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Abstract

Neoadjuvant chemotherapy (NAC) response prediction for triple negative breast cancer (TNBC) patients

is a challenging task clinically as it requires understanding complex histology interactions within the tu-

mor microenvironment (TME). Digital whole slide images (WSIs) capture detailed tissue information, but

their giga-pixel size necessitates computational methods based on multiple instance learning, which typically

analyze small, isolated image tiles without the spatial context of the TME. To address this limitation and in-

corporate TME spatial histology interactions in predicting NAC response for TNBC patients, we developed

a histology context-aware transformer graph convolution network (NACNet). Our deep learning method

identifies the histopathological labels on individual image tiles from WSIs, constructs a spatial TME graph,

and represents each node with features derived from tissue texture and social network analysis. It predicts

NAC response using a transformer graph convolution network model enhanced with graph isomorphism net-

work layers. We evaluate our method with WSIs of a cohort of TNBC patient (N=105) and compared its

performance with multiple state-of-the-art machine learning and deep learning models, including both graph

and non-graph approaches. Our NACNet achieves 90.0% accuracy, 96.0% sensitivity, 88.0% specificity, and

an AUC of 0.82, through eight-fold cross-validation, outperforming baseline models. These comprehensive

experimental results suggest that NACNet holds strong potential for stratifying TNBC patients by NAC re-

sponse, thereby helping to prevent overtreatment, improve patient quality of life, reduce treatment cost, and

enhance clinical outcomes, marking an important advancement toward personalized breast cancer treatment.
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1 Introduction

Breast Cancer is the leading malignant disease and cause of cancer death in women worldwide [1]. Of all

breast cancer subtypes, Triple Negative Breast Cancer (TNBC) presents the most aggressive progression, with

a dismal prognosis and a high recurrence rate [1]. In current clinical practice, treatment option for this cancer

subtype is limited. Although new immunotherapies have recently emerged, chemotherapy remains the primary

treatment for patients with TNBC at both early and advanced stages. In particular, because of the absence of

estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2),

TNBCs do not respond to hormone therapies or HER2-targeted treatments, significantly narrowing the range

of therapeutic options. Consequently, chemotherapy, particularly neoadjuvant chemotherapy (NAC), continues

to be the standard-of-care and predominant treatment option for this aggressive cancer subtype [2–6].

NAC treatment response is evaluated in resected tissues from the surgery using the residual cancer burden

(RCB) metric. Based on RCB scores, two response classes are defined: Pathology Complete Response (pCR)

with a post-treatment RCB of zero, and Residual Disease (RD), indicating an incomplete response. Clinically,

pCR is often used as an endpoint for reoperative treatment and is strongly correlated with long-term clinical

benefits [7, 8].

However, only about 30%∼40% of TNBC patients respond well to NAC treatment, while the remaining

patients either respond moderately or are refractory to NAC [9]. Despite its clear clinical benefits, for example a

reduction in the tumor size or a downgrade in breast cancer before the surgery, NAC can substantially decrease

patient life quality with its adverse treatment effects [10]. For non-responders, NAC not only introduces

unnecessary toxicity but also delays alternative treatments and surgery, leading to adverse outcomes and

overtreatment. Unfortunately, there remains a critical, unmet need to accurately predict NAC treatment

response at the time of diagnosis. An accurate treatment response prediction remains a major clinical challenge.

In recent years, machine learning has been successfully applied to histopathology images for predicting

survival outcomes and treatment responses in the clinical oncology [11, 12]. Numerous studies have demon-

strated the effectiveness of image-based machine learning in improving clinical decision-making. For example,

deep learning models have been used to predict early treatment response in metastatic colorectal cancer by

identifying subtle morphological changes in tumors, surpassing traditional size-based assessment methods [13].

In breast cancer research, deep learning frameworks have been used to integrate histopathology images with

additional data types, such as genomic and radiomic features, to predict NAC response [14–16]. These models

provide non-invasive methods for assessing treatment efficacy and guiding personalized therapy strategies. The

successful applications of deep learning across various cancer types suggest its potential to revolutionize clinical

treatment response prediction, offering more accurate and personalized approaches to support patient care.

Thanks to significant advances in tissue scanning technology, whole slide images (WSIs) of tissue sections

can now be routinely produced to capture cell-level tissue details. However, due to their giga-pixel scale,

WSIs pose significant computational challenges, making it difficult to directly deploy machine learning and

image analysis techniques for large-scale automated analyses. [17–19]. To manage the computational demand,

it is a common practice to partition giga-pixel WSIs into numerous small image tiles and analyze them using
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a multiple instance learning (MIL) strategy [20–25]. In MIL, tiles from each WSI are treated as instances

from a bag that share the same patient-level label [26, 27]. Each tile is assigned a predicted label and these

tile-level labels are then aggregated to form a comprehensive patient-level representation [28–30]. However,

this MIL strategy may be less effective due to the high tissue heterogeneity within the breast cancer tumor

microenvironment (TME), which breaks the MIL assumption that all instances in the negative (RD) bag should

have a negative label [31]. Notably, TNBCs exhibit significant TME heterogeneity, where the presence of tumor-

infiltrating lymphocytes are associated with a better prognosis and an improved response to chemotherapy [6].

Numerous studies further highlight that TME histological interactions strongly correlated with NAC response

in TNBC patients [31–34]. However, MIL-based analyses ignore these spatial TME histology distributions and

interactions, remaining insensitive to local tissue context and the global structure organization.

