌ 
τ P Dn : S0pτq “ s

(ˇ̌
, for any s P G,

Mnps, s1q :“
ˇ̌ 
τ P Dn : S0pτq “ s, S1pτq “ s1(ˇ̌ , for any s, s1 P G

The estimated transition matrix takes the form

pPGps, s1q “ Mnps, s1q{Nnpsq, for any s, s1 P G.

We define the intermediate quantity

rPGps, s1q :“ Mnps, s1q{
`
nνpsq

˘
, for any s, s1 P G.

We bound the differences ||| rPG ´ PG |||νpGq and ||| rPG ´ pPG |||νpGq, respectively.

Lemma 6. Under above setup, with probability 1 ´ δ, we have

||| pPG ´ rPG |||νpGq ď 64

c
h

nνmin

logp2|G|{δq.

See Section 6.3.1 for its proof.

Lemma 7. Under above setup, with probability 1 ´ δ, we have

||| rPG ´ PG |||νpGq ď 9

c
h

nνmin

log2
´n
δ

¯
.

See Section 6.3.2 for its proof. Combining Lemma 6 and 7 using triangle inequality, we obtain that

||| pPG ´ PG |||νpGq ď 80

c
h

nνmin

log2
´n
δ

¯
, (26)

with probability 1 ´ δ.

Additionally, we use the following result on the concentration of the additive noise.

Lemma 8. Under above setup, with probability 1 ´ δ, we have

}pI ´ PGq´1
!`

prG ´ rG
˘

`
` pPG ´ PG

˘
V ˚
G `

`pVG,out ´ V ˚
G,out

˘)
}νpGq

ď 2Tr
`
DνpI ´ PGq´1Σ˚

GpI ´ PGq´J ˘1{2
c

2 logp1{δq
n

` 32h3

n
?
νmin

log3
´ n

δνmin

¯
.
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See Section 6.3.3 for its proof.

Finally, we use a simple fact about the matrix PG .

|||pI ´ PGq´1|||νpGq ď 4h logp1{νminq. (27)

Equipped with these intermediate results, we are now ready to prove Theorem 1. Applying triangle
inequality to Eq (25), we have

}p∆G}νpGq ď }pI ´ PGq´1
!`

prG ´ rG
˘

`
` pPG ´ PG

˘
V ˚
G `

`pVG,out ´ V ˚
G,out

˘)
}νpGq

` |||pI ´ PGq´1|||ν ¨ ||| pPG ´ PG |||ν ¨ }p∆G}νpGq.

By Equations (26) and (27), when sample size n satisfies Equation (13), we have

|||pI ´ PGq´1|||ν ¨ ||| pPG ´ PG |||ν ď 1{2, with probability 1 ´ δ.

On this event, when the high-probability event in Lemma 8 holds true as well, we conclude that

}p∆G}νpGq ď 4Tr
`
DνpI ´ PGq´1Σ˚

GpI ´ PGq´J ˘1{2
c

2 logp1{δq
n

` 64h3

n
?
νmin

log3
´ n

δνmin

¯
,

which proves Theorem 1.

Moreover, by Chebyshev’s inequality, we note that

}pI ´ PGq´1
!`

prG ´ rG
˘

`
` pPG ´ PG

˘
V ˚
G `

`pVG,out ´ V ˚
G,out

˘)
}2νpGq ď 8

n
Tr
`
DνpI ´ PGq´1Σ˚

GpI ´ PGq´J ˘
,

with probability 7{8. Combining with Equations (26) and (27) under the choice δ “ 1{8, we obtain
that

}p∆G}νpGq ď 8?
n
Tr
`
DνpI ´ PGq´1Σ˚

GpI ´ PGq´J ˘1{2
, (28)

with probability 3{4.

Proof of Equation (27): For any vector u P RG and integer k ě 1, we note that

}P kGu}2νpGq “
`8ÿ

t“0

ES0„µ
”`
P kGupStq

˘2
1StPG

ı
.

By Cauchy–Schwarz inequality, we have

ˇ̌
P kGupStq

ˇ̌
“

ˇ̌
E
“
upSt`kq1St`1,St`2,¨¨¨St`kPG | St

‰ˇ̌
ď

b
E
“
u2pSt`kq1St`kPG | St

‰
.

Consequently, we have the upper bound

}P kGu}2νpGq ď
`8ÿ

t“k
ES0„µ

”
upStq21StPG

ı
.

On the one hand, we note that

`8ÿ

t“k
ES0„µ

”
upStq21StPG

ı
ď

`8ÿ

t“0

ES0„µ
”
upStq21StPG

ı
“ }u}2νpGq.
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Therefore, we have the operator norm bound |||P kG |||νpGq ď 1 for any k ě 0.

On the other hand, note that

`8ÿ

t“k
ES0„µ

”
upStq21StPG

ı
“

ÿ

sPG
upsq2 ¨

ÿ

těk
PS0„µ

`
St “ s

˘
ď }u}22 ¨ P

`
T ě k

˘
.

Additionally, we note that

}u}22 ě 1

νmin

}u}2νpGq.

Applying in conjunction with the upper bound yields

sup
}u}νpGqď1

}P kGu}2νpGq ď P
`
T ě k

˘

νmin

ď ν´1
min exp

´
´ k

h

¯
.

For k0 :“ 2h logp1{νminq, we have |||P k0G |||νpGq ď 1
4
.

Putting them together, we arrive at the inequality

|||pI ´ PGq´1|||νpGq ď
ÿ

kě0

|||P kG |||νpGq “
ÿ

0ďkăk0

ÿ

ℓě0

|||P k0ℓ`kG |||νpGq ď
ÿ

0ďkăk0

ÿ

ℓě0

|||P k0G |||ℓνpGq ¨ |||P kG |||νpGq ď 2k0,

which proves the desired bound.

6.3.1 Proof of Lemma 6

Define the diagonal matrix Dν P RGˆG such that Dνps, sq “ νpsq for any s P G, and Dνps, s1q “ 0
for s ‰ s1. For any operator A : L2pνpGqq Ñ L2pνpGqq, we note that the operator norm admits a
representation

|||A|||2νpGq “ sup
uJDνuď1

uJAJDνAu “ |||D1{2
ν AD´1{2

ν |||2
op
. (29)

Now we turn to the proof of this lemma. By Eq (29), we have

||| rPG ´ pPG |||νpGq “ |||D1{2
ν

` rPG ´ pPG

˘
D´1{2
ν |||op “ |||

”
Mnps, s1q

a
νpsq

` 1

Nnpsq ´ 1

nνpsq
˘ı
s,s1PG

¨D´1{2
ν |||op.

(30)

Define the random variables Yipsq :“
ˇ̌
tt P r0, Tis : S

piq
t “ su

ˇ̌
, i.e., number of visits to s in the

i-th trajectory. Fix any state s P G, clearly Yipsq’s are i.i.d., and Nnpsq “ řn
i“1 Yipsq. We have

ErYipsqs “ νpsq, and

ErYipsq2s “
`8ÿ

t,ℓ“0

P
`
St “ s, Sℓ “ s

˘

“
`8ÿ

t“0

P
`
St “ s

˘
` 2

`8ÿ

t“0

`8ÿ

k“1

P
`
St “ s

˘
¨ P kps, sq

“ ErYipsqs ¨
´
1 ` 2

`8ÿ

k“0

P kps, sq
¯

ď ErYipsqs ¨
´
1 ` 2

`8ÿ

k“0

PspT ą kq
¯

ď p2h` 1qνpsq.
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And we also have }Yipsq}ψ1
ď }Ti}ψ1

ď h, and consequently }maxi Yipsq}ψ1
ď h logn.

By Adamczak’s concentration inequality, there exists a universal constant c ą 0, such that for any
t ě 0, we have

P
`

|Nnpsq ´ nνpsq| ě t
˘

ď 2 exp
´

´ t2

12nνpsqh
¯

` 6 exp
´ ´t
ch logn

¯
.

Applying union bound to all the states in G, with probability 1 ´ δ, we have

@s P G, |Nnpsq ´ nνpsq| ď
a
12hνpsqn ¨ logp4|G|{δq ` ch logn logp6|G|{δq ď 16

a
hνpsqn ¨ logp4|G|{δq,

where in the last step, we use the sample size condition (13).

On the event that above inequality holds true, we have
ˇ̌
ˇ̌aνpsq

` 1

Nnpsq ´ 1

nνpsq
˘ˇ̌ˇ̌ “ |Nnpsq ´ nνpsq|

nNnpsq
a
νpsq

ď 16

Nnpsq

c
h logp4|G|{δq

n
. (31)

uniformly for any state s P G.

Substituting back to Eq (30), denote the random variables ζs :“ Nnpsq
a
νpsq

`
1

Nnpsq ´ 1
nνpsq

˘
, we have

||| rPG ´ pPG |||νpGq “ |||
”ζs pPGps, s1qa

νps1q

ı
s,s1PG

|||op.

Let E be the event that Eq (31) holds true uniformly for s P G.

On the event E , for any vector u P RG , we note that

}
”ζs pPGps, s1qa

νps1q

ı
s,s1PG

u}22 “
ÿ

sPG
ζ2s

´ ÿ

s1PG

pPGps, s1qups1qa
νps1q

¯2

ď logp2|G|{δq
n

ÿ

sPG

´ ÿ

s1PG

pPGps, s1qups1qa
νps1q

¯2

ď 256h logp2|G|{δq
nνmin

¨ }D1{2
ν

pPGD
´1{2
ν u}22 “ 256h logp2|G|{δq

nνmin

¨ } pPGD
´1{2
ν u}2νpGq. (32)

Define pνpsq :“ Nnpsq{n for each s P G, on the event E , under the sample size assumption (13), we have

1

2
ν ď pν ď 2ν (33)

For any vector y P RG , we note that

} pPGy}2pν “
ÿ

sPG

Nnpsq
n

´ ÿ

s1PG

Mnps, s1q
Nnpsq yps1q

¯2

piq
ď

ÿ

sPG

Nnpsq
n

! ÿ

s1PG

Mnps, s1q
Nnpsq y2ps1q

)
¨
´ ÿ

s1PG

Mnps, s1q
Nnpsq

¯

piiq
ď

ÿ

sPG

´ 1

n

ÿ

s1PG
Mnps1, sq

¯
y2psq

piiiq
ď }y}2pν, (34)

where in step piq, we use Cauchy–Schwarz inequality; and in step piiq, piiiq, we use the following facts
by counting the number of visits.

ÿ

s1PG
Mnps, s1q ď Nnpsq,

ÿ

s1PG
Mnps1, sq ď Nnpsq.
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On the event E , by applying Equations (34) and (33) to Eq (32), we obtain the bound

} pPGD
´1{2
ν u}νpGq ď 2} pPGD

´1{2
ν u}pν ď 2}D´1{2

ν u}pν ď 4}D´1{2
ν u}νpGq ď 4}u}2.

Consequently, on the event E we have the upper bound

||| rPG ´ pPG |||νpGq “ sup
}u}2ď1

}
”ζs pPGps, s1qa

νps1q

ı
s,s1PG

u}2 ď 16

d
h logp2|G|{δq

nνmin

¨ sup
}u}2ď1

} pPGD
´1{2
ν u}νpGq ď 64

d
h logp2|G|{δq

nνmin

,

which completes the proof of Lemma 6.

6.3.2 Proof of Lemma 7

Define the random matrices

Wips, s1q :“ 1a
νpsqνps1q

Ti´1ÿ

t“0

1
S

piq
t “s,Spiq

t`1
“s1 for any s, s1 P G.

Clearly, the random matrices pWiq1ďiďn are i.i.d., satisfying

ErWis “ D1{2
ν PGD

´1{2
ν , and

1

n

nÿ

i“1

Wi “ D1{2
ν

rPGD
´1{2
ν .

