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Abstract

Caseworkers in foster care systems seek to place waiting children in the most suitable
homes. Furthermore, social work guidelines prioritize heterogeneous attributes of
children and homes when deliberating placements. We use insights from market design
and dynamic matching to characterize a class of dynamically envy-free mechanisms that
incentivize expedient placements when children and homes arrive to the market over
time and homes may accept or decline placements. The mechanisms have robustness
against justified envy and costly patience. We analyze strategic incentives and efficiency
properties of dynamic envy-freeness. Finally, we conduct empirical simulations that
affirm that our mechanisms drastically increase placements and reduce waiting costs
while maintaining robustness to prediction error versus a naive mechanism that always
sequentially runs Deferred Acceptance. Practitioners can implement our mechanisms
through assigning priority to child-home matches.
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1 Introduction

The growing literature on dynamic matching theory references foster care and child adop-
tion as a prime example of a dynamic matching market. Nevertheless, none have pre-
sented applicable mechanisms that can pair waiting children with adoptive homes. In
this paper, we break the theory-application barrier. We find that existing tools from dy-
namic matching do not satisfy the necessary constraints for adoption from child welfare
systems, and existing tools from the field fail to provide consistent, efficient outcomes.
Our paper develops a fitting framework and accompanying stability notion when children
and homes arrive to the system over time, the authority may unilaterally allow or disal-
low some matches, and homes can choose to accept or decline the authority’s proposed
match.

In 2022, about 109 thousand children were waiting for adoption. The median child
had been waiting for over 29 months U.S. Children’s Bureau (2024). A systemic review
of outcomes for children languishing in foster care aptly states, ”outcomes of foster youth
are troubling on all domains” Gypen et al. (2017). Interwoven mechanisms drive longer
waits for these children, but one clear flaw is a lack of consistent, institutional systems
that prioritize efficient matching. At present, the process is very labor intensive, and only
some counties responsible for waiting children use matching tools that could expedite the
process. The matching tools that do exist are often simple spreadsheets or predictive
measures that do not take into account systemic efficiency. Hansen and Hansen (2006)
note that in some cases, states have had oversupplies of willing adopters while simultane-
ously maintaining large populations of waiting children. Our current work does not have
a complete analysis of the reasons behind adoption delays, but we plan to incorporate
this with data partnerships with U.S. county authorities in the future.

Using these institutional drawbacks as motivation, we develop several matching mech-
anisms that practitioners can employ to better dynamically manage waiting children
populations and create quicker, more efficient placements. In our framework, we model
a dynamic matching market where children and homes arrive over time. As the match-
maker effectively has unilateral rights over placing children in homes, we primarily model
the homes’ strategic decisions to accept or decline proposed placements. Children and
homes both have cardinal utility and waiting costs; these forces create dynamic tradeoffs
between accepting a subpar match in the present versus waiting for the perfect match
in the future. We focus on analyzing which classic properties our mechanisms satisfy:
justified envy-freeness, non-wastefulness, individual rationality, and stability.

However, in addition, we introduce important new properties for matching mecha-
nisms: dynamic envy-freeness and weak non-wastefulness. A matching mechanism is
dynamically envy-free if it is justified envy-free in the matching market in every time
period t, individually rational at every t, and if, in every period t, no home has dynamic
incentives to reject any offered placement. We combine this with weak non-wastefulness
which requires that when homes accept the matchmaker’s placements, the mechanism
is non-wasteful. These notions imply that the matchmaker can guarantee dynamic in-
centives for homes to accept placements by imposing penalties such as delays or less
preferred placements when homes reject placements. Dynamic envy-free mechanisms are
not unique, and one selection criteria that we highlight in our empirical work is selecting
a dynamic envy-free mechanism that is least wasteful when homes do not accept the
matchmaker’s placements.

Mechanisms creating dynamic incentives for homes to accept earlier placements ap-
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pear similar to policies implemented in a select few counties, showing that they may be
feasible in practice. We also prove that dynamic envy-free mechanisms induce a weakly
dominant strategy for homes to accept the first placement that the matchmaker offers
(Proposition 1). Unlike many other stability notions in dynamic matching literature, a
dynamic envy-free mechanism always exists; the theorist and practitioner both gain from
this (Corollary 1). We design mechanisms that are dynamic envy-free and non-wasteful.
They simultaneously properly incentivize homes to accept placements with sufficient data
on homes’ preferences. In the second half of our theoretical developments, we provide
multiple results on the strategic incentives of our mechanisms. We find that not all are
strategy-proof: homes might misrepresent their desire to accept certain placements. We
devise a mechanism that is strategy-proof (Theorem 5), although manipulable mecha-
nisms may create more placements.

With data from a U.S. county, we plan to exploit knowledge about historic placements,
homes’ preferences, and matchmaker preferences’ to simulate counterfactual placements.
Currently, our simulations use synthetic data. We find that dynamic envy-free, non-
wasteful mechanisms create at least 30% more placements and up to 49.48% more place-
ments versus a mechanism that creates sequentially stable placements, even when the
matchmaker has significant mean squared error, in bias and variance, in preference esti-
mators. Our mechanisms likewise significantly decrease the costs that counties bear while
caring for waiting children. Average per-month costs decrease by $20,000 to $50,000 for
a medium-sized county with up to 240 children arriving per year. Because we compare
against a stable, sequential placement mechanism, our gains are likely to be even greater
compared to existing systems that have substantial inefficiencies. As our work develops,
we will compare our counterfactual placements with observed placements.

Lastly, we provide insights on practically implementing our system within child welfare
systems. Our simulations will include modifications to demonstrate the mechanisms’
sensitivity to implementation as a match recommendation system wherein caseworkers
carry out placements without caring for the externalities that imposes on the overall
number of placements in the system. Match recommendation systems fail in comparison
to centralization. We will discuss how an authority can implement centralization as a
priority system that reserves certain homes for certain workers representing children over
other workers and will prove in the Online Appendix that the system will enforce our
mechanism’s placements. The priority system preserves workers’ autonomy and formal
decision rights.

Theoretically, our model framework borrows prominently from Baccara, Lee, and
Yariv (2020) and our approach to the solution concept from Doval (2022). The former
paper analyzes the optimal market thickness in two-sided dynamic matching problems.
We add generality in agents’ preferences and agents’ arrival to the market to capture
relevant aspects of child adoption from foster care. In practice, county authorities have
little to no desire to wait for thicker market. Instead, they would prefer to expedite
children’s exits from the foster care system. Timely participation is exactly the focus
of the latter paper. It departs from optimal dynamic matching to spotlight dynamic
stability, a concept that ensures that both sides of the market follow the matchmaker’s
recommendation at the right times. However, dynamic stability is stringent, and, as Doval
points out, whether or not an algorithm to compute dynamically stable matchings exists is
an open question. Our setting allows us to use a more relaxed stability notion as one side
of the market—the county authority—is a guaranteed participant and can block homes
from achieving undesired placements. Nevertheless, dynamic envy-freeness comes with a
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wastefulness tradeoff. We measure efficiency as non-wastefulness, or utilizing all capacity
for placements, and prove that stronger notions of non-wastefulness are incompatible with
dynamic envy-freeness (Theorem 1).

Institutional Details

In the United States, children that are victims of abuse or neglect enter into the local
child welfare—alternatively, foster care—system. Typically, the local county manages
these systems. Once a child is in the system, they enter the management of a caseworker.
A worker’s first priority is to reunify the child with the home of origin after rectifying
the situation that warranted the child entering foster care. Failing this, many counties
attempt to place the child with kin of the family of origin. Finally, if the county cannot
reunify or place with kin, they must enter a legally laborious process to terminate parental
rights (TPR) before placing the child with a permanent adoptive home. Federal law
requires that workers pursue TPR if the child has been out-of-home for twelve consecutive
months or fifteen of twenty two consecutive months.

After TPR, if a foster family has cared for the child, the worker typically attempts
to place the child with that caregiver. Unfortunately, this may not always be possible.
In these cases, the worker undergoes an intensive search for a new permanent home.
This search process varies greatly across counties. With the proliferation of AI-assisting
decision-making tools, some counties have taken up tools that automatically recommend
matches. A worker might investigate several of these or simply approve the match after
a cursory review.

Our work fits into this final step. Existing match tools do not use insights from
matching theory. At best, they may recommend placements based on causally identi-
fied parameters. However, a child welfare system cannot maximize placements without
considering that utilizing some homes for some children may necessitate not utilizing
those same homes for other children. A combinatorics problem can drastically harm the
number of placements made. Our work on implementing centralization when individual
workers make final decisions is an attempt to address some of these issues.

Once a worker finds a suitable, willing home for a children, in most states, the home
tentatively fosters the child for six months before the adoption can be finalized. The
greatest threat in this stage is disruption. If a home decides the child is not the right fit,
they can decline to adopt. Although formal research on disruption is lacking, workers,
children, and families all anecdotally report that disruption is a traumatic, highly harmful
event. For this reason, most workers’ efforts are aimed toward finding matches that will
not disrupt. Otherwise, at the end of the six months, the adoption is finalized and the
family gains formal parental rights.

Literature Contribution

The literature on market design for child welfare systems is small. The intersection be-
tween matching market design and adoption is even smaller. The first notable work in
this space is from Baccara et al. (2014). They estimate preferences for private adoptions
and find significant heterogeneity. They also provide empirical evidence for discrimina-
tion against boys and African American children put up for adoption. Parallels concerns
exist in the foster care domain. Their policy recommendations allude to centralizing
private adoptions, and we take a similar stance with respect to permanency for foster
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care children. Slaugh et al. (2016) take an operations approach to improve the Pennsyl-
vania Adoption Exchange’s matching process. The paper provides extensive descriptive
and quantitative information about matching in foster care. They simulate counterfac-
tual placements when utilizing a spreadsheet matching tool. Their results indicate that
matching tools and combining geographic regions (i.e., inducing more centralization)
substantially increase placements. Matching tools and technology that specifically guide
caseworkers to the right home rather than announcing potential matchings to multiple
homes also improve match quality and adoption prospects (Dierks, Slaugh, and Ünver
2024). This observation is key. When caseworkers announce children in need of per-
manency to a large pool of homes, organized and coordinated matching becomes nearly
impossible. However, a caseworker-driven matching process can facilitate the centraliza-
tion efforts we propose.

A few other works, including the aforementioned, pursue dynamic matching ap-
proaches to characterize foster care adoption. All of these do so from a decentralized
perspective. Mac Donald (2023) explicitly models a fostering process that can transi-
tion to adoption. Lower subsidies to foster parents after adopting children in their care
distorts incentives away from adopting children with disabilities. Children with disabil-
ities, in general, are much less likely to find non-institutional and permanent homes.
Robinson-Cortés (2021) develops an empirical matching framework to estimate foster
children outcomes under a policy that increases market thickness through delays and
coarser regions. Compared to delaying, the decrease in match disruption rates is much
larger from coarser regions.

A last group of papers study market design problems tangential to matching in foster
care. Dierks, Slaugh, and Ünver (2024) collaborate with a match recommendation ser-
vice to study families’ misreporting behavior under different placement mechanisms in a
static framework. They find that different mechanisms incorporating incentive compat-
ibility come at the cost of placements for low needs and high needs children. Altinok
and MacDonald (2023) design the optimal licensing structure when a regulator needs to
screen families that may declare that they can care for needs beyond their capabilities.
Baron et al. (2024) use mechanism design and econometrics machinery to reallocate inves-
tigations among Child Protective Services investigators to reduce the number of children
unnecessarily sent into foster care and appropriately place the children that are victims
of abuse into foster care.

This paper creates a unique bridge between dynamic matching algorithms and child
welfare market design to provide the technical foundation for centralized placements and
better placement recommendations in child welfare systems. It may function as a crucial
framework for future works studying matching in child welfare systems. Unsurprisingly,
our main results show major benefits to centralization as papers like Robinson-Cortés
(2021) and Slaugh et al. (2016) suggest. We offer more insights into why decentralized
matching tends to lead to systemic inefficiency with theoretical and empirical analysis.
Unlike any previous works, our main results show that it is possible to provide dynamic
incentives for homes to accept placements earlier and sustain truth-telling as a weakly
dominant strategy. Furthermore, we demonstrate our mechanisms’ robustness to biased
and inefficient preference estimators, offering evidence that dynamic envy-freeness is ef-
fective even when the matchmaker cannot perfectly discern homes’ preferred placements.
One can see our research as an argument for priority-based or centralized placements in
child welfare systems and as an initial foray into developing tools that practitioners can
use immediately.
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Paper Organization

The rest of this paper proceeds as follows. In section two, we present our model. In
section three, we present the main theoretical results on dynamic envy-free and non-
wasteful mechanisms, their existence, and their theoretical performance. In section four,
we explore our mechanisms’ strategic incentives and offer a strategy-proof mechanism.
In section five, we present our empirical simulations. Finally, we conclude in section six
with applied insights and discussions on operating and implementing our mechanisms.

2 Model

We outline our model and key primitives below.

