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Abstract—Artificial Intelligence (AI) techniques, particularly
machine learning techniques, are rapidly transforming tactical
operations by augmenting human decision-making capabilities.
This paper explores AI-driven Human-Autonomy Teaming
(HAT) as a transformative approach, focusing on how it
empowers human decision-making in complex environments.
While trust and explainability continue to pose significant
challenges, our exploration focuses on the potential of AI-driven
HAT to transform tactical operations. By improving situational
awareness and supporting more informed decision-making,
AI-driven HAT can enhance the effectiveness and safety of such
operations. To this end, we propose a comprehensive framework
that addresses the key components of AI-driven HAT, including
trust and transparency, optimal function allocation between
humans and AI, situational awareness, and ethical considerations.
The proposed framework can serve as a foundation for future
research and development in the field. By identifying and
discussing critical research challenges and knowledge gaps in
this framework, our work aims to guide the advancement of
AI-driven HAT for optimizing tactical operations. We emphasize
the importance of developing scalable and ethical AI-driven
HAT systems that ensure seamless human-machine collaboration,
prioritize ethical considerations, enhance model transparency
through Explainable AI (XAI) techniques, and effectively manage
the cognitive load of human operators.

Keywords—Artificial Intelligence, Human-Autonomy Teaming,
Human-Machine Teaming, Tactical Operations

I. INTRODUCTION

THE convergence of AI and autonomous technologies has
revolutionized various industries, including defense and

tactical operations. The rise of HAT can be attributed to
several factors, including rapid advancements in autonomous
technologies and AI [1], the increasing complexity of
tasks and environments, the development of more capable
autonomous systems, and the increasing availability of data
and computing power [2]. As these technologies have become
more sophisticated and capable, there has been a growing
recognition of the potential collaborations that can be achieved
by combining human cognitive abilities with the computational
power and efficiency of autonomous systems [3]. The rise
of modern HAT systems has also been driven by the
need to address the complexities and challenges of rapidly
evolving and dynamic environments. As tasks become more
complex, time-sensitive, and data-intensive, the collaboration
between humans and autonomous agents becomes crucial for
effectively navigating and responding to these challenges.

HAT is an emerging field that explores collaborative
partnerships between humans and autonomous systems to
perform tasks or achieve common goals [2], [4]–[6]. This
involves a collaborative arrangement in which at least one
human worker collaborates with one or more autonomous
agents [2]. This collaborative approach has the potential
to revolutionize how tasks are accomplished across various
sectors and pave the way for a future where humans and
intelligent autonomous systems will work hand in hand to
tackle complex problems and achieve shared goals. HAT
systems are designed to allow humans to delegate tasks
to intelligent autonomous agents while maintaining overall
mission control [7]. Autonomous agents, in this context, refer
to computer entities with varying degrees of self-governance
in decision-making, adaptation, and communication. This
definition has been supported by studies conducted by the
research works in [8], [9]. The integration of human cognitive
capabilities with the computational power and efficiency
of autonomous systems in HAT enhances performance,
decision-making, and overall system capabilities.

Here, we define and clarify some key concepts that
are fundamental to understanding the scope and context
of this study. These concepts include AI, Autonomy,
Autonomous Systems, and Tactical Autonomy. By providing
clear definitions and distinguishing between these terms, we
aim to establish a common understanding among our readers.

Autonomy. Autonomy in the context of HAT describes
the ability of intelligent autonomous systems or agents
to operate and make decisions independently in a team
setting with varying degrees of self-governance [3], [10].
This involves a higher degree of decision-making capability
in autonomous systems based on learning, adaptation, and
reasoning. It is a property of a system, not a technology
itself [10]. An autonomous entity can perceive, reason, plan,
and act in pursuit of specific goals or objectives without
constant human intervention. It is important to note that the
level of autonomy can vary, ranging from fully autonomous
systems that make all their decisions to semi-autonomous
systems that require human input at certain points [10].
In the context of tactical autonomy, HAT involves the
integration of autonomous capabilities into tactical operations.
This integration can include various applications, such as
using autonomous systems to gather intelligence, perform
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surveillance, and perform other critical activities. Autonomy
enables systems to operate in complex and uncertain
environments, learn from experience, and make decisions
without explicit human intervention in every scenario.
However, it is important to distinguish this from traditional
automation, which typically follows pre-programmed rules,
decision trees, or logic-based algorithms to perform tasks
or make decisions. Traditional automation has limited
adaptability and flexibility to handle dynamic or unforeseen
situations without explicit programming. This paper discusses
how AI-driven autonomy differs from traditional automation
by emphasizing learning, adaptation, and decision-making
capabilities. These capabilities ultimately enhance the overall
effectiveness and agility of human-autonomy teaming in
tactical operations.

Autonomous Systems. Autonomous systems can perform
tasks or operations without constant human control. They
utilize AI algorithms and sensors to perceive and navigate their
environment, achieving a high degree of autonomy [11].

Tactical Autonomy. In this study, tactical autonomy
refers to autonomous systems’ ability to make real-time
decisions and take actions in dynamic and complex
operational environments [12]. This involves the seamless
coordination and interaction between humans and autonomous
systems, enabling them to function as a unified team with
complementary strengths [12]. HAT focuses on achieving
shared mission goals through seamless coordination and
collaboration between human operators and intelligent
autonomous systems [13]. This paper introduces an AI-driven
HAT, which integrates AI into HAT frameworks. This
approach improves decision-making, situational awareness,
and operational effectiveness by combining the strengths of
human expertise and AI capabilities. Tactical autonomy, which
combines human cognitive abilities, such as adaptability,
intuition, and creativity, with the computational power,
precision, and dynamic execution of autonomous systems,
has the potential to revolutionize various fields, including
defense, emergency response, law enforcement, and hazardous
environments [12]. It is important to differentiate between
tactical and strategic autonomy to clarify how AI-driven
human-autonomy teaming contributes to both levels of
autonomy in military and operational contexts. Strategic
autonomy refers to a nation or organization’s ability to make
autonomous choices regarding broad security goals, whereas
tactical autonomy, in contrast to strategic autonomy, focuses
on individual units or teams acting independently within a
specific mission [14]. Strategic autonomy involves higher-level
decision-making and planning that considers long-term goals,
overall mission objectives, and broader situational awareness.
It addresses the coordination, allocation of resources, and
strategic decision-making processes that guide the overall
mission or campaign [14].

Tactical Operations. Tactical operations involve coordinated
activities in a specific area or environment, typically
in a military, law enforcement, or strategic context,
focusing on achieving short-term objectives through rapid

decision-making, adaptation to dynamic situations, and the
application of military skills and resources within a localized
area and timeframe [15].

In recent years, advancements in AI, Machine Learning
(ML), robotics, and sensor technologies have paved the
way for realizing the potential of tactical autonomy [12].
These technological advancements have enabled autonomous
systems to perform complex tasks, process vast amounts
of data in real-time, make informed decisions, and
collaborate with human team members seamlessly [12].
This has opened new possibilities for augmenting human
capabilities, optimizing resource allocation, and improving
overall operational efficiency. However, effective tactical
autonomy requires a comprehensive understanding of the
dynamics between humans and autonomous systems. Human
factors, including trust, communication, shared situational
awareness, and decision-making, play a vital role in
ensuring successful HAT. Challenges such as establishing
appropriate levels of trust, addressing potential cognitive
biases, managing workload distribution, and maintaining
effective communication channels must be carefully addressed
to ensure seamless collaboration and maximize the potential
benefits of tactical autonomy. HAT for tactical autonomy is
a collaborative approach to using humans and autonomous
systems to operate and control weapons and other military
systems. In HAT, the human operators and autonomous
systems work together to achieve common goals. The human
operators are responsible for the overall mission and making
high-level decisions. Autonomous systems are responsible for
performing assigned tasks.

As explained in detail in Section IV, human operators
contribute strategic insight, context, and high-level
decision-making capabilities based on their experience
and understanding of the mission’s goals. The interaction and
communication represent the interfaces and communication
channels through which each component exchanges
information, collaborates, and makes joint decisions.
Within the context of a shared decision-making process,
human operators and autonomous systems engage in a
collaborative decision-making process, sharing insights,
data, and recommendations to formulate effective strategies.
The autonomous system is responsible for real-time data
processing, analysis, and execution of specific tasks supporting
human operators with timely and pertinent information.
Subsequently, once decisions are made, the autonomous
system performs specific tasks, including reconnaissance,
navigation, or data collection, in alignment with the directives
of the shared decision-making process.

This paper comprehensively explores the historical
development and current state of HAT and delves into the
opportunities, challenges, and potential future directions
in leveraging AI for tactical autonomy. It emphasizes the
transformative impact of AI on tactical autonomy and presents
opportunities for improved decision-making, situational
awareness, and resource optimization. By acknowledging and
addressing the challenges associated with AI adoption, and
by charting future directions for research, we can pave the
way for a future where humans and autonomous systems
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seamlessly collaborate, ultimately leading to safer, more
efficient, and successful missions in tactical environments.

A. Scope and Contributions
The main contribution of this paper is its forward-looking

study of the applications, trends, and disruptive technologies
that will drive the HAT revolution in complex and dynamic
environments. This provides a clear picture of HAT services
and practical recommendations for future work.

B. Contributions
This paper makes the following key contributions to the

field of HAT.