To study their concentration behavior, we consider the second moment and high-probability bounds
for the matrices Wi. We claim that

max
´

|||E
“
WiW

J
i

‰
|||op, |||E

“
WJ
i Wi

‰
|||op

¯
ď 5h

νmin

log
`
h{νmin

˘
, (35a)

P

´
max
iPrns

|||Wi|||op ď h

νmin

logpn{δq
looooooooooooooooomooooooooooooooooon

“:E

¯
ě 1 ´ δ. (35b)

We prove the two bounds at the end of this section. Taking them as given, we apply a matrix Bernstein
inequality on the event E , and obtain the bound

P

´
E
c X

!
|||

nÿ

i“1

Wi ´ ErW1s|||op ě t
)¯

ď 2 |G| exp
´

´ t2νmin{2
5hn log

`
h{νmin

˘
` ht logpn{δq

¯
.

Replacing δ with δ{2 in Eq (35b) so that PpE q ě 1 ´ δ{2, and taking union bound with the matrix
Bernstein result, we conclude that

||| rPG ´ PG |||νpGq “ |||
nÿ

i“1

Wi ´ ErW1s|||op ď
c

10h

νminn
log2

´ hn

νminδ

¯
` 2h

νminn
log2

´ n

νminδ

¯
,

which proves Lemma 7.

Proof of Eq (35a): For any deterministic scalar t0 ą 0, we use the decomposition

|||E
“
WiW

J
i

‰
|||op ď |||E

“
WiW

J
i 1Tiďt0

‰
|||op ` |||E

“
WiW

J
i 1Tiět0

‰
|||op. (36)

33



For any vector u P RG , by Cauchy–Schwarz inequality, we have

uJWiW
J
i u “ }

Ti´1ÿ

t“0

” 1a
νpsqνps1q

1
S

piq
t “s,Spiq

t`1
“s1

ı
s,s1PG

u}22

ď Ti ¨
Ti´1ÿ

t“0

}
” 1a

νpsqνps1q
1
S

piq
t “s,Spiq

t`1
“s1

ı
s,s1PG

u}22

“ Ti ¨
Ti´1ÿ

t“0

1
S

piq
t`1

PG
upSpiq

t`1q2

νpSpiq
t qνpSpiq

t`1q

ď 1

νmin

Ti ¨
Ti´1ÿ

t“0

1
S

piq
t`1

PG
upSpiq

t`1q2

νpSpiq
t`1q

.

Substituting into the first term of Eq (36), we conclude that

|||E
“
WiW

J
i 1Tiďt0

‰
|||op “ sup

}u}2ď1

E
“
uJWiW

J
i u ¨ 1Tiďt0

‰

ď t0

νmin

sup
}u}2ď1

t0´1ÿ

t“0

E

”
1
S

piq
t`1

PG
upSpiq

t`1q2

νpSpiq
t`1q

ı
ď t0

νmin

sup
}u}2ď1

`8ÿ

t“0

ÿ

sPG

u2psq
νpsq P

`
S

piq
t`1 “ s

˘

“ t0

νmin

sup
}u}2ď1

ÿ

sPG

u2psq
νpsq ¨

!`8ÿ

t“0

P
`
S

piq
t`1 “ s

˘)

ď t0

νmin

sup
}u}2ď1

ÿ

sPG

u2psq
νpsq ¨ νpsq ď t0

νmin

. (37)

For the second term of Eq (36), we have

|||E
“
WiW

J
i 1Tiět0

‰
|||op ď sup

}u}2ď1

b
E
“
}WJ

i u}42
‰

¨
b
P
`
Ti ě t0

˘
ď 1

ν2min

¨ exp
´

´ t0

2h

¯
. (38)

Combining Equations (37) and (38), by choosing t0 “ 4h log
`
h{νmin

˘
and substituting back to Eq (36),

we obtain the bound

|||E
“
WiW

J
i

‰
|||op ď 5h

νmin

log
`
h{νmin

˘
.

Similarly, for the random matrix WJ
i Wi, for any u P RG , we have

uJWJ
i Wiu “ }

Ti´1ÿ

t“0

” 1a
νpsqνps1q

1
S

piq
t`1

“s,Spiq
t “s1

ı
s,s1PG

u}22 ď Ti ¨
Ti´1ÿ

t“0

}
” 1a

νpsqνps1q
1
S

piq
t`1

“s,Spiq
t “s1

ı
s,s1PG

u}22

“ Ti ¨
Ti´1ÿ

t“0

1
S

piq
t PG

upSpiq
t q2

νpSpiq
t qνpSpiq

t`1q
ď 1

νmin

Ti ¨
Ti´1ÿ

t“0

1
S

piq
t PG

upSpiq
t q2

νpSpiq
t q

,

which leads to the bound

|||E
“
WJ
i Wi1Tiďt0

‰
|||op ď t0

νmin

sup
}u}2ď1

t0´1ÿ

t“0

E

”
1
S

piq
t PG

upSpiq
t q2

νpSpiq
t q

ı
ď t0

νmin

sup
}u}2ď1

ÿ

sPG

u2psq
νpsq ¨

!`8ÿ

t“0

P
`
S

piq
t “ s

˘)
ď t0

νmin

.

And we have that

|||E
“
WJ
i Wi1Tiět0

‰
|||op ď sup

}u}2ď1

b
E
“
}Wiu}42

‰
¨
b
P
`
Ti ě t0

˘
ď 1

ν2min

¨ exp
´

´ t0

2h

¯
.
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Taking the same cutoff value t0 “ 4h log
`
h{νmin

˘
, we conclude the bound

|||E
“
WJ
i Wi

‰
|||op ď 5h

νmin

log
`
h{νmin

˘
,

which proves Eq (35a).

Proof of Eq (35b): We note that

|||Wi|||op ď Ti

νmin

, almost surely, for i “ 1, 2, ¨ ¨ ¨ , n.

By Assumption (Effphq), we have

P
`
Ti ě h logpn{δq

˘
ď δ{n,

and by union bound, we conclude that

P

´
max
1ďiďn

|||Wi|||op ě h

νmin

logpn{δq
¯

ď δ,

which proves Eq (35b).

6.3.3 Proof of Lemma 8

By defninition, for any s P G, we have

Nnpsq ¨
!`

prG ´ rG
˘
psq `

` pPGV
˚
G ´ PGV

˚
G

˘
psq `

`pVG,out ´ V ˚
G,out

˘
psq

)

“
nÿ

i“1

ÿ

tPr0,Tis:Spiq
t “s

!`
R

piq
t ´ rpsq

˘
`
`
1
S

piq
t`1

PGV
˚
G pSpiq

t`1q ´ PGV
˚
G psq

˘
`
´
1
S

piq
t`1

RG

Tiÿ

ℓ“t`1

R
piq
ℓ ´ V ˚

G,outpsq
¯)

“:
nÿ

i“1

ε˚
i psq. (39)

Note that pε˚
i psqqsPG are i.i.d. random vectors for i “ 1, 2, ¨ ¨ ¨ , n, and by Lemma 1, we have

E
“
ε˚
i

‰
“ 0, and E

“
ε˚
i pε˚

i qJ‰ “ DνΣ
˚
GDν .

Define pνpsq :“ Nnpsq{n for any s P G. Following the definitions from 7, we denote the diagonal matrices
Dν :“ diagpνq and Dpν :“ diagppνq. Eq (39) leads to the identity

`
prG ´ rG

˘
`
` pPGV

˚
G ´ PGV

˚
G

˘
`
`pVG,out ´ V ˚

G,out

˘
“ D´1

pν
1

n

nÿ

i“1

ε˚
i

And therefore, we have

}pI ´ PGq´1
!`

prG ´ rG
˘
psq `

` pPGV
˚
G ´ PGV

˚
G

˘
psq `

`pVG,out ´ V ˚
G,out

˘
psq

)
}νpGq

“ }D1{2
ν pI ´ PGq´1D´1

pν

! 1

n

nÿ

i“1

ε˚
i

)
}2

ď }D1{2
ν pI ´ PGq´1D´1

ν

! 1

n

nÿ

i“1

ε˚
i

)
}2 ` }D1{2

ν pI ´ PGq´1
`
D´1

pν ´D´1
ν

˘! 1

n

nÿ

i“1

ε˚
i

)
}2.
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Denote the noise vector ζ˚
n :“ D

1{2
ν pI ´ PGq´1D´1

ν ¨ 1
n

řn
i“1 ε

˚
i . We have

}pI ´ PGq´1
!`

prG ´ rG
˘
psq `

` pPGV
˚
G ´ PGV

˚
G

˘
psq `

`pVG,out ´ V ˚
G,out

˘
psq

)
}νpGq

ď
!
1 ` |||D1{2

ν pI ´ PGq´1
`
DνD

´1
pν ´ I

˘
pI ´ PGqD´1{2

ν |||op
)

}ζ˚
n}2 (40)

We claim the operator norm bound

|||D1{2
ν pI ´ PGq´1

`
DνD

´1
pν ´ I

˘
pI ´ PGqD´1{2

ν |||op ď 1. (41)

The proof of this bound is deferred to the end of this section. Taking this inequality as given, we have

}pI ´ PGq´1
!`

prG ´ rG
˘

`
` pPGV

˚
G ´ PGV

˚
G

˘
`
`pVG,out ´ V ˚

G,out

˘)
}νpGq ď 2}ζ˚

n}2.

It suffices to bound the averaged random vector ζ˚
n . We note that

E
“
}ζ˚
n}22

‰
“ n´1Tr

´
DνpI ´ PGq´1Σ˚

GpI ´ PGq´J
¯
.

We claim the following uniform bound with probability 1 ´ δ:

max
iPrns

}D1{2
ν pI ´ PGq´1D´1

ν ε˚
i }2 ď 48h3?

νmin

log3
´ n

δνmin

¯
(42)

We prove this bound at the end of this section. Taking it as given, we now proceed with the proof
of Lemma 8. By the vector-valued Bernstein inequality (Minsker (2017), Corollary 4.1), on the event
that Eq (42) holds true, with probability 1 ´ δ, we have

}ζ˚
n}2 ď Tr

`
DνpI ´ PGq´1Σ˚

GpI ´ PGq´J ˘1{2
c

2 logp1{δq
n

` 16h3

n
?
νmin

log3
´ n

δνmin

¯
.

Combining with Eq (40), we complete the proof of Lemma 8.

Proof of Eq (41): We note that

|||D1{2
ν pI ´ PGq´1

`
DνD

´1
pν ´ I

˘
pI ´ PGqD´1{2

ν |||op
piq“ |||pI ´ PGq´1

`
DνD

´1
pν ´ I

˘
pI ´ PGq|||νpGq

piiq
ď |||pI ´ PGq´1|||νpGq ¨ |||DνD

´1
pν ´ I|||νpGq ¨ |||I ´ PG |||νpGq,

where in step piq we use Eq (29), and in step piiq we apply the operator norm bound for a composition
operator. For each terms on the right-hand-side, by Eq (27), we have

|||pI ´ PGq´1|||νpGq ď 4h logp1{νminq,

and due to non-expansiveness of the transition operator, we have

|||I ´ PG |||νpGq ď |||I|||νpGq ` |||PG |||νpGq ď 2.

For the error term, we note that

|||DνD
´1
pν ´ I|||νpGq “ |||DνD

´1
pν ´ I|||op “ max

sPG

ˇ̌
ˇ̌ nνpsq
Nnpsq ´ 1

ˇ̌
ˇ̌ .
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By Eq (31), with probability 1 ´ δ, we have

max
sPG

ˇ̌
ˇ̌ nνpsq
Nnpsq ´ 1

ˇ̌
ˇ̌ ď max

sPG

16

Nnpsq
a
hnνpsq logp4|G|{δq ď 32

d
h logp4|G|{δq

nνmin

.

Substituting back to the error decomposition above, given a sample size satisfying Eq (13), we have

|||D1{2
ν pI ´ PGq´1

`
DνD

´1
pν ´ I

˘
pI ´ PGqD´1{2

ν |||op ď 256
h3{2 log3{2 ` 1

δνmin

˘
?
nνmin

ď 1,

which completes the proof of Eq (41).