Graph Convolution Network (GCN) has been developed to partially address this problem. It represents

each WSI as a graph consisting of nodes and edges, and predicts the WSI label by aggregated features of

nodes in local neighborhoods [25, 35–37]. Learning a structured graph requires an effective graph represent-

ation [38]. However, constructing a context-aware, effective, and minimal WSI topological representation to

hence predictive discriminating power remains an open challenge. Additionally, there is limited research on

how to generate biologically meaningful graph node representations and edge connections for cancer grading

and subtyping tasks using histopathology WSIs. Most current approaches cutting WSIs into tiles, then develop

GCNs at the tile level, and finally aggregate the outcomes from the tile nodes to create overall WSI-level

predictions [25, 39]. Although tile-level approaches have advanced research in WSI processing, they fall short

in constructing WSI graphs with well-informed node labels and attributes. When the objective is to identify

the entire tumor region or capture the TME connectivity in WSIs, where nodes characterize disease stage, it

becomes important to incorporate both regional and WSI-level information with accurately labeled nodes and

detailed attribute features. Therefore, label-informed WSI graph structure learning methods are needed for

these prediction and analysis.

To address the challenges posed by spatial heterogeneity in TNBC WSIs, we developed a multi-step NAC

prediction network (NACNet) that leverages a WSI-derived graph representation and a transformer-based

graph convolution network (GCN) for NAC response prediction in TNBC patients. Our approach leverages

clinically relevant TME information such as cellular (e.g., lymphocyte infiltration) and extracellular matrix

(e.g., collagen) heterogeneity for an accurate treatment response prediction. First, we train a deep learning

model to recognize local histology labels and produce histology label maps for WSIs. Next, we construct a

spatial TME graph using tile-level histology label map, extract context aware graph features, and predict the

NAC treatment response using a transformer GCN model that is boosted with Graph Isomorphism Network

(GIN) layers [40]. We applied the NACNet to a TNBC patient cohort, and demonstrated that incorporating

accurate spatial TME structures enhanced NAC response prediction.
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2 Dataset

This study used a set of specimens from a TNBC patient cohort receiving NAC treatment at the Decatur

Hospital, Georgia, USA. All patient tissues were histologically processed and stained with Hematoxylin and

Eosin (H&E). The H&E-stained tissues were scanned using a high-throughput high-resolution digital scanner

(Hamamatsu NanoZoomer 2.0-HT C9600-13) at 40x magnification (0.23 µm/pixel). Board-certified patholo-

gists annotated histological features in these slides using an open-source image processing software (QuPath,

ver. 0.1.2). The features include adipose tissue, Polyploid Giant Cancer Cells (PGCCs), Microvessel Density

(MVD), tumor, stroma, Carcinoma In-Situ (CIS), hemorrhage, mucinous change, apocrine change, immune

cells, necrosis, and muscle tissue. The TNBC patient cohort included 105 female patients in total, with 48

patients responding (pCR) and 57 not responding (RD) to the NAC treatment.

3 Methods

We developed a histology context-aware transformer graph convolution network, NACNet, for an enhanced

TNBC NAC response prediction with H&EWSIs. NACNet recognizes histology labels of image tiles, constructs

spatial TME graphs, characterizes graph nodes with the local node label information including both type and

count, tissue texture, and social network analysis (SNA) features. We then used a transformer graph convolution

network (GCN) equipped with graph isomorphism network (GIN) layers to analyze these graphs and predict

the treatment outcome(Figure 1).

Figure 1: Overview of the NACNet architecture. Each WSI is partitioned into non-overlapping image tiles of size

150× 150 pixels.A pre-trained convolutional model for image tile classification identifies all image tile classes, resulting in

a tile-level histology label map where each pixel represents the histology label of an image tile. A sliding window moves

over each histology label map and defines neighbors that share the same histology label as a WSI graph node. Both

graph-based SNA and image texture features are used to represent the graph nodes. Nodes within the distance ϵ are

connected with an edge. The resulting ϵ-neighborhood graph is provided to a transformer-based GCN with GIN layers.

This architecture incorporates the TME spatial information, improving the prediction power.
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3.1 Histology map generation

To accommodate computational and memory constraints, we partitioned each WSI into non-overlapping 150

× 150 image tiles and recorded the spatial coordinates of the top left corner of each tile. We trained a

convolutional neural network (CNN) classifier to converts each tile into a histology label. Then a WSI became

a histology label map (Figure 2a). The histology labels of training image tiles were based on the detailed

histology annotations of 12 distinct histology classes by pathologists. Background regions are identified by

the cutoff intensity value 220 in all RGB image channels. Tiles with more than 90% background regions are

discarded. Thanks to the large number of TNBC related histology components of interest in this study, the

histology map can capture diverse and intricate histological characteristics important for TNBC treatment

response prediction.

3.2 TME graph construction

Characterizing the spatial histopathological heterogeneity is critical for both understanding cancer progression

and for cancer subtyping, biomarker discovery, and treatment response prediction [20, 42]. Our NACNet model

creates a graph-based TME representation that takes advantage of the spatial interactions across different tissue

histology regions in a WSI (Algorithm 1). The graph, G = (V,E) is undirected, where V is the set of nodes

and E is the set of edges connecting adjacent nodes.

As each image tile in our study is 150 × 150 by size, we use a 10×10 sliding window over the histology

map to identify context-aware graph nodes by connecting neighboring tiles of the same histology label. As

we move the sliding window over the histology map, we spatially cluster the histology map labels within the

sliding window. Each resulting cluster is defined as a graph node with its location represented by the cluster

centroid. We carefully considered both the physical size differences among histological categories and their

clinical significance in breast cancer. Our approach to node formation is uniquely context-aware, aiming to

capture the essential pathological features that inform prognosis and treatment strategies. Among our 12

histology categories, several—including tumor, necrosis, immune cells, microvessel density (MVD), stroma,

and polyploid giant cancer cells (PGCC)—carry high clinical relevance due to their direct association with

tumor progression, prognosis, and treatment response [43–45]. For these critical categories, we assigned a lower

threshold n = 5 value, ensuring they cluster more readily into nodes and are prominently represented within the