• We propose a comprehensive conceptual framework
for AI-driven HAT in tactical operations, describing
critical components such as trust and transparency,
function allocation, situational awareness, and ethical
considerations. The proposed framework provides a
foundation to understand and advance the integration of
AI into HAT for tactical environments.

• We provide a comprehensive overview of the
opportunities and key challenges associated with
incorporating AI-driven HAT into tactical operations.

• We explore the symbiotic relationship between AI and
HAT, presenting a thorough analysis of how AI-driven
HAT enhances decision-making, situational awareness,
and operational effectiveness in tactical environments.

• We identify several research directions for future work in
AI-driven HAT, emphasizing ethical considerations,
building transparent AI models, and advancing
human-centric design principles to fully realize the
potential of tactical autonomy.

Table I compares our work to existing studies. In this paper,
we explore and address research questions related to AI-driven
HAT to enhance tactical operations, covering various aspects
and challenges.

• How do AI and HAT benefit each other when achieving
tactical autonomy?

• What are the main opportunities and challenges
associated with incorporating AI-driven HAT in the
context of tactical operations?

• How can AI-driven HAT be best used in tactical
operations to improve success and decision-making?

• What is the plan for AI-driven HAT and how can
it improve the collaboration between humans and
autonomous systems in tactical situations?

• How can AI-driven HAT help humans and autonomous
systems work together smoothly to achieve common
goals in tactical environments?

• What ethical concerns must be considered when
developing and using AI-driven HAT systems?

• How can we make AI models in HAT more
understandable, and why does this matter for better
decision-making and trust in autonomous systems?

• What design principles should be followed to create
user-friendly AI-driven HAT systems for human operators
in tactical settings?

C. Methodology

This study investigates the potential of AI-driven HAT to
revolutionize tactical operations. To achieve this, we conducted
a systematic literature review to identify and analyze
relevant academic research. Our search primarily targeted
prominent academic databases such as Google Scholar,
IEEE Xplore, ACM Digital Library, and ScienceDirect for
scholarly articles published up to 2024. We focused on
studies published up to May 2024 that emphasized empirical
research and theoretical frameworks to explore the application
of AI in human-autonomy teaming for tactical operations.
Note that studies that focused on general AI applications
without a tactical operation context were excluded. We
employed a combination of keywords, including “AI-driven
human-autonomy teaming,” “tactical operations,” “situational
awareness,” “automated decision-making,” “Integrating AI and
HAT,” “situation models,” and “shared situational awareness
in HAT.” We included studies that focused on the application
of AI in HAT for tactical operations, explored the use
of Natural Language Processing (NLP) and reinforcement
learning for improved communication, collaboration, and
threat assessment, and addressed challenges related to trust,
explainability, and ethical considerations. Furthermore, we
included studies that explored the impact of AI-driven
HAT on trust, explainability, and ethical considerations.
We employed thematic analysis to identify key themes
emerging from the reviewed literature, focusing on the
opportunities and challenges associated with AI-driven HAT,
with a particular emphasis on enhancing situational awareness,
decision-making, and human-machine collaboration.

The remainder of this paper is organized as follows.
Section II discusses the integration of AI solutions into
HAT. In Section III, we discuss the concept of delegated
autonomy in HAT, exploring different levels and the balance
between human decision-making and automated systems in
teaming scenarios. Section IV presents the key components
and characteristics defining HAT systems. Next, Section V
identifies and discusses the practical applications of HAT,
presenting real-world examples where HAT has proven
advantageous. Section VI explores the economic aspects of
AI integration in HAT. VII provides a detailed discussion of
situation models and shared situational awareness in HAT.
Section VIII outlines the specific roles and contributions of
AI in enabling tactical autonomy in HAT, emphasizing its
ability to enhance human decision-making. The opportunities
and challenges associated with using AI to enhance HAT in
tactical autonomy are discussed in Section X. The design of
user interfaces and interaction mechanisms for HAT systems
in tactical autonomy settings is explored in Section IX.
Section XI introduces a proposed framework for AI-driven
HAT in tactical operations, describes the key components,
and provides guidance for future research and development.
Finally, Section XII provides practical recommendations
for implementing and optimizing HAT systems. The paper
concludes in Section XIII with indications for future work.
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TABLE I: Comparison of our work to existing works.

Year Publications Main Research Focus and Scope

2018 Ref [16] • Explores the relationship between team coordination dynamics and team performance for human-autonomy teams using an
extended version of nonlinear dynamical systems methods.

2018 Ref [17] • Proposed a framework for HAT, incorporating three key tenets: transparency, bi-directional communication, and
operator-directed authority.

2019 Ref [18] • Discusses what function allocation and challenges in allocating tasks between humans and autonomous machines.

2020 Ref [19] • Provides a framework for practitioners to make informed decisions regarding the integration and training of human-autonomy
teams in applied settings.

2020 Ref [20] • Proposes a new approach to using ML agents in real-time strategy games to collaborate with human players rather than
competing against them.

2021 Ref [3] • Examines the differences between automation and autonomy and how insights from human-human teaming can be applied to
HAT. The authors have identified research gaps that need to be addressed to improve the understanding of HAT.

2022 Ref [2] • Provides a comprehensive understanding of the research environment, dependent variables, independent variables, key findings,
and future research directions related to human-autonomy teamwork.

2022 Ref [21] • Emphasizes the need for humans and AI to work together effectively, particularly in complex situations. It examines the factors
affecting the design and implementation of AI systems for human interaction. In addition, it provides a detailed roadmap for
future HAT research, particularly emphasizing the perspectives of human factors, which aligns well with our focus on enhancing
tactical operations through AI-driven HAT.

2024 Our Paper • Proposes a comprehensive conceptual framework for AI-driven HAT in tactical operations, detailing critical components, such
as trust and transparency, function allocation, situational awareness, and ethical considerations.
• Explores the advantages and challenges associated with integrating AI-powered HAT into tactical operations.
• Provides a thorough exploration of the symbiotic relationship between AI and HAT in the context of tactical operations.
• Identifies several research directions, including ethical considerations, building transparent AI models, and advancing

human-centric design principles, for future work in AI-driven HAT.

II. MOTIVATION

In this section, we describe the motivation for the integration
of AI solutions within HAT, highlighting their transformative
impact on collaboration, communication, and coordination in
dynamic and complex tactical environments.

HAT is a rapidly evolving field that seeks to combine
the strengths of humans and autonomous systems to achieve
common goals. In recent years, the convergence of AI and
HAT has emerged as a paradigm-shifting approach with
the potential to revolutionize decision-making, situational
awareness, and operational efficiency in dynamic and
complex tactical environments. In tactical autonomy, HAT
revolutionizes how humans and machines work together in
dynamic and complex environments. The integration of AI
solutions into HAT offers a compelling avenue to enhance the
strengths of both human operators and intelligent autonomous
systems, which is promising to advance tactical autonomy.
This paper underscores the significance of this integration
and presents opportunities, challenges, and directions for
future work. We envision a landscape in which the symbiotic
relationship between humans and autonomous systems
can reshape tactical decision-making, enhance situational
awareness, and maximize operational efficiency. By focusing
on its transformative impact, this paper sets the stage for a
future where collaboration, communication, and coordination
in dynamic and complex tactical environments can be elevated
to new heights, ultimately contributing to safer and more
successful mission outcomes.

Collaboration. At the core of AI-driven HAT lies a
new era of collaboration that redefines the possibilities
of human operators and intelligent autonomous systems

working together [22]. AI technologies serve as bridges
that enhance collaboration by boosting human capabilities
through data-driven insights and analytical power [23]. By
seamlessly integrating AI solutions into the decision-making
process, HAT systems can leverage real-time data analysis,
predictive analytics, and pattern recognition to provide human
operators with a comprehensive and dynamic understanding
of the tactical situation [23]–[26]. This improved collaboration
enables operators to make informed decisions more quickly,
which is often critical in tactical environments where
split-second choices can impact mission success [24]–[26].

Communication. Effective teamwork relies on empowering
communication, and within the context of tactical autonomy,
the integration of AI introduces a new dimension to this
foundational aspect [27]. NLP and intelligent communication
interfaces enable HAT systems to facilitate seamless
interactions between humans and autonomous agents.
Conversational AI, chatbots [28], and language translation
tools enable real-time communication [29], transcending
language barriers and fostering a more inclusive and
collaborative environment. This enhanced communication
enables operators to convey complex instructions, receive
real-time updates, and seek clarifications, thus simplifying
the decision-making processes and reducing ambiguity in
high-stress scenarios. As described by Shively et al. [17],
HAT also incorporates a bi-directional communication
approach, which transforms automation from a tool to a
teammate. This dynamic communication enables collaborative
problem-solving, enabling seamless interactions and joint
decision-making between automated systems and human
operators.
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Coordination. In dynamic and complex tactical environments,
humans and autonomous systems must effectively coordinate
their actions effectively [16]. Precise coordination in dynamic
and complex tactical environments requires a level of precision
that traditional approaches often struggle to achieve. AI-driven
HAT transforms coordination into a finely tuned orchestration
of human and autonomous actions. Autonomous agents
equipped with reinforcement learning and multi-agent systems
can execute tasks with adaptability and accuracy, aligning
their actions with human operator intentions. This coordination
optimizes resource allocation, minimizes response times, and
ensures that tasks are executed efficiently, even in the face
of unforeseen challenges. The result is a synchronized team
that capitalizes on each member’s strengths and operates in
harmony to achieve the mission objectives.