2.1 Primitives

Children arrive to the market (welfare system) over a finite time horizon T . A group
arrives at every time t ∈ {1, 2, ..., T} which we denote as c(t)1 with an individual child
as c ∈ c(t). A group of homes also arrive at every time t which we denote as h(t) with
an individual home h ∈ h(t). We think of every time period t as one month, but any
arbitrary interpretation of time can fit our model.

A matchmaker would like to assign children to homes. A home h matching with child
c receives utility Vh(c). Conversely, a child receives utility Uc(h) from the same match. In
the context of child welfare systems, one should interpret a child’s utility as the value of
the match from the matchmaker’s perspective. We do not make any assumptions about
these utilities such as supermodularity or assortativity as is common in the literature.
Our generality over the preferences and type space contributes to our model’s validity
as a useful empirical tool to set guidelines in child welfare decision-making. However,
following Baccara, Lee, and Yariv (2020), we include additive waiting costs in our model,
where we assume that a common waiting cost wc > 0 incurs for every child that remains
unmatched after a time t. A child arriving at t has a time-dependent utility at time k
equal to Uk

c (h) = Uc(h) − (k − t)wc. Likewise, homes incur a common waiting cost wh

with time-dependent utility V k
h (c) = Vh(c)− (k− t)wh. Some homes might have negative

utility for certain children (for example, a home that never wants to adopt a child older
than 13). We say that a child c is acceptable to a home h if Vh(c) ≥ 0, and a home h
is acceptable to a child c if Uc(h) ≥ 0.

Assumption 1. All children and homes have a strict preference ordering, that is, ∀c,
there does not exist two h, h′ with h ̸= h′ such that Uc(h) = Uc(h

′), and, ∀h, there does
not exist two c, c′ with c ̸= c′ such that Vh(c) = Vh(c

′).

Our model’s formulation of stability will capture the fact that homes may accept or
decline placements, but matchmakers have unilateral control over childrens’ placements2.
Voluntary participation only has bite for homes, and stability becomes a crucial feature

1For the sake of tractability, we ignore sibling groups in our analysis. We make dynamic sibling group
placements the goal of future work.

2Child welfare authorities and children are well-aligned. The authorities have enormous leeway in
placement decisions when children are in foster care, and children, not having a firm idea of how to
evaluate a home, most often follow the authorities’ decisions. If a child prefers some homes over others,
the authorities take this into consideration in their own preferences.
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that encourages homes to follow a matchmaker’s recommendation in a timely fashion.
Formally, each home h decides to either accept or reject a placement at time t where
ath ∈ {0, 1} represents this decision.

We assume that all homes have deterministic knowledge about future arrivals and
their types. Designing an algorithm that encourages timely participation relies on this
assumption. A home’s option value of waiting is endogenously formed by both the ex-
pectation of future arrivals and what mechanism would offer. If we assume that homes
have expectations over future arrivals, any mechanism should be responsive to these ex-
pectations. However, in reality, such expectations may not be known to the matchmaker.
Assuming deterministic knowledge forces frees the mechanism we design to guarantee
timely participation for homes under any possible realization of arrivals. This implies
that our mechanisms would do the same when homes form rational expectations based
on some prior. Therefore, matchmakers can use the algorithms that we design without
having access to any information about homes’ expectations. Restricting homes’ knowl-
edge to distributional information about future arrivals would relax the matchmaker’s
problem; in this sense, our assumption improves our work’s robustness.

We also assume that the matchmaker has access to children and homes’ utilities
and waiting costs. The former is simple as a child’s welfare from a match and costs
are typically evaluated by the matchmaker. The latter is more complicated to elicit in
practice, but matchmakers in some child welfare systems do estimate homes’ preferences
and costs. We show our results’ responsiveness to estimator bias and variance in our
empirical section.

2.2 Dynamic Matching

Matchmakers may assign any placements they like, but homes must accept them for the
match to proceed. Define ah(t) ≡ (akh)k≤t and a(t) ≡ (ah(t))∀h. We call A(t) the action
space at t where a(t) ∈ A(t). At time t, children and homes matched in prior periods
do not participate in the market. The set C(t) contains all active children after arrival
at t, and the set H(t) contains all active homes after arrival at t. The market at time t
is the undirected bipartite graph M(t) = (C(t), H(t), E(t)) where E(t) ≡ {{h, c} : c ∈
C(t), h ∈ H(t)} is the possible edges (matches) at time t.

An admissible matching µ ⊆ E(t) at time t selects one-to-one matchings, i.e., on µ,
each vertex in C(t) and H(t) only have one incident edge. We write that c and h are
matched if {c, h} ∈ µ. Alternatively, we denote this as µ(c) = h and µ(h) = c. Say that
µ(c) = c if c has no incident edge on µ and likewise for h. From hereon, we refer to an
admissible matching as a matching.

A dynamic mechanism is a (deterministic) rule Q creating matchings at every t
on the market at t which may depend on the history. Formally, Q = (µt)1≤t≤T where
µt : (M(k))k≤t× (µk)k<t×A(t−1) → E(t). Q and homes’ actions endogenize the market
at 1 < t ≤ T so that, given the sets of children and homes that receive placements and
accept them

AC(t|a(t)) ≡ {c : µk(c) ̸= c and akµk(c)
= 1 for some k ≤ t}

AH(t|a(t)) ≡ {h : µk(h) ̸= h and akh = 1 for some k ≤ t}
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then:

C(t|a(t− 1)) ≡
t⋃

k=1

c(t)− AC(t− 1|a(t− 1))

H(t|a(t− 1)) ≡
t⋃

k=1

h(t)− AH(t− 1|a(t− 1))

A child remains in the market if and only if no home has adopted her up till the
present, and a home remains if and only if it makes no adoptions until the present. A
home receives payoff Vh(µt(h)) if h ∈ AH(t|a(t)), and the matchmaker receives payoff
Uc(µt(c)) if c ∈ AC(t|(a(t)). Every period that h ∈ H(t|a(t− 1)), h /∈ AH(t|a(t)) it incurs
a waiting cost wh. The matchmaker incurs the aggregate waiting costs for children:

WC ≡
∑T

t=1

∑
c∈C(t|a(t−1)) 1{c /∈ AC(t|a(t))}wc

While our primary focus is the design of the dynamic mechanism, we specify the
timing of the extensive form game induced on the mechanism below:

1. The matchmaker announces Q.

2. At period t, each home h receives a placement according to Q.

3. Each home h simultaneously decides to accept or decline the placement.

4. t ends.

This continues until t = T , at which point the game ends at (4).

2.3 Stability Criterion and Efficiency

Determining a definition of stability in dynamic markets stirs debates among economic
theorists. Early attempts posited that blocking pairs can form inter-temporally, and a
satisfactory dynamic matching mechanism must preclude the formation of present and
future blocking pairs. Doval (2022) counters, citing that dynamic cores induce absurd
conclusions and are often empty. Instead, she suggests that a participant in the market
reasons over the worst possible conjectures consistent with a dynamic stability notion;
if the matchmaker’s recommendation is superior to any outcome that could happen if
the agent delays, the agent assents. We pursue a different course for our application for
three reasons. First, experimental literature3 shows that agents fail to play weakly dom-
inant strategies in fairly plain environments. Dynamic stability a la recent developments
requires advanced reasoning, therefore it is not clear ex-ante that it should achieve the
same benefits of stability that algorithms like Deferred Acceptance (DA) enjoy in prac-
tice. Second, when the matching mechanism is transparent to participants, participants
ought not posit conjectures that are inconsistent with the actual matchings that would
realize under non-participation in a given time period. Third, as Doval (2022) points out,
the existence of an algorithm that can compute dynamically stable matchings is a highly
challenging, open question in itself.

3See Chou et al. (2008).
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We take a middle route that, admittedly, does not aim to resolve issues in the current
debate. Our motivation is developing a concept of stability fitting our applied setting
that also provides useful insights for subsequent theoretical work. Two key observations
are that, first, if a matchmaker can commit to a contingent matching that, in a very weak
sense, is sequentially inefficient, then the matchmaker can motivate timely matches. Sec-
ond, requiring that participant blocking pairs are consistent with possible counterfactual
assignments of the mechanism limits deviations. The theorist, then, rejoices in a guaran-
tee of the existence of ”stable” assignments.

Our solution is dynamic envy-freeness. It relies on familiar properties in matching
theory which we review below.

Definition 1. A matching µ, child c, and home h have justified envy if c and h have
an assignment (µ(c) ̸= c, µ(h) ̸= h), but Uc(h) > Uc(µ(c)) and Vh(c) > Vh(µ(h)).

Definition 2. A matching µ is justified envy-free on C and H if there does not exist
any c ∈ C and h ∈ H with justified envy.

In standard static environments, justified envy-free is almost equivalent to stability.
Its only difference is that it does not require capacity filling; i.e., if some home were not
matched under µt, it cannot be subject to a child’s envy and vice versa. We use justified
envy-freeness to capture a limited sense of fairness. Conditional on whatever placements
occur, there should not exist children and homes that could mutually improve on their
existing partners. Our definition allows for some necessary waste that will guarantee the
matchmaker’s ability to induce timely participation without commitment to harmful or
unfair placements.

Definition 3. A matching µ is individually rational on C and H if, for all c ∈ C, h ∈
H, Uc(µ(c)) ≥ 0 and Vh(µ(h)) ≥ 0.

In any child welfare system, a matching that is not individually rational cannot be a
good outcome as either a child suffers harm or a home must be forced to accommodate
a child that it does not want.

Definition 4. Fix a mechanism Q and action profile a(t). A counterfactual action pro-
file â(t, h) is the profile where akh = 0 for all k < t, ath = 1, and otherwise actions
are as in a(t). Counterfactual homes and children are thus (C(k|â(k − 1, h)))k≤t and

(H(k|â(k − 1, h)))k≤t. (Ê(k))k≤t are the spaces of admissible matchings on the counter-
factual homes and children. The counterfactual matching for time t is the mapping µ̂h

t

from (M̂(k, h))k≤t × (µ̂h
k)k<t × â(t− 1, h) to Ê(t).

Definition 5. A mechanism Q is dynamic envy-free if

1. (Justified Envy-Free) For all t, a(t), µt is justified envy-free.

2. (Patience-Free) For all t,h, and a(T ), if µt(h) ̸= h, then V t
h(µt(h)) ≥ V t′

h (µ̂h
t′(h)) for

all t′ > t.

3. (Individually Rational) For all t, a(t), µt is individually rational.

Condition (1) and (3) require properties to hold on- and off-path. We assume this
because matchmakers may be unwilling to enforce desirable on-path placements through
off-path harmful placements. In condition (2), patience embeds the idea that when a home
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contemplates rejecting a placement, it does not ”go outside” of the market to attempt
to form a blocking pair. Rather, the home reasons based on what the mechanism would
deliver it if it instead participates at a later time given its knowledge of the market’s
evolution4. It accepts the present match if it is better than the future time-discounted
match. In another sense, under a patience-free mechanism, homes are always ex-post
satisfied with their placements.

Definition 6. A dynamic mechanism Q is (weakly) non-wasteful if, given that at
′

h = 1
for all t′, h, for all t, there does not exist a c ∈ C(t|a(t)) and h ∈ H(t|a(t)) such that
Uc(h) ≥ 0, Vh(c) ≥ 0, µt(c) = c, and µt(h) = h.

Definition 7. A dynamic mechanism Q is strictly non-wasteful if for all t and a(t),
there does not exist a c ∈ C(t|a(t)) and h ∈ H(t|a(t)) such that Uc(h) ≥ 0, Vh(c) ≥ 0,
µt(c) = c, and µt(h) = h.

When a mechanism is non-wasteful5, it will always place all possible children and
homes when homes accept the matchmaker’s placements. It is an attractive property
for matchmakers because they can place more children in permanent homes. Strict non-
wastefulness must hold on- and off-path. A mechanism that is justified envy-free and
strictly non-wasteful is, by definition, always stable on- and off-path. Non-wastefulness
is a key property that we exploit to allow the matchmaker to refuse placements following
homes’ refusal to comply. This shapes homes’ dynamic incentives toward accepting the
matchmaker’s offers.

3 Dynamic Envy-Free Mechanisms

In this section, we first offer key existence and non-existence proofs. Then, we explore
important implications of dynamic envy-freeness that guarantee expedient, voluntary
participation among homes. Finally, we highlight how a multiplicity of dynamic envy-
free mechanism warrants further exploration, especially for discovering the least wasteful,
dynamic envy-free mechanism.

3.1 Existence

Our primary measure of efficiency for a dynamically envy-free mechanism is wastefulness.
In particular, we find that there is a significant tradeoff between dynamic envy-freeness
and stronger non-wastefulness requirements.

Theorem 1. There does not exist a mechanism that is strictly non-wasteful and dynamic
envy-free.

Proof. We demonstrate Theorem 1 via. counterexample. Consider an environment where
T = 2, h(1) = {h1}, c(1) = {c1}, h(2) = h2, and c(2) = {c2}.