Proof of Eq (42): We start with the almost-sure bound

|ε˚
i psq| ď

ÿ

tPr0,Tis:Spiq
t “s

! ˇ̌
ˇRpiq
t ´ rpsq

ˇ̌
ˇ `

ˇ̌
ˇ1
S

piq
t`1

PGV
˚
G pSpiq

t`1q ´ PGV
˚
G psq

ˇ̌
ˇ `

ˇ̌
ˇ̌
ˇ1Spiq

t`1
RG

Tiÿ

ℓ“t`1

R
piq
ℓ ´ V ˚

G,outpsq
ˇ̌
ˇ̌
ˇ
)

ď Yipsq
!
2 ` 2}V ˚

G }8 ` Ti ` ErTis
)
,

which leads to the ℓ2 norm bound

}D1{2
ν pI ´ PGq´1D´1

ν ε˚
i }2 ď |||D1{2

ν pI ´ PGq´1D´1{2
ν |||op ¨ }D´1{2

ν ε˚
i }2 ď 4h logp1{νminq ¨

dÿ

sPG

ε˚
i psq2
νpsq

ď 8h
!
2 ` 2}V ˚

G }8 ` Ti ` ErTis
)
logp1{νminq ¨

dÿ

sPG

Yipsq2
νpsq (43)

We note that

ÿ

sPG

Yipsq2
νpsq ď Ti

νpsq
ÿ

sPG
Yipsq ď T 2

i {νmin,

and consequently

}D1{2
ν pI ´ PGq´1D´1

ν ε˚
i }2 ď 8Tih?

νmin

!
2 ` 2}V ˚

G }8 ` Ti ` ErTis
)
logp1{νminq

By Assumption (Effphq) and union bound, we have

P

´
max
iPrns

Ti ě h logpn{δq
¯

ď δ, for any δ ą 0.

We also note that

}V ˚
G }8 “ max

sPG

ˇ̌
ˇ̌
ˇEs

” Tiÿ

t“1

rpStq
ıˇ̌ˇ̌
ˇ ď max

sPG
Es

” Tiÿ

t“1

|rpStq|
ı

ď max
sPG

EsrTis ď h.

Collecting these bounds and substituting into Eq (43), we conclude that with probability 1´δ, Eq (42)
holds true.
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6.4 Proof of Theorem 2

We seek to apply Corollary 3 of the paper Mou et al. (2022a). In order to do so, we verify the key
assumptions. We claim that the constructed vector w satisfies the following condition.

ˇ̌
ˇ̌wpsqνpsq ´ 1

2

ˇ̌
ˇ̌ ď 1

36h
@s P G. (44)

We will prove Eq (44) at the end of this section. Taking this fact as given, we now proceed with the
proof of Theorem 2.

First, we can establish the technical conditions (15) and (14), respectively, in the following two lemmas.

Lemma 9. If vector w satisfies Eq (44), for any vector θ P RG , we have

}
`
I ´DwDνpI ´ PGq

˘
θ}8 ď }θ}8, and

}
`
I ´DwDνpI ´ PGq

˘3h
θ}8 ď 1

2
}θ}8,

See Section 6.4.1 for the proof of this lemma.

Lemma 10. If vector w satisfies Eq (44), the conditions (14) are satisfied by all mini-batches ℓ P
t1, 2, ¨ ¨ ¨ , n{mu with parameters

L “ 4 and b8 “ 9h logpn{δq ` 4,

with probability 1 ´ δ.

See Section 6.4.2 for the proof of this lemma.

Moreover, we can relate the instance-dependent covariance in ROOT-SA with the covariance structures
given by Theorem 1.

Lemma 11. Under the setup of Theorem 2, we have

`
I ´ ∇fpV ˚

G q
˘´1

cov
“
F1pV ˚

G q ´ V ˚
G | w

‰`
I ´ ∇fpV ˚

G q
˘´J “ 1

m
pI ´ PGq´1Σ˚

GpI ´ PGq´J

See Section 6.4.3 for the proof of this lemma.

Taking these lemmas as given, we now proceed with the proof of Theorem 2. Applying Corollary 4 of
the paper Mou et al. (2022a) with }x}C :“ |xa0, xy|, with burn-in period given by (18), we obtain the
bound

ˇ̌
ˇaJ

0 ppV ROOT
G ´ V ˚q

ˇ̌
ˇ ď c

´
aJ
0 pI ´ PGq´1Σ˚pI ´ PGq´Ja0

¯1{2
c

logp1{δq
n

` c
}a0}1h3{2

?
m

!´ηm
n

¯1{2
` m

n
?
η

)
log5{2 `n|G|{δ

˘
¨ max

s

`
Σ˚
s,s

˘1{2

` c}a0}1h2 log2pn|G|{δq ¨
!m
n

` η

c
m

n
¨ log2 n|G|

δ

)
, (45)

with probability 1 ´ δ.

38



Given the stepsize and minibatch size choices in Eq (18), Equation (45) can be simplified as

ˇ̌
ˇaJ

0 ppV ROOT
G ´ V ˚q

ˇ̌
ˇ ď c

´
aJ
0 pI ´ PGq´1Σ˚pI ´ PGq´Ja0

¯1{2
c

logp1{δq
n

` c}a0}1
!´ h3

νminn

¯1{4
¨ h?

n
max
s

`
Σ˚
s,s

˘1{2 ` h3

νminn

)
log5pn{δq, (46)

which yields the conclusion of Theorem 2.

Proof of Eq (44): Define the vector

pνApsq :“ 1

nA

nAÿ

i“1

rTiÿ

t“0

1 rSpiq
t “s, for any s P G.

Applying Eq (31) (from the proof of Theorem 1) to the auxiliary dataset prτiqnA

i“1, with probability 1´δ,
we have

ˇ̌
ˇ̌ νpsq
pνApsq ´ 1

ˇ̌
ˇ̌ ď 32

d
h logp4|G|{δq
nAνpsq , for any s P G.

Therefore, there exists a constant c ą 0, such that when nA ě ch3

νmin
logp|G|{δq, with probability 1 ´ δ,

we have
ˇ̌
ˇ̌ νpsq
pνApsq ´ 1

ˇ̌
ˇ̌ ď 1

18h
,

which leads to the desired bound.

6.4.1 Proof of Lemma 9

For any vector θ P RG , since wpsqνpsq ď 1
2

` 1
36h

ă 1 for any s P G, we note that

ˇ̌
ˇ
”`
I ´DwDνpI ´ PGq

˘
θ
ı
psq

ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ
`
1 ´ wpsqνpsq

˘
θpsq ` wpsqνpsq

ÿ

s1 PG
PGps, s1qθps1q

ˇ̌
ˇ̌
ˇ

ď
`
1 ´ wpsqνpsq

˘
|θpsq| ` wpsqνpsq}θ}8

ď }θ}8.

Taking supremum over s P G on the left hand side yields the first inequality.

Now we verify the multi-step contraction properties. Define the matrices

Q :“ I ` PG

2
and E :“ I ´DwDνpI ´ PGq ´Q.

Let pYkqkě0 be a lazy version of the Markov chain pSkqkě0, with a transition kernel pI `P q{2, i.e., for
each step, the transition follows the Markov chain P with probability 1{2, and stays at the current
state with probability 1{2. For any vector θ and non-negative integer k, we have

|Qkθpsq| “
ˇ̌
ˇEs

”
θpSkq1S1,¨¨¨ ,SkPG

ıˇ̌
ˇ ď }θ}8PspT ě kq ď

#
1, @k ě 0,

e1´k{h, k ě h.

So we have |||Qk|||ℓ8Ñℓ8 ď max
`
1, e1´k{h˘.

39



For the perturbation term E, we have the operator norm bound

|||E|||ℓ8Ñℓ8 “ |||
´I
2

´DwDν

¯
pI ´ PGq|||ℓ8Ñℓ8 ď |||I

2
´DwDν |||ℓ8Ñℓ8 ¨ |||I ´ PG |||ℓ8Ñℓ8

ď max
sPG

ˇ̌
ˇ̌1
2

´ νpsqwpsq
ˇ̌
ˇ̌ ¨
`
1 ` |||PG |||ℓ8Ñℓ8

˘
ď 1

18h
.

By taking the k-th power, we have

|||pQ ` Eqk|||ℓ8Ñℓ8 ď |||Qk|||ℓ8Ñℓ8 `
kÿ

ℓ“1

ˆ
k

ℓ

˙
|||Q|||ℓℓ8Ñℓ8 |||E|||k´ℓ

ℓ8Ñℓ8 . (47)

The first term can be bounded directly with |||Qk|||ℓ8Ñℓ8 ď e1´k{h. For the rest terms, we simply use
the non-expansiveness of Q and the error norm bound.

kÿ

ℓ“1

ˆ
k

ℓ

˙
|||Q|||ℓℓ8Ñℓ8 |||E|||k´ℓ

ℓ8Ñℓ8 ď
kÿ

ℓ“1

ˆ
k

ℓ

˙´ 1

18h

¯ℓ
“

´
1 ` 1

18h

¯k
´ 1.

For k “ 3h, substituting back we have

|||pQ ` Eqk|||ℓ8Ñℓ8 ď exp
´
1 ´ k

h

¯
` exp

´ k

18h

¯
´ 1 “ e´2 ` e1{6 ´ 1 ă 1{2,

which completes the proof of Lemma 9.

6.4.2 Proof of Lemma 10

For the stochastic observation (16b) we constructed, note that

ErF pθqpsqs “ θpsq ` wpsq
`8ÿ

t“0

E

”
1
S

piq
t “s

!
1
S

piq
t`1

PGθpSpiq
t`1q ` 1

S
piq
t`1

RG

Tiÿ

ℓ“t`1

R
piq
ℓ `R

piq
t ´ θpsq

)ı

“ θpsq ` wpsq
`8ÿ

t“0

PpSpiq
t “ sq ¨ E

”
1
S

piq
t`1

PGθpSpiq
t`1q ` 1

S
piq
t`1

RG

Tiÿ

ℓ“t`1

R
piq
ℓ `R

piq
t ´ θpsq

)
| Spiq

t “ s
ı

“ θpsq ` wpsqνpsq ¨
!`
PGθ

˘
psq `

`
PG,SzGV

˚˘psq ` rpsq ´ θpsq
)
,

which verifies the unbiasedness condition (14a).

As for the Lipschitz condition (14b), we note that

ˇ̌
ˇ
!
F pθ1q ´ F pθ2q

)
psq

ˇ̌
ˇ ď |θ1psq ´ θ2psq| ` wpsq

m

ˇ̌
ˇ̌
ˇ
mÿ

i“1

Tiÿ

t“0

!
1
S

piq
t “s,Spiq

t`1
PG
`
θ1 ´ θ2

˘
pSpiq
t`1q ´ 1

S
piq
t “s

`
θ1 ´ θ2

˘
psq

)ˇ̌ˇ̌
ˇ

ď }θ1 ´ θ2}8 ` wpsq
m

mÿ

i“1

Tiÿ

t“0

!
1
S

piq
t “s}θ1 ´ θ2}8 ` 1

S
piq
t “s}θ1 ´ θ2}8

)

ď
´
1 ` 1

mνpsq

mÿ

i“1

ˇ̌
ˇtt P r0, Tis : S

piq
t “ su

ˇ̌
ˇ
¯

¨ }θ1 ´ θ2}8,

where in the last step, we use the fact (44) to derive the upper bound wpsq ď p1
2

` 1
36h

q 1
νpsq ď 1

νpsq .

40



Applying Equation (31) in the proof of Lemma 7 to the mini-batch, with probability 1 ´ δ, we have

1

mνpsq

mÿ

i“1

ˇ̌
ˇtt P r0, Tis : S

piq
t “ su

ˇ̌
ˇ ď 1 ` 32

d
h logp4|G|{δq

mνmin

, for any s P G.

So for each fixed step ℓ P rn{ms, with probability 1 ´ δ, we have

sup
θ1‰θ2

}Fℓpθ1q ´ Fℓpθ2q}8
}θ1 ´ θ2}8

ď max
sPG

´
1 ` 1

mνpsq

mÿ

i“1

ˇ̌
ˇtt P r0, Tis : S

piq
t “ su

ˇ̌
ˇ
¯

ď 2 ` 32

d
h logp4|G|{δq

mνmin

,

Taking union bound over all n
m

mini-batches, with probability 1 ´ δ, we have

max
1ďℓďn{m

sup
θ1‰θ2

}Fℓpθ1q ´ Fℓpθ2q}8
}θ1 ´ θ2}8

ď 2 ` 32

d
h logp4|G|n{δq

mνmin

,

For a mini-batch size given by Eq (18), the right hand side is upper bounded by 4, and consequently
the Lipschitz condition

}Fℓpθ1q ´ Fℓpθ2q}8 ď 4}θ1 ´ θ2}8, for any θ1, θ2 P Rd and ℓ P t1, 2, ¨ ¨ ¨ , n{mu (48)

is satisfied with probability 1 ´ δ.