III. DELEGATED AUTONOMY IN HAT

As technology advances, the integration of autonomy
into various domains has become more prevalent [30].
Delegated autonomy, which is a critical concept in HAT,
entails granting autonomous systems a certain level of
decision-making authority while maintaining human oversight
based on predefined rules, constraints, or algorithms [31].
The degree of autonomy granted to machines can vary based
on task complexity, system capabilities, and the context
of the operation. Humans retain the ability to intervene,
monitor, and override autonomous decisions when necessary,
thus ensuring accountability and preventing potential errors.
Delegated autonomy generally refers to the ability or a
situation in which a human operator dynamically assigns
certain tasks or responsibilities to an autonomous system,
thereby allowing the system to operate independently within
specified constraints [32]. This can be achieved in various
ways, depending on the specific tasks or responsibilities being
delegated. The following are some practical examples of
delegated autonomy.

Unmanned Aerial Vehicles (UAVs). In the field of aviation,
UAVs often operate with delegated autonomy. Autonomous
drones can follow pre-planned flight paths, avoid obstacles,
and adapt to changing weather conditions, while human
operators maintain the authority to intervene in situations
that require human judgment [33]. Studies have shown that
HAT systems can perform effectively in unmanned settings
for search and rescue [34], [35], infrastructure inspection [36],
[37], and agriculture and traffic monitoring [38], [39].

Robotic Systems. Robots are being used in various industries,
from manufacturing [40], [41] to healthcare [42]. In the
context of robotic systems, surgical robots exemplify delegated
autonomy in healthcare and other domains [43]. In the context
of medical robots, a human surgeon delegates some of their
autonomy to the robot, allowing it to perform certain tasks
without direct human intervention [44], [45]. Surgeons control
robotic arms to perform precise movements during surgeries,
while the system’s autonomy assists in error correction and
stabilizing movements. Some of the benefits of medical robots
include increased precision and accuracy [45], [46], enhanced

efficiency [45], minimized human error [45], remote surgery
and telemedicine [45], etc.

Autonomous Vehicles. Self-driving cars operate with varying
degrees of delegated autonomy [47]. A vehicle’s autonomous
systems handle tasks like lane-keeping [48], [49] and adaptive
steering control [50]–[53], while the human driver remains
responsible for monitoring the environment and taking control
when needed [47].

IV. KEY COMPONENTS AND CHARACTERISTICS OF HAT
Understanding the key components and characteristics of

Human-Autonomy Teaming (HAT) is important for exploring
its wide-ranging applications, as discussed in Section V.

A. Key Components of HAT

Based on [18], [27], [41], [54], [55], we identify the
essential components and relevant aspects of integrating HAT
in practical contexts. These components and aspects guide
the understanding and implementation of human-autonomy
interaction and teaming, thus providing suitable methodologies
for conducting experiments [56].

Human Operators. The human component of HAT consists
of competent skilled individuals with the necessary expertise,
decision-making abilities, and interpersonal communication
skills to achieve team goals [54]. Human workers engage
in tasks requiring judgment, decision-making, creativity, and
interpersonal communication [56].

AI. In HAT, AI plays a crucial role in augmenting
human abilities and driving team performance by providing
cognitive capabilities, such as perception, reasoning, and
decision-making, which enable autonomous systems to operate
effectively in complex environments [18]. Careful design and
integration of AI algorithms are essential for the reliability,
credibility, and transparency of HAT systems. For more details,
refer to Section VIII.

Autonomous Systems. This aspect of HAT involves
machinery, computer systems, or AI that can automate tasks
and make predictions through AI algorithms [27]. Autonomous
systems enhance human abilities, enabling them to focus on
complex tasks and decision-making.

Interfacing with Autonomous Systems. Communication
plays a vital role in HAT. An ontology-based communication
language allows direct interactions between AI and
autonomous systems. Effective communication in HAT
is facilitated by a communication language ontology
and domain ontologies [56]. These ontologies ensure
seamless communication between humans, AI, and
autonomous systems, thereby enhancing collaboration
and data exchange [56].

B. Characteristics of HAT

Research on HAT underscores the importance of team
performance outcomes, collaboration processes, and effective
training methods [41], [57]. Some of the main characteristics
of HAT include:
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Heterogeneity. HAT teams comprise diverse members with
specific roles, and they leverage the strengths of AI systems
to realize tasks that align with their capabilities [18].

Shared Cognition. Developing shared mental models
promotes effective teamwork within HAT and enhances team
understanding and performance [57]. This practice facilitates
a deeper understanding of teammates’ capabilities, limitations,
objectives, and performance, thereby significantly facilitating
efficient team processes and overall team performance.
Moreover, developing shared mental models contributes to
the establishment of shared situational awareness within
teams [57].

Collaboration and Communication. Successful teamwork
in HAT requires efficient collaboration and communication
among humans, AI algorithms, and autonomous systems [27].

Social Intelligence. Leveraging social intelligence enhances
the effectiveness of human team members’ effectiveness in
HAT, enabling team members to effectively understand and
support teammates effectively [41].

V. APPLICATIONS OF HAT

After identifying the essential building blocks of HAT
in the previous section, we explore how HAT applications
are revolutionizing various industries. HAT technology has
the potential to revolutionize many industries. HAT systems
leverage the strengths of humans and autonomous systems to
perform tasks with greater accuracy, speed, and reliability [58].
These systems are increasingly being employed across
various industries to exploit the strengths of humans and
intelligent autonomous systems. These teams can improve
safety, efficiency, and productivity across various domains.
Figure 1 shows applications of HAT in modern life.

Defense. In modern military applications, HAT systems enable
the seamless integration of human intelligence and strategic
thinking with the speed, precision, and endurance of intelligent
autonomous systems [24], [59]. This integration enhances
situational awareness, mission effectiveness, and operational
efficiency [24], [59]. By combining the strengths of humans
and intelligent machines, AI has the potential to revolutionize
military operations and make the world a safer place.

Manufacturing. HAT can optimize industrial processes
by combining human expertise with automation [19].
Humans have cognitive abilities, problem-solving skills,
and adaptability, and intelligent autonomous systems offer
precision, strength, and speed [41].

Healthcare. HAT systems have the potential to revolutionize
healthcare by assisting medical professionals in their
work [60]. Modern HAT systems can be used to analyze
medical images, such as X-rays and Magnetic Resonance
Imaging (MRI) scans, to identify signs of disease. HAT
systems can also be used to analyze patient data, such as blood
test results and medical history, to help physicians make more
accurate diagnoses.

Games. HAT principles can be applied to gaming to enhance
player experiences by assisting with tasks that are difficult

or time-consuming for humans, creating more engaging
gameplay, and exploring new ways of interaction between
players and autonomous systems in a virtual environment [20],
[61].

Aviation and Space Exploration. HAT is a promising
technology with the potential to revolutionize aviation and
space exploration [54]. In aviation, cockpit automation
involves collaboration between pilots and autonomous systems
to safely operate aircraft [62], [63].

Transportation. HAT can be applied to autonomous vehicles
for passenger transportation and logistics. This involves
collaboration between self-driving vehicles, human drivers,
autonomous vehicles, and pedestrians in urban environments.
In addition, HAT is considered essential for safe and efficient
operation in the context of Urban Air Mobility (UAM)
systems. UAM is an emerging concept that refers to using
aerial vehicles, such as drones or small electric aircraft, to
transport people and goods within urban environments [64].
HAT can play a crucial role in ensuring safe, efficient, and
integrated operations within UAM systems.

Applications of HAT

Defense

Aviation and Space 
Exploration

Healthcare

GamesTransportation

Manufacturing

Fig. 1: Applications of HAT.

VI. THE ECONOMICS OF INTEGRATING AI AND HAT

Integrating AI and HAT for tactical autonomy brings about
a range of economic benefits, particularly in domains where
rapid and effective decision-making, enhanced situational
awareness, and optimized resource utilization are critical.
Although the potential of HAT applications across various
industries is undeniable (Section V), a closer look at
the economic impact of integrating AI and HAT is also
important. This Section provides a detailed analysis of the
potential economic benefits and challenges associated with
such transformative collaboration. This study also examines
the impact of AI-driven HAT on productivity, labor markets,
cost-effectiveness, and overall economic growth. Additionally,
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the potential economic challenges and opportunities presented
by the widespread adoption of HAT in various industries are
highlighted.

A. Economic Benefits of Integrating AI and HAT

Several potential economic benefits of HAT are discussed
in prior studies [65], [66]. These benefits include enhanced
productivity, safety, operational efficiency, and cost reduction.
HAT enables human workers to concentrate on creative and
strategic tasks.

Improved productivity. Effective collaboration between
humans and autonomous systems can significantly improve
productivity. Autonomous systems excel at performing
repetitive tasks at high speed and accuracy, whereas humans
contribute their expertise and decision-making skills, which
are lacking in autonomous systems.

Reduced Operational Costs. Incorporating AI and HAT
in tactical autonomy not only enhances the efficiency and
effectiveness of critical missions but also contributes to
substantial economic gains through reduced costs, increased
success rates, and optimized resource utilization. Automation
leads to cost reduction by delegating routine tasks, such
as manufacturing, transportation, and customer service,
to autonomous systems. This, in turn, allows human
workers to concentrate on more creative and strategic
tasks that demand problem-solving skills and creativity.
Hence, automating routine and data-intensive tasks through
AI-powered autonomous systems reduces labor costs and
minimizes human intervention. These optimizations translate
to significant operational cost savings.