4Child welfare systems fit this description. As aforementioned, the few outside options for a home are
very costly, and the matchmaker dictates the child’s placement. When a home decides not to accept a
placement, it is rarely, if ever, possible for that home to foster or adopt another child that the matchmaker
does not consent to.

5We omit ”weakly” except where necessary to ease exposition.

10



c1

h1

t = 1

c2

h2

t = 2

Players’ preferences are:

Vh1(c2) = 2 > Vh1(c1) = 1

Vh2(c1) = 2 > Vh2(c2) = 1

Uc1(h2) = 3/2 > Uc1(h1) = 1

Uc2(h1) = 3/2 > Uc2(h2) = 1

with wc = 2 and wh = 1/2. Suppose that Q is a strictly non-wasteful mechanism.
For any a1h, it must specify µ1(h) = c1. Suppose that a1h = 0, then C(2|a1h) = {c1, c2}
and H(2|a1h) = {h1, h2}. By strict non-wastefulness, µ2(h1) ∈ {c1, c2} and µ2(h2) ∈
{c1, c2}. If Q is dynamic envy-free, µ2 must satisfy justified envy-freeness, hence µ2(h1) =
c2 and µ2(h2) = c1. Since every agent has positive utility for any match, this is also
individually rational. However, Q must also satisfy patience-freeness. Since µ2 = µ̂h1

2 ,
patience-freeness implies that V 1

h1
(µ1(h)) = 1 ≥ V 2

h1
(µ2(h)) = 2 − 1/2 = 3/2. This is

a contradiction. Therefore, Q cannot be both strictly non-wasteful and dynamic envy-
free.

Furthermore, a matchmaker would prefer to place h1 with c1 and h2 with c2. These
placements would yield payoff 2 to the matchmaker, whereas waiting until t = 2 to match
h1 with c2 and h2 with c1 yields payoff 1 because of c1’s waiting cost. The home’s pa-
tience combined with strict non-wastefulness renders the matchmaker’s first-best outcome
impossible.

Capacity and Dynamic Incentives

The fact that strict non-wastefulness requires the matchmaker to fully utilize capacity
after any history incapacitates the matchmaker’s ability to provide dynamic incentives
to homes. The Pennsylvania Adoption Exchange (PAE), a permanency matchmaker,
realized a similar connection in the context of utilizing matching delays to induce truth-
telling. In Slaugh et al. (2016), the authors note that the exchange implemented a policy
to wait thirty days between successive placements for the same home when the home re-
jected a placement. They believed that this might discipline homes away from overstating
preferences for children they would not ultimately adopt, even though the matchmakers
might, in practice, make less placements as a consequence. Later, we partially affirm their
reasoning with formal results. Theorem 1 suggests that a similar policy could also induce
homes to accept placements sooner even though it can create wastefulness off-path.

Home Penalized Deferred Acceptance

Here, we introduce our first mechanism with PAE as our motivation. It is a simple mod-
ification of sequential Deferred Acceptance (DA) that incorporates previous placements
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and homes’ decisions to reject those placements into present match decisions.

Home Penalized Deferred Acceptance
At each t, initialize each child c’s and each home h’s preferences as Ũc(·) = Uc(·) and
Ṽh(·) = Vh(·), respectively.

TRUNCATION
t > 1: For each active h, if µk′(h) ̸= h for some k′ < t, then

1. Set k equal to the most recent k′ such that µk′(h) ̸= h.

2. Set pth = 1 if maxc∈{c′:c′∈C(t|a(t−1)),Uc′ (h)≥0} V
t
h(c) > V k

h (µk(h)) and pth = 0 other-
wise.

3. If pth = 1, then set Ṽh(c
′) = −1 for all c′.

Proceed to MATCHING.

MATCHING
t ≥ 1: Using Ũc(·) and Ṽh(·) as preferences

1. Each active home without a child holding its proposal proposes to its best,
acceptable child that it has not yet proposed to, if it can propose to any.

2. Each active child holds her best, acceptable proposal and rejects all others.

3. Repeat 1-2 until no additional proposals are made.

4. Set µt(c) to be each child’s held proposal; µt(c) = c otherwise. Set µt(h) to be
the child holding a home’s proposal; µt(h) = h otherwise.

We modify the counterexample from Theorem 1 to we illustrate how this mechanism
would operate. We extend the horizon for this example to T = 3 and remove the arrival
of h2, but everything else remains the same.

c1

h

t = 1

c2

t = 2

The black, solid line indicates that the matchmaker placed c1 with h1 in t = 1 and
that a1h = 1. In this case, the game concludes. Consider instead a case where a1h = 0, and
the black dashed line indicates that the placement was rejected.
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c2

c1

h

t = 2

c1

h

t = 1

c2

c1

h

t = 3

The matchmaker does not place h with c2 immediately. Why? h’s preferences are
truncated at t = 2 because, as in the counterexample, V 2

h (c2) > V 1
h (c1). Home Penal-

ized Deferred Acceptance (HPDA) notes this and, knowing that allowing such a match
would induce h to have dynamic incentives toward patience, instead penalizes h with a
one-period delay. Since V 3

h (c2) = 1 = V 1
h (c1), HPDA can place h with c2 rather than

penalizing at t = 3. Given that the alternative is no placement, h should accept with
a3h = 1. Thus, HPDA leaves h indifferent between accepting the first placement and
waiting for a later placement. The next result shows that this insight applies to any
environment.

Theorem 2. Home Penalized Deferred Acceptance is dynamic envy-free and non-wasteful.

Proof. See Appendix A.

HPDA attains dynamic envy-freeness—an ex-post property that must hold for any
environment and home strategies—while only utilizing present information. The intuition
behind this result is thus: regardless of what placements homes have accepted or rejected,
the fact that a home h is active at time t indicates that h has received no placements
or has rejected all previous placements. The matchmaker knows which case it is. In the
latter, the matchmaker can delay h’s placements. HPDA dynamically adjusts the relative
payoff between past rejected placements and present placements.

Given that the matchmaker offers a placement at time t to a home h, that home
would be in the market up to time t whether or not the home plans to accept or reject
placements in the future. Therefore, given any profile a(t), the market is the same up till
t under a counterfactual â(t′, h) for any h, t′ > t. HPDA guarantees a home will never
receive a (time-discounted) placement better than one rejected in the past. Therefore,
the placement offer µt(h) = µ̂h

t (h) is weakly better than all future placements under any
profile a(T ). HPDA’s non-wastefulness naturally follows. It never penalizes a home that
complies with placements. If all homes are compliant, it will always use all available
capacity.

Remark 1. HPDA is justified envy-free at every t, a(t) even when allowing a child with
no placement to have justified envy.

Proof. See Theorem 2 in Appendix A.

HPDA’s baseline guarantees that there is no child with justified envy toward a home
that is not delayed. Any waste is necessary to dynamically incentivize homes to accept
placements sooner. Aside from this, HPDA maximizes placements subject to stability
constraints.
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Authorities have multiple options for implementing HPDA. In the Online Appendix,
we operationalize our framework with a computerized system that assigns priority ac-
cording to placements that would occur under HPDA. If the system finds that HPDA
would place a home and a child, then the worker representing the child has first claim
to attempt a placement at that home over any other workers. If the worker chooses to
not to pursue the placement or if the home declines the placement, then the system frees
the home for a placement with a different child. Conditional on the algorithm accurately
predicting workers’ preferences for placements and workers utilizing the system, it always
produces the same assignments as centralization. It also retains the advantage of worker
autonomy and hedges against error in workers’ preferences for child placements6. Many
authorities already have placement recommendation systems, so another idea is to re-
place these systems’ matching algorithms with HPDA’s placements. We expect that our
semi-centralization simulations in the empirical section will indicate that this operations
strategy comes at a significant loss of efficiency.

Corollary 1. A dynamic envy-free and non-wasteful mechanism always exists.

Proof. This follows directly from HPDA’s existence.

However, HPDA is not unique in the class of non-wasteful, dynamic envy-free mech-
anisms. Theorem 1 suggests that other mechanisms satisfying these properties must
operate similarly to HPDA, imposing delays on non-compliant homes. Nevertheless, one
can imagine very different truncation rules than specified in HPDA. We conjecture that
the most efficient truncation rule should only exclude a home if it would actually receive
a better match than a previous rejected match during the matching process. This rule
may come at computational costs and could be overly sensitive to inaccurate preference
estimates. HPDA’s truncation rule uses the best hypothetical placement, meaning that it
is simple and can effectively penalize even when the matchmaker has poor—even biased—
estimates. We provide examples of different truncation procedures in other mechanisms
but leave the question of the least wasteful truncation rule open.

3.2 Unfilled Capacity

Matchmakers in many counties face shortages of adoptive homes. HPDA excludes non-
compliant homes from the market, further reducing the number of possible placements.
Our example of HPDA’s operation demonstrates this. At t = 2, the matchmaker desires a
placement for c1 or c2, but commitment to HPDA precludes making any placement for h.
In this subsection, we address these concerns with Child Rotating Deferred Acceptance
(CRDA).

Two main differences distinguish CRDA from HPDA. First, CRDA uses child-proposing
DA. CRDA minimizes each home’s utility while maintaining justified envy-free assign-
ments because child-proposing DA produces the least optimal matching for homes (Knuth
1976). Why? Minimizing homes’ utility maximally avoids truncation, and, therefore, cre-
ates many placements even when homes deviate. Second, CRDA replaces—”rotates”—
children’s and homes’ placements when it detects any patience ex-post. Only children
that could cause home justified envy or patience experience rotation. Ex-ante truncation

6When the algorithm does not align with workers’ preferences, the assignments differ. We plan to
explore estimation error in workers’ preferences and worker bias in a separate paper.
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Child Rotating Deferred Acceptance

MATCHING
t ≥ 1: Using Uc(·) and Vh(·) as preferences

1. Each active child without a home holding her proposal proposes to her best,
acceptable home that she has not yet proposed to, if she can propose to any.

2. Each active home holds its best, acceptable proposal and rejects all others.

3. Repeat 1-2 until no additional proposals are made.

4. Set µt(h) to be each home’s held proposal; µt(h) = h otherwise. Set µt(c) to
be the home holding a child’s proposal; µt(c) = c otherwise.

Proceed to TRUNCATION.

TRUNCATION
t > 1: If µk(h) ̸= h for some h, k < t AND V t

h(µt(h)) > V k
h (µk(h))

1. For each active c, set rtc = 1 if maxh∈{h:h∈H(t),Vh(c)≥0} Uc(h) > Uc(µt(c)) or
V t
µt(c)

(c) > V k
µt(c)

(µk(µt(c))). r
t
c = 0 otherwise.

2. Set R̂t
C ≡ {c : rtc = 1 or µt(c) = c} and Rt

H ≡ {h : µt(h) ∈ R̂t
C or µt(h) = h}.

3. Set Rt
C ≡ {c : c ∈ R̂t

C and V t
h(c) ≤ V k

h (µk(h)) ∀h ∈ {h′ : h′ ∈ Rt
H , Uc(h

′) ≥ 0}}

Proceed to ROTATION.

ROTATION
t > 1: Using Uc(·) and Vh(·) as preferences, re-run MATCHING on Rt

C and Rt
H , and,

for c ∈ Rt
C and h ∈ Rt

H , update the old matching with the result. If c ∈ R̂t
C , c /∈ Rt

C ,
set µt(c) = c.

could eliminate desirable children from the market after any deviation by a home. In-
stead, with CRDA, desirable children—such as babies or low-needs children—can find a
placement if the child avoids rotation, meaning that the child’s placement is a very good
fit. In general, CRDA does not outperform HPDA in wastefulness. However, CRDA
satisfies a very useful property for counties that face shortages of homes. First, we state
the main result for CRDA. Then, we show the aforementioned property.

Theorem 3. Child Rotating Deferred Acceptance is dynamic envy-free and non-wasteful.

Proof. See Appendix A.

The same steps in Theorem 2’s proof guarantee that CRDA is patience-free and non-
wasteful. CRDA also never generates justified envy. One must show this for the case
when the blocking pair can arise across children and homes that CRDA matches during
the MATCHING or ROTATION phases. By the usual properties of DA, there cannot be
a blocking pair between a child and home that both find their placement in MATCHING
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or both find their placement in ROTATION. However, there may exist one between a
child matched in MATCHING and a home matched in ROTATION.

We handle this case with rotation. If a child does not find her optimal match during
MATCHING, that child must rotate. Otherwise, post-rotation, a home could find itself
worse off from rotation. Then, a home might prefer a child that did not rotate and
that the home rejected during MATCHING. If this child also prefers the home, then
justified envy exists. The aforementioned technical step for rotation averts this. The
opposite case is distinct. A home matched in MATCHING and a child matched in
ROTATION might block CRDA. Our proof demonstrates that this is impossible. After
TRUNCATION, there are fewer children to compete for homes. One imagines that
children must improve their placements through rotation, if the child is not truncated. We
discover a contradiction when any child does not weakly improve on her match through
rotating. Every child must weakly improve on their previous placements. Theorem 3
follows from this logic.