Finally, for the noise at the fixed point V ˚, we note that

|F pV ˚qpsq| ď |V ˚psq| ` wpsq
m

mÿ

i“1

Tiÿ

t“0

1
S

piq
t “s

!
1
S

piq
t`1

PG |V ˚pSpiq
t`1q| ` 1

S
piq
t`1

RG

Tiÿ

ℓ“t`1

|Rpiq
ℓ | ` |Rpiq

t | ` |V ˚psq|
)

ď }V ˚}8 ` 1

mνpsq
mÿ

i“1

ˇ̌
ˇtt P r0, Tis : S

piq
t “ su

ˇ̌
ˇ ¨
`
1 ` 2}V ˚}8 ` Ti

˘
.

Similar to the arguments for the Lipschitz condition, we use Equation (31), the union bound, and the
mini-batch size choice (18) to conclude that

sup
sPG

1

mνpsq
mÿ

i“1

ˇ̌
ˇtt P r0, Tis : S

piq
t “ su

ˇ̌
ˇ ď 3

uniformly over all mini-batches, with probability 1 ´ δ.

Following the proof of Lemma 8, we have }V ˚}8 ď h. Moreover, by Assumption (Effphq) and union
bound, we have Ti ď h logpn{δq uniformly over all mini-batches. Putting them together, we conclude
that with probability 1 ´ δ,

}FℓpV ˚q}8 ď 9h logpn{δq ` 4,

uniformly over all mini-batches ℓ P t1, 2, ¨ ¨ ¨ , n{mu.

6.4.3 Proof of Lemma 11

Throughout the proof, we see the vector w as deterministic. Note that f is a linear operator, and we
have that

I ´ ∇fpV ˚
G q “ DwDνpI ´ PGq.
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As for the observational noise, by i.i.d. assumption, we note that

cov
“
F1pV ˚

G q ´ V ˚
G

‰

“ 1

m
cov

«
wpsq

Tiÿ

t“0

!
1
S

piq
t “s,Spiq

t`1
PGV

˚pSpiq
t`1q ` 1

S
piq
t “s,Spiq

t`1
RG

Tiÿ

ℓ“t`1

R
piq
ℓ ` 1

S
piq
t “sR

piq
t ´ 1

S
piq
t “sV

˚psq
)ff

sPG

“ 1

m
Dw covpε˚qDw.

By Lemma 8, we have

covpε˚q “ DνΣ
˚Dν .

Combining the derivation, we conclude that

`
I ´ ∇fpV ˚

G q
˘´1

cov
“
F1pV ˚

G q ´ V ˚
G

‰`
I ´ ∇fpV ˚

G q
˘´J

“ pI ´ PGq´1D´1
ν D´1

w DwDνΣ
˚DνDwD

´1
w D´1

ν pI ´ PGq´J

“ pI ´ PGq´1Σ˚pI ´ PGq´J,

which completes the proof of Lemma 11.

6.5 Proof of Theorem 3

It suffices to prove lower bounds with the two terms respectively. We claim the lower bounds

inf
pVn

sup
pP,LpRqqPCpν0,σ˚,2,δ,qq

E

” ˇ̌
ˇpVnps0q ´ V ˚ps0q

ˇ̌
ˇ
2 ı

ě c
σ2

˚
n
, (49a)

inf
pVn

sup
pP,LpRqqPCpν0,σ˚,2,δ,qq

E

” ˇ̌
ˇpVnps0q ´ V ˚ps0q

ˇ̌
ˇ
2 ı

ě c
q

nν0
. (49b)

Proof of Eq (49a): Let µ0 :“ 1{σ2
˚. We have µ0 ě ν0. Consider the following class of Markov

reward processes: let µps0q “ µ0 and µps1q “ 1´µ0, with P ps0,Hq “ P ps1,Hq “ 1. We let Rps1q ” 0.
For an indicator scalar z P t´1, 1u, we define the reward model as

Rps0q „ Ber
`1
2

` εz
˘
, under the distribution Pz,

where we define the scalars ε “ σ˚{p4?
nq.

Clearly, for the MRPs constructed above, we have h “ 1 as the process transitions to the terminal
state immediately. The reward takes value in r0, 1s, and we have

νps0q “ µ0 ě ν0, σ2
TDps0q “ νps0q´1 var

`
Rps0q

˘
ď σ2

˚
4
, and P

`
νpS1q ě q | S0 “ s0

˘
“ 1.

So under both P1 and P´1, we have
`
P,LpRq

˘
P Cpν0, σ˚, 2, δ, qq. By Pinsker’s inequality, we have

dTVpPbn
1 ,Pbn

´1 q ď
c

1

2
DKLpPbn

1 } Pbn
´1 q ď

c
nµ0

2
DKLpBerp1

2
` εzq } Berp1

2
´ εzqq ď 4ε

?
nµ0 “ 1{

?
2.

Under Pz, we have V
˚ps0q “ 1

2
`εz for z P t´1, 1u. Therefore, by Le Cam’s two-point lemma, we have

inf
pVn

sup
pP,LpRqqPCpν0,σ˚,2,δ,qq

E

” ˇ̌
ˇpVnps0q ´ V ˚ps0q

ˇ̌
ˇ
2 ı

ě ε2
!
1 ´ dTVpPbn

1 ,Pbn
´1 q

)
ě σ2

˚
64n

.
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Proof of Eq (49b): Let m :“ t1{ν0u and N :“ |S| ´ 1 ´ m. Assume that N is an even number
without loss of generality. For notational convenience, we label the states in S as

S “
 
s0, s1, ¨ ¨ ¨ , sm´1, s

1
1, s

1
2, ¨ ¨ ¨ , s1

N ,H
(
.

Now let us construct the class of MRPs. Let the initial distribution µ :“ Unif
`
s0, s1, ¨ ¨ ¨ , sm´1

˘
. Given

a binary vector ψ P t´1, 1uN such that
řN
j“1 ψj “ 0, we construct the reward distribution as

Rpsiq ” 0, for i “ 0, 1, ¨ ¨ ¨ ,m´ 1, and
Rps1

jq ` 1

2
„ Ber

`1 ` ψjε

2

˘
, for i “ 1, 2, ¨ ¨ ¨ , N,

where we choose the value

ε :“ 1

15

c
m

nq
. (50)

Given a binary vector ζ P t´1, 1um, we define the transition kernel as

P psi,Hq “ 1 ´ q, P psi, s1
jq “

#
2q
N

ζi ¨ ψj “ 1,

0 ζi ¨ ψj “ ´1,
, and P ps1

j ,Hq “ 1,

for any i P t0, 1, ¨ ¨ ¨ ,m´ 1u and j P t1, 2, ¨ ¨ ¨ , Nu.
Under above construction, it is easy to see that

V ˚ps1
jq “ ψjε, and V ˚psiq “ ζiqε, for i “ 0, 1, ¨ ¨ ¨ ,m ´ 1, and j “ 1, 2, ¨ ¨ ¨ , N. (51)

By the construction above, we obtained a class of MRPs indexed by the vector pair pψ, ζq. We denote
by Pψ,ζ the induced probability distribution for the observed trajectories. Under Pψ,ζ, we note that
the random rewards take value in r0, 1s; the terminal time satisfies Ti ď 2 for any starting state, which
implies Assumption (Effphq) with h “ 2. Furthermore, we note that νps0q “ µps0q “ 1{m ě ν0. For
the variance of TD estimator, we note that

Σ˚
TDpsi, siq “ 1

νpsiq
¨ var

`
V ˚pS1q | S0 “ si

˘
“ mqp1 ´ qqε2, and

Σ˚
TDps1

j , s
1
jq “ 1

νps1
jq

var
`
Rps1

jq
˘

“ Nm

2q ¨ |ti : ζi “ ψju|
`
1 ´ ε2

˘
.

As a result, we have

σ2
TDps0q “

“
pI ´ P q´1Σ˚

TDpI ´ P q´J‰
s0,s0

“ mqε2 ` qm

|ti : ζi “ ζ0u| p1 ´ ε2q.

By our sample size assumption and the definition (50) of ε, we have that

mqε2 “ m2

225n
ď 1, and

qm

|ti : ζi “ ζ0u| p1 ´ ε2q ď m

|ti : ζi “ ζ0u| .

Therefore, as long as we have |ti : ζi “ ζ0u| ě m
4
, the variance upper bound σ2

TDps0q ď 5 ď σ2
˚ holds.

Finally, we note that

P
`
νpS1q ď δ | S0 “ s0

˘
ď P

`
S1 ‰ H | S0 “ s0

˘
“ q.

Therefore, under our construction, we have
`
P,LpRq

˘
P Cpν0, σ˚, 2, δ, qq whenever |ti : ζi “ ζ0u| ě m

4
.
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Now let us use the construction to prove the minimax lower bound. We seek to use Le Cam’s mixture-
vs-mixture lemma. Define the probability distributions

Qz “ 1

2m´1
¨ 1`

N
N{2

˘
ÿ

ζ:ζ0“z

ÿ

ψ:1Jψ“0

Pbn
ψ,ζ, for z P t0, 1u.

We also define the truncated versions

rQz “ 1

|tζ : ζ0 “ z, |1Jz| ď m{2|u ¨ 1`
N
N{2

˘
ÿ

ζ : ζ0“z
|1Jz|ďm{2

ÿ

ψ:1Jψ“0

Pbn
ψ,ζ , for z P t0, 1u.

To bound the distance, we define the auxiliary distributions pQz over the MRP trajectory, for z P t´1, 1u.
Given a sign vector ζ fixed, for i “ 1, 2, ¨ ¨ ¨ , n, the observation model is given as follows

• Sample k „ Unif
`
t0, 1, ¨ ¨ ¨ ,m ´ 1u

˘
, and start the process from S

piq
0 “ sk. Transition to the

terminal state S
piq
1 “ H with probability 1 ´ q with 0 reward generated.

• For the rest of the probability q, sample ℓ „ Unif
`
t1, 2, ¨ ¨ ¨ , Nu

˘
, and make a transition to

S
piq
1 “ s1

ℓ while generating reward 0.

• Transition to the terminal state S
piq
2 “ H. Generate reward R

piq
1 “ 1 with probability Ber

`
1`ζkε

2

˘
,

and R
piq
1 “ ´1 with probability Ber

`
1´ζkε

2

˘
.

For z P t´1, 1u let pQz to be the mixture distribution by averaging the probability distribution described
above over all the sign vector ζ’s with ζ0 “ z.

We claim the following bounds

dTV

`rQ1,Q1

˘
ď 1

10
, dTV

`rQ´1,Q´1

˘
ď 1

10
, (52a)

dTV

`pQ1,Q1

˘
ď 1

10
, dTV

`pQ´1,Q´1

˘
ď 1

10
, (52b)

dTV

`pQ1, pQ´1

˘
ď 1

10
. (52c)

We prove these bounds in Section 6.5.1.

Taking these bounds as given, we proceed with the proof of Eq (49b). By triangle inequality, we have

dTV

`rQ1, rQ´1

˘
ď dTV

`rQ1,Q1

˘
` dTV

`pQ1,Q1

˘
` dTV

`pQ1, pQ´1

˘
` dTV

`pQ´1,Q´1

˘
` dTV

`rQ´1,Q´1

˘
ď 1

2
.

As we have verified, the support of rQ1 and rQ1 lies within the class Cpν0, σ˚, 2, δ, qq. Moreover, on the

support of rQz, we have V ˚ps0q “ zqε for z P t´1, 1u. By Le Cam’s mixture-vs-mixture lemma, we
have

inf
pVn

sup
pP,LpRqqPCpν0,σ˚,2,δ,qq

E

” ˇ̌
ˇ pVnps0q ´ V ˚ps0q

ˇ̌
ˇ
2 ı

ě q2ε2
!
1 ´ dTV

`rQ1, rQ´1

˘)
ě q

450ν0n
,

which completes the proof of Eq (49b).