Improved Situational Awareness. As explained below, AI
enhances the information available to human operators,
providing a comprehensive view of the tactical environment.
This leads to better-informed decisions and minimizes the
financial consequences of inadequate awareness.

Scalability and Flexibility. AI-driven intelligent autonomous
systems can adapt to changing tactical conditions and complex
requirements, enabling scalable operations without increasing
human labor costs [19].

B. Economic Challenges of Integrating AI and HAT

In addition to economic benefits, HAT presents potential
economic challenges. One such challenge, for example, is
job displacement because autonomous systems take over tasks
currently performed by humans. In addition, increased reliance
on autonomous systems can pose safety risks if they are
not properly designed and operated. Here, we discuss some
potential challenges in detail.

Job displacement. Automation could lead to job displacement
because modern and intelligent autonomous systems can take
over tasks currently performed by humans. This shift might
hurt the economy, resulting in higher unemployment rates and
lower wages.

Increased safety risks. HAT could lead to increased safety
risks if autonomous systems are not properly designed and

operated. For example, mistakes made by autonomous systems
can result in accidents or injury.

Privacy concerns. Automation could raise privacy concerns
because autonomous systems can collect and store large
amounts of data about human users. These data could be used
for marketing or other purposes without the user’s consent.

VII. SITUATION MODELS AND SHARED SITUATIONAL
AWARENESS IN HAT

The economic analysis in Section VI highlighted the
importance of efficient decision-making in HAT. However,
effective decision-making requires a shared understanding of
the situation. This section explores how situation models and
shared situational awareness facilitate the flow of information
required for human and autonomous systems to work together
seamlessly.

A. Situation Models of HAT

In the context of HAT, situation models and shared
situational awareness play a crucial role in ensuring effective
collaboration between humans and autonomous systems
in complex environments [67]. Situation models represent
an individual’s internal understanding of the world, their
experiences, and others. This understanding is dynamic and
constantly updated based on sensory inputs and mental
models (see Figure 2). For effective collaboration in complex
environments, HAT requires humans, AI, and autonomous
systems to develop internal situation models. Here, are the
key aspects of the situation models in HAT.

Situation. Similar to how humans in Multi-Domain
Operations (MDO) rely on situational awareness, AI
algorithms must develop and maintain an accurate model of the
world. This is crucial for informed decision-making [67]–[70].
Effective HAT systems emphasize shared mental models and
team situational awareness. Advanced AI techniques can
improve these aspects by providing humans with insights
into the decision-making processes of machine learning
models, further enhancing situational awareness and shared
understanding [71].

Task Environment. A dynamic function allocation
mechanism has been proposed for future HAT systems,
where tasks are distributed among human and autonomous
teammates based on their capabilities [18]. This requires an
updated model of the work environment, including current
goals, assignments, plans, and the state of humans and
automation involved [7].

Teammate awareness. As humans must understand AI
reliability, AI may require a model of the current state of its
human teammates to perform assigned tasks effectively [72],
[73].

Self-awareness. Being aware of one’s capabilities is
important. Team members who recognize fatigue, workload,
or inadequate training can shift tasks to optimize performance
[74], [75]. AI may need to develop a model of its performance
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limitations to indicate when human intervention is needed or
whether its calculations are accurate [68], [76].

These individual situation models are important for
achieving shared situational awareness, which is the focus of
the following subsection.

B. Shared Situational Awareness

Situational awareness in HAT refers to individuals’ and
teams’ ability to perceive, understand, and anticipate relevant
information and events in their operational environment [77],
[78]. This extends beyond human team members to include
collaborative autonomous systems and robots. Developing
shared situational awareness requires collaboration between
humans, autonomous systems, and AI algorithms. Humans
rely on sensory inputs such as vision and hearing, and
autonomous systems rely on sensor data and AI algorithms
for safety [77], [78]. Effective communication, information
sharing, and collaboration are crucial for maintaining shared
awareness over time in HAT. The following are some
challenges to achieving shared situational awareness:

Information Overload. The vast amount of data generated by
autonomous systems can overwhelm human agents [77], [79].
This makes it harder for users to concentrate on important
tasks. HAT systems should provide mechanisms to filter and
prioritize information, ensuring that human agents only receive
relevant and actionable data [79].

Cognitive Overload. Processing large amounts of information
while making decisions can lead to cognitive overload in
human agents [77]. HAT systems can mitigate this by
incorporating intelligent algorithms to facilitate data analysis
and decision-making, which reduces the cognitive burden of
humans.

Training and Interfaces. Effective use of tools and interfaces
to facilitate shared situational awareness is crucial for human
agents in HAT scenarios [80], [81]. These tools include
dashboards, augmented reality displays, and communication
systems that present relevant information. Training programs
should cover not only technical aspects but also emphasize
human-autonomy collaboration strategies and best practices.
User-friendly interfaces and well-designed human-autonomy
interaction mechanisms can also help reduce the learning curve
and improve usability.

In summary, building a common operating picture through
situation models and shared situational awareness is essential
for effective HAT. By carefully managing information flow,
providing appropriate training, and using well-designed
interfaces, we can ensure successful collaboration between
humans and autonomous systems.

VIII. ROLES OF AI IN HAT FOR TACTICAL OPERATIONS

Section VII highlighted the importance of shared
understanding in HAT. However, effectively processing
the enormous amount of information required by such
models is a critical challenge. This section explores how AI
capabilities are leveraged in HAT to address this challenge,
with a specific focus on tactical operations.

AI has created a revolutionary transformation in numerous
domains and industries, introducing advanced capabilities
previously beyond reach. In the medical and healthcare fields,
for example, AI plays a pivotal role in disease diagnosis,
treatment development, and personalized patient care [82].
Diagnostic AI-powered systems exhibit remarkable accuracy
in interpreting medical images, such as X-ray and MRI images,
thereby helping medical professionals make more informed
decisions. These systems excel at analyzing complex medical
images and identifying tumors or anomalies that human
professionals may overlook. Additionally, AI contributes to
drug and therapy innovation, allowing personalized treatment
plans for individual patients [82]. In the digital marketing
context, AI is invaluable because it enhances the precision
of targeted advertising, elevates customer experiences, and
predicts consumer behavior [83], [84].

In the context of tactical autonomy, the potential roles of AI
in HAT become even more critical. Tactical autonomy refers
to the ability of autonomous systems to make decisions and
take action in real-time, often in complex and unpredictable
environments [12]. AI-powered systems can provide soldiers
with real-time battlefield information and can also be used
to develop autonomous weapons systems that can operate
without human intervention [12]. The potential benefits of
AI in tactical autonomy are significant. AI systems can help
improve situational awareness, identify and track targets, plan
and execute missions, communicate with other systems, and
make decisions. This can lead to increased safety, efficiency,
and effectiveness in military operations [24], [85].

Provide situational awareness. As explained above, AI
systems can collect, process, and analyze large amounts of data
from sensors, cameras, and other sources to provide humans
with an enhanced understanding of complex and dynamic
environments [86]. It offers real-time insights, predictions,
and suggestions that help human operators make informed
decisions. This can help humans make better decisions and
take appropriate actions.

Plan and execute missions. AI systems can plan and
execute missions considering various factors, such as the
team environment, capabilities, and risks. This allows human
operators to make high-level decisions and manage the overall
mission.

Communicate with other systems. AI systems can
communicate with other systems, such as other autonomous
vehicles and command and control centers. This will help
ensure that the team works effectively together.

Learn and adapt. AI systems can learn from experience and
adapt their behavior accordingly. This allows them to become
more effective over time.

Make decisions. AI systems can make decisions that are
enhanced even in complex and uncertain situations. This can
help humans avoid making mistakes and ensure that the team
always acts in the best interests.

However, some challenges must be addressed. One
challenge is to ensure that AI systems are reliable and safe.
Another challenge is the need to develop trust between humans
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Fig. 2: Situation models for HAT [56].

and AI systems. Finally, there are ethical considerations that
must be considered, such as the potential for AI systems to be
used for malicious purposes. Despite these challenges, AI can
revolutionize tactical autonomy. As AI systems continue to
develop, we expect to see even more innovative and effective
applications of AI in this area.

IX. HUMAN-AI INTERACTION IN HAT FOR TACTICAL
AUTONOMY

Effective human-AI interaction is crucial for successful
HAT implementation. HAT systems are designed to allow
human and autonomous systems to work together effectively
in complex and dynamic environments. Section VIII explored
how AI empowers HAT systems, particularly tactical
operations. However, to harness the full potential of AI
and collaborate effectively, well-designed user interfaces
are essential. This section explores the key factors and
Human-Machine Interface (HMI) design principles to consider
when designing HAT interfaces, ultimately ensuring seamless
human-machine collaboration. For example:

Transparency and Explainability. These principles are
fundamental to ensure that human operators can understand,
trust, and effectively collaborate with autonomous systems [6],
[87]. Transparency refers to the extent to which the human
operator can understand how an autonomous system works
and why it makes the decisions it does [6], [88]. In the
context of HAT interfaces, transparency involves providing
operators with insights into the functioning of an autonomous
system and making decisions [71]. In contrast, explainability
refers to the extent to which a human operator can understand
the rationale behind an autonomous system’s decisions [89],
[90]. Achieving real-time transparency and explainability in
HAT interfaces is important for human operators to rely on
AI-driven recommendations and actions. However, achieving
explainability and transparency in human-AI interaction within
the context of tactical autonomy settings requires several
advanced strategies and technologies [91].