Remark 2. CRDA is justified envy-free at every t, a(t) even when allowing a home with
no placement to have justified envy.

Proof. See Theorem 3 in Appendix A.

Like HPDA, the purpose of CRDA’s waste is to dynamically incentivize homes to
accept earlier placements. It offers a placement to a home when possible.

Remark 3. Child Rotating Deferred Acceptance is strictly non-wasteful if, for all t, a(t),
there exists an h-perfect stable matching on Rt

H and Rt
C .

An h-perfect matching µ on Rt
H and Rt

C must span every vertex in Rt
H , i.e., µ(h) ̸=

h ∀h ∈ Rt
H . The condition does not assert a tautology: that CRDA must construct this

matching. Rather, the mere existence of this matching, if it is stable, is sufficient for
CRDA’s strict non-wastefulness. Unfortunately, finding a tighter condition that guaran-
tees strict non-wastefulness is quite difficult. Depending on preferences and the arrival
structure, even one non-compliant home can force CRDA to truncate numerous children.
Still, Rt

C includes many unmatched children when there is a large supply of children rela-
tive to homes. A home shortage likely secures Remark 1’s condition. Alternatively, when
children have preference heterogeneity, more children win their optimal placements. Very
few homes would experience rotation, so unfilled capacity would be unlikely.

In contrast, HPDA is never strictly non-wasteful if there are more children than homes
at some t and any one home that could receive a placement better than a previously re-
jected placement is non-compliant. HPDA must penalize the home with a delay, thus
it cannot receive a placement. In this way, CRDA may dynamically create more place-
ments than HPDA and non-dynamic envy free mechanisms. Additionally, the loss in
home welfare may not be consequential when homes either find a child acceptable or
not acceptable, which holds for many homes adopting from foster care. In this case,
child-proposing DA results in similar placements to home-proposing DA.

3.3 Participation

In our interviews with a U.S. county, workers representing children express serious dismay
over managing caseloads where it seems impossible to find the right home to accept a
placement for a child, especially when the child has serious needs or disabilities. Currently,
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our work does not present empirical evidence on the amount of time that homes may wait
for a placement. Anecdotally, our interviewees report that there is significant variation
in homes’ waiting times and that many homes do wait in hopes of achieving an ideal
placement. We are in discussions with our partner county to collect data on homes’
waiting times and to survey homes on anecdotal reasons for delaying placement decisions.
Nevertheless, our theoretical result below shows that when a matchmaker implements a
dynamic envy-free mechanism, homes do not have an incentive to reject placements.

Proposition 1. Accepting the first placement is a weakly dominant strategy for all homes
under a patience-free mechanism.

Proof. See Appendix A.

The definition of dynamic envy-free incorporates patience-freeness and individual ra-
tionality, so this result implies that a home always wants to participate in the mechanism
and always weakly prefers the first placement and its timing. This strategy’s weak dom-
inance arises from the fact that any strategy where a home does not accept a placement
is equivalent to a counterfactual strategy where the home only accepts at some time
t′. Patience-freeness asserts that any placement the mechanism offers is better than a
counterfactual placement, and this yields Proposition 1.

One implicit assumption of our model is critical to participation. The matchmaker
must be able to limit homes’ dynamic incentives through controlling the placement offers
that a home receives. This assumption is only violated when non-local authorities include
the local pool of homes in their assignments. Non-local authorities might not collaborate
with the local authority to impose the necessary delays on homes; homes then receive
”outside options” in the future that may induce them to wait rather than accepting the
local authority’s first placement. Unfortunately, because of the great lack of uniformity
in adoption procedures across the United States, we cannot confirm which counties this
assumption may hold for.

In most child welfare systems, homes register with a provider agency responsible for
representing the home to the local county. Our partner county writes contracts with the
local provider agencies that specify a number of placements for children that the providers
must guarantee to the county, meaning that the provider must reserve a certain number
of homes for the local county. Our partner also does not pursue placements out-of-county
unless the prospective home is kin to the child. These features imply that the matchmaker
possesses power over the placement offers for at least some homes residing in the local
county.

As we develop our empirical work, we will analyze where placement offers originate and
which offers homes tend to accept. Even if homes occasionally receive outside options
such as from out-of-state counties, we conjecture that dynamic envy-free mechanisms
should maintain their efficacy as long as these options are infrequent or unattractive
relative to the local authorities’ placement offers. We offer evidence for this conjecture in
our semi-centralization simulations. We split children into separate region and only allow
delays for the region wherein a home rejects a placement. In the other regions, homes
cannot be delayed as non-local authorities do not coordinate.
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4 Strategic Incentives

In this section, we explore homes’ strategic incentives under several mechanisms. We first
propose an augmented version of strategy-proofness that considers limited misreports
and give rationales. Next, we construct benchmark strategic properties using sequential
home-proposing DA. Last, we give strategic properties for HPDA, CRDA, and a third,
new mechanism: Home Endowed Deferred Acceptance (HEDA).

4.1 Manipulability

What does it mean for a home to manipulate a placement mechanism? Practitioners
report at least one major concern: some homes report a desire to adopt a child that they
cannot care for or do not actually want to adopt (Dierks, Slaugh, and Ünver 2024). Homes
may do so to increase their visibility as workers search for suitable homes or because
they naively overestimate their own ability when there are no incentives for truth-telling
(Slaugh et al. 2016). On the other hand, homes that report unwillingness to adopt any
child that does not meet stringent characteristics burden many counties. In practice, these
homes wait to accept placements for children that do not ultimately meet their original
preference reports. In our talks with our partner county, workers say that homes often
broaden their preferences after experience with the system, suggesting that homes could
be attempting to manipulate matchmaking through truncating their preferences. Another
plausible explanation is that homes simply have imperfect information and learn over
time. We believe that both mechanisms may be at work, and eliminating manipulability
has promising benefits.

Keeping in trend with the overall variation in child welfare systems, the process to re-
port and use preferences in matchmaking between children and homes is non-standardized
across the United States. In the state where our partner county resides, the statewide
adoption match recommendation service requests that homes seeking a match fill a form
that indicates preferences over childrens’ characteristics. For example, a home can indi-
cate that a child with severe allergies is either possibly acceptable or not acceptable. If
a home indicates a characteristic is unacceptable, the county will not offer the home a
placement for a child with that characteristic. Otherwise, the county might estimate mea-
sures correlated with preferences for a specific child that is acceptable, such as regressing
ex-post adoption satisfaction on home and child characteristics. Then, the county uses
this data as a proxy for home utility. We show that our mechanisms operate very well
under this strategy in the next section.

We assume that a home reports acceptability for each child available. If strategy-
proofness holds in this case, it will hold when homes can only make coarser reports over
acceptable or unacceptable characteristics. Formally, a home’s preference report is a
strategy ∀h, c:

σh(c) =

{
1 if c is acceptable to h

0 otherwise

Denote σh ≡ (σh(c))∀c, σ ≡ (σh)∀h, σ−h ≡ (σh′)∀h′ ̸=h, and a−h(t) ≡ (ah′(t))∀h′ ̸=h. The
matchmaker observes h’s true utility for c if h reports that c is acceptable. Otherwise,
the matchmaker can only observe that c is unacceptable to h. Preserving continuity in
notation, we denote Vh(c) as the utility that the matchmaker observes and V̂h(c) as h’s
true utility for c. Then, we have:
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Figure 1: An example of a preference form. We treat the ”Will Consider” category as ”possibly
acceptable”.

Vh(c) =

{
V̂h(c) if σh(c) = 1

−1 otherwise

Assumption 2. No home ever accepts a placement for an unacceptable child.

We did not need to assume this before as a matchmaker would never offer an unac-
ceptable placement. However, Assumption 2 is necessary for strategic analysis. Since
homes have additive waiting costs, they might calculate that accepting an unacceptable
child today is better than waiting for an acceptable child tomorrow. This would never
happen. Rather than incur further waiting costs, a home would leave the child welfare
system. Assumption 2 accommodates this outside option.

Definition 8. A report σh is truthful if and only if σh(c) = 1 when V̂h(c) ≥ 0 and
σh(c) = 0 when V̂h(c) < 0.

Definition 9. Fix a mechanism Q, action profile a(T ), and reports σ. Denote th as the
period where h ∈ AH(th|a(th), σ) and th ≡ T if no such period exists. For a home h
arriving at k, h’s realized utility is V̂ r

h (a(T ), σ) = V̂h(µth(h))− (th − k)wh.
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Definition 10. An action profile and report pair (ah(T ), σh) is weakly dominant for h
under a mechanism Q if V̂ r

h (ah(T ), a−h(T ), σh, σ−h) ≥ V̂ r
h (a

′
h(T ), a−h(T ), σ

′
h, σ−h) for all

a′h(T ), a−h(T ), σ
′
h, σ−h

Definition 11. A mechanism Q is strategy-proof if, for all h, (ah(T ), σh) is weakly
dominant, where σh is truthful and ath = 1 ∀t.

Strategy-proofness in child welfare systems is multidimensional. Matchmakers want
all homes want to report that acceptable children are acceptable and unacceptable chil-
dren are unacceptable. Avoiding placing a child with a home that would not accept
the child saves valuable time and resources, and correctly discerning what children are
acceptable to homes assists in matching, recruitment, and planning. Simultaneously, the
matchmaker would like homes to comply with acceptable placements. Strategy-proofness
reframes and encapsulates patience-freeness for strategic analysis. Our modeling deci-
sions follow common practice in multidimensional mechanism design to require incentive-
compatibility for compliance in all dimensions. Although, because a home’s action pro-
file does not reflect private information, many results are likely similar if one reduces to
strategy-proofness only in reports.

We change the timing of the game as follows:

1. The matchmaker announces Q.

2. Each home h reports σh(c) for all c.

3. At period t, each home h receives a placement according to Q and reported prefer-
ences.

4. Each home h simultaneously decides to accept or decline the placement.

5. t ends.

This continues until t = T , at which point the game ends at (5).

4.2 Benchmark

In our empirical section, we plan to perform two comparisons. The first is dynamic
envy-free placements contra observed placements. We do not yet have data on observed
placements from our partner county. The second is dynamic envy-free placements contra
sequentially stable placements. We currently focus on this comparison. Here, we intro-
duce sequential Deferred Acceptance (DA) which is a spot placement mechanism that
indiscriminately runs home-proposing or child-proposing DA. In our main specifications,
we use home-proposing DA.

The proposition below offers insight on theoretical differences between sequential DA’s
properties and our dynamic envy-free mechanisms.

Proposition 2. Sequential Deferred Acceptance is justified envy-free, individually ratio-
nal, and strictly non-wasteful, but it is not patience-free nor strategy-proof.

Proof. Sequential DA is invariant to a(T ) and the histories, and it is stable at every t,
therefore it is justified envy-free, individually rational, and strictly non-wasteful at every
t, a(T ). Since it is strictly non-wasteful, by Theorem 1, it cannot be dynamic envy-free.
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Sequential Deferred Acceptance
t ≥ 1: Using Uc(·) and Vh(·) as preferences

1. Each active home without a child holding its proposal proposes to its best,
acceptable child that it has not yet proposed to, if it can propose to any.

2. Each active child holds her best, acceptable proposal and rejects all others.

3. Repeat 1-2 until no additional proposals are made.

4. Set µt(c) to be each child’s held proposal; µt(c) = c otherwise. Set µt(h) to be
the child holding a home’s proposal; µt(h) = h otherwise.

Yet, it satisfies justified envy-freeness and individual rationality, so it must be that it
is not patience-free. Strict non-wastefulness implies that sequential DA is non-wasteful.
Then, by Theorem 4 below, it cannot be strategy-proof.

Our simulations in Section 5 show that dynamic envy-free violations trigger severe
delays for waiting children in child welfare systems. Its strict non-wastefulness does
not appear to outweigh the additional placements and reductions in waiting costs that
patience-freeness achieves. Sequential DA is not strategy-proof under our definition. Our
proof for Theorem 4 shows that a home that plans to accept the matchmaker’s placements
can, in some circumstances, increase its utility from a misreport. A home that expects
very good placements in the future but does not want to reject prospective adoptive
children can declare unacceptability for large swathes of children to avoid less desirable
placements. Moreover, this alters the matchmaker’s consideration set for some placements
and may even, from the home’s perspective, save the matchmaker from unnecessary effort
costs. On the contrary, if the home truthfully reports, then the matchmaker might offer
placements that the home would find optimal to reject. This blocks the rejected child
from other placements that might be accepted in that same time period. Therefore, pref-
erence misreports and rejections have meaningful outcome differences under sequential
DA, and it is not clear that there is a strong incentive for homes to report truthfully
under sequential DA.

4.3 Dynamic Envy-Free and Strategy-Proof Mechanisms

We turn our attention toward examining the strategic properties of HPDA, CRDA, and a
new mechanism. Our first result dispenses immediate conclusions for HPDA and CRDA.

Theorem 4. There does not exist a justified envy-free, non-wasteful and strategy-proof
mechanism.