TME graph. This approach emphasizes the spatial distribution of these important features within the tissue

structure, enhancing the model’s ability to focus on key regions that reflect the tumor microenvironment’s

complexity. Conversely, categories with lower clinical impact, such as hemorrhage, mucinous changes, carcinoma

in situ (CIS), adipose tissue, muscle tissue, and apocrine change, were assigned higher thresholds n = 10. This

prevents over-segmentation of less significant features while still allowing these elements to provide meaningful

context within the overall histological landscape. This clinically-weighted clustering strategy not only reduces

the impact of misclassifications but also enhances the model’s accuracy in constructing a context-aware TME

graph. By assigning weights based on clinical relevance, our approach uniquely captures the heterogeneous

spatial and clinical characteristics of breast cancer tissues, thus offering a more nuanced and informative
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Figure 2: Feature extration from WSI spatial TME graph. (a) Each WSI is partitioned into image tiles. A

training set of slides are annotated with one of 12 histology classes. A VGG16 model [41] trained on these annotated

slides predict the histology labels for the rest of the titles. All labeled tiles are then combined to produce the histology

map for each WSI. (b) Within the histology map, a large cluster of tiles (n > η) sharing the same histology label is

defined as a TME graph node. Any pair of nodes within distance ϵ are connected by an edges. Multiple SNA features

are derived from each graph node (e.g., degree, betweenness, page rank, and closeness). (c) An autoencoder connected

to a VGG flatten layer is used to find image embeddings of graph nodes. The node size, tissue texture and SNA features

are integrated to enable a context-aware graph characterization.

representation for prognostic modeling. Additionally, the number of histology map entries sharing the same

histology label in the sliding window is the local node label count (Figure 2b). A pair of nodes with spatial

distance less than ϵ = 1, 500 pixels (0.25 µm/pixel) [46]. The adjacency matrix A = [aij ], where aij = 1 if an

edge exists between node i and j and aij = 0 otherwise, captures the TME edge set E and models histology

component spatial interactions in TME.

For each graph node, we use the local node label, node label count, SNA features, and node tissue texture

features to capture the spatial histology interactions in the TME graph. We calculate the local node label

count by the number of image tiles associated with each node. In addition, we calculate the SNA features [47]
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Algorithm 1 WSI Graph Representation

Input: W : WSI; M : Histology map
Output: G: Graph data; Lc: Subgraph clique distribution; Le: Edge distribution
Stage 1: Graph and Node Feature Generation
for each sliding window m in the M do

C ← SpatiallyClusterLabels(m) ▷ Spatially cluster histology map labels within the sliding window
for each cluster c in C do

label count← CountCluster(c) ▷ Count number of labels in the cluster
if label count > η then

V ← CalculateCentroid(c) ▷ Calculate centroid of the cluster
F ← autoencoder(W (centroid(c))) ▷ Extract image texture features

end if
end for

end for
for each node vi in V do

if d(vi, vj) < ϵ then
Eij ← (vi, vj) ▷ Create the edge

end if
end for
return G(V,E, F ) ▷ Graph and its representation
Stage 2: Subgraph Cliques and Edge Distribution
Lc(vi, vj , vk)← allcycles(G, MCL, λ = 3) ▷ Find all cycles of length three
Le(vi, vj)← allcycles(G, MCL, λ = 2) ▷ Find edges with all two-node histology label combinations

that include node degree, betweenness, pagerank, and closeness (Figure 2b). Specifically, the node degree (or

degree centrality) is the number of edges connected to the current node. The betweenness centrality of a node

is the sum of the ratio of the number of the shortest paths from node S to T through current node to the

number of the shortest paths from S to T over all pairs of S and T. PageRank is a link analysis algorithm

originally developed to measuring the relative importance of web documents within the World Wide Web [48].

It assigns a numerical weight to each node in our spatial TME graph that is calculated iteratively as the sum

of the ratios of the PageRank of neighboring connected nodes to the number of outbound links from these

neighboring connected nodes. Closeness centrality measures the ability of a node to pass information in a

graph and is calculated as the reciprocal of the average shortest path distance from the current node to all

other nodes in the graph. To include tissue details for the node characterization, we extract node image tile

texture features using an autoencoder flatten layer [49] (Figure 2c), resulting in a feature vector of length 12.

For each node, the label, label count, texture features, and SNA features together form the node feature

vector hv of length d. The spatial TME graph feature matrix H ∈ Rn×d consists all the features of all node n.

The adjacency matrix A captures the edge connections, while the graph feature matrix H represents the graph

node attributes. The adjacency matrix A and the feature matrix H together represent the tissue spatial TME

graph from each WSI, providing a reliable and standardized method for treatment response prediction.
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3.3 NAC treatment response prediction based on the TME graph

Our NACNet aims to improve the accuracy and efficiency of NAC response predictions for TNBC patients

using the WSIs. To achieve this goal, NACNet model combines the transformer Graph Convolution Network

(GCN) [50] with the Graph Isomorphism Network (GIN) layer [40] to predict the treatment response. The

GCN learns the abstract graph features through message passing, where feature vectors in the hidden layers are

iteratively updated by aggregation of feature vectors from neighboring nodes [51]. To improve the performance,

we combine GCN with a self-attention mechanism introduced by transformer [50].

In our study, we further enhance the model WSI-level representation and discrimination power by a GIN

layer with an Multilayer Perceptron (MLP) before the transformer GCN based spatial TME graph prediction

module. This integration empowers the model to capture intricate tissue patterns and histology component

relationships from the spatial tissue graph. Specifically, the GIN layer is known for data distribution learning

in a low-dimensional space. This good merit enables GINs to discriminate different class-conditional graph

structures, and map graph structures of same class to similar embeddings with a strong generalizability [52].