Context Awareness. HAT interfaces should provide human
operators with the status of autonomous agents, the overall
mission, and a clear and real-time understanding of the
underlying tactical environment [92], [93]. Based on the
current task and context, displaying relevant real-time

information about the tactical environment, such as maps,
sensor data, and mission objectives, is important to enhance
human operators’ situational awareness [94], [95].

Adaptability and Flexibility. Tactical autonomy settings
are often characterized by rapidly changing conditions. HAT
systems are designed to operate in dynamic and unpredictable
environments where the conditions can change rapidly.
Therefore, the human-AI interaction mechanism must be able
to adapt to these changes and be sufficiently flexible to
accommodate various tasks, goals, and environments [96]. An
adaptable HAI system can adjust its behavior, decision-making
processes, and responses to accommodate these changes [97].
This allows the system to remain effective and relevant in a
constantly evolving context.

Safety and Redundancy. These aspects help improve the
reliability, robustness, and trustworthiness of HAT systems in
dynamic and potentially dangerous environments [98], [99].
Safety refers to measures and mechanisms implemented to
prevent accidents, mitigate risks, and ensure that the system
operates without harming humans, property, or the mission.
Redundancy, on the other hand, involves duplicating critical
components or functions within the HAT system to ensure
that backups are available in case of failure [100]. The work
in [101] provides an overview of the current state of safety
solutions and challenges in ensuring the safety of autonomous
systems.

Shared Mental Model. Developing shared mental models
between humans and autonomous systems is important for
effective collaboration and communication [102], [103]. A
shared mental model refers to a common understanding of the
task, environment, and capabilities of humans and autonomous
systems [58], [104]. To promote the development of shared
mental models and strengthen the collaboration between
humans and autonomous systems, several critical strategies
should be implemented [55]. First, clear communication is
very important. This involves using a common language or
terminology that is understandable to humans and autonomous
systems. Second, feedback mechanisms play a significant
role. Providing humans with feedback on the performance of
autonomous systems enhances understanding and trust [55].
Third, visualization tools are also equally important. They help
humans understand the internal states and reasoning processes
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of autonomous systems. Finally, designing a human-autonomy
system user interface and interaction mechanisms to facilitate
effective communication and collaboration is important [55],
[105].

X. OPPORTUNITIES AND CHALLENGES

Moving from design principles to practical applications
requires careful consideration of the broader landscape. This
section explores the opportunities and challenges associated
with using AI to enhance HAT in tactical autonomy.

A. Opportunities of HAT in Tactical Autonomy

HAT is a promising technology with the potential
to improve the safety and effectiveness of military
mission-critical operations [106]. As discussed above, HAT
is a concept that focuses on the collaboration and interaction
between humans and autonomous systems or AI-driven
technologies, particularly in scenarios where both entities
work together toward a common goal [17]. This concept
presents numerous opportunities across various domains. It
is particularly important in the context of tactical autonomy
and in defense and military areas for several compelling
opportunities:

Enhanced Decision-making. Autonomous systems powered
by AI can analyze vast amounts of data rapidly, providing
human operators with real-time, data-driven insights to make
more informed and effective decisions.

Enhanced performance. HAT can significantly enhance
overall performance by leveraging the strengths of humans
and intelligent autonomous systems [3], [107], [108]. Humans
possess cognitive abilities such as creativity, intuition,
and complex decision-making, whereas autonomous systems
provide computational power, precision, and efficiency.

Increased efficiency. HAT systems can help reduce the risk
of human error by automating tasks that are prone to human
error. This can lead to safer operations, fewer accidents,
and improved efficiency [3], [109]. In addition to this, HAT
systems can help human operators focus on more important
tasks. For example, in the aviation industry, HAT systems
can automate tasks such as aircraft system monitoring and
navigation. This allows the human pilot to focus on critical
tasks such as decision-making and communication with air
traffic control [110].

Improved safety. HAT systems can help improve safety by
automating complex tasks that are extremely difficult for
humans to perform [3]. For example, autonomous systems can
be used to perform difficult tasks or pose risks to humans, such
as driving vehicles under hazardous conditions. Autonomous
systems can also be programmed to follow safety procedures
more consistently than humans, and they can be equipped with
sensors that detect hazards that humans may not be able to
detect.

Risk reduction. By integrating intelligent autonomous system
agents, human team members can delegate high-risk tasks to

autonomous agents, which mitigates risks and improves overall
safety in dynamic and complex environments [109].

Enhanced Capabilities. HAT can help enhance the
capabilities of human operators by providing them with access
to information and resources that they would not otherwise
have [111]. This can help them make better decisions and
take more effective actions.

Adaptability and Flexibility. HAT systems should be
flexible and adaptable to dynamic environments. Both humans
and autonomous systems should adjust their behaviors
and decision-making in response to evolving situations.
Autonomous systems can adapt to dynamic and changing
environments more rapidly than humans [3], [112]. Their
ability to process real-time data and adjust their actions
accordingly enhances the team’s overall adaptability and
resilience.

B. HAT Challenges in Tactical Operations

While HAT offers significant opportunities, it also presents
critical challenges that must be addressed for successful
implementation. Here, we present some key challenges
associated with HAT for tactical autonomy:

Trust. Investigating the factors that influence human trust
in AI systems and developing strategies to enhance trust
between humans and AI is crucial. Trust is critical for effective
collaboration and decision-making in human-autonomy teams
because humans must be confident that AI systems will
behave safely and predictably. Therefore, AI systems should
be designed to be transparent and explainable so that humans
can understand how they make decisions. For example, the
authors in [113] emphasize the importance of exploring trust
dynamics within human-autonomy teams. They suggest a need
for a detailed and qualitative analysis of team processes to
understand how trust can be established or eroded over time.
Such insights can contribute to more refined human-autonomy
team designs and guide the development of autonomous agents
that prioritize the element of trust.

Reliability. It is important to ensure that AI-powered
autonomous systems are reliable [58]. Although HAT
offers several potential benefits, ensuring the reliability and
trustworthiness of these systems is essential for maintaining
safety, ethical standards, and public confidence [58]. In the
context of this study, trustworthiness refers to how well
an autonomous agent earns the trust of other agents in
the team, including humans and other autonomous agents.
Trustworthiness is important because it allows humans to
trust autonomous agents to operate safely and reliably. One
of the key challenges in HAT is ensuring that humans
and autonomous systems can trust and cooperate. This is
especially important in complex and dynamic environments,
where human and autonomous systems must be able to make
quick decisions and adapt to changing conditions. Researchers
must develop methods for improving the transparency and
explainability of autonomous systems and methods for training
humans to better understand and work with autonomous
systems.
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Lack of Transparency and Explainability of AI. Ensuring
real-time transparency and explainability is crucial for
building trust and enhancing situational awareness in AI
systems [114], [115]. Human understanding of autonomous
system decision-making is essential for effective collaboration,
particularly in situations with significant consequences such as
self-driving cars or autonomous weapons systems. However,
designing transparent algorithms and interfaces to interpret
autonomous system actions is a complex challenge.

Human-machine Collaboration. It is important to ensure
that humans and autonomous systems can effectively work
together. This requires careful design of the HAT system, and
training for both humans and autonomous systems. Hence,
the need for better human-machine interfaces that allow
humans and machines to work together effectively is a critical
challenge.

Shared Situational Awareness. Effective collaboration
between humans and intelligent autonomous system agents
requires maintaining shared situational awareness among the
team members [67]. However, the critical challenge lies
in designing and ensuring that all members have access
to relevant information and can interpret and understand it
consistently. Therefore, shared situational awareness in HAT
is critical for human agents. This is because human agents can
be overwhelmed by the information provided by autonomous
systems. Processing a large amount of information while
making critical decisions can lead to cognitive overload in
human agents, and human agents may also need to be trained
to effectively use tools and interfaces that facilitate shared
situational awareness.

Workload Distribution. Allocating workloads appropriately
between humans and autonomous systems is crucial to prevent
cognitive overload or underutilization of computing resources.
Achieving a balance that optimizes the strengths of both team
members and guarantees efficient task execution is a critical
challenge, particularly in complex and dynamic environments.

Ethical Implications. HAT raises several ethical implications,
such as the potential for autonomous systems can make
decisions that result in harm to humans. As HAT systems
become more sophisticated, it is important to consider ethical
implications carefully prior to deploying HAT systems. For
example, how can we ensure that HAT systems are used safely
and responsibly not to harm humans (either intentionally or
unintentionally)? How can we prevent HAT systems from
being used for malicious purposes? How can we ensure that
HAT systems are used in a fair and just manner? Researchers
should work with policymakers and ethicists to develop ethical
guidelines for the development and use of HAT systems.

C. Decision Logic of Autonomous Agents

Understanding the decision logic of autonomous agents is
essential for ensuring safe and effective collaboration between
humans and intelligent autonomous systems.

Black-box Models. Many autonomous systems use black-box
models, which are ML models that are trained on large

amounts of data, where the relationships between the inputs
and outputs of the models are complex and nonlinear. In
the HAT context, black-box models can be used to control
autonomous systems in various ways [116]. For example, a
black-box model can be used to control the navigation of
autonomous vehicles or the weapons system of autonomous
robots. However, using black-box models in HAT poses several
challenges. One challenge is that it can be difficult for
humans to understand how autonomous systems are making
decisions [117]. This can lead to a lack of trust in autonomous
systems and make it difficult for humans to collaborate
effectively with them.