6.5.1 Proof of Equation (52)

We prove the three bounds respectively. Note that by symmetry, we only need to prove the first parts
of Eq (52a) and Eq (52b).
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Proof of Eq (52a): Consider the random vector ζ´1 „ Unif
`
t´1, 1um´1

˘
corresponding to the vector

ζ without the first entry on s0. We define the event

E :“
! ˇ̌
z ` ζJ

´11
ˇ̌

ď m

2

)
.

By definition, we have rQ1 “ Q1|E . Consequently, for any random variable Z such that |Z| ď 1, we
have

ˇ̌
ˇErQ1

rZs ´ EQ1
rZs

ˇ̌
ˇ ď |EQ1

rZ | E s ´ EQ1
rZ | E s ¨ PpE q| ` |EQ1

rZ | E
cs ¨ PpE cq| ď 2P

`
E
c
˘
.

So we have dTVpQ1, rQ1q ď 2P
`
E
c
˘
. It suffices to bound the quantity P

`
E
c
˘
. By Hoeffding’s bound,

we have

Q1

`
E
c
˘

ď 2 exp
´

´ m

2

`1
2

´ 1

m

˘2¯ ď 2e´m{18.

Given m ě 72, we have P
`
E
c
˘

ď 1
20
, and consequently dTVpQ1, rQ1q ď 1

10
, which proves the claim.

Proof of Eq (52b): Define the event

E :“
!
Except for the terminal state H, S

p1q
1 , S

p2q
1 , ¨ ¨ ¨Spnq

1 are all distinct
)
.

Under both pQ1 and Q1, on the event E , the random sets

 
S

piq
1 : S

piq
0 “ s

piq
0 , Ti ą 1

(
,
 
S

piq
1 : S

piq
0 “ s

piq
1 , Ti ą 1

(
, ¨ ¨ ¨

 
S

piq
1 : S

piq
0 “ s

piq
m´1, Ti ą 1

(
.

are uniform random disjoint subsets of the set ts1
1, s

1
2, ¨ ¨ ¨ , s1

Nu. Furthermore, the transitions following

these states and the rewards obey the same distribution under pQ1 and Q1. Therefore, we conclude
that pQ1|E “ Q1|E . For any random variable Z such that |Z| ď 1, note that

ˇ̌
ˇEQ1

rZs ´ EpQ1
rZs

ˇ̌
ˇ

ď
ˇ̌
ˇEQ1

rZ|E s ¨ Q1pE q ´ EpQ1
rZ|E s ¨ pQ1pE q

ˇ̌
ˇ `

ˇ̌
ˇEQ1

rZ|E cs ¨ Q1pE cq ´ EpQ1
rZ|E cs ¨ pQ1pE cq

ˇ̌
ˇ

ď |EQ1
rZ|E s| ¨

ˇ̌
ˇQ1pE q ´ pQ1pE q

ˇ̌
ˇ ` Q1pE cq ` pQ1pE cq

ď 2Q1pE cq ` 2pQ1pE cq.

So we have dTV

`pQ1,Q1

˘
ď 2Q1pE cq ` 2pQ1pE cq. It suffices to bound the probability of the event E

under both models.

By union bound, we have

pQ1pE cq ď
ÿ

i,jPrns

pQ1

`
S

piq
1 “ S

pjq
1 ‰ H

˘
ď n2

N
, and

Q1pE cq ď
ÿ

i,jPrns
Q1

`
S

piq
1 “ S

pjq
1 ‰ H

˘
ď 2n2

N
.

Consequently, when N ą 60n2, we have dTV

`pQ1,Q1

˘
ď 1

10
, and by symmetry, dTV

`pQ´1,Q´1

˘
ď 1

10
.
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Proof of Eq (52c): By Pinsker’s inequality, we have

dTV

`pQ1, pQ´1

˘
ď

c
1

2
DKLppQ1 } pQ´1q.

Under pQz for any z P t´1, 1u, the trajectories starting from different initial states are independent.

By construction, pQ1 and pQ´1 differs only in the law of observations starting from the state s0. By
tensorization of KL divergence, we have

DKLppQ1 } pQ´1q “ n

m
DKLpLpQ1

`
τ | S0 “ s0

˘
} LpQ´1

`
τ | S0 “ s0

˘
q

“ nq

m
DKLpBer

`1 ` ε

2

˘
} Ber

`1 ´ ε

2

˘
q

ď 4nq

m
ε2.

Recalling from Eq (50) that ε “ 1
15

b
m
nq
, we have dTV

`pQ1, pQ´1

˘
ď 1

10
.

7 Discussion

In this paper, we have proposed and analyzed a new method that combines bootstrapping and Monte
Carlo methods in policy evaluation for reinforcement learning. By switching between TD and MC
estimation based on a subset of statespace, the estimator combines the improved variance of TD under
the trajectory pooling effect, and the finite-sample adaptivity of MC for “easier” states. We established
finite-sample upper bounds that involve the one-step variance from TD, and the product of the MC
variance and an exit probability. We further complement our upper bounds with a minimax lower
bound, establishing the critical role of the exit probability in the optimal statistical risk.

The subgraph Bellman operator complements the classical multi-step lookahead approach, and provides
a new perspective towards the balance between TD and MC methods. It opens up several interesting
directions of future research. Let us discuss some to conclude this paper.

First, the choice of the subgraph G in this paper is through a heuristic greedy search method. An
important open question is to develop data-driven approaches for choosing such a subgraph with
optimality guarantees. Furthermore, it is interesting to make our algorithm fully online by adjusting
the subgraph adaptively based on current estimates. Additionally, though our analysis focuses on fintie
state spaces and characterizes the complexities using visitation measure of single states, the idea of
subgraph Bellmen operator extends beyond this tabular setting. In general, it is interesting to consider
data-driven approaches for partitioning the state-action space to facilitate value estimation.

Another important future direction is to study the interpolation between bootstrapping and rollout
methods in the context of policy optimization. For example, by composing the subgraph Bellman
operator with the maximum function, we can define an algorithm that searches the optimal policy
within the subgraph, while using a given policy outside the subgraph. Solving such a value function
may not lead to the globally optimal policy, but it still yields an optimized policy based on local
information that the given sample size could possibly exploit. It is interesting to study the theoretical
guarantees that this algorithm could achieve, as well as its information-theoretic optimality properties.

Furthermore, it is interesting to combine the subgraph Bellman estimator with other aspects of policy
evaluation, including function approximation and off-policy data. In the former case, we expect the
subgraph Bellman operator to work well when the function class yields an good approximation locally
around the target state, but not globally over the entire MDP. In the latter case, the population-
level subgraph Bellman operator could be estimated by combining bootstrapping method and an
importance-weighted Monte Carlo estimate.
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R. S. Sutton, Cs. Szepesvári, and H. R. Maei. A convergent Opnq algorithm for off-policy temporal-
difference learning with linear function approximation. Advances in Neural Information Processing
Systems, 21(21):1609–1616, 2008. (Cited on page 2.)

R. S. Sutton, A. R. Mahmood, and M. White. An emphatic approach to the problem of off-policy
temporal-difference learning. Journal of Machine Learning Research, 17(73):1–29, 2016. (Cited on

page 2.)

P. Thomas and E. Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning. In
International Conference on Machine Learning, pages 2139–2148. PMLR, 2016. (Cited on page 4.)

P. S. Thomas, S. Niekum, G. Theocharous, and G. Konidaris. Policy evaluation using the Ω-return.
Advances in Neural Information Processing Systems, 28, 2015. (Cited on page 4.)

J. N. Tsitsiklis and B. Van Roy. Analysis of temporal-diffference learning with function approximation.
In Advances in Neural Information Processing Systems, pages 1075–1081, 1997. (Cited on page 4.)

A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge University Press, 2000. (Cited on

page 62.)

H. van Seijen. Effective multi-step temporal-difference learning for non-linear function approximation.
arXiv preprint arXiv:1608.05151, 2016. (Cited on page 2.)

C. JCH Watkins. Learning from delayed rewards. 1989. (Cited on page 2.)

C. JCH Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992. (Cited on page 2.)

M. White and A. White. A greedy approach to adapting the trace parameter for temporal difference
learning. In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent
Systems, pages 557–565, 2016. (Cited on page 4.)

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229–256, 1992. (Cited on page 2.)

49



E. Xia, K. Khamaru, M. J. Wainwright, and M. I. Jordan. Instance-dependent confidence and early
stopping for reinforcement learning. Journal of Machine Learning Research, 24(392):1–43, 2023.
(Cited on page 17.)

B. Zhu, J. Jiao, and D. Tse. Deconstructing generative adversarial networks. IEEE Transactions on
Information Theory, 2020. (Cited on page 4.)

A Additional results about the asymptotic covariance

A.1 Refined expression for the diagonal elements

A refined expression of the diagonal terms of the matrix Σ˚
G can be expressed in light of the following

quantities: Let U “ mintě1tSt “ s, St`1 R Gu and we define

νpsq “
8ÿ

t“0

PpSt “ sq,

νlooppsq “ E

«
U´1ÿ

t“0

1St“s | S0 “ s, S1 R G, U ă 8
ff
,

νoutpsq “ E

« 8ÿ

t“1

1St“s | S0 “ s, S1 R G, U “ 8
ff
,

σ2
looppsq “ E

«
U´1ÿ

t“0

σ2
V ˚ pStq | S0 “ s, S1 R G, U ă 8

ff
, and

σ2
outpsq “ E

« 8ÿ

t“1

σ2
V ˚pStq | S0 “ s, S1 R G, U “ 8

ff
.

Let all the quantities be 0 if the conditioned events happen with 0 probability respectively. Under
Assumption (Effphq) and the boundedness of the value function, all the above terms are bounded. Let

KGpsq “
8ÿ

t“0

1St“s,St`1RG

be the number of times the process goes out of the sub-graph G at state s. Then we have for any s P G,

Λ˚
Gps, sq “ νpsqσ2

V ˚ psqlooooomooooon
Λ˚

X,G

ps, sq ` 1

6
ErpKGpsq ´ 1qKGpsqp2KGpsq ´ 1qsσ2

looppsq ` E
“
K2

Gpsq
‰
σ2
outpsqlooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

Λ˚
Y,G

ps, sq

`
ˆ
1

3
ErpKGpsq ´ 1qKGpsqpKGpsq ` 1qsνlooppsq ` ErKGpsqpKGpsq ` 1qsνoutpsq

˙
σ2
V ˚ psq.

(53)

There are three types of variance relevant. The first is the one-step variance σ2
V ˚ psq at state s coore-

sponding to Λ˚
X,Gps, sq. The second is the MC variance part corresponding to Λ˚

Y,Gps, sq. The last term
is the correlation between the TD part and the MC part that counts the one-step variance at state s
each time the state is visited after exiting the subgraph via state s.
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A.1.1 Proof of Eq (53)

Now we provide an exact characterization for all the diagnal terms of Λ˚
G
. Recall, we let U “

mintě1tSt “ s, St`1 R Gu and we define

νpsq “
8ÿ

t“0

PpSt “ sq,

νlooppsq “ E

«
U´1ÿ

t“0

1St“s | S0 “ s, S1 R G, U ă 8
ff
,

νoutpsq “ E

« 8ÿ

t“1

1St“s | S0 “ s, S1 R G, U “ 8
ff
,

σ2
looppsq “ E

«
U´1ÿ

t“0

σ2
V ˚ pStq | S0 “ s, S1 R G, U ă 8

ff
, and

σ2
outpsq “ E

« 8ÿ

t“1

σ2
V ˚pStq | S0 “ s, S1 R G, U “ 8

ff
.