In our model architecture, the output of GIN with Multilayer Perceptron (MLP) is further provided to a

transformer with a self-attention mechanism. The aggregated features are next provided to a transition function

that incorporates residual connections [53] and a normalization layer (LNorm) [54]. Finally, the resulting latent

graph embeddings are processed by a GCN layer. In this way, the graph embeddings are iteratively updated

by the GIN layer, transformer and the GCN:

h′(k)v = MLP (k)

(1 + α(k)) · h(k)v +
∑

u∈N (v)

h(k)u

 (1)

H̃
′(k) = Attention

(
H ′(k)Q(k), H ′(k)K(k), H ′(k)V (k)

)
(2)

H(k+1) = GCN(A, H̃
′(k)) (3)

where α is a learnable parameter for the node representation update [40]; h
(k)
v is the feature vector of node v

at the k-th layer, while H(k) is the graph feature matrix. For each node v ∈ V, the feature vectors of a set of

neighbors (i.e. µ ∈ N (v)) by the adjacency matrix A are uniformly sampled and aggregated with the current

node feature vector. Additionally, V (k), Q(k),K(k) ∈ Rd×d are the value projection weight, query-projection,

and key-projection matrix in the transformer, respectively.

3.4 TME histology component spatial interaction characterization

As the complex spatial TME component interactions, e.g. the interactions across tumor, stromal and immune

cells, can shed much insight on the underlying disease status, we include multiple TME histology components

in the tissue WSIs within a spatial TME graph structure. With this method, we can readily extract TME

features of treatment response predictive value and compare the spatial TME component interaction differences

between NAC treatment responder (i.e., pCR) and non-responder (i.e., RD) group.
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First, we analyze the group differences in the number of subgraph cliques associated with different histology

class combinations. To make our analysis amenable, we count the 3-node subgraphs, as outlined in Algorithm 1.

We initially identify all subgraphs of cycle length three in the spatial TME graph G by the function allcycles,

with a Maximum Cycle Length (MCL) set to three. Next, we incrementally count the three-node subgraph

clique associated with each of the C l
3 histology class combinations of interest. Next, we identify and count

edges connecting two nodes of all histology class label combinations of interest in the same way, but with a

MCL set to two. Finally, a statistical t-test is used to assess the discrepancy in subgraph counts between the

NAC responder and non-responder group.

In addition, we investigate the predictive value of the TME histology class profile for NAC response pre-

diction. Specifically, we calculate correlation coefficients between histology label count and NAC response

(i.e. responders or non-responders) by Pearson correlation and produce the histology label correlation maps

to intuitively demonstrate the importance of histology components. Additionally, we compute relevance scores

by Minimum-Redundancy-Maximum-Relevance (mRMR) analysis [55] for histology label relevancy importance

maps. The histology label correlation and relevancy importance maps by Pearson correlation and mRMR can

visually provide insights into the contribution of individual histology labels to the prediction.

3.5 Implementation and evaluation

A VGG16 model for image tile classification: All image tiles are extracted fromWSIs with the Python-Openslide

package. For image tile classification, the VGG 16 model implemented with TensorFlow Keras 2.3.0 is trained

and tested on a workstation equipped with an NVIDIA GTX 3080 GPU. We randomly select 80% and 20%

of the labeled image tiles with similar prior histology label distributions for effective training and testing,

respectively. For training, we employ a stochastic gradient descent optimizer with a learning rate of 0.001,

Mini-batch size of 32, and a dropout rate of 0.2.

Autoencoder for image tile texture extraction: We implement an autoencoder architecture with a VGG16

convolutional layer for image tile texture extraction in our study. The autoencoder consists of an encoder and

sequential decoder. The encoder compresses input data into a lower-dimensional latent space using densely

connected layers with rectified linear unit activation. Conversely, the decoder reconstructs the original data

from this compressed representation, employing a combination of dense layers and a reshape operation to match

the input dimensions. The encoded representations are softmax-normalized. This approach enables both an

efficient feature extraction and the feature dimensionality reduction.

Model for NAC response: We develop the spatial TME graph-based prediction model with the PyTorch

framework. The resulting model is trained with the Adam optimizer [56], a maximum of 250 epochs and a

dropout rate of 0.5. Different learning rates are tested, including e−4, 5e−4, 1e−3, 5e−3. Two attention heads,

two MLP layers, and a hidden size of 256 are included in the model (Supplement TableS1).

Evaluation metrics: We separate patients into two groups: those with pathological complete response (pCR)

as the postive group and those with residual disease (RD) as the negative groups. Accuracy (ACC) measures

the overall performance of the method, while precision reflects the model’s ability to avoid false positives. The

area under the ROC curve (AUC-ROC) evaluates the model’s discrimination power across various classification
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thresholds. The F1 score provides a balanced measure, considering both precision and recall. We use an 8-fold

cross-validation for the performance evaluation. In each fold, 87.5% and 12.5% of the patients are used for

training and testing, respectively. The mean and standard deviation of testing accuracies from these 8 folds

are calculated to assess the overall prediction performance. With the same training and validation schema, we

evaluate numerous state-of-the-art methods for a fair comparison.

4 Results

4.1 VGG16 model for histology map generation

With a dataset of 10,000 annotated image tiles, the VGG16 model for image tile histology classification achieves

a test accuracy of 90.0%. We visually illustrate representative image tile histology maps and the WSI-derived

spatial TME graphs (Figure 3). Through this implementation, we validate the performance of the VGG16 model

in generating histology maps, laying a solid foundation and offering valuable insights for further tissue histology

interaction analysis. By using the clustering method to identify nodes, we effectively prevent contamination of

the resulting TME graph by image noise, such as tissue scratches, ink dots, dust marks, and fingerprints.