High-dimensionality of Data. Autonomous systems often
process large amounts of high-dimensional data. This
can make it difficult for humans to visualize data and
understand the factors that influence an autonomous system’s
decisions [118]. When data are high-dimensional, this
means that different features (variables) that are being
measured [119]. In the HAT context, high-dimensional
data can make it difficult for humans to understand how
autonomous systems make decisions. This challenge pertains
to the complexity and volume of data that autonomous systems
generate and use, and it can impact various aspects of
HAT, including decision-making, situational awareness, and
communication between team members.

Uncertainty of Data. Autonomous systems often operate in
uncertain environments. This can make it difficult for humans
to determine the reliability of autonomous system decisions.
Uncertainty of data is a significant challenge in HAT and
can impact the effectiveness, safety, and trustworthiness of
human-autonomy systems. In HAT, uncertainty can arise from
various sources and manifest in different forms, including
noisy or incomplete sensor data, environmental uncertainty,
and human-automation interaction uncertainty [120]. The data
may also be outdated or may not represent the current
situation. In addition, the data may be biased or manipulated
by an adversary. Several methods can be used to address the
challenge of uncertainty in HAT data [121]. For example, it
is important to use data that are as high quality as possible.
It is also important to employ advanced techniques to detect
and mitigate data uncertainty. Furthermore, it is important to
design HAT systems that are robust against uncertainty.

Unforeseen Biases. Another critical challenge is the potential
for unforeseen biases. AI systems are trained on data, and
if the data are biased, the AI system will be biased as well.
This could lead AI systems to make unfair or discriminatory
decisions [122], [123]. It is important to carefully select the
data on which AI systems are trained and to employ techniques
to mitigate bias. Autonomous systems may be biased in ways
that are not immediately obvious to humans. This can lead to
autonomous systems making poor decisions.

Addressing these critical challenges in integrating and
deploying HAT in AI-powered domains is essential to
maximize benefits and ensure safe, ethical, and effective
operation in complex and dynamic environments. Despite
these challenges, we believe that the potential benefits of
using AI in HAT are immense. By combining the strengths of
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humans and machines, AI can revolutionize military operations
and make the world a safer place.

D. Function Allocation Challenges in HAT

Function allocation refers to the distribution of tasks and
responsibilities between humans and autonomous systems
within a team [18]. Allocation is crucial for optimizing
team performance, ensuring efficiency, and maintaining
safety in complex operational environments. It determines
how information is processed, integrated, and presented to
human operators to deliver relevant and timely information
that enhances situational awareness. This process includes
considerations such as data fusion, visualization techniques,
and feedback mechanisms from autonomous systems to
humans [124]. Traditionally, function allocation has been
based on what humans and machines are good at.
However, this approach overlooks several important factors
that must be addressed. A more comprehensive approach
involves analyzing task demands, exploring task distribution
strategies, examining the interdependence between humans
and machines, and considering the associated trade-offs [18].
The work in [18] highlights several key considerations in
function allocation that are particularly relevant in the era
of human-autonomy teaming. Addressing these considerations
can help human-autonomy teams leverage the strengths of
both humans and machines, leading to improved performance,
decision-making, and overall mission success in tactical
operations. Some of these considerations relevant to this paper
are discussed below.

Cognitive Workload Distribution. A crucial consideration is
the distribution of cognitive workload between humans and
intelligent autonomous systems. Repetitive tasks, rule-based
tasks, or processes that involve the rapid processing
of large amounts of data are often better suited for
automation. Conversely, tasks requiring creativity, complex
decision-making based on contextual understanding, or
ethical considerations are generally more suitable for human
operators.

Situational Awareness. Function allocation plays a critical
role in shaping situational awareness in tactical operations,
particularly when integrating AI into HAT. Situational
awareness relies heavily on effective function allocation,
which impacts the cognitive load experienced by human
operators. By assigning tasks appropriately based on their
complexity and cognitive demands, operators can enhance
their ability to maintain situational awareness [94]. For
example, automating routine and repetitive tasks allows human
operators to focus on higher-level cognitive tasks that require
situational understanding and decision-making [94]. Task
allocation significantly influences the level of collaboration
and interaction between humans and autonomous systems.
Collaborative function allocation models, where humans and
AI work together, can improve situational awareness by
leveraging the strengths of both entities. This collaboration
may involve shared decision-making, coordinated task
execution, and continuous feedback loops [125].

Flexibility and Adaptability. The allocation of functions
should be flexible and adaptable to changing circumstances,
such as dynamic situational awareness in tactical
environments [126]. Strategies for function allocation that
prioritize adaptability and flexibility enable quick adjustments
to task assignments and information flow. This adaptability
ensures that situational awareness remains robust even in
evolving scenarios or unexpected events. Human-autonomy
teams operate in dynamic environments where tasks and
priorities may shift. Therefore, systems must be designed with
the ability to reassign tasks or transfer control seamlessly
based on real-time conditions and input from both humans
and machines.

Transparency and Trust. Clear communication and
transparency in function allocation are essential for building
trust within the team. Human operators should understand
how tasks are distributed among humans and autonomous
systems, including the criteria used for decision-making.
Transparent allocation enhances trust, reduces uncertainty,
and promotes effective collaboration.

Ethical and Legal Considerations. Function allocation must
also consider ethical and legal implications. This includes
ensuring that humans retain control over critical decisions,
addressing potential biases in algorithmic decision-making,
and adhering to regulatory frameworks governing autonomous
systems in specific domains such as defense or healthcare.

XI. PROPOSED FRAMEWORK FOR AI-DRIVEN HAT IN
TACTICAL OPERATIONS

In this section, we present a comprehensive framework
(Figure 3) for AI-driven HAT in tactical operations, and we
provide a conceptual structure to enhance the integration of
AI into these environments. By identifying and organizing
key elements, this framework can guide future research and
development. It comprises four main components: trust and
transparency, function allocation, situational awareness, and
ethical considerations, each representing a critical aspect of
AI-driven HAT that requires further exploration. By providing
a structured approach, the proposed framework facilitates a
systematic investigation of the challenges and opportunities
associated with AI-driven HAT for tactical operations. We
include comparative insights, new examples, and potential
real-world implementation strategies to illustrate how our work
advances beyond the existing literature. Future research is
needed to develop, implement, and validate these concepts in
real-world settings.

A. Trust and Transparency

Explainable AI Models. XAI models are crucial to
ensure that human operators can understand AI decisions,
particularly in time-sensitive environments. For example, in
military drone operations, a tactical XAI model can provide
real-time explanations for target identification using visual
overlays to highlight specific features and auditory alerts
to convey urgency. The proposed framework introduces a
tactical XAI system that is tailored to the demands of such
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Fig. 3: Proposed Framework for AI-Driven HAT in Tactical Operations

environments, thereby providing concise, actionable insights
during mission-critical moments. It envisions a multi-modal
explanation system that employs visual, auditory, and tactile
cues to communicate AI reasoning without overwhelming
the operator’s cognitive load. In addition, an adaptive
explanation component adjusts the depth and complexity
of the information based on the operator’s expertise and
cognitive state, providing flexible levels of detail according
to operational needs and time constraints.

Trust Calibration Mechanisms. In HAT systems, trust
calibration must be adaptive rather than static to respond
to evolving tactical scenarios. Drawing inspiration from
reinforcement learning techniques, the proposed framework
introduces a dynamic trust calibration system that adjusts AI
autonomy based on operator behavior, AI performance, and
mission criticality. In this system, trust levels are continuously
recalibrated through real-time feedback to assess factors
such as behavioral cues, physiological signals, and direct
operator inputs. For example, in time-sensitive missions like
search-and-rescue, if the AI system consistently performs with
high accuracy, its autonomy is increased, which minimizes

the need for human verification. Conversely, if the AI
system misclassifies targets or poses risks, trust levels
decrease, which increases human oversight. By autonomously
adapting to operator inputs, mission outcomes, and evolving
conditions, the underlying system enables seamless human-AI
collaboration, enhancing decision-making through continuous
real-time feedback and adjustments. This adaptive trust
mechanism helps human operators remain confident in AI
decisions, leading to better teamwork, especially during
critical missions.

B. Function Allocation

Dynamic Task Distribution and Adaptability. Existing
function allocation in HAT systems is primarily static and
often fails to accommodate changing tactical conditions. To
address this limitation, the proposed framework employs
adaptive algorithms capable of dynamically distributing tasks
based on variables, such as operator cognitive load, stress
indicators, and mission requirements. The proposed framework
emphasizes the importance of context-aware algorithms that
modify task allocation in real-time, considering factors
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such as operator cognitive state, stress levels, and mission
complexity. By considering variables such as mission type,
environmental conditions, and operational data, these adaptive
algorithms can optimize the distribution of responsibilities
between humans and AI, ensuring that task allocation remains
responsive to evolving tactical situations. Achieving this
level of adaptability requires AI-driven HAT systems to be
designed with flexibility as a core feature. AI architectures
should be capable of rapid reconfiguration in response to
new inputs, enabling them to adjust to shifting mission
objectives, environmental changes, and variations in operator
states. For example, reinforcement learning models can
be employed to adapt task strategies based on real-time
feedback, continuously optimizing system performance under
changing conditions. Furthermore, incorporating modular AI
components, such as plug-and-play sensors and dynamic
data processing units, facilitates rapid updates, which ensures
the system’s resilience against unforeseen changes. This
approach not only enhances AI efficiency but also guarantees
better alignment with operators’ immediate needs, thereby
improving overall mission success rates and operator trust.
For example, complex tasks like real-time threat assessment,
can be assigned to AI systems during high-stress scenarios,
whereas decision-making regarding ethical dilemmas, such
as potential civilian casualties, remains the responsibility of
human operators.