Proof. We show this via. counterexample using the environment for HPDA’s operation
where T = 2, h(1) = {h}, c(1) = {c1}, h(2) = ∅, and c(2) = {c2}.
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c1

h

t = 1

c2

t = 2

Players’ preferences are:

V̂h(c2) = 2 > V̂h(c1) = 1

Uc1(h) = 3/2

Uc2(h) = 2

with wc = 1 and wh = 1/2. Suppose that Q is a non-wasteful mechanism. Consider
the action profile ah = (1, 1) and strategy profile σ′

h(c1) = 0, σ′
h(c2) = 1. Q must specify

µ1(h) = ∅ by individual rationality. Thus, C(2|a1h) = {c1, c2} and H(2|a1h) = {h}. By
non-wastefulness, µ2(h) ∈ {c1, c2}. By justified envy-freeness, µ2(h) = c2. h exits with
payoff 2 − 1/2 = 3/2. Now, instead, suppose that h reports truthfully under the same
action profile, i.e., some report σh(c1) = σh(c2) = 1. Non-wastefulness implies that
µ1(h) = c1 and h exits with payoff 1. Thus, we have that for ah, σh, σ

′
h, V̂

r
h (ah, σ

′
h) =

3/2 > V̂ r
h (ah, σh) = 1.

Strategy-proofness demands that truthful reporting is weakly optimal for homes when
homes plan to accept placements. In the above example, a home that plans to accept
the matchmaker’s placements benefits from misreporting and violates strategy-proofness.
The home could achieve the higher payoff with a truthful report and rejection at t = 1.
Nevertheless, this equivalence does not eliminate rationale for misreporting. Theorem
4 uses a simple environment where the economic theorist can find the equivalence. In
more complex environments with more agents and a longer horizon, as we noted in our
discussion about sequential DA, misreports and rejections can produce different outcomes.
Not even the theorist might find the equivalence, suggesting scant hopes of homes finding
the equivalence. Additionally, some homes might innocuously or even unconsciously
err toward reporting that acceptable children are unacceptable given sufficient patience.
We suggest that preference truncations could be a potential mechanism explaining child
welfare systems’ perpetual lack of homes to care for older children and children with
higher needs, and strategy-proof mechanisms—under our strong definition—could be a
solution.

Corollary 2. Home Penalized Deferred Acceptance and Child Rotating Deferred Accep-
tance are not strategy-proof.

Proof. Both are justified envy-free and non-wasteful. By Theorem 4, neither are strategy-
proof.

The key manipulation that both exploit is the same as in the above counterexample,
but homes have even stronger incentives to misreport. Since HPDA and CRDA are
dynamically envy-free, they cannot allow h to match with c2 if h rejects c1 at t = 1.
Hence, h can only match with c2 if it reports that c1 is unacceptable.
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Home Endowed Deferred Acceptance

ENDOWMENT
INITIALIZE : Fix some arbitrary maximum and minimum utilities V̄ and V

¯
. Fix

an arbitrary set of N disjoint, compact intervals (Ei)0≤i≤N spanning [V
¯
, V̄ ] where

the minimal element in Ei is greater than the maximal element in Ei+1. Home h
arriving in period k has a time-dependent endowment Bt(h) ≡ Et−k if t − k ≤ N
and Bt(h) ≡ {V

¯
} otherwise.

t ≥ 1: Initialize Ṽh(·) = Vh(·), then

1. Set eth(c) = 1 if V t
h(c) ∈ Bt(h) and Vh(c) ≥ 0. eth(c) = 0 otherwise.

2. If eth(c) = 0, then set Ṽh(c) = −1.

MATCHING
t ≥ 1: Using Uc(·) and Ṽh(·) as preferences

1. Each active home without a child holding its proposal proposes to its best,
acceptable child that it has not yet proposed to, if it can propose to any.

2. Each active child holds her best, acceptable proposal and rejects all others.

3. Repeat 1-2 until no additional proposals are made.

4. Set µt(c) to be each child’s held proposal; µt(c) = c otherwise. Set µt(h) to be
the child holding a home’s proposal; µt(h) = h otherwise.

These results temper overly optimistic expectations of any non-wasteful mechanism’s
performance and motivate a search for a mechanism that is dynamically envy-free, strategy-
proof, and, at least in some sense, limited in wastefulness. We develop this, partially,
in our new mechanism. Home Endowed Deferred Acceptance (HEDA) fixes a range of
utility that a home can receive at any time period relative to its entry into the child wel-
fare system; i.e., each home receives an endowment at each time period. Following this,
homes receive their best justified envy-free placement within each endowment. We show
that HEDA is strategy-proof, but it is not quite dynamically envy-free. We hypothesize
that it is possible to derive a dynamically envy-free and strategy-proof mechanism, but
it would exhibit serious deficiencies in wastefulness that defeat the purpose of fairness.
We test the performance of HEDA in Section 5.

Theorem 5. Home Endowed Deferred Acceptance is patience-free, individually rational,
and strategy-proof.

Proof. See Appendix A.

The algorithm’s success rests on the endowment’s invariance to homes’ strategies.
Because a home always receives its best placement at the earliest period relative to its
arrival, a home’s optimal strategy is to accept the earliest placement. HEDA’s strategy-
proofness is non-trivial. In the first period where a home’s misreport would cause any
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match for any home to differ compared to when the home is truthful, we prove that it must
be that the misreporting home receives the same match under misreporting/truth-telling
or else the misreporting home’s match differs. In the former case, the home should accept
the placement by the same logic that we use to show HEDA is patience-free; waiting
until later yields a worse placement. Misreporting cannot increase the home’s utility
since the first placement is the same as under truth-telling. The latter case reduces to
demonstrating that HEDA is strategy-proof in a static sense; we show this using a novel,
amended proof strategy based on Roth (2017). Misreporting cannot improve the home’s
utility even when the home’s match changes. Tying the two cases together yields the
theorem.

HEDA is not justified envy-free because it partitions homes’ potential placements us-
ing endowments that are ex-ante fixed. Therefore, it is possible for a home and child
to mutually benefit from an endowment violation. Moreover, HEDA is not non-wasteful
for the same reason. Even a compliant home might not receive a placement at t if no
children exist within its endowment, and some other acceptable children outside of that
home’s endowment might not be placed elsewhere. These two features are the primary
downsides of HEDA. Still, HEDA has many attractive properties. Homes that do not
receive placements eventually disperse into separate endowments and, when children out-
number homes, it is unlikely that a home would not find at least one acceptable match.
Since HEDA is patience-free, whenever a home receives a placement, it will accept that
placement, ameliorating some wastefulness concerns. Finally, strategy-proofness incen-
tivizes homes to carefully and truthfully report preferences. It eliminates false negatives :
homes that would adopt a child yet report the child as unacceptable. If false negatives
are prevalent in child welfare systems, as we conjecture, then HEDA advances as a fore-
front solution that increases the number of home willing to adopt children that might
otherwise experience long waits.

Theorem 4 cautions against pursuing a dynamic envy-free and strategy-proof mech-
anism. Dynamic envy-freeness and non-wastefulness imply that any unfilled capacity
exists to penalize noncompliant homes. In contrast, a dynamic envy-free mechanism
without the binding restrictions of non-wastefulness—as a dynamic envy-free, strategy-
proof mechanism must be—may be arbitrarily unfair. Consider this possible direction
to extend HEDA to dynamic envy-freeness: at every period after running DA, dissolve
placements that cause justified envy for any home. One cannot rearrange the placements
to match the home and child with justified envy if the home would require a higher en-
dowment; this would violate patience-freeness. Therefore, eliminating the placement is
necessary, but surely this is less fair than allowing the placement to persist.

Yet, HEDA’s structure is amenable to one useful alteration. We have assumed that
the matchmaker has access to a reliable estimate for wh—and we will explore unreli-
able estimates in the next section—but this may not hold for every county. We propose
HEDA* when wh is unknown: it sets a home’s endowment eth(c) = 1 if Vh(c) ∈ Bt(h)
rather than relying on the home’s time-discounted utility. HEDA* does not differ theo-
retically from HEDA so Theorem 5 still applies7. HEDA is generally better than HEDA*
when waiting costs are known. HEDA* has a limited number of endowments before a
home must receive a zero utility placement which harms the number of placements that
homes in the bottom endowment can receive. HEDA can have an arbitrarily large number
of endowments so that a home’s utility for a placement can always be in any arbitrary

7HEDA is equivalent to running HEDA* with the same endowment interval bounds shifted upward
by (t− k)wh.
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interval, and a home’s chances of receiving a placement are much greater.

5 Empirical Evidence

In this section, we describe our current and future empirical simulations. Our theoretic
work confirms properties of the mechanisms we examine, but it does not speak to these
properties’ empirical performance. At present, we generate synthetic data representing a
child welfare system, its participants, and their preferences. We then run simulations to
benchmark each mechanisms’ placement count, waiting costs for children, and number
of homes with justified envy against sequential DA. However, our strong assumptions
about the matchmaker’s knowledge of homes’ preferences and waiting costs spur a simple
concern: what if the matchmaker cannot estimate these parameters? We run additional
simulations to evaluate our mechanisms when the matchmaker’s preference estimator has
substantial root mean squared error (RMSE) from bias and variance.

Our collaborating U.S. county is processing our requests for data. Once data is
granted, we will use it to construct the true, observed market and compute child pref-
erences. Still, data for home preferences is lacking. We will complement the county
data with surveys of adoptive homes to understand how the match-specific interaction
between child and home behavioral characteristics affect homes’ preferences. We will
combine observable child arrivals with simulated home arrivals based on known distri-
butions of preferences from the survey data geographically restricted to the county. We
fix the number of home arrivals from the distribution observed in county data. Then,
we plan to benchmark our mechanisms against sequential DA and observed placements,
observed waiting costs for children, and observed homes with justified envy. Finally, we
will devise two key extensions. One, we will test HPDA, CRDA, and HEDA’s sensitivity
to heterogeneous home waiting costs; two, we will test the effects of semi-centralization
when workers may imperfectly coordinate on the ideal centralized assignment.

In what follows, we describe our synthetic data and preferences, then we present our
preliminary main results.

5.1 Data

We simulate two years (T = 24) of children and homes arriving to a child welfare systems.
Our results focus on the first year because incentives for patience mechanically decrease
as t approaches T . This is a technical limitation which we plan to overcome with more
computing power and simulating a longer horizon. The number of children arriving
per month is NH

t and the number of homes arriving per month is NH
t where NC

t ∼
U [15, 20] ∀t and NH

t ∼ U [12, 15] ∀t, reflecting common shortages of homes across child
welfare systems. Each child c has a bundle of characteristics θ(c) = {age(c), needs(c)},
where age(c) ∈ [0, 18] and needs(c) ∈ {0, 1}. Each home h has a preference survey
P (h) = {needs(h)}, needs(h) ∈ {0, 1} indicating whether or not h reports a willingness
to care for a child with high needs. Following trends in our partner county, we assume
that age(c) ∼ N(8, 4) and Pr(needs(c) = 1) = 1

3
∀c. However, there is also a shortage

of homes willing to care for high-needs children, and we model this through assuming
Pr(needs(h) = 1) = 1

5
∀h.
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5.2 Preferences

The main goal for most child welfare systems is to guarantee a safe, healthy permanent
placement for all children. One threat to permanency is disruption. After the matchmaker
places a child in a home, the home becomes the child’s pre-adoptive home. The home must
foster the child for six months before the adoption is finalized. If the home decides not to
adopt the child, it returns the child to the welfare system, i.e., the adoption disrupts. In
our model, a safe and healthy placement is one where the child is acceptable to the home
and the home is acceptable to the child. The matchmaker can define the acceptability
threshold to include only homes that would adequately care for the child. Conditional
on a placement being acceptable, the matchmaker’s utility for a child c matching with
a home h, Uc(h), is the predicted non-disruption probability. Our partner county’s data
will allow us to predict non-disruption on characteristics observable to caseworkers. Our
interviews with caseworkers indicate that they believe disruption is more or less likely
depending on the fitness of the child-home match. We model this in our synthetic data
using a match-specific parameter:

Uc(h) = 1− ϵc,h

where ϵc,h ∼ N(− 3
10
, 1
10
). Note that child-specific characteristics that affect disruption

are irrelevant for matching as they cannot affect the preference ordering over homes.
Home-specific effects are important, but we are not currently aware of the most salient
home traits that affect disruption.

Next, we turn to home preferences. In our baseline, we assume that the matchmaker
perfectly knows all homes’ preferences. Across the United States, younger children almost
always find placements much sooner than older children, and homes almost universally
report desires to adopt younger children. We model this as vertical differentiation among
children: younger children are more desirable to homes. Simultaneously, our county
reports that homes may have very heterogeneous willingness to adopt a child depending
on behavioral characteristics. Therefore, we also add horizontal differentiation to home
preferences.