4.2 Ablation study and validation

To evaluate the effectiveness of individual NACNet components, we first investigate the impact of individual

WSI-derived spatial TME graph node features on the NAC response model performance using 8-fold cross-

validation. Next, we examine NACNet’s predictve performance by integrating multimodal node features. Both

models with single- and multi-modal features are analyzed within the same NACNet pipeline framework. (1)

NACNet-I uses only node image tile texture features; (2) NACNet-Lcontains the node label and count; (3)

NACNet-S uses node SNA features; (4) NACNet-LI uses the node label, count, and node image tile texture

features by autoencoder linked with a VGG flatten layer; (4) NACNet-LS uses node label, its count, and node

SNA features; (5) NACNet-IS uses node image tile texture features and node SNA features; (6) NACNet-LIS

includes node label, label count, node image tile texture features, and SNA features.

We present the ablation experimental results with evaluation metrics of Accuracy, AUC, Sensitivity, Spe-

cificity, Precision, and F1 score in Table 1. The ROCs associated with different ablation models are illustrated

in Figure 4. (1) Note the NACNet-LIS achieves the best prediction performance by Accuracy, and Sensitivity.

For other metrics, it also presents competitive results. These results suggest the integrative use of multi-modal

features help improve NAC response prediction. (2) Recall the image tile feature embeddings are produced by

a convolutional auto-encoder and a VGG flatten layer. NACNet-LI works better than NACNet-LS overall, in-

dicating the stronger complementary prediction power from image tile feature embeddings than SNA features.

(3) Spatial node histology label and count information plays a critical role for NACNet model performance.

Prediction models without node histology label and count information perform poorly. (4) Prediction models

with the GIN layer work better than those without this layer overall, suggesting the efficacy of the GIN layer.
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Figure 3: WSI-derived spatial TME graph. We present representative WSIs (top), the corresponding histology

maps (middle), and the resulting WSI TME graph node distributions (bottom). The histology labels of image tiles of

size 150× 150 are classified and assembled to construct the histology map. In total, 12 histology labels are color coded,

including hemorrhage, immune cells, carcinoma in situ (CIS), MVD, mucinous changes, necrosis, PGCC, stroma, tumor,

adipose tissue, muscle tissue, and apocrine change.
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Table 1: Performance of NACNet using different node feature combinations (Mean ± Standard deviation). Models with

(∗) do not have a GIN layer. NACNet-I uses texture features by an autoencoder and a VGG flatten layer; NACNet-L

uses the node label count; NACNet-LI uses both node label count and image tile texture features; NACNet-LS uses both

node label count and SNA features; NACNet-LIS uses node label count, image texture features, and SNA features.

Models ACC AUC Sensitivity Specificity Precision F1

NACNet-L* 0.78± 0.12 0.77± 0.17 0.57± 0.22 0.93± 0.09 0.90± 0.13 0.67± 0.16

NACNet-LI* 0.80± 0.19 0.81± 0.14 0.83± 0.15 0.78± 0.25 0.76± 0.21 0.79± 0.18

NACNet-LS* 0.74± 0.11 0.71± 0.22 0.54± 0.24 0.87± 0.13 0.71± 0.32 0.60± 0.25

NACNet-LIS* 0.81± 0.14 0.81± 0.14 0.78± 0.20 0.83± 0.15 0.77± 0.19 0.78± 0.17

NACNet-IS* 0.48± 0.10 0.57± 0.10 0.10± 0.14 0.11± 0.15 0.14± 0.19 0.79± 0.16

NACNet-I 0.55± 0.17 0.56± 0.16 0.47± 0.23 0.52± 0.19 0.45± 0.12 0.65± 0.22

NACNet-S 0.59± 0.18 0.57± 0.14 0.48± 0.16 0.60± 0.25 0.49± 0.13 0.66± 0.28

NACNet-IS 0.49± 0.18 0.48± 0.19 0.33± 0.23 0.46± 0.31 0.35± 0.23 0.64± 0.21

NACNet-L 0.81± 0.11 0.79± 0.16 0.76± 0.31 0.78± 0.11 0.75± 0.17 0.80± 0.13

NACNet-LI 0.88± 0.08 0.83± 0.12 0.96± 0.09 0.83± 0.15 0.82± 0.15 0.91± 0.08

NACNet-LS 0.79± 0.09 0.71± 0.20 0.62± 0.27 0.90± 0.08 0.74± 0.31 0.66± 0.27

NACNet-LIS 0.90± 0.07 0.82± 0.11 0.96± 0.08 0.88± 0.10 0.83± 0.15 0.88± 0.09

4.3 Performance comparison with SOTA

Comparison with GCN methods: Our NACNet model is compared with multiple state-of-the-art (SOTA) graph

baseline deep learning methods, including Maximum Entropy Weighted Independent Set Pooling for GNNs

(MEWISPool) [57], Deep Graph CNN (DGCNN) [58], SAGPool [59], and SAG Hierarchical pooling [60]. For

fair comparisons, we use the same training hyperparameters, loss function, and eight-fold training and testing

cross-validation partitions. We present the comparison results in Table 2 (top) and Figure 5(a). Our NACNet

model with node information, image texture features and SNA features performs substantially better than the

SOTA graph baseline GCN models by all evaluation metrics. Interestingly, most ablated NACNet models in

Table 1 outperform the SOTA graph baseline deep learning methods.

Comparison with non-graph deep learning models: We use the multiple instance learning strategy for

non-graph deep learning model training. Each image tile is labeled with the same NAC response for the

patient. For testing, a majority voting mechanism is used to aggregate tile-level predictions into a final NAC

response prediction at the patient level. Specifically, VGG-16, AlexNet, and ResNet [41, 53, 61] are trained

and evaluated. The comparisons are presented in Table 2 (bottom) and Figure 5(a). While these methods

present performance comparable to graph-based deep learning methods, they are substantially inferior to our

NACNet models.

Comparison with traditional machine learning methods: We evaluate multiple traditional machine learning

models using histology label proportion, and WSI-graph SNA features with the same 8-fold cross-validation

mechanism. The traditional machine learning classifiersinclude Logistic Regression [62], k-Nearest Neighbors

(kNN) [63], Support Vector Machines (SVM) [64], Naive Bayes [65], Decision Trees [66], Random Forests [67],
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Figure 4: ROC curves of NACNet models in the ablation study. The ROC curves for the NACNet methods are

generated for each cross-validation fold. ∗ denotes models without the GIN layer in the network.