Let all the quantities be 0 if the conditioned events happen with 0 probability respectively. Under
Assumption (Effphq) and the boundedness of the value function, all the above terms are bounded.
And recall we let

KGpsq “
8ÿ

t“0

1St“s,St`1RG

be the number of times the process goes out of the sub-graph G at state s. Then we have

8ÿ

t“0

t´1ÿ

t1“0

`
PpSt1 “ s, St1`1 R G, St “ sq ¨ σ2

V ˚psq ` PpSt1 “ s, St1`1 R G, St “ sq ¨ σ2
V ˚psq

˘

“ 2
8ÿ

t1“0

8ÿ

t“t1`1

PpSt1 “ s, St1`1 R G, St “ sq ¨ σ2
V ˚ psq

“ 2E

« 8ÿ

t1“0

1St1 “s,St1`1RG

8ÿ

t“t1`1

1St“s ¨ σ2
V ˚ psq

ff

“ 2σ2
V ˚psq ¨ E

»
–
KGpsqÿ

k“1

pKGpsq ´ k ` 1qppk ´ 1qνlooppsq ` νoutpsqq

fi
fl

“ 1

3
ErpKGpsq ´ 1qKGpsqpKGpsq ` 1qsνlooppsqσ2

V ˚ psq ` ErKGpsqpKGpsq ` 1qsνoutpsqσ2
V ˚ psq.
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Furthermore, we have

8ÿ

t“0

8ÿ

t1“0

8ÿ

j“pt1_tq`1

ÿ

s2PS
PpSt1 “ St “ s, St1`1, St`1 R G, Sj “ s2q ¨ σ2

V ˚ ps2q

“ 2E

« 8ÿ

t“0

1St“s,St`1RG

8ÿ

t1“t`1

1St1 “s,St1`1RG

8ÿ

j“t1`1

σ2
V ˚ pSjq

ff
` E

« 8ÿ

t“0

1St“s,St`1RG

8ÿ

j“t`1

σ2
V ˚ pSjq

ff

“ 2E

»
–
KGpsqÿ

k“1

pKGpsq ´ kq
`
pk ´ 1qσ2

looppsq ` σ2
outpsq

˘
fi
fl ` E

»
–
KGpsqÿ

k“1

`
pk ´ 1qσ2

looppsq ` σ2
outpsq

˘
fi
fl

“ 1

6
ErpKGpsq ´ 1qKGpsqp2KGpsq ´ 1qsσ2

looppsq ` E
“
K2

Gpsq
‰
σ2
outpsq,

(54)

where the second equality uses the Markovian property. Then we have

Λ˚
Gps, sq “ νpsqσ2

V ˚ psq ` 1

3
ErpKGpsq ´ 1qKGpsqpKGpsq ` 1qsνlooppsqσ2

V ˚psq ` ErKGpsqpKGpsq ` 1qsνoutpsqσ2
V ˚psq

` 1

6
ErpKGpsq ´ 1qKGpsqp2KGpsq ´ 1qsσ2

looppsq ` E
“
K2

Gpsq
‰
σ2
outpsq.

Thus the matrix Λ˚
G exists and

?
n ¨ 1

n

nÿ

i“1

8ÿ

t“0

pXpiq
t ` Y

piq
t q Ñ N p0,Λ˚

Gq.

Note the average |Bpsq|
n

converges almost surely to νpsq by the Law of Large Numbers. Then by
Slutsky’s theorem, we have

?
npV ˚

G ´ prG ´ pVG,out ´ pPGV
˚
G qpsq Ñ N p0,Σ˚

Gq, (55)

where Σ˚
G

“ diagpp1{νpsqqsPGqΛ˚
G
diagpp1{νpsqqsPGq. Thus finally, we have

?
npV ˚

G ´ pVGq Ñ N p0, pI ´ PGq´1Σ˚
GpI ´ PGq´1q.

Bounding of Λ˚
G
. Recall that

Λ˚
G “ Cov

˜ 8ÿ

t“0

pXp1q
t ` Y

p1q
t q,

8ÿ

t“0

pXp1q
t ` Y

p1q
t q

¸
.

Let

Λ˚
X,G “ Cov

˜ 8ÿ

t“0

X
p1q
t ,

8ÿ

t“0

X
p1q
t

¸
, and Λ˚

Y,G “ Cov

˜ 8ÿ

t“0

Y
p1q
t ,

8ÿ

t“0

Y
p1q
t

¸
.

Then, by Lemma 5, we have

Λ˚
G ď 2Λ˚

X,G ` 2Λ˚
Y,G.

Specifically, by Lemma 4, the s, s1 entry of Λ˚
X,G and Λ˚

Y,G can be expressed as

Λ˚
X,Gps, s1q “ 1s“s1

8ÿ

t“0

PpSt “ sq ¨ σ2
V ˚ psq “ 1s“s1νpsqσ2

V ˚psq and

Λ˚
Y,Gps, s1q “

8ÿ

t“0

8ÿ

t1“0

8ÿ

j“pt1_tq`1

ÿ

s2PS
PpSt1 “ s1, St “ s, St1`1, St`1 R G, Sj “ s2q ¨ σ2

V ˚ ps2q.
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This implies together with Equation (24) that

Λ˚
X,Gps, s1q ` Λ˚

Y,Gps, s1q ď Λ˚
Gps, s1q.

Moreover, by the computation in Equation (54), we have for any s,

Λ˚
X,Gps, sq “ νpsqσ2

V ˚ psq and

Λ˚
Y,Gps, sq “ 1

6
ErpKGpsq ´ 1qKGpsqp2KGpsq ´ 1qsσ2

looppsq ` E
“
K2

Gpsq
‰
σ2
outpsq.

A.2 Proof of Corollary 1

When the subgraph is transient, for any state s P G, it is clear that KGpsq P t0, 1u. Moreover,
νlooppsq “ νoutpsq “ σ2

looppsq “ 0, thus we have

Λ˚
Gps, sq “ νpsqσ2

V ˚ psq ` ErKGpsqsσ2
outpsq “ νpsqσ2

V ˚psq ` νpsqPpS1 R G | S0 “ sqσ2
outpsq

Meanwhile, for any s ‰ s1 P G and 0 ď t1 ď t´ 1, we have

PpSt1 “ s1, St1`1 R G, St “ sq “ PpSt1 “ s, St1`1 R G, St “ s1q “ 0.

Moreover, since the process go out of the subgraph only once, for any s ‰ s1 P G and 0 ď t1, t ď T , we
have

PpSt1 “ s1, St “ s, St1`1, St`1 R G, Sj “ s2q “ 0.

In all, we have all the non-diagonal terms are 0. Thus, we have shown that as in Equation (55)

?
npV ˚

G ´ prG ´ pVG,out ´ pPGV
˚
G qpsq Ñ N p0,Σ˚

Gq,

where

Σ˚
G “ diag

´`
pσ2
V ˚ psq ` PpS1 R G | S0 “ sqσ2

outpsqq{νpsq
˘
sPG

¯
.

This implies that

?
npI ´ PGq´1pV ˚

G ´ prG ´ pVG,out ´ pPGV
˚
G qpsq

“
?
n

Tÿ

t“0

P tGpV ˚
G ´ prG ´ pVG,out ´ pPGV

˚
G qpsq

“
?
n
ÿ

s1PG
E

« 8ÿ

t“0

1St“s1 | S0 “ s

ff
pV ˚

G ´ prG ´ pVG,out ´ pPGV
˚
G qps1q

“
ÿ

s1PG
E
“
Nps1q | S0 “ s

‰?
npV ˚

G ´ prG ´ pVG,out ´ pPGV
˚
G qps1q.

In all, we have shown that

?
npV ˚

G psq ´ pVGpsqq Ñ N

˜
0,

ÿ

s1PG
E
“
Nps1q | S0 “ s

‰2pσ2
V ˚ ps1q ` PpS1 R G | S0 “ s1qσ2

outps1qq{νps1q
¸
.
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A.3 Proof of Proposition 5

Recall from the proof of Lemma 1 that we have Λ˚
Y,G :“ ErY Y Js, where

Y psq “
`8ÿ

t“0

1St“s,St`1RG
”
V ˚pSt`1q ´

` 8ÿ

t1“t`1

Rt1

˘ı
, for any s P G.

For any u P RG , we note that

uJdiag
`
p1{νpsqqsPG

˘
Λ˚
Y,Gdiag

`
p1{νpsqqsPG

˘
u

“ E

”! T´1ÿ

t“0

upStq
νpStq

¨ 1StPG,St`1RG ¨
”
V ˚pSt`1q ´

8ÿ

t1“t`1

Rt1

ı)2ı

ď E

” T´1ÿ

t“0

u2pStq
ν2pStq

¨ 1StPG,St`1RG ¨ T ¨
!
V ˚pSt`1q ´

8ÿ

t1“t`1

Rt1

)2ı

ď E

” T´1ÿ

t“0

u2pStq
ν2pStq

¨ 1StPG,St`1RG ¨ T
`
}V ˚

G }8 ` T
˘2ı

.

Note that }V ˚}8 ď h by Assumption (Effphq). Let us now bound the term above. Given an increasing
sequence pτmq`8

m“0 of integers such that τ0 “ 0, we perform the decomposition

E

” T´1ÿ

t“0

u2pStq
ν2pStq

¨ 1StPG,St`1RG ¨ T
`
}V ˚

G }8 ` T
˘2ı

“
`8ÿ

m“1

E

” T´1ÿ

t“0

u2pStq
ν2pStq

¨ 1StPG,St`1RG ¨ T
`
}V ˚

G }8 ` T
˘2
1τm´1ďTďτm

ı

ď
`8ÿ

m“1

pτm ` hq2τmE

” T´1ÿ

t“0

u2pStq
ν2pStq

¨ 1StPG,St`1RG ¨ 1Těτm´1

ı
.

For each term in the summation, we note that

E

” T´1ÿ

t“0

u2pStq
ν2pStq

¨ 1StPG,St`1RG ¨ 1Těτm´1

ı
“

ÿ

sPG

`8ÿ

t“0

u2psq
ν2psqP

´
St “ s, St`1 R G, T ě τm´1

¯
.

For the leading term with τ0 “ 0, we note that

E

” T´1ÿ

t“0

u2pStq
ν2pStq

¨ 1StPG,St`1RG
ı

“
ÿ

sPG

`8ÿ

t“0

u2psq
ν2psqP

´
St “ s, St`1 R G

¯

“
ÿ

sPG

u2psq
ν2psqP

`
S1 R G | S0 “ s

˘
¨
!`8ÿ

t“0

P
`
St “ s

˘)
“ uJdiag

´!P
`
S1 R G | S0 “ s

˘

νpsq
)
sPG

¯
u.

For other terms, we can upper bound the summation by a decomposition into two parts.

ÿ

sPG

τm{2´1ÿ

t“0

u2psq
ν2psqP

´
St “ s, St`1 R G, T ě τm

¯

ď
ÿ

sPG

τm{2´1ÿ

t“0

u2psq
ν2psqP

´
St “ s, St`1 R G

¯
¨ sup
sPS

P
`
T ě τm|St “ s

˘

ď uJdiag
´!P

`
S1 R G | S0 “ s

˘

νpsq
)
sPG

¯
u ¨ exp

´
´ τm

2h

¯
,
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and

ÿ

sPG

`8ÿ

t“τm{2

u2psq
ν2psqP

´
St “ s, St`1 R G, T ě τm

¯

ď
ÿ

sPG

`8ÿ

t“τm{2

u2psq
ν2psqP

´
St “ s, St`1 R G

¯

ď
ÿ

sPG

u2psq
ν2psqP

`
S1 R G | S0 “ s

˘
¨

`8ÿ

t“τm{2
PpT ą tq

ď uJdiag
´!P

`
S1 R G | S0 “ s

˘

νpsq
)
sPG

¯
u ¨ h

νmin

exp
´

´ τm

2h

¯
.

Now we let τm :“ 4mh log
`
2h{νmin

˘
. Substituting back to the summation, we conclude that

`8ÿ

m“1

pτm ` hq2τmE

” T´1ÿ

t“0

u2pStq
ν2pStq

¨ 1StPG,St`1RG ¨ 1Těτm´1

ı

ď 80h3 log3
`
h{νmin

˘
¨ uJdiag

´!P
`
S1 R G | S0 “ s

˘

νpsq
)
sPG

¯
u ¨

!
1 `

`8ÿ

m“1

h

νmin

´νmin

2h

¯m)

ď 160h3 log3
`
h{νmin

˘
¨ uJdiag

´!P
`
S1 R G | S0 “ s

˘

νpsq
)
sPG

¯
u.