V̂h(c) =

{
V̄ − V̄ (age(c)

18
)2 + δh,c if need(c) = 0 or need(c) = 1, need(h) = 1

−1 otherwise

where we normalize V̄ = 100, and δh,c ∼ N(0, V̄
10
). The cost for a child’s age is quadratic

as placement outcomes for children tend to worsen rapidly as a child approaches eighteen.
We calibrate wc = 14000

12
as the median Title-IV payment per out-of-home foster youth

per year to a county is approximately $14,000. Finally, we set wh = 4 so that a home’s
tradeoff for achieving the ”ideal” match V̄ is about two years (25 months).

Our approach to estimating home preferences using the county’s data will inevitably
not be able to identify the preferences. It might be possible to identify home’s preferences
in this setting through observing the placements that a home receives and the placement
that a home eventually accepts. Nevertheless, our objective is to provide a minimally
operational tool that counties across the United States can utilize. Identifying preferences
is a notoriously difficult exercise that highly skilled economists can sometimes accomplish;
it is likely not something that a resource-strapped county could do. Therefore, we aim to
understand how effective our mechanisms can be when the matchmaker uses a preference
estimator that is, at best, correlated with a home’s true utility. Hence, we model the
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matchmaker’s preference estimator as:

Vh(c) = V̂h(c) + γh,c

with the following specifications for γh,c:
K-bias: The matchmaker’s estimator systemically produces biased estimates with

E[γh,c] = K ∀h, c and contains a small amount of variance. The empirical root mean
squared error (RMSE) converges to K over a large number of simulations.

K-variance: The matchmaker’s estimator is unbiased, but it has a large amount of
variance such that the empirical root mean squared error (RMSE) converges to K over
a large number of simulations, where:

RMSE =

√√√√√∑
h∈H(t)∀t

∑
c∈C(t)∀t

(
V̂h(c)− Vh(c)

)2

∑T
t=1 |C(t)| ∗

∑t
t=1 |H(t)|

Under the K-bias specification, we set the bias so that the matchmaker underestimates
the true utility. Overestimating homes’ utility does not pose a problem for most of our
mechanisms. Patience-freeness enforces stronger penalties on homes when utility is over-
estimated because a patience-free mechanism must guarantee that a home’s placements
after noncompliance are worse than the denied placement. Overestimation means that
future placements will be even less preferable than when the matchmaker knows a home’s
true utility. Homes have an even stronger incentive to accept placements earlier. In con-
trast, underestimation creates a problem because the matchmaker may not sufficiently
punish a home for waiting.

We use four different values for K: true utility (K = 0 and Vh(c) = V̂h(c)), ten percent
error (K = V̄

10
), twenty-five percent error (K = V̄

4
), and fifty-percent error (K = V̄

2
).

Finally, how does a home decide to accept or decline a placement? If we compute the
home’s equilibrium strategy, the computation requires fixing an arbitrary action profile
a(T ) then checking which homes maximize their utility. A home then updates its strategy
if the change would yield higher immediate utility or higher utility in the future given the
market’s evolution and future placements. Yet, this changes the placements that might
occur for other homes in the future. We would have to repeat this computation until
a(T ) no longer updates. Unfortunately, this calculation is too expensive.

Instead, we borrow an insight from dynamic envy-freeness. In the K = 0 case, ac-
cepting the first placement is a weakly dominant strategy for all homes. It is arguably
without loss to assume that a home h takes it as given that all other homes will ac-
cept their placements, and then h’s deviation reduces to computing its utility under its
counterfactual action profile. This deviation is much more tractible and still allows us to
simulate plausible scenarios where homes might desire to wait for a future placement. A
home h accepts its placement if, when all other homes accept their placements, it maxi-
mizes its utility through accepting the placement rather than waiting to accept a future
placement.

5.3 Main Results

We compare HPDA, CRDA, and HEDA against sequential DA. In the future, we will
contrast each mechanism against observed outcomes and note their individual strengths
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and weaknesses. Our outcomes focus on three measures: cumulative placements, cumu-
lative child waiting costs, and the percentage of placed homes with justified envy at the
time of placement. We count a home h that accepts its placement at time t as having
justified envy, saying that h ∈ J(t), if V̂h(c) > V̂h(µt(h)) and Uc(h) > Uc(µt(c)) for any
c ∈ C(t) such that µt(c) ̸= c. The number of placed home with justified envy at t is

|J(t)|. Fixing some a(T ), at some time t′, the last measure is (
∑t′

t=1 |J(t)|)/AH(t′).
For each simulation, we run HPDA, CRDA, HEDA, and sequential DA on the same

market. We set HEDA’s endowments at a width of V̄ /4 for the first four months, then the
width reduces to wh for all future months. We run 5 simulations for every K-bias and for
K-variance type, averaging over all simulations8. The results for cumulative placements
are in Figures 2 and 3.

Figure 2: Placements under K-Bias

Placements—Our placement results are all very promising. As theoretically predicted,
HPDA and CRDA are equivalent when the matchmaker knows the true utility. No
home will ever deviate, so they both run DA at every t without any truncations. Both
mechanisms also produce far more placements than sequential DA: nearly an additional
50%. HEDA is quantitatively similar, although it differs by an insignificant magnitude.
These results suggest that patience-freeness is an important property for guaranteeing not
only expedient placements but also more placements. Without patience-freeness, homes
effectively always have an incentive to delay before encountering a satisficing placement.
As T approaches infinity, the constant expectation that a better placement might arrive
tomorrow induces a consistent downward pressure on the amount of potential placements.
Patience-freeness eliminates such incentives.

8We plan to run 100 simulations per type after fine-tuning the paper.
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Turning to theK-bias results, overall, placements decrease for CRDA. As our previous
discussion highlighted, the underestimation of preferences causes violations in patience
constraints. Interestingly, HPDA and HEDA are mostly unaffected. Sequential DA does
not change greatly because the misestimation mostly cannot affect proposals aside from
the small amount of variance we introduce. Nevertheless, all patience-free mechanisms
continue to dominate sequential DA, showing that they are robust even up to fifty percent
error.

Figure 3: Placements under K-Variance

Under K-variance, a different pattern emerges. Again, the K = 0 case is unaffected.
However, under higher RMSE from variance, sequential DA suffers far more. High vari-
ance leads to different proposal orders under DA, and homes gain more incentives to wait
for a better, future placement. Patience-free mechanisms are still robust, because even
under the error, they provide some dynamic incentives that will always push the home
toward accepting earlier placements. The lone exception is CRDA which has similar
trends to sequential DA. HEDA creates the most cumulative one-year placements under
25% and 50% error. We conjecture that the endowments are more effective at enforcing
dynamic incentives. They do not rely on selective punishment of homes when the match-
maker detects a possible patience violation. Whereas, high variance may frequently trick
HPDA and CRDA into allowing a placement that should be truncated.

In Table 1, we show average-over-months placement outcomes for K-bias. HPDA
maximizes benefits at a 49.48% additional (over sequential DA) placements per month,
and the minimum benefit is from CRDA at 35.17% additional placements per month.
We also show outcomes for traditionally hard-to-place children: teenagers and high-
needs. The percent of teenagers placed at t is the number of teenagers with an accepted
placement over the number of teenagers in the market at t. The average percent of
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Table 1: Placements for Sequential DA, HPDA, CRDA, and HEDA under K-Bias

K-Bias Type 0% 10% 25% 50%
Average placements per month
Sequential DA 9.3 9.17 9.07 8.73
HPDA 13.15 13.63 13.42 13.05
CRDA 13.15 13.17 12.8 11.8
HEDA 13 13.27 13.35 13.02

Average percent of teenagers placed
Sequential DA 0% 0% 0% 0%
HPDA 11% 18% 18% 12%
CRDA 11% 21% 21% 16%
HEDA 7% 11% 8% 8%

Average percent of high-needs placed
Sequential DA 10% 11% 9% 10%
HPDA 14% 18% 12% 13%
CRDA 14% 15% 11% 13%
HEDA 11% 12% 12% 12%

Average waste per month
Sequential DA 0.45 0.11 0.09 1.63
HPDA 0.53 2.45 3.02 2.92
CRDA 0.53 5.17 7.9 9.43
HEDA 3.38 5.53 3.02 4.32

Note: waste is the number of homes in H(t) that did not receive a placement offer. Some
homes are unplaced in every stable match which explains DA’s slightly positive waste.

teenagers placed is the average over all t. The same holds for high-needs children. One
stark result is that sequential DA never (rounded down) successfully places teenagers
into permanent homes. The homes with incentives to decline the placements when the
mechanism is not patience-free are the same homes that are dynamically incentivized
to accept teenagers under our mechanisms. All of our mechanisms improve outcomes
for teenagers—CRDA does so by 21 percentage points under 10% and 25% error. Teen
placements increase under CRDA with K > 0 because younger children are frequently
envied with vertically differentiated preferences, and they tend not to enter rotation.
CRDA offers a sense of priority to less envied children, in this case, teenagers. The same
observations hold for high-needs children as CRDA places at least 12% and at most 18%.
When K = 0, CRDA never rotates any children, so benefits for the less-envied cannot
materialize.

Outcomes are similar for K-variance in Table 2. The biggest distinction is that
CRDA’s performance is much worse at 25% and 50% error. Its waste and HPDA’s waste
drastically increase. Unfortunately, it appears that CRDA truncates too many children
for Remark 3 to hold. These empirical results suggest that homes fail to comply moreso
under K-variance than K-bias under dynamic envy-free and non-wasteful mechanisms.
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CRDA’s saving grace is that it still maintains its advantage in placements for teenagers.
HEDA produces the largest increase in placements relative to sequential DA—49.08%—
at 25% error. HPDA’s minimum increase over sequential DA is 30.23% at 50% error.
Sequential DA is strictly non-wasteful, and HEDA’s waste is fairly constant across all
specifications.

Table 2: Placements for Sequential DA, HPDA, CRDA, and HEDA under K-Variance

K-Variance Type 0% 10% 25% 50%
Average placements per month
Sequential DA 9.3 8.97 8.72 8.27
HPDA 13.15 13.02 12.27 10.77
CRDA 13.15 12.5 10.65 7.65
HEDA 13 13.08 13 12.3

Average percent of teenagers placed
Sequential DA 0% 0% 0% 1%
HPDA 11% 11% 7% 3%
CRDA 11% 17% 17% 12%
HEDA 7% 9% 9% 12%

Average percent of high-needs placed
Sequential DA 10% 9% 8% 7%
HPDA 14% 12% 9% 8%
CRDA 14% 13% 11% 7%
HEDA 11% 12% 10% 10%

Average waste per month
Sequential DA 0.45 0.28 1 0.18
HPDA 0.53 2.27 7.6 13.45
CRDA 0.53 3.85 18.53 32.42
HEDA 3.38 3.63 3.57 3.12

Waiting Costs—Our results for child waiting costs (Figures 6 and 7 in Appendix D)
imposed on the child welfare system mirror the placement results as more placements
mechanically implies less waiting. The gap tends to widen between sequential DA and
our patience-free mechanisms over time because the stock of unplaced children increases
more quickly under sequential DA. There is a natural limit to the increase in the gap as
children eventually age out of the child welfare system which we do not capture in our
model and figures.

Overall, per-month waiting costs are orders of magnitude smaller by at least $20,000
in all specifications (excluding CRDA at 50% error) and nearly $50,000 when the match-
maker knows the homes’ true preferences. These estimates only grow as the county
manages welfare services for more children; in our simulations, the county is a small to
medium-sized system with, at most, 240 children entering in a year.

Justified Envy—Sequential DA, HPDA, and CRDA are all justified envy-free if K = 0
as our theoretical results proved. Even in this case, HEDA has a relatively large amount
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Figure 4: Justified Envy under K-Bias

of justified envy with approximately 50% of homes having justified envy over the year.
Unfortunately, this implies that some children might be able to receive placements that
are less likely to disrupt, and there are homes that would adopt those children. We
investigate how the non-disruption probabilities change shortly.

At any K > 0, justified envy appears for every mechanism, although sequential DA,
HPDA, and CRDA still have significantly less justified envy than HEDA. HPDA and
CRDA generally converge to the same amount of justified envy, but CRDA always main-
tains the least envy. Bias does not appear to affect HEDA’s justified envy as it remains
constant between 50 to 60% of homes.

Under K-variance, justified envy shoots up as K increases for sequential DA, HPDA,
and HEDA (Figure 5). CRDA is very robust to justified envy even up to 50% error
with justified envy converging to about 10% of homes by t = 12. We attribute this to
the fact that CRDA uses child-proposing DA, and the matchmaker knows every child’s
true preferences. Therefore, children always propose to their favorite homes, and it is less
likely that a child could find a justified envy-free improvement than when homes propose.