Extra Trees [68], and Linear Discriminant Analysis (LDA) [69]. A majority voting mechanism is used to

aggregate tile-level predictions into a final NAC response prediction at the patient level. Specifically, these

models are trained independently using univariate feature selection [70] and mRMR feature ranking method.

The univariate feature selection selects the best features based on univariate ANOVA F-test and is used to

identify significant difference. The mRMR feature selection method aims to select features that are highly

relevant to the target variable while minimizing redundancy among them. By balancing the trade-off between

feature relevance and redundancy, this approach improves the model’s predictive performance by focusing on

the most informative and distinct features. Effective feature selection reduces data redundancy, minimizes

dependency on noisy features in predicting NAC treatment response, mitigates overfitting, ultimately resulting

in an improved model accuracy and robustness. The predictions are presented in Table 3 and Figure 5(b),

showing that traditional machine learning methods work better than non-graph deep learning methods with

the maximum voting strategy. Although feature selection methods improve traditional machine learning model

performance, the NACNet model presents a superior performance to traditional machine learning methods

overall. This improvement suggests that incorporating node image tile texture features and local histology

labels significantly boosts the model’s discrimination power for NAC response prediction. Additional results

supporting the statistical comparison of treatment prediction accuracy are presented in Supplementary Table

S2.
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Table 2: Performance of deep learning models for NAC response prediction (Mean ± Standard deviation).

Models ACC AUC Sensitivity Specificity Precision F1

MEWISPool 0.61± 0.15 0.68± 0.19 0.62± 0.17 0.68± 0.12 0.70± 0.17 0.64± 0.12

DGCNN 0.64± 0.14 0.78± 0.14 0.62± 0.16 0.65± 0.12 0.74± 0.14 0.66± 0.12

SAG Global pooling 0.64± 0.11 0.77± 0.14 0.59± 0.10 0.68± 0.08 0.71± 0.09 0.65± 0.08

SAG Hierarchical pooling 0.63± 0.11 0.78± 0.14 0.64± 0.17 0.61± 0.10 0.69± 0.15 0.64± 0.10

GIN 0.64± 0.17 0.74± 0.15 0.66± 0.20 0.63± 0.15 0.71± 0.17 0.67± 0.15

Maximum voting-VGG16 0.48± 0.07 0.42± 0.20 0.52± 0.18 0.36± 0.15 0.64± 0.16 0.54± 0.15

Maximum voting-ResNet 18 0.52± 0.17 0.53± 0.18 0.60± 0.26 0.42± 0.20 0.60± 0.15 0.58± 0.20

Maximum voting - AlexNet 0.54± 0.11 0.52± 0.15 0.62± 0.20 0.39± 0.13 0.59± 0.12 0.59± 0.13

NACNet-LIS 0.90± 0.07 0.82± 0.11 0.96± 0.08 0.88± 0.10 0.83± 0.15 0.88± 0.09

4.4 Spatial TME analysis by graph structures

To enable a comprehensive understanding of the underlying biological mechanisms influencing NAC response,

we compare the TME histology profiles between NAC treatment responder and non-responder group. The

resulting group differences can manifest the impact of specific histology components on the NAC treatment

outcome. Additionally, the distributions of the graph edges associated with different pairs of node histology

labels are studied between these two patient populations.

TME histology spatial features are well-established as critical factors influencing tumor growth, progression,

and metastasis, as cancer cells interact with surrounding stroma and inflammatory cells [71–73]. To investigate

their impact on TNBCs, we compare histology profiles between pCR and RD patients, and identify specific

histology patterns potentially associations with NAC response. As shown in Figure 6, the proportions of CIS

(p=0.000), MVD (p=0.000), stroma (p=0.010), and adipose tissue (p=0.000) differ significantly between the

two patient groups. Notably, all WSIs in this study have a similar effective tissue scale, allowing for direct

comparison of WSI graph edges and subgraph structures of interest across patient groups.

Figure 7 shows histology pairs with significantly different mean graph edge counts between the two pa-

tient groups, based on t-test results. Edges associated with immune-tumor cells (p=0.046), immune-adipose

(p=0.031), necrosis-tumor (p=0.013), and necrosis-adipose (p=0.0022) interactions are significantly more en-

riched in pCR group than in the RD group. Conversely, MVD-stroma (p=0.000) and stroma-adipose (p=0.049)

edges are significantly more prevalent in RD patients.

Next, we investigate the impact of 3-node subgraph quantification on NAC response, as shown in Figure 8.

Subgraphs involving adipose-stroma-MVD (p=0.007) and MVD-stroma-adipose (p=0.014) are more enriched in

RD patients. In contrast, subgraphs containing adipose-tumor-necrosis (p=0.038), adipose-immune cells-tumor

(p=0.000), and adipose-MVD-necrosis (p=0.046) are significantly more enriched in the pCR group.

We also generate histology label correlation maps, illustrating the Pearson correlation coefficients between

histology label count and NAC response outcome, as well as histology label relevancy importance maps derived

from mRMR analysis. These maps offer valuable insights into the decision-making process of the prediction

model (Figure 9).
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Figure 5: The ROC curves of methods for comparison. The ROC curves of (a) deep learning methods and (b)

traditional machine learning methods.

Furthermore, we visualize in Figure 10(a) spatial attention that targets specific subgraphs used by the

prediction model. The subgraph density is represented with iso-contours. In Figure 10(b), the corresponding

tissue regions are overlaid with color coded histology labels by our model. Our pipeline unveils the intricate
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Table 3: NAC treatment response prediction of machine learning models performance (Mean ± Standard deviation).