Since above bound holds true for any vector u P RG , we have the domination relation

`
p1{νpsqqsPG

˘
Λ˚
Y,Gdiag

`
p1{νpsqqsPG

˘
ď 160h3 log3

`
h{νmin

˘
¨ diag

´!P
`
S1 R G | S0 “ s

˘

νpsq
)
sPG

¯
,

which completes the proof of Proposition 5.

B Proof of Proposition 7

We first define the auxiliary truncated variance

ς2G,Lps0q :“
”`
I ` PG ` P 2

G ` ¨ ¨ ¨ ` PLG
˘pΣG

`
I ` PG ` P 2

G ` ¨ ¨ ¨ ` PLG
˘Jı

s0,s0
.

Defining the matrix approximatione error

∆L :“ pI ´ PGq´1 ´
Lÿ

ℓ“0

P ℓG “
`8ÿ

ℓ“L`1

P ℓG ,

which satisfies the bound

|||∆J
L|||ℓ1Ñℓ1

piq“ |||∆L|||ℓ8Ñℓ8 ď
`8ÿ

ℓ“L`1

|||P ℓG |||ℓ8Ñℓ8

piiq
ď

`8ÿ

ℓ“L`1

e1´ℓ{h ď 1

n2
,

where step piq follows from the duality between ℓ1 and ℓ8 norms, and step piiq is due to Lemma 9.

Furthermore, by duality and Lemma 9, we have

|||pI ´ PGq´J|||ℓ1Ñℓ1 “ |||pI ´ PGq´1|||ℓ8Ñℓ8 ď
`8ÿ

ℓ“0

e1´ℓ{h ď eh.
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Consequently, we have

ˇ̌
ς2Gps0q ´ ς2G,Lps0q

ˇ̌
ď
ˇ̌
es0∆LΣ

˚
GpI ´ PGq´Jes0

ˇ̌
`
ˇ̌
es0pI ´ PGq´1Σ˚

G∆
J
Les0

ˇ̌
`
ˇ̌
es0∆LΣ

˚
G∆

J
Les0

ˇ̌

ď max
sPG

Σ˚
Gps, sq ¨

!2eh
n2

` 1

n4

)

ď 3eh2

νminn2
ď 1

n
.

It suffices to analyze the estimation error for the quantity ς2G,Lps0q. We use the error decomposition

pς2ps0q ´ ς2G,Lps0q “ eJ
s0

´ Lÿ

ℓ“0

pP pℓq
G

¯
pΣG

” Lÿ

ℓ“1

p qP pℓq
G

´ P ℓGq
ıJ
es0

` eJ
s0

´ Lÿ

ℓ“0

pP pℓq
G

¯”
pΣG ´ Σ˚

G

ı´ Lÿ

ℓ“0

P ℓG

¯J
es0

` eJ
s0

” Lÿ

ℓ“1

p pP pℓq
G ´ P ℓGq

ı
Σ˚

G

´ Lÿ

ℓ“0

P ℓG

¯J
es0 “: A1 `A2 `A3.

By construction, the random objects p pP pℓq
G qLℓ“1, p qP pℓq

G qLℓ“1, and
pΣG are mutually independent. Further-

more, since the empirical estimates pP p
G
ℓq and qP pℓq

G
are valid probability transition kernels for killed

Markov processes, we have

max
!

}P ℓGu}8, } pP pℓq
G u}8, } qP pℓq

G u}8
)

ď }u}8, and (56a)

max
!

}pP ℓGqJu}1, }p pP pℓq
G

qJu}1, }p qP pℓq
G

qJu}1
)

ď }u}1, (56b)

for any vector u P RG .

We need the following lemmas to control their deviations from the population versions.

Lemma 12. For any fixed vector u P RG and integer ℓ ď L, with probability 1 ´ δ, we have

}p pP pℓq
G ´ P ℓGqu}8 ď c}u}8 log

` |G|h
δνmin

˘c h

n0νmin

.

See Section B.1 for the proof of this lemma. By symmetry, the sequence of estimators p qP pℓq
G qLℓ“1 satisfies

the same high-probability bounds.

Lemma 13. Under above setup, with probaility 1 ´ δ, we have

max
s,s1

ˇ̌
ˇpΣGps, s1q ´ Σ˚

Gps, s1q
ˇ̌
ˇ ď c

νmin

d
h7 log9

`
n0{δ

˘

n0νmin

.

See Section B.2 for the proof of this lemma.

Taking these lemmas as given, we now proceed with the proof of Proposition 7. Note that

|A1| ď
Lÿ

ℓ“1

ˇ̌
ˇ̌
ˇe

J
s0

´ Lÿ

ℓ“0

pP pℓq
G

¯
pΣG

´
qP pℓq
G

´ P ℓG

¯J
es0

ˇ̌
ˇ̌
ˇ ď

Lÿ

ℓ“1

}
` qP pℓq

G
´ P ℓG

˘pΣG

´ Lÿ

ℓ“0

pP pℓq
G

¯J
es0}8.
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Invoking Lemma 13 and union bound, with probability 1 ´ δ, we have

|A1| ď cL log
` |G|Lh
δνmin

˘c h

n0νmin

¨ }pΣG

´ Lÿ

ℓ“0

pP pℓq
G

¯J
es0}8.

By Eq (56), we have

}
´ Lÿ

ℓ“0

pP pℓq
G

¯J
es0}1 ď

Lÿ

ℓ“0

}
´
pP pℓq
G

¯J
es0}1 ď L` 1.

So we conclude that

|A1| ď c log3pn0{δq
d

h5

n0νmin

¨ max
s,s1

pΣGps, s1q ď c

νmin

´ h11

n0νmin

¯1{2
log3pn0{δq,

with probability 1 ´ δ.

Similarly, for the term A3, we note that

|A3| ď
Lÿ

ℓ“1

}
` pP pℓq

G
´ P ℓG

˘
Σ˚

G

´ Lÿ

ℓ“0

P ℓG

¯J
es0}8

ď cL log
` |G|Lh
δνmin

˘c h

n0νmin

¨ }Σ˚
G

´ Lÿ

ℓ“0

P ℓG

¯J
es0}8 ď c

νmin

´ h11

n0νmin

¯1{2
log3pn0{δq.

As for the covariance estimation error term A2, we note that

|A2| ď }pI ´ pPGq´Jes0}1 ¨ max
s,s1PG

ˇ̌
ˇpΣGps, s1q ´ Σ˚

Gps, s1q
ˇ̌
ˇ ¨ }pI ´ PGq´Jes0}8 ď c

νmin

d
h11 log13

`
n0{δ

˘

n0νmin

,

with probability 1 ´ δ. Putting them together, we complete the proof of Proposition 7.

B.1 Proof of Lemma 12

The proof is similar to that of Lemmas 6 and 7. We define the empirical counts

Npsq :“
ˇ̌ 
τ P Drn0{4`1,n0{2s : S0pτq “ s

(ˇ̌
, for any s P G,

M pℓqps, s1q :“
ˇ̌ 
τ P Drn0{4`1,n0{2s : S0pτq “ s, Sℓpτq “ s, S1pτq, S2pτq, ¨ ¨ ¨ , Sℓpτq P G

(ˇ̌
, for any s, s1 P G.

It is easy to see that pP pℓq
G ps, s1q “ M pℓqps, s1q{Npsq. Define the auxiliary matrix

rP pℓq
G

ps, s1q :“ M pℓqps, s1q
νpsq ¨ n0{4 , for any s, s1 P G.

For any state s P G, we note that

ˇ̌
ˇeJ
s

` rP pℓq
G

´ pP pℓq
G

˘
u
ˇ̌
ˇ “

ˇ̌
ˇ̌ 1

Npsq ´ 1

νpsq ¨ n0{4

ˇ̌
ˇ̌ ¨

ÿ

s1PG
M pℓqps, s1qups1q ď

ˇ̌
ˇ̌1 ´ Npsq

νpsq ¨ n0{4

ˇ̌
ˇ̌ ¨ }u}8.

By Eq (31), with probability 1 ´ δ{|G|, we have

ˇ̌
ˇ̌1 ´ Npsq

νpsq ¨ n0{4

ˇ̌
ˇ̌ ď c

c
h

νminn0

log
`
|G|{δ

˘
.
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By union bound, we conclude that

}
` pP pℓq

G
´ rP pℓq

G

˘
u}8 ď c}u}8

c
h

νminn0

log
`
|G|{δ

˘
, (57)

with probability 1 ´ δ.

Now we turn to the error between the pair rPGu and PGu. Note that

ˇ̌
ˇeJ
s

` rP pℓq
G

´ P
pℓq
G

˘
u
ˇ̌
ˇ “ 1

νpsq ¨ n0{4

ˇ̌
ˇ̌
ˇ̌

n0{2ÿ

i“n0{4`1

Wi ´ ErWis

ˇ̌
ˇ̌
ˇ̌ ,

where we define the random variables Wi’s as

Wi :“
Tiÿ

t“0

upSpiq
t`ℓq1Spiq

t “s,Spiq
t`1

,S
piq
t`2

,¨¨¨Spiq
t`ℓ

PG .

Note that Wi satisfies the almost-sure bound |Wi| ď Ti}u}8, and by Assumption (Effphq), Ti has
Orlicz norm bounded with }Ti}ψ1

ď h. On the other hand, by Cauchy–Schwarz inequality, we have

W 2
i ď Ti ¨

Tiÿ

t“0

u2pSpiq
t`ℓq1Spiq

t “s,Spiq
t`ℓ

PG

For any t0 ą 0, we decompose the second moment as

ErW 2
i s “ E

“
W 2
i 1Tiďt0

‰
` E

“
W 2
i 1Tiąt0

‰

ď t0

t0ÿ

t“0

E

”
u2pSpiq

t`ℓq1Spiq
t “s,Spiq

t`ℓ
PG

ı
` }u}28E

“
T 2
i 1Tiąt0

‰

“ t0

t0ÿ

t“0

P
`
S

piq
t “ s

˘
¨ E

“
u2pSℓq1SℓPG | S0 “ s

‰
` }u}28E

“
T 2
i 1Tiąt0

‰

ď }u}28 ¨
!
t0νpsq ` 2t20e

´t0{h
)
.

Choosing t0 “ 3h logph{νminq, we conclude that

ErW 2
i s ď 4}u}28hνpsq logph{νminq.

Consequently, by Bernstein inequality, for sample size satisfying Eq (13), we have

ˇ̌
ˇeJ
s

` rP pℓq
G ´ P

pℓq
G

˘
u
ˇ̌
ˇ ď c}u}8 ¨

!dh logph{νminq logp|G|{δq
n0νpsq ` h logpG{δq

n0νpsq
)
,

with probabiltiy 1 ´ δ{|G|. Taking union bound over all the state s P G, under the sample size
condition (13), we conclude that

}
` rP pℓq

G ´ P
pℓq
G

˘
u}8 ď c}u}8

d
h logph{νminq logp|G|{δq

n0νmin

, (58)

with probability 1 ´ δ.

Combining Equations (57) and (58) completes the proof of Lemma 12.
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B.2 Proof of Lemma 13

Define the auxiliary random variables

ε˚
i psq :“

Tiÿ

t“0

1
S

piq
t “s

!
R

piq
t ` 1

S
piq
t`1

PGV
˚pSpiq

t`1q ` 1
S

piq
t`1

PG

Tiÿ

ℓ“t`1

R
piq
ℓ ´ V ˚psq

)
, for s P G.

We have the approximation error bound

|sεipsq ´ ε˚
i psq| ď

Tiÿ

t“0

1
S

piq
t “s

ˇ̌
ˇ1
S

piq
t`1

PG
`pVn0{4 ´ V ˚˘pSpiq

t`1q ´
`pVn0{4 ´ V ˚˘psq

ˇ̌
ˇ ď 2}pVn0{4 ´ V ˚

G }8 ¨
Tiÿ

t“0

1
S

piq
t “s.

Furthermore, we note that

sεipsq ď
`
2}pVn0{4}8 ` Ti ` 1

˘
¨
Tiÿ

t“0

1
S

piq
t “s, and ε˚

i psq ď
`
2}V ˚

G }8 ` Ti ` 1
˘

¨
Tiÿ

t“0

1
S

piq
t “s,

holding true almost surely for any s P G.