Sequential DA and HPDA emerge in the middle. Both function with low justified
envy under 10% and 25% error but justified envy is high at about 30% of homes under
HPDA and 40% of homes under sequential DA at 50% error. Finally, HEDA is extremely
erratic with nearly 80% of homes having justified envy. Unfortunately, HEDA’s major
pitfall—lacking dynamic envy-freeness—heightens more than other mechanisms at K
increases. This may be a fundamental tradeoff for strategy-proofness. As we do not
consider strategic reports in our simulations, it is difficult to tell if the gains from an
increased supply of homes willing to care for high-needs children is worth increasing
disruption rates. We provide two tables in Appendix D to examine this concern. Our
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Figure 5: Justified Envy under K-Variance

results show that non-disruption rates stand unchanged for HPDA and HEDA, implying
that while justified envy exists for children, it is small in magnitude. Sequential DA
generally maintains the highest non-disruption rates with a 8% difference at most. Homes
effectively select into placements that are less likely to disrupt under sequential DA
because these are precisely the placements they are more likely to attain if they wait
(they will match with children in the future that prefer the homes over contemporaneous
options), i.e., there is a market thickness effect. CRDA partially compensates as child-
proposing DA elevates non-disruption’s importance; when K-variance is high, CRDA
beats sequential DA by about 4%.

6 Conclusion

Child welfare systems lack organized attempts to centralize placement assignments for
children. Previous efforts to construct match recommendation systems have not gone as
hoped, yet the area still seems to hold significant promise to be an arena for market design,
and many economists have studied adjacent problems to improve outcomes for children.
We show that the 109 thousand children waiting for adoption in the United States,
and certainly many more abroad, could have permanent homes—now. Nevertheless,
even with centralization, matchmakers must choose carefully between mechanisms that
prioritize different goals. Dynamically envy-free and patience-free mechanisms almost
always increase the number of placements and decrease waiting costs, but some come at
the price of slightly lower non-disruption rates for adoptions and a large number of homes
that never receive placement offers. We offer at least one mechanism—HEDA—that
consistently has low waste, more or as many placements as other mechanisms, and good
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non-disruption outcomes. It is also strategy-proof, meaning that it prevents incentives
for homes that can care for high-needs or older children to report that they cannot.

As this paper develops, we intend to sketch an implementation strategy for our mech-
anisms that allows workers to have the final say over placements while simultaneously
ensuring that the best, dynamically envy-free child-home placements are prioritized. Sev-
eral obstacles remain between current practice and smooth centralization—caseworkers
say that previous designs failed because of poor coding, match recommendations based on
irrelevant characteristics, and many other operational concerns. Going forward, we desire
that child welfare systems will take seriously the challenge to design better matching for
the many waiting children everywhere.
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Appendix A: Proofs

Below, we prove the theorems and propositions that we did not prove in the main text.

Theorem 2. Home Penalized Deferred Acceptance is dynamic envy-free and non-
wasteful.

Proof. First, we show that HPDA is justified envy-free and individually rational for any
action profiles at any time. Then, we prove that HPDA is patience-free. Last, we show
that HPDA is non-wasteful. The following proofs do not rely on any features of the
environment’s horizon (aside from finiteness) nor arrival structure nor type space, hence,
they always apply.

(i) HPDA is justified envy-free for any t and a(t). Suppose for a contradiction that for
some t,a(t), we have that µt is not justified envy-free. This implies that there exists some
c ∈ C(t|a(t− 1)) and h ∈ H(t|a(t− 1)) with µt(h) ̸= h such that Uc(h) > Uc(µt(c)) and
Vh(c) > Vh(µt(h)). However, this implies that h did not have its preferences truncated at
t, otherwise µt(h) = h. Therefore, during the operation of HPDA, h proposed to c. Since
µt(c) ̸= h, this implies that c rejected h. This contradicts Uc(h) > Uc(µt(c)).

(ii) A non-individually rational match is impossible because no home would propose
to an unacceptable child, and no child would hold a proposal from an unacceptable home.

(iii) HPDA is patience-free. Take any arbitrary t,h, a(T ) such that µt(h) ̸= h. For
any arbitrary t′ > t, take the counterfactual â(t′, h). If no matching occurs at t′ under
the counterfactual, then trivially V t

h(µt(h)) ≥ V t′

h (µ̂h
t′(h)). Otherwise, the proof proceeds

in three steps. One, we prove by strong induction that µk = µ̂h
k ∀k ≤ t. Two, we prove

that the most recent match always acts as the maximum time-discounted utility bound
for any subsequent matching. Three, we combine these statements to conclude (ii).
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Note that for this proof we write C(t) ≡ C(t|a(t − 1)), H(t) ≡ H(t|a(t − 1)),
AC(t|a(t)) ≡ AC(t), and AH(t|a(t)) ≡ AH(t). Define:

ÂC(t, h) ≡ {c : µ̂h
k(c) ̸= c and âkµ̂h

k(c)
= 1 for some k ≤ t}

ÂH(t, h) ≡ {h : µ̂h
k(h) ̸= h and âkh = 1 for some k ≤ t}

Induction Statement : For every natural number k ∈ [1, t], µk = µ̂h
k, Â

C(k − 1, h) =
AC(k − 1), and ÂH(k − 1, h) = AH(k − 1).

The base case is t = 1. By definition, M(1) = (c(1), h(1), E(1)) = M̂(1, h), ÂC(0, h) =
AC(0) = ∅, and ÂH(0, h) = AH(0) = ∅. The matchings µ1 and µ̂1 can only take the
market at t = 1 as input, therefore it must be that µ1 = µ̂h

1 .
Next, the induction step is for k+1 ≤ t if the statement holds for all natural numbers

less than k + 1. Since the statement holds for such k (which must be k < t), we have
that C(k) = Ĉ(k, h), H(k) = Ĥ(k, h), and µk = µ̂h

k. By assumption that µt(h) ̸= h,
either µk(h) = µ̂h

k(h) = h or ahk = âhk = 0. In either case, h ∈ H(k + 1), Ĥ(k + 1, h).
In the case that some c’s match is h, c ∈ C(k + 1), Ĉ(k + 1, h) by the above argument.
Further, by definition, akh′ = âkh′ for all h′ ̸= h. Thus, if µk(c) ̸= h and c ∈ C(k), Ĉ(k, h),
c ∈ AC(k) ⇐⇒ µk(c) ̸= c and akµk(c)

= 1 ⇐⇒ µ̂h
k(c) ̸= c and âk

µ̂h
k(c)

= 1 ⇐⇒
c ∈ ÂC(k, h). The same logic holds for h′ ̸= h ∈ AH(k). Therefore, C(k + 1) =
Ĉ(k+1, h), and H(k+1) = Ĥ(k+1, h). By the induction assumption, the match histories
(µn)n<k+1 = (µ̂h

n)n<k+1. At every time, HPDA is a deterministic function of the present
market and match history, which are equivalent under the actual and counterfactual;
therefore µk+1 = µ̂h

k+1. This concludes the proof for the induction statement.
Next, we show by induction that any subsequent matching under HPDA yields smaller

time-discounted utility than the matching at t. Formally, the induction statement is: for
any k ≥ t where µt(h) ̸= h, V k

h (µk(h)) ≤ V t
h(µt(h)). The base case is k = t. Clearly, the

statement holds as the utilities are equivalent. The induction step is for k+ 1 given that
the statement holds for all natural numbers less than k + 1. If µk+1(h) = h, then the
statement holds trivially. Otherwise, let n be the most recent natural number such that
µn(h) ̸= h and n < k + 1. By the induction hypothesis, V n

h (µn(h)) ≤ V t
h(µt(h)). Now

µk+1(h) ̸= h ⇐⇒ pk+1
h = 0 ⇐⇒ V k+1

h (µk+1(h)) ≤ V n
h (µn(h)) ≤ V t

h(µt(h)). This proves
the induction statement. This proof holds equivalently for the counterfactual matching.

Thus we have that for any t′ > t, V t
h(µt(h)) = V t

h(µ̂
h
t (h)) ≥ V t′

h (µ̂h
t′(h)).

(iv) Last, HPDA is non-wasteful. Suppose, for a contradiction, the contrary. Since
ath = 1 for all h, t, if µt(h) ̸= h then h /∈ H(t+1). Therefore, it cannot be that any home
has its preferences truncated. But by our supposition, there exists some c ∈ C(t) and
h ∈ H(t) for some t such that Uc(h) ≥ 0, Vh(c) ≥ 0, µt(c) = c, and µt(h) = h. The child
and homes’ non-negative utilities for the match and µt(h) = h imply that, at some point,
h proposed to c and c had no proposals. However, µt(c) = c implies that c rejected h,
which contradicts Uc(h) ≥ 0. This completes the theorem.

Proposition 1. Accepting the first placement is a weakly dominant strategy for all
homes under a patience-free mechanism.

Proof. Fix a patience-free mechanism Q. For any action profile a(T ) and home h, let t
be the first time that µt(h) ̸= h, if this ever occurs. By patience-freeness, V t

h(µt(h)) ≥
V t′

h (µh
t′(h)) for any t′ > t. If ath = 1, then h receives payoff V t

h(µt(h)). Let āh be any
other strategy for h. Define ā where āh is h’s strategy and āh′ = ah′ for all h′ ̸= h. We
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proved in Theorem 2 that up until and including the first period t′ where āt
′

h = 1 and
h is offered a match, the matchings under this profile and the counterfactual â(t′, h) are
equivalent (if ākh = 0 for all k or h never accepts another match, then h receives payoff
0.). Therefore, the payoffs are equivalent as the same placement will be accepted under
these profiles, and so h is weakly better off with ath = 1.

Theorem 3. Child Rotating Deferred Acceptance is dynamic envy-free and non-
wasteful.

Proof. We show that CRDA is justified envy-free for any action profiles at any time. The
proof for patience-freeness, individual rationality, and non-wastefulness are the same as
in Theorem 2. For any t, a(t), if no home triggers truncation, then only MATCHING
occurs. This is equivalent to DA which always produces a stable matching. Stability
implies justified envy-freeness. Otherwise, the proof proceeds by cases. In each case,
suppose that for some t, a(t) there exists some c ∈ C(t), h ∈ H(t) such that µt(c) ̸=
c, Uc(h) > Uc(µt(c)), and Vh(c) > Vh(µt(h)).

Case 1: c /∈ R̂t
C , h /∈ Rt

H . This implies that neither c nor h had matchings replaced
during ROTATION. Then, at some point, c proposed to h, but, since µt(h) ̸= c, h rejected
c. This contradicts Vh(c) > Vh(µt(h)).

Case 2: c ∈ R̂t
C , h ∈ Rt

H . By µt(c) ̸= c, we have that c ∈ Rt
C . As above, this now

implies that c proposed to h during ROTATION, but h rejected c, which generates the
same contradiction.

Case 3: c /∈ R̂t
C , h ∈ Rt

H . By c /∈ R̂t
C , we have that rtc = 0 =⇒ Uc(µt(c)) > Uc(h).

This is a contradiction.
Case 4: c ∈ R̂t

C , h /∈ Rt
H . We disprove this case via. contradiction. Again, by

µt(c) ̸= c, we have that c ∈ Rt
C . Define h′ ≡ µM

t (c) as c’s match during MATCHING (if
c has none, then trivially Uc(µt(c)) ≥ Uc(h

′) = 0).
We claim that (A) if (*) Uc(µt(c)) < Uc(h

′) for any c ∈ Rt
C , then there exists some

c′ ∈ Rt
C such that Uc′(µ

M
t (c′)) > Uc′(h

′), Vh′(c′) > Vh′(c), and c ̸= c′. Notice that
c ∈ Rt

C =⇒ h′ ∈ Rt
H . If Uc(µt(c)) < Uc(h

′), then h′ must, at some point, reject c
during ROTATION. Hence, there must exist some more preferable c′ = µt(h) proposing
to h′. There exist two subcases. Either c′ proposed to h′ during MATCHING or c′ did
not. If c′ did, then µM

t (h′) = c =⇒ Vh′(c) > Vh′(c′) which contradicts h′ rejecting c
during rotation. Therefore, it must be that c′ did not propose to h′ during MATCHING
even though c′ was active during MATCHING. For Vh′(c′) > Vh′(c), if this were not true,
then it must be that h′ does not reject c during ROTATION. Thus, Uc(µt(c)) ≥ Uc(h

′),
a contradiction. This proves (A).

Claim (B): if Uc(µt(c)) < Uc(h
′), then there must exist some c′ ∈ Rt

C such that
Uc′(µt(c

′)) < Uc′(µ
M
t (c′)). By (A), we have that there exists some c′ with µt(c

′) = h′

after ROTATION that did not propose to h′ during MATCHING. Thus, Uc′(µt(c
′)) =

Uc′(h
′) < Uc′(µ

M
t (c′)). This proves (B).

Let S ≡ {c : c ∈ Rt
C , Uc(µt(c)) < Uc(µ

M
t (c))}. Consider the first round during

ROTATION where any µM
t (c) rejects any c ∈ S. This can only happen if µM

t (c) has a
preferable offer from some c′ ̸= c. If c′ has not proposed to µM

t (c′) or c′ has no match,
then Uc′(µ

M
t (c)) > Uc′(µ

M
t (c′)). Then, however, c′ and µM

t (c) form a blocking pair during
MATCHING which contradicts DA’s stability. Hence, c′ has proposed to µM

t (c′), but
then Uc′(µt(c

′)) < Uc′(µ
M
t (c′)) =⇒ c′ ∈ S. However, by assumption that this is the first

round where any child in S is rejected by her MATCHING placement, it must be that c′
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has not yet proposed to µM
t (c′). This is a contradiction. Therefore, it must be that S is

an empty set.
Now we have that for all c ∈ Rt

C , Uc(µt(c)) ≥ Uc(µ
M
t (c)). If a blocking pair c ∈ R̂t

C , h /∈
Rt

H exists, then this implies Uc(h) > Uc(µt(c)) ≥ Uc(µ
M
t (c)). Then, c must have proposed

to h during MATCHING. Furthermore, h /∈ Rt
H =⇒ µM

t (h) ̸= c. Therefore, h must
have rejected c during MATCHING. This contradicts Vh(c) > Vh(µt(h)) = Vh(µ

M
t (h)).