Models ACC AUC Sensitivity Specificity Precision F1

Univariate-LR 0.75± 0.11 0.84± 0.10 0.48± 0.23 0.96± 0.07 0.93± 0.12 0.59± 0.17

mRMR-LR 0.73± 0.15 0.72± 0.21 0.70± 0.32 0.70± 0.15 0.59± 0.27 0.63± 0.29

Univariate-KNN 0.71± 0.11 0.63± 0.20 0.29± 0.24 1.00± 0.00 0.63± 0.48 0.39± 0.31

mRMR-KNN 0.71± 0.12 0.81± 0.14 0.68± 0.18 0.75± 0.16 0.65± 0.19 0.65± 0.15

Univariate-SVM 0.73± 0.16 0.77± 0.14 0.48± 0.25 0.94± 0.08 0.85± 0.19 0.57± 0.21

mRMR-SVM 0.79± 0.11 0.79± 0.11 0.71± 0.17 0.87± 0.15 0.78± 0.25 0.72± 0.17

Univariate-Naive Bayes 0.76± 0.13 0.75± 0.22 0.81± 0.32 0.68± 0.17 0.63± 0.26 0.70± 0.28

mRMR-Naive Bayes 0.73± 0.15 0.77± 0.18 0.80± 0.18 0.66± 0.18 0.64± 0.17 0.70± 0.17

Univariate-Decision Tree 0.78± 0.14 0.77± 0.14 0.69± 0.16 0.85± 0.19 0.80± 0.22 0.73± 0.16

mRMR-Decision Tree 0.81± 0.13 0.80± 0.14 0.69± 0.21 0.91± 0.10 0.90± 0.13 0.72± 0.20

Univariate-Random Forest 0.79± 0.14 0.83± 0.18 0.61± 0.32 0.92± 0.17 0.78± 0.34 0.65± 0.30

mRMR-Random Forest 0.74± 0.13 0.76± 0.18 0.52± 0.25 0.90± 0.13 0.74± 0.33 0.59± 0.26

Univariate-LDA 0.74± 0.14 0.77± 0.14 0.61± 0.28 0.82± 0.18 0.68± 0.33 0.63± 0.28

mRMR-LDA 0.80± 0.10 0.80± 0.16 0.72± 0.21 0.88± 0.11 0.80± 0.18 0.73± 0.15

Univariate-Extra Trees 0.61± 0.15 0.83± 0.11 0.47± 0.25 0.95± 0.08 0.79± 0.34 0.58± 0.27

mRMR-Extra Trees 0.76± 0.21 0.72± 0.12 0.61± 0.15 0.84± 0.12 0.61± 0.15 0.61± 0.15

ReliefF-1NN 0.73± 0.07 0.74± 0.10 0.95± 0.09 0.53± 0.18 0.60± 0.09 0.73± 0.07

ReliefF ensembleTree 0.70± 0.11 0.69± 0.10 0.70± 0.20 0.53± 0.18 0.58± 0.12 0.68± 0.14

ReliefF rbf-SVM 0.75± 0.11 0.62± 0.10 0.48± 0.23 0.47± 0.23 0.53± 0.11 0.62± 0.12

ReliefF lin-SVM 0.73± 0.15 0.86± 0.07 0.70± 0.32 0.74± 0.13 0.71± 0.16 0.82± 0.11

NACNet-LIS 0.90± 0.07 0.82± 0.11 0.96± 0.08 0.88± 0.10 0.83± 0.15 0.88± 0.09

role of the TNBC TME by exploring spatial TME patterns, extracting local tissue texture information, and

identifying potential biomarkers for NAC response prediction. Therefore, it is promising to enable an improved

prognosis and treatment planning in practice, enhancing TNBC patient therapy and life quality. While our

approach is developed for NAC treatment response prediction in TNBCs, it can be readily extended to other

cancer types, contributing to a more comprehensive TME understanding.

5 Discussion

Deep learning has greatly advanced computational pathology over the past decades. However, due to the vast

scale of WSIs, much of the work has focused on decision support by processing small WSI tiles independently,

overlooking crucial spatial connectivity within tissue. Our approach addresses this limiation by integrating

global tissue graph structure signatures with local tissue texture and histology label information to enhance

TNBC response prediction.

Our contribution in this study can be summarized as follows.
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Figure 6: Comparison of histology profiles between pCR and RD patients. We plot the individual histology

label proportion distributions for both pCR (orange) and RD (blue) TNBC patients. A two-sample t-test is used to

assess if individual histology label proportion means are significantly different between these two patient groups. Box

plots present quartile values and whiskers extended to data points within the 1.53 interquartile range.

1. We characterize histology features and their spatial interactions using TME graphs within a multi-step

framework. First, we assign the histology label to each image tile using a deep learning module trained on

l = 12 histology classes. Next, we spatially assemble these labeled tiles based on their spatial arrangement,
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Figure 7: Comparison of WSI-derived graph edge profiles between pCR and RD patients. As we include

12 histology labels in this study, there are 66 edge types associated with different histology label pairs. For each type,

the edge counts were compared between pCR and RD patients. For each significant edge type, a typical tissue region

associated with the significant edge type is illustrated. Additionally, we plot the individual graph edge distributions for

both pCR (orange) and RD (blue) TNBC patients. A two-sample t-test is used to assess if individual graph edge means

are significantly different between these two patient groups. Box plots present quartile values and whiskers extended to

data points within the 1.53 interquartile range.

generating a tile-level histology label map for each WSI. Finally, we construct a spatial TME graph to
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Figure 8: Comparison of WSI-derived subgraph profiles between pCR and RD patients. As we include 12

histology labels in this study, there are 220 3-node subgraph types associated with different histology label triplets. We

plot the individual 3-node subgraph distributions for both pCR (orange) and RD (blue) TNBC patients. A two-sample

t-test is used to assess if individual 3-node subgraph means are significantly different between these two patient groups.