Define the sample covariance matrix

rΣGps, s1q :“ 4

n0pνpsqpνps1q

n0ÿ

i“3n0{4`1

ε˚
i psqε˚

i ps1q, for any s, s1 P G.

We have the approximation error bound

ˇ̌
ˇrΣGps, s1q ´ pΣGps, s1q

ˇ̌
ˇ

ď 4

n0pνpsqpνps1q

n0ÿ

i“3n0{4`1

ˇ̌
ε˚
i psq ¨

`
ε˚
i ´ sεi

˘
ps1q

ˇ̌
` 4

n0pνpsqpνps1q

n0ÿ

i“3n0{4`1

ˇ̌`
ε˚
i ´ sε

˘
psq ¨ sεips1q

ˇ̌

ď 1

pνpsqpνps1q ¨ 2}pVn0{4 ´ V ˚
G }8

`
2}V ˚

G }8 ` 2}pVn0{4}8 ` Ti ` 1
˘

¨ 4

n0

n0ÿ

i“3n0{4`1

! Tiÿ

t“0

1
S

piq
t “s

)! Tiÿ

t“0

1
S

piq
t “s1

)

By Cauchy–Schwarz inequality, we have

n0ÿ

i“3n0{4`1

! Tiÿ

t“0

1
S

piq
t “s

)! Tiÿ

t“0

1
S

piq
t “s1

)

ď
! n0ÿ

i“3n0{4`1

` Tiÿ

t“0

1
S

piq
t “s

˘2)1{2
¨
! n0ÿ

i“3n0{4`1

` Tiÿ

t“0

1
S

piq
t “s1

˘2)1{2

ď Ti

! n0ÿ

i“3n0{4`1

Tiÿ

t“0

1
S

piq
t “s

)1{2
¨
! n0ÿ

i“3n0{4`1

Tiÿ

t“0

1
S

piq
t “s1

)1{2

ď Ti
n0

4

a
pνpsqpνps1q.

Collecting the bounds, we conclude that

ˇ̌
ˇrΣGps, s1q ´ pΣGps, s1q

ˇ̌
ˇ ď Tia

pνpsqpνps1q
¨ }2pVn0{4 ´ V ˚

G }8
`
2}V ˚

G }8 ` 2}pVn0{4}8 ` Ti ` 1
˘
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In order to bound the } ¨ }8-norm estimationg error, we apply Theorem 2 with a0 “ es for each s P G,
and invoking union bound over all the states in the subgraph G, we have

}pVn0{4 ´ V ˚
G }8 ď c

´ h3

νminn0

log5pn0{δq
¯1{2

, with probability 1 ´ δ.

Combining with the tail assumption (Effphq) and the condition (33) for the empirical occupancy
measure, we conclude that with probability 1 ´ δ,

sup
s,s1PG

ˇ̌
ˇrΣGps, s1q ´ pΣGps, s1q

ˇ̌
ˇ ď ch2

νmin

´ h3

νminn0

¯1{2
log9{2pn0{δq. (59)

It remains to study the fluctuations in the sample covariance rΣG . We note that

E

”`
ε˚
i psqε˚

i ps1q
˘2 | Dr1,n0{4s

ı

ď 2
`
2}V ˚

G }8 ` 2}pVn0{4}8 ` 1
˘4
E

”` Tiÿ

t“0

1
S

piq
t “s

˘2` Tiÿ

t“0

1
S

piq
t “s1

˘2ı ` 2E
”
T 4
i

` Tiÿ

t“0

1
S

piq
t “s

˘2` Tiÿ

t“0

1
S

piq
t “s1

˘2ı
.

By Cauchy–Schwarz inequality, we note that

E

”` Tiÿ

t“0

1
S

piq
t “s

˘2` Tiÿ

t“0

1
S

piq
t “s1

˘2ı ď

gffeE

”` Tiÿ

t“0

1
S

piq
t “s

˘4ı ¨ E
”` Tiÿ

t“0

1
S

piq
t “s1

˘4ı

ď

gffeE

”
T 3
i

Tiÿ

t“0

1
S

piq
t “s

ı
¨ E

”
T 3
i

Tiÿ

t“0

1
S

piq
t “s1

ı
,

and similarly,

E

”
T 4
i

` Tiÿ

t“0

1
S

piq
t “s

˘2` Tiÿ

t“0

1
S

piq
t “s1

˘2ı ď

gffeE

”
T 7
i

Tiÿ

t“0

1
S

piq
t “s

ı
¨

gffeE

”
T 7
i

Tiÿ

t“0

1
S

piq
t “s1

ı
.

We claim the auxiliary inequality

E

”
T ki

Tiÿ

t“0

1
S

piq
t “s

ı
ď 2hkνpsq logk

`
h{νmin

˘
. (60)

Applying Eq (60) to above bounds, we conclude that

E

”`
ε˚
i psqε˚

i ps1q
˘2 | Dr1,n0{4s

ı
ď ch3

`
h4 ` }pVn0{4}48

˘a
νpsqνps1q log7

`
h{νmin

˘
.

By Bernstein inequality, with probability 1 ´ δ, we have

ˇ̌
ˇ̌
ˇ̌
4

n0

n0ÿ

i“3n0{4`1

ε˚
i psqε˚

i ps1q ´ E
“
ε˚
i psqε˚

i ps1q
‰
ˇ̌
ˇ̌
ˇ̌

ď c
`
h2 ` }pVn0{4}28

˘
¨
!´h3

a
νpsqνps1q
n0

log7
`
h{νmin

˘
logp1{δq

¯1{2
` h2

n0

log2p1{δq
)
.
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Given a sample size satisfying Eq (13), by noting that the empirical occupancy measure satisfies the
domination relation (33), we conclude that

ˇ̌
ˇ̌
ˇ
rΣGps, s1q ´ E

“
ε˚
i psqε˚

i ps1q
‰

pνpsqpνps1q

ˇ̌
ˇ̌
ˇ ď c

νmin

d
h7 log7

`
h{νmin

˘

n0νmin

logp1{δq, (61)

with probability 1 ´ δ.

Finally, it remains to bound the error incurred by estimating the occupancy measure. With probability
1 ´ δ, we have

ˇ̌
ˇ̌
ˇΣ

˚
Gps, s1q ´ E

“
ε˚
i psqε˚

i ps1q
‰

pνpsqpνps1q

ˇ̌
ˇ̌
ˇ “

ˇ̌
Σ˚

Gps, s1q
ˇ̌

¨
ˇ̌
ˇ̌1 ´ νpsqνps1q

pνpsqpνps1q

ˇ̌
ˇ̌ piq

ď 2
ˇ̌
Σ˚

Gps, s1q
ˇ̌ ! ˇ̌ˇ̌1 ´ νpsq

pνpsq

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌1 ´ νps1q

pνps1q

ˇ̌
ˇ̌
)

piiq
ď c

ˇ̌
Σ˚

Gps, s1q
ˇ̌
d
h logp|G|{δq
n0νmin

ď c
h3

νmin

d
h logp|G|{δq
n0νmin

, (62)

where in step piq, we use the domination relation (33), and in step piiq, we use the bound (31).

Combining Equations (59), (61), and (62), we complete the proof of Lemma 13.

Proof of Eq (60): for any t0 ą 0, we decompose

E

”
T ki

Tiÿ

t“0

1
S

piq
t “s

ı
“ E

”
1Tiďt0 ¨ T ki

Tiÿ

t“0

1
S

piq
t “s

ı
` E

”
1Tiąt0 ¨ T ki

Tiÿ

t“0

1
S

piq
t “s

ı

ď tk0νpsq ` E
“
1Tiąt0T

k`1
i

‰

ď tk0

!
νpsq ` he´t0{h

)
.

Taking t0 “ h logph{νminq, we complete the proof of this bound.

C Proof of Proposition 8

Denoting ϑ “ pP, rq be the MRP parameters. We consider the set of transition kernels P that shares
the support as P0, and we consider rewards on all states except for H (where the reward is known to
be zero), so that ϑ is of dimension |supppP0q| ` |S| ´ 1.

The value function of interest takes the form V ˚ :“ ψpϑq :“ pI ´ P q´1r. Let the loss function be
ℓpV1, V2q “ pV1ps0q ´ V2ps0qq2. According to the local asymptotic minimax theorem (Hájek, 1972;
Le Cam, 1973), we have

sup
∆ą0

lim inf
nÑ`8

sup
PPNtranpP0,∆{?

nq
rPNrwdpr0,∆{?

nq

n ¨ E
” ˇ̌
ˇ pVnps0q ´ V ˚

P,rps0q
ˇ̌
ˇ
2 ı

ě
“
∇ψpϑ0qJ ¨ J:

ϑ0
¨ ∇ψpϑ0q

‰
s0,s0

, (63)

where we define ϑ0 “ pP0, r0q and Jϑ is the Fisher information matrix of each observation with respect
to the parameters ϑ.

It suffices to compute the matrix ∇ψpϑ0qJ ¨ J:
ϑ0

¨ ∇ψpϑ0q. We do so through an indirect method by
comparing the asymptotic distribution of the MLE with a known asymptotic distribution.
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Let the reward distribution be RtpStq | St „ N prpStq, σ2
r pStqq. Given an observed trajectory τ “

pX0, R0, X1, R1, ¨ ¨ ¨ , XT “ Hq, the log-likelihood takes the form

Lpτq “
`8ÿ

t“0

1tăT
!
logP pSt, St`1q ´ pRt ´ rpStqq2

2σ2
rpStq

´ 1

2
log

`
2πσ2

r pStq
˘)

“
ÿ

sPSzt∅u

ÿ

s1PS
logP ps, s1q ¨

!`8ÿ

t“0

1St“s,St`1“s1

)
´

ÿ

sPSzt∅u

`8ÿ

t“0

1St“s
! pRt ´ rpsqq2

2σ2
rpsq ` 1

2
log

`
2πσ2

r psq
˘)
.

Given i.i.d. observations pτiqni“1, the joint log-likelihood is given by

L
`
pτiqni“1

˘
“

ÿ

sPSzt∅u

ÿ

s1PS
logP ps, s1q ¨

nÿ

i“1

!`8ÿ

t“0

1
S

piq
t “s,Spiq

t`1
“s1

)

´
ÿ

sPSzt∅u

nÿ

i“1

`8ÿ

t“0

1
S

piq
t “s

!pRpiq
t ´ rpsqq2
2σ2

rpsq ` 1

2
log

`
2πσ2

rpsq
˘)
.

The MLE therefore takes the form

pPMLEps, s1q “
´ nÿ

i“1

`8ÿ

t“0

1
S

piq
t “s

¯´1´ nÿ

i“1

`8ÿ

t“0

1
S

piq
t “s,Spiq

t`1
“s1

¯
,

prMLEpsq “
´ nÿ

i“1

`8ÿ

t“0

1
S

piq
t “s

¯´1´ nÿ

i“1

`8ÿ

t“0

1
S

piq
t “sR

piq
t

¯
.

Since the log-likelihood is second-order smooth in a local neighborhood around pP0, r0q, and the
MLE is an empirical mean estimator, which converges at 1{?

n rate. Therefore, by Theorem 5.39
of Van der Vaart (2000), under the model pP, rq, we have the asymptotic distribution for the MLE

?
n

„ pPMLE ´ P

prMLE ´ r


dÝÑ N

`
0, J:

ϑ

˘
.

Since the function ψ : pP, rq Ñ pI ´ P q´1r is second-order smooth in a local neighborhood around
pP0, r0q, by Delta-method, under the model pP, rq, we have

?
n
`
ψ
` pPMLE, prMLE

˘
´ ψpP, rq

˘ dÝÑ N
`
0,∇ψpP, rqJJ:

P,r∇ψpP, rq
˘
.

On the other hand, we note that pVTD “ ψ
` pPMLE, prMLE

˘
, and by Proposition 1, we have

?
n
`pVTD ´ V ˚˘ dÝÑ N

`
0, pI ´ P q´1Σ˚

TDpI ´ P q´J˘.

Substituting back to Eq (63) completes the proof of Proposition 8.
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