Cognitive Load Optimization. In traditional HAT systems,
the cognitive load of human operators is often either
underestimated or ignored, leading to reduced performance
and potential mission failures. Our framework proposes an
adaptive cognitive load-balancing model that dynamically
adjusts task complexity, presentation, and pace based on
real-time operator states [127]. By aligning task demands with
operator skills, the proposed approach considers individual
strengths, weaknesses, and preferences, thereby allowing for a
gradual increase in challenges to promote skill development.
For example, during joint reconnaissance missions, tasks
requiring high situational awareness can be assigned to
experienced operators, and routine data entry is managed
by AI. This adaptive approach ensures that operators are
not overwhelmed and facilitates effective decision-making in
tactical environments.

C. Situational Awareness

AI-Enhanced Perception. Traditional situational awareness
models in HAT systems often rely on limited or isolated
data streams, which results in incomplete or biased situational
models. Our framework attempts to overcome these limitations
by implementing AI-enhanced perception that integrates
diverse data sources, such as radar, satellite imagery, and
ground sensors, to create a more holistic and accurate
situational model [128]. The proposed approach leverages
multi-sensor fusion techniques, including Bayesian inference,
convolutional neural networks for image analysis, and
Kalman filtering for real-time sensor data processing, to
combine data into coherent and interpretable representations.
By merging various sensory inputs, the model maintains

consistency and reliability in situational awareness, facilitating
seamless communication between AI and human operators. To
further enhance real-time situational awareness, the framework
incorporates advanced analytics tools that continuously update
the situational model, identify emerging threats, and provide
timely alerts to operators. This real-time processing capability
ensures that sudden changes, such as enemy movements
or environmental shifts, are detected and communicated
clearly and promptly. In addition, AI-enhanced perception
can identify and highlight anomalous patterns that human
operators might otherwise overlook, particularly in dynamic
tactical environments. For example, in an urban combat
simulation, this integration allows AI to identify potential
threats overlooked by human operators, thereby offering
recommendations that improve decision accuracy and reduce
response times. By maintaining an up-to-date, comprehensive
situational awareness, the proposed framework can improve
decision-making accuracy and enhance the operational
readiness of HAT systems.

Shared Mental Models. In tactical operations, achieving a
shared mental model between human operators and AI is
important [81]. For example, during a coordinated air-ground
mission, an AI system can continuously update its situational
assessment and communicate key changes to the human
team members, ensuring that both AI and humans have
an aligned understanding of the mission’s progress. Our
framework proposes a concept for dynamic shared cognition
that can align AI and human understanding in tactical
situations to enhance team cohesion and decision-making.
This theoretical approach introduces potential mechanisms
for comparing and assessing differences between AI and
human situational assessments. The concept further outlines
possibilities for cognitive synchronization through targeted
information exchange to address potential discrepancies in
situation understanding.

D. Ethical Considerations

Ethical Decision Support. Ethical decision-making in HAT
systems typically involves predefined rules or rigid moral
frameworks, which limit their adaptability to dynamic tactical
situations. In tactical situations, AI-driven HAT can offer
proactive ethical decision support by helping human operators
navigate legal, moral, and operational implications. For
example, during a peacekeeping mission simulation, AI could
propose nonlethal measures to de-escalate a conflict while
also presenting operators with clear explanations of the ethical
implications of each choice. This ensures ethical compliance
while enabling informed decision-making. The proposed
framework introduces adaptive ethical decision models that
integrate ethical guidelines with real-time decision-making
processes. These models assess the ethical implications of
potential actions and provide human operators with options
aligned with international laws and moral standards. Future
research should therefore focus on embedding real-time ethical
reasoning algorithms that ensure compliance with international
laws and offer moral decision support, particularly during
conflict situations.
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Accountability Frameworks. The proposed accountability
framework clearly defines distributed responsibilities between
AI and human team members. This theoretical model
introduces possibilities for analyzing team decisions and
actions after they occur, allowing for thorough review and
assessment. This concept presents potential approaches for
tracking and documenting the contributions of AI and human
team members to significant operational decisions.

XII. PRACTICAL RECOMMENDATIONS

In addition to proposing a comprehensive framework
(Section XI), this study provides practical recommendations
that can contribute to the implementation of AI-driven
HAT systems in tactical environments. After exploring the
opportunities and challenges of AI-driven HAT for tactical
autonomy (Section X), this section provides clear guidance
for policymakers, practitioners, and researchers regarding the
complexities of HAT development and implementation.

Develop Transparent and XAI Systems. Developing
transparent and explainable AI systems is important for
building trust between human operators and AI teammates.
Interpretable machine learning algorithms can improve the
explainability of AI systems [129]. Implementing XAI
techniques such as generating visualizations or context-based
explanations to make AI decision-making processes more
transparent, is an example of an actionable step. This
empowers human operators to understand the rationale behind
AI recommendations and promotes informed collaborative
decision-making [130]. We recommend implementing XAI
models that offer visual, auditory, and textual explanations
of AI decisions. These models should be tailored to the
tactical environment, such as overlaying battlefield maps with
AI-generated insights to assist operators in decision-making.

Building Robust AI for Uncertainty. Given the dynamic
and unpredictable nature of tactical environments, AI systems
should be trained on diverse real-world datasets reflecting
various scenarios [131]. This training enhances the system’s
ability to handle uncertainty and make context-appropriate
decisions. Prioritizing robustness against uncertainty and
ambiguity ensures that AI systems can effectively adapt
to dynamic operational settings. This enables AI systems
to make context-appropriate decisions even in unforeseen
circumstances.

Human-AI Collaboration. Effective Human-AI collaboration
in tactical autonomy requires a symbiotic relationship
between human decision-making and AI assistance. Instead
of deploying fully autonomous systems, AI tools should be
designed to provide recommendations and options that support
human operators, enabling them to make informed decisions
while leveraging AI’s analytical capabilities. To achieve this,
it is important to emphasize human-centric design throughout
the development of HAT systems. This approach involves
an iterative design process that actively incorporates user
feedback at every stage, from conceptual prototyping to field
testing. By engaging operators in this process, developers can
ensure that AI systems closely align with user needs, thereby

enhancing both usability and operator trust. For example,
user-centered design frameworks, such as participatory design
and co-design workshops, can be employed to gather input
directly from operators, allowing AI systems to be tailored to
specific operational contexts and user requirements. Training
programs for operators are also critical because they help
users understand AI’s capabilities and limitations, providing
more effective collaboration in tactical environments. The
iterative development process should include usability testing,
interface adjustments, and continuous model training based on
real-world interactions. By focusing on human-centric design
and continuous user engagement, AI systems can become
more intuitive, reduce cognitive load, and facilitate smooth
decision-making processes, thereby improving the overall
effectiveness of HAT operations.

Emphasize Human-AI Training and Education.
Policymakers and practitioners must invest in developing
a comprehensive training program to familiarize human
operators with AI functionalities and limitations. Designing
training programs that cover the full potential of AI
capabilities, limitations, and best practices for collaboration
in tactical operations is important. Using simulation-based
training to allow operators to practice in a safe and controlled
environment and understand best practices for collaborating
with AI systems during tactical operations can be effective.

Cybersecurity and Privacy. Robust cybersecurity measures
and data privacy considerations are essential for secure
and ethical HAT operations. Policymakers must address
cybersecurity concerns by implementing end-to-end
encryption for communication among AI-assisted tactical
teams. This protects mission-critical information from
potential adversaries. In addition, policymakers should
examine existing legal and regulatory frameworks, such as
the General Data Protection Regulation (GDPR), governing
HAT to ensure that they address data privacy concerns [132].

Continuous Trust Assessment Mechanisms. Implementing
continuous trust assessment mechanisms is important for
maintaining operator confidence in AI systems and ensuring
effective collaboration. To achieve this, user feedback should
be systematically integrated into AI systems by creating
feedback loops that allow operators to provide real-time
evaluations of AI decisions. For example, real-time feedback
interfaces can enable operators to rate AI decisions on
reliability, which can be used to dynamically adjust trust levels
based on user responses [58]. Trust calibration algorithms
also play an important role in evaluating and adjusting
trust levels. These algorithms can monitor operator behavior
and performance metrics to adjust AI autonomy levels in
real-time [133]. Additionally, physiological monitoring tools,
such as sensors for heart rate variability, can be used to assess
trust indirectly during interactions with AI systems [127]. In
addition, existing trust measurement frameworks, as discussed
in [134], offer methods to quantitatively assess trust in
automated systems during HAT operations. These frameworks
provide empirical insights into operator trust levels by
generating real-time reports that help inform adjustments
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to AI behaviors, thereby fostering more effective human-AI
collaboration.

Implement Protocols for System Failures and Recovery.
Designing AI systems with fail-safe mechanisms and
establishing protocols that allow human operators to regain
control in the event of system failures is critical. Human
operators must intervene and take control when necessary
to ensure operational continuity and safety in dynamic
environments.