Box plots present quartile values and whiskers extended to data points within the 1.53 interquartile range.

capture the spatial histology organization critical for NAC response prediction. In this graph, each node

represents the tile closest to the center of a cluster of tiles sharing the same histology label, while edges

connect adjacent nodes based on spatial proximity.

2. To capture predictive features from both local tissue context and global tissue structure organization,

we construct two complementary sets of features for graph node representation. First, an autoencoder

is used to extract image texture features from tiles associated with each node. Second, social network

analysis (SNA) features are computed to enhance node representation. This two-step approach integrates

detailed local tissue information with spatial TME arrangement, providing a comprehensive foundation

for accurate NAC response prediction.

3. NACNet is a transformer based GCN model designed to enhance the discriminating power of the graph-

based prediction. To achieve this, we incorporate GIN layers into the graph transformer network. This

layers transform heterogeneous input graphs into useful meta-path graphs and enable end-to-end learning

of node representations. By including the GIN layers, NACNet effectively captures the structure of WSI-

derived TME graph, leading to improved prediction performance.

NACNet integrates histology label information, local tissue textures, and graph-derived SNA features to

differentiate pCR from RD TNBC patients. By multiple evaluation metrics, NACNet achieves a better overall

performance than state-of-the-art graph based deep learning architectures, non-graph deep learning models,

and traditional machine learning approaches. NACNet efficiently captures local and WSI-level information to

predict NAC response for TNBC patients. It processes high-resolution WSIs, predict multiple-class histology

labels for local tissue regions, characterize TME spatial histology interactions, predict NAC response outcome,

and generate interpretable findings associated with prediction.
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Figure 9: Prediction model interpretations with correlation and relevancy importance maps. (a) Typical

WSIs with their local tissue regions from pCR and RD group; (b) The histology label correlation map is produced by

mapping to the histology map correlation coefficients by the Pearson correlation. The correlation value ranges from -1 to

1 and indicates the strength and direction of the relationship between individual histology labels and prediction outcomes;

(c) The importance of graph feature nodes is analyzed using the mRMR (minimum Redundancy Maximum Relevance)

method. The histology node importance map is generated by mapping to the histology map the importance values by

the mRMR method.

Additionally, our work provides a straightforward way to enable the graph-based TME analysis. It can

highlight the spatial histology patterns and the WSI regions that are significantly associated with the NAC

response outcome. Unlike other graph-based classification models, NACNet is able to produce the TME

attention over WSIs. This is useful as subgraphs and edges connecting different histology regions of interest in

the neighborhood can contain biologically interpretable information that is critical for prediction. We perform

detailed subgraph analysis and identify edges and three-node cliques of interpretation and prediction value.

Such analyses enable biological interpretations especially important in histopathology WSI analysis applications

where the detailed characteristics of tissue spatial TME can provide valuable insight on disease progression and
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Figure 10: Attention visualization for typical tissue regions. (a) We visualize spatial attention that targets specific

subgraphs supporting the model prediction. The subgraph density is represented by iso-contours; (b) The histology labels

of corresponding regions of interest are color coded by the same color schema in Figure 3.

treatment response. Moreover, NACNet can be extended to explore the microenvironment reaction analysis

with multiple subgraphs in future.

The graph node awareness mechanism can enhance the efficacy of the graph-based WSI analysis. Note the

NACNet-LIS model leverages node information, local textures, and SNA graph features, significantly improving

the WSI-derived tissue graph representation and contextual understanding. With node features and the con-

textual node relationships, the NACNet-LIS with intensive graph node awareness allows for a comprehensive

understanding of the tissue TME graph structure and properties and achieves a more nuanced understand-

ing of the structure and properties of the graph. Such node awareness mechanism is particularly important

in histopathology analysis, where subtle differences in tissue structure can have significant implications for

diagnosis and treatment planning. Through ablation experiments, we have demonstrated the necessity of a

comprehensive graph node characterization.

Our work presents several avenues for improvement. First, the reliance on detailed image annotations for

histology prediction makes the deep learning model labor-intensive. Second, the clustering of discrete points

with different labels to form graph nodes presents challenges. To improve node formation, we used a clinically-

weighted clustering strategy that considers both the physical size differences and clinical significance of 12

histological categories in breast cancer. By assigning lower thresholds (η) to critical categories like tumor and
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necrosis, we ensured these features are prominently represented within the TME graph. For categories of lesser

clinical importance, we used a higher threshold (η), reducing unnecessary segmentation while still maintaining

relevant context. This approach not only minimizes misclassification impact but also enhances the model’s

ability to capture breast cancer’s pathological characteristics, supporting greater generalizability and clinical

interpretability. Future experiments will further validate the effectiveness of this adjusted strategy, ensuring

that the resulting TME graph structure holds higher biological significance and diagnostic value in breast

cancer applications. Finally, increasing the sample size in future studies will be crucial to further validate the

generalizability of our findings.

6 Conclusion

We present a transformer-based GCN model, NACNet, that predicts the NAC treatment response for TNBCs

using WSIs of patient biopsy tissues. The model integrates local tissue histology information, tissue textures,

and SNA features derived from the spatial TME graph to enhance NAC response prediction. The spatial atten-

tion mechanism and SNA features direct transformer GCN attention to tissue regions of prognostic significance,

incorporating human prior knowledge. When applied to a TNBC patient dataset, our system achieves 90%

prediction accuracy. In addition, we demonstrate the efficacy of an integrative use of node content-awareness

features, SNA information, and the GIN spatial attention mechanism on prediction enhancement. Our study

also suggests the spatial TME histology patterns carry prognostic values for NAC response prediction for TNBC

patients. Our graph-based analysis of histological variables for TME characterization and NAC response pre-

diction is generic and can be tailored to enable treatment response prediction and personalized treatment

planning for other cancer types.
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