AI Training for Real-World Scenarios. Training AI systems
using real-world data from tactical operations is important
for ensuring accurate, context-aware decision-making. In
particular, AI systems should be trained using datasets that
simulate realistic operational contexts. For example, using
datasets like the DARPA’s OFFensive Swarm-Enabled Tactics
(OFFSET) [135] or the Military Operations on Urban Terrain
(MOUT) [136] simulation data can significantly enhance AI
adaptability in combat situations by replicating battlefield
dynamics. Similarly, datasets such as the FEMA dataset1 on
disaster response can prepare AI systems for handling natural
or human-made disaster scenarios, improving their capacity
for context-specific decision-making. To optimize learning,
AI models should incorporate advanced techniques such as
reinforcement learning and domain adaptation. Reinforcement
learning allows AI systems to interact with simulated
environments, enabling them to adapt behaviors based on
trial-and-error feedback and learn optimal responses [131].
Furthermore, domain adaptation can help AI systems
generalize from training data to real-world deployment by
learning from pre-existing datasets and adapting to new
operational environments [137]. This approach ensures that
AI systems can effectively manage unexpected variables
commonly encountered in tactical settings.

Develop Ethics and Regulations. Policymakers and AI
researchers must collaborate to establish ethical guidelines
and legal frameworks for the use of AI in tactical
autonomy. These guidelines should address transparency,
accountability, AI bias, and the rights of human operators
within human-autonomy teams to ensure the safe, ethical, and
responsible deployment of autonomous systems. To achieve
this, ethical decision support should be seamlessly integrated
into HAT systems, providing operators with real-time ethical
guidance and decision options based on international laws
and mission rules, even in rapidly evolving scenarios.
Ethical decision support modules should be designed to
help human operators make legally compliant and morally
sound decisions during tactical operations [111]. These
modules can leverage decision trees or rule-based AI
systems that embed ethical principles and offer real-time
recommendations aligned with international humanitarian
laws, such as promoting non-lethal engagement in conflict
zones. Drawing from frameworks like Asimov’s laws of
robotics [138], [139], extended to incorporate modern ethical
guidelines for military and emergency operations, these

1https://www.fema.gov/openfema-data-page/
disaster-declarations-summaries-v2

modules present clear decision options that align with mission
objectives while adhering to established ethical norms. To
further ensure ethical compliance, HAT systems should
include compliance-checking mechanisms that continuously
monitor AI decisions against legal standards [140]. Real-time
compliance checks can flag actions that may violate
ethical guidelines, prompting human operators to review
and, if necessary, override AI-generated decisions. These
compliance checks can be implemented using rule-based
AI systems that reference legal databases in real-time,
ensuring that all AI decisions undergo thorough verification
before execution. Integrating ethical decision support with
compliance monitoring promotes informed decision-making
and ensures awareness of legal or ethical risks, thus
enabling safe and responsible AI deployment in high-stakes
environments [140].

Pilot Programs and Cross-Disciplinary Collaborations.
We recommend launching pilot programs that involve a
collaborative effort between military agencies, emergency
response teams, academic research centers, and technology
companies. These pilot programs should focus on testing and
refining the proposed AI-driven HAT systems in controlled
yet realistic environments. Effective implementation requires
cross-disciplinary teams that include AI researchers, human
factor experts, ethicists, legal professionals, and tactical
operators. By bringing together these diverse perspectives,
pilot programs can address the complex challenges of
HAT development, such as ethical decision-making, operator
trust, and system reliability, thus ensuring that theoretical
frameworks are practically applicable. Pilot sites and testing
environments should be carefully identified to enhance the
impact of these collaborations. Military training centers and
disaster response simulation facilities offer controlled settings
that replicate real-world scenarios, providing researchers with
safe spaces to validate AI performance and identify areas
for refinement before broader deployment. Developing clear
evaluation criteria and metrics is important for assessing
the effectiveness of AI-driven HAT systems during pilot
tests. Metrics such as task completion rates, human-operator
feedback, and compliance with legal standards can help
determine system readiness for real-world applications. By
adopting an iterative approach, the collaborations can ensure
that the models are not only theoretically sound but also
adaptable to real-world conditions, allowing continuous
refinement based on pilot outcomes. This approach bridges
the gap between theoretical frameworks and practical
implementations and contributes to the development of
reliable, ethical, and effective HAT systems that satisfy the
complex demands of tactical operations.

XIII. CONCLUSION

This paper has explored the realm of AI-driven
human-autonomy collaboration within tactical operations,
demonstrating how this integration represents a paradigm shift
in decision-making, situational awareness, and operational
efficiency. Through our proposed framework, we have
provided a structured approach to understanding and

https://www.fema.gov/openfema-data-page/disaster-declarations-summaries-v2
https://www.fema.gov/openfema-data-page/disaster-declarations-summaries-v2
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advancing AI-driven HAT, organizing key components
into four critical areas: trust and transparency, function
allocation, situational awareness, and ethical considerations.
This framework serves as a foundation for future research
and development, offering a systematic way to address the
complex challenges of integrating AI into tactical operations.
Our exploration of the opportunities and challenges in this
domain highlights the transformative potential of AI-driven
HAT across diverse sectors, including military operations,
emergency response, and law enforcement. The integration
of AI technologies offers significant advantages while
demanding careful consideration of critical factors, such as
trust, transparency, and cognitive load management. Looking
forward, it is important to chart a path that embraces the ethical
deployment of AI, establishes robust mechanisms for human
oversight, and promotes interdisciplinary collaboration among
AI researchers, human factor experts, and domain specialists.
By addressing these critical challenges and leveraging
these opportunities within the proposed framework, we
envision a future where AI-powered HAT systems seamlessly
integrate human intuition, ethical reasoning, and autonomous
capabilities to achieve unprecedented levels of effectiveness
in complex tactical environments.

This paper emphasizes the ongoing need for research
and development efforts that prioritize human-centric design,
transparency, and the establishment of a foundation where
AI can serve as an empowering force in tactical autonomy.
The proposed framework provides a structured approach for
addressing these needs and guiding future developments.
In our future work, we aim to investigate approaches
for developing and validating scalable HAT systems that
address the primary research challenges and knowledge
gaps identified in this paper. The proposed system
leverages state-of-the-art AI techniques to facilitate seamless
collaboration, communication, and coordination between
human operators and autonomous systems, emphasizing
trust-building, explainability, and cognitive load management.
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[83] V. Mitić et al., “Benefits of artificial intelligence and machine learning
in marketing,” in Sinteza 2019-International scientific conference on
information technology and data related research. Singidunum
University, 2019, pp. 472–477.

[84] P. Jain and K. Aggarwal, “Transforming marketing with artificial
intelligence,” International Research Journal of Engineering and
Technology, vol. 7, no. 7, pp. 3964–3976, 2020.

[85] E. S. Vorm, “Computer-centered humans: why human-AI interaction
research will be critical to successful AI integration in the DoD,” IEEE
Intelligent Systems, vol. 35, no. 4, pp. 112–116, 2020.

[86] T. Simpson, “Real-time drone surveillance system for violent crowd
behavior unmanned aircraft system (uas)–human autonomy teaming
(hat),” in 2021 IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC). IEEE, 2021, pp. 1–9.

[87] M. R. Endsley, “Supporting Human-AI Teams: Transparency,
explainability, and situation awareness,” Computers in Human
Behavior, vol. 140, p. 107574, 2023.

[88] V. Robbemond, O. Inel, and U. Gadiraju, “Understanding the Role of
Explanation Modality in AI-assisted Decision-making,” in Proceedings
of the 30th ACM Conference on User Modeling, Adaptation and
Personalization, 2022, pp. 223–233.

[89] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Müller,
Explainable AI: interpreting, explaining and visualizing deep learning.
Springer Nature, 2019, vol. 11700.

[90] U. Ehsan, Q. V. Liao, M. Muller, M. O. Riedl, and J. D. Weisz,
“Expanding explainability: Towards social transparency in ai systems,”
in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, 2021, pp. 1–19.

[91] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM computing surveys (CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[92] C. Alix, D. Lafond, J. Mattioli, J. De Heer, M. Chattington, and P.-O.
Robic, “Empowering adaptive human autonomy collaboration with
artificial intelligence,” in 2021 16th International Conference of System
of Systems Engineering (SoSE). IEEE, 2021, pp. 126–131.

[93] A. Dubey, K. Abhinav, S. Jain, V. Arora, and A. Puttaveerana, “HACO:
a framework for developing human-AI teaming,” in Proceedings of
the 13th Innovations in Software Engineering Conference on Formerly
known as India Software Engineering Conference, 2020, pp. 1–9.

[94] M. R. Endsley, “Toward a theory of situation awareness in dynamic
systems,” Human factors, vol. 37, no. 1, pp. 32–64, 1995.

[95] D. Lafond, R. Proulx, A. Morris, W. Ross, A. Bergeron-Guyard, and
M. Ulieru, “HCI dilemmas for context-aware support in intelligence
analysis,” in Adapt. 2014, Sixth Int. Conf. Adapt. Self-Adaptive Syst.
Appl, 2014, pp. 68–72.

[96] C. A. Miller and R. Parasuraman, “Designing for flexible interaction
between humans and automation: Delegation interfaces for supervisory
control,” Human factors, vol. 49, no. 1, pp. 57–75, 2007.
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