Remark 3. Child Rotating Deferred Acceptance is strictly non-wasteful if, for all
t, a(t), there exists an h-perfect stable matching on Rt

H and Rt
C .

Proof. Suppose, for a contradiction, that there exists an h-perfect stable matching on Rt
H

and Rt
C for all t, a(t) and, at some t, a(t), there exists c ∈ C(t|a(t)), h ∈ H(t|a(t)) such

that Uc(h) ≥ 0, Vh(c) ≥ 0, µt(c) = c, and µt(h) = h. µt(h) = h =⇒ h ∈ Rt
H . The Rural

Hospitals Theorem states that under Assumption 1, the set of unmatched agents is the
same in any stable matching (Roth 1986). If there exists an h-perfect stable matching,
then every stable matching is an h-perfect matching. CRDA always constructs a stable
matching with respect to Rt

C and Rt
H . Hence, µt(h) = h contradicts the existence of an

h-perfect stable matching.

Theorem 5 Home Endowed Deferred Acceptance is patience-free, individually ratio-
nal, and strategy-proof.

Proof. First, we show that HEDA is individually rational for any action profiles at any
time. Then, we prove that HEDA is patience-free. Last, we show that HEDA is strategy-
proof. For individual rationality and patience-freeness, we take as given the input pref-
erences and prove the properties with respect to the input.

(i) An non-individually rational match is impossible because no home would propose
to an unacceptable child, and no child would hold a proposal from an unacceptable home.

(ii) HEDA is patience-free. Take any arbitrary t,h, a(T ) such that µt(h) ̸= h. For any
arbitrary t′ > t, take the counterfactual â(t′, h). If no matching occurs at t′ under the
counterfactual, then trivially V t

h(µt(h)) ≥ V t′

h (µ̂h
t′(h)). Otherwise, suppose that µ̂h

t′(h) ̸=
h. Since µt(h) ̸= h, we have that eth(µt(h)) = 1 ⇐⇒ V t

h(µt(h)) ∈ Bt(h). Likewise,
µ̂h
t′(h) ̸= h ⇐⇒ et

′

h(µ̂
h
t′(h)) = 1 ⇐⇒ V t′

h (µ̂h
t′(h)) ∈ Bt′(h). Then by definition of HEDA

and t′ > t, V t
h(µt(h)) ≥ V t′

h (µ̂h
t′(h))

(iii) HEDA is strategy-proof. Take any arbitrary a−h(T ), σ−h. Let σh be truthful
and ah(T ) be compliant, i.e., ath = 1 ∀t. Denote h’s realized utility under this plan as
V̂ r
h (a(T ), σ).
Consider any alternative pair for h: (âh(T ), σ̂h). Then â(T ) is the profile with the

specified action for h and âh′(T ) = ah′(T ) ∀h′ ̸= h. Likewise for σ̂. Denote h’s realized
utility under the alternative pair as V̂ r

h (â(T ), σ̂). We prove the theorem by showing that
in the first period where matchings differ under the two strategy pairs, it must be that
h’s match cannot improve. Under HEDA, h maximizes its utility through accepting the
earliest possible match, so any subsequent match under the alternative pair is also worse.
The theorem follows. We use a few last pieces of notation for the proof. As in Theorem
2, we write C(t) ≡ C(t|a(t − 1), σ), H(t) ≡ H(t|a(t − 1), σ), AC(t|a(t), σ) ≡ AC(t), and
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AH(t|a(t), σ) ≡ AH(t). Define:

Ĉ(t) ≡ C(t|â(t− 1), σ̂)

Ĥ(t) ≡ H(t|â(t− 1), σ̂)

ÂC(t) ≡ {c : µ̂k(c) ̸= c and âkµ̂k(c)
= 1 for some k ≤ t}

ÂH(t) ≡ {h : µ̂′
k(h) ̸= h and âkh = 1 for some k ≤ t}

Take the first period k where µk ̸= µ̂k, if one exists. If one does not exist, the
theorem follows trivially. Otherwise, we first prove that AC(k′) = ÂC(k′) and AH(k′) =
ÂH(k′) ∀k′ < k. Suppose, for a contradiction, that this is not true. If it is not true
for the latter, then take the earliest k′ where there exists a h′ ∈ AH(k′), h′ /∈ ÂH(k′)
or h′ /∈ AH(k′), h′ ∈ ÂH(k′). If h′ = h, this would imply that h ∈ AH(k′), h /∈ ÂH(k′)
(since h must accept the placement under the truthful, compliant pair), but then h’s
realized utility is greater under the truthful, compliant pair by (ii). Thus, we can assume
WLOG that h′ ̸= h. However, µk′(h

′) = µ̂k′(h
′) by assumption, and âkh′ = akh′ . This

is a contradiction, so, WLOG, AH(k′) = ÂH(k′). Next, suppose this is not true for
the former, i.e., take the earliest k′ where there exists a c ∈ AC(k′), c /∈ ÂC(k′) or
c /∈ AC(k′), c ∈ ÂC(k′). If c = µk′(h), then, again, h’s realized utility is greater under the
truthful, compliant pair so we can assume, WLOG, that c ̸= µk′(h). Yet, µk′(c) = µ̂k′(c)
by assumption, and âkµ̂k′ (c)

= akµk′ (c)
. This contradicts AC(k′) ̸= ÂC(k′), so, WLOG,

AC(k′) = ÂC(k′). These two facts imply that C(k) = Ĉ(k) and H(k) = Ĥ(k).
We now have that the set of children and homes available to match at k are the same

under either strategy pair. Returning to the period k, we split into three cases. Either
µk(h) = µ̂k(h) = h, µk(h) = µ̂k(h) ̸= h or µk(h) ̸= µ̂k(h).

Case 1: We show the first case is impossible by retooling the proof from Theorem
3’s case 4. Suppose, for a contradiction, that it is true. Then for some h′ ̸= h, µk(h

′) ̸=
µ̂k(h

′). If Ṽh′(µ̂k(h
′)) > Ṽh′(µk(h

′)), this implies the existence of some h′′ ̸= h′, h with
µk(h

′′) ≡ c′′ ̸= h′′ and µ̂k(h
′) = c′′. If not, then µk(c

′′) = c′′, implying that h′ proposed to
this child, but the child rejected h′ under a(T ), σ. Then, h′ is unacceptable to this child,
contradicting µ̂k(c

′′) = h′. Furthermore, it must be that Ṽh′′(µ̂k(h
′′)) > Ṽh′′(µk(h

′′)). If
not, this implies h′′ proposed to c′′ under â(T ), σ̂ but was rejected in favor of h′. But
then h′ and c′′ form a blocking pair under a(T ), σ, meaning that µk is not stable w.r.t
the constructed preferences, which is a contradiction.

Define S ≡ {ĥ : Ṽĥ(µ̂k(ĥ)) > Ṽĥ(µk(ĥ))} and suppose it is non-empty. Consider

the first round of proposals at time k under a(T ), σ where some ĥ ∈ S is rejected by
ĉ ≡ µ̂k(ĥ) in favor of some h̃. If h̃ not has proposed to µ̂k(h̃) or is unmatched, this implies
Ṽh̃(ĉ) > Ṽh̃(µ̂k(h̃)) and Uĉ(h̃) > Uĉ(ĥ). Then, ĉ and h̃ form a blocking pair on µ̂k, which
contradicts DA’s stability on the constructed preferences. Therefore, it must be that h̃ has
proposed to and been rejected by µ̂k(h̃) =⇒ Ṽh̃(µ̂k(h̃)) > Ṽh̃(ĉ) > Ṽh̃(µk(h̃)) =⇒ h̃ ∈ S.
However, by assumption that this is the first round that any home in S was rejected, it
cannot be that h̃ has been rejected yet. This is a contradiction; S must be an empty set.

Instead, if Ṽh′(µ̂k(h
′)) < Ṽh′(µk(h

′)), there must exist some h′′ ̸= h′, h with µ̂k(h
′′) ≡

c′′ ̸= h′′ and µk(h
′) = c′′. We also we have that Ṽh′′(µ̂k(h

′′)) < Ṽh′′(µk(h
′′)). All of

the above follows from the same logic as before. We can define S ′ ≡ {ĥ : Ṽĥ(µ̂k(ĥ)) <

Ṽĥ(µk(ĥ))} and suppose that it is non-empty. Consider the first round of proposals at

time k under â(T ), σ̂ where some ĥ ∈ S ′ is rejected by ĉ ≡ µk(ĥ) in favor of some h̃.
If h̃ not has proposed to µk(h̃) or is unmatched, this implies Ṽh̃(ĉ) > Ṽh̃(µk(h̃)) and

39



Uĉ(h̃) > Uĉ(ĥ). Then, ĉ and h̃ form a blocking pair on µk, which contradicts DA’s
stability on the constructed preferences. Therefore, it must be that h̃ has proposed to
and been rejected by µk(h̃) =⇒ Ṽh̃(µk(h̃)) > Ṽh̃(ĉ) > Ṽh̃(µ̂k(h̃)) =⇒ h̃ ∈ S ′. However,
by assumption that this is the first round that any home in S ′ was rejected, it cannot be
that h̃ has been rejected yet. This is a contradiction; S ′ must be an empty set.

Since S and S ′ are empty, for every h′ ̸= h, it must be that Ṽh′(µk(h
′)) = Ṽh′(µ̂k(h

′)).
Since preferences are strict, it cannot be that µk(h

′) ̸= µ̂k(h
′) for any h′. Hence, case 1 is

impossible.
Case 2: In this case, since h always accepts the first match under a(T ), and µk(h) =

µ̂k(h) ̸= h, it must be that this is the first period that h receives a match under either
a(T ), σ or â(T ), σ̂. Then, V̂ r

h (a(T ), σ) = V̂ k
h (µk(h)). If h accepts the match under â(T ),

h receives equivalent utility. If not, h receives some utility V̂ r
h (â(T ), σ̂) = V̂ n

h (µ̂n(h)) <
V̂ r
h (a(T ), σ) = V̂ k

h (µk(h)) in a period n > k. If h is not matched at n, the inequality
holds trivially. If h is matched at n, we have that µ̂n(h) ̸= h ⇐⇒ enh(µ̂n(h)) = 1 ⇐⇒
Ṽ n
h (µ̂n(h)) ∈ Bn(h) =⇒ V̂ n

h (µ̂n(h)) ∈ Bn(h). The last implication holds because
enh(µ̂n(h)) = 1 =⇒ Ṽh(·) > 0 =⇒ Ṽh(·) = V̂h(·) =⇒ Ṽ n

h (·) = V̂ n
h (·). Similarly,

V̂ k
h (µk(h)) ∈ Bk(h). By definition of HEDA, h must have higher realized utility from

accepting the match in period k, and the inequality holds.
Case 3: Last, we adapt Roth (2017)’s proof to show that h’s utility cannot decrease.

To ease notation, we write vh(·) ≡ Ṽh(·|σh) and v̂h(·) ≡ Ṽh(·|σ̂h) (note for all h′ ̸= h,
constructed preferences are the same under σ and σ̂). Define S ≡ {ĥ : v̂ĥ(µ̂k(ĥ)) >

vĥ(µk(ĥ))} and R ≡ {c : µ̂k(c) ∈ S}.
For a contradiction, suppose that h ∈ S. (A), we show that c ∈ R ⇐⇒ µk(c) ∈ S.

(B) We show that a contradiction arises from our supposition that h ∈ S.
Consider (A =⇒ ). Suppose that h′ ∈ S ⇐⇒ c′ ≡ µ̂k(h

′) ∈ R. Let h′′ ≡ µk(c
′). If

h′′ = h, the statement follows trivially. If not, we know that vh′′(·) = v̂h′′(·). Furthermore,
h′ ∈ S ⇐⇒ v̂h′(c′) = vh′(c′) > vh′(µk(h

′)) where the equality follows because if h′ = h,
v̂h′(c′) > vh′(µk(h

′)) ≥ 0 =⇒ v̂h′(c′) = V̂h′(c′) = vh′(c′), and it follows trivially if h′ ̸= h.
Then, because DA is stable on the constructed preferences and µk(h

′) ̸= c′, it must be
that Uc′(h

′′) > Uc′(h
′). However, again by DA’s stability on â(T ), σ̂, it must be that

Vh′′(µ̂k(h
′′)) > Vh′′(c′) ⇐⇒ µk(c

′) = h′′ ∈ S
(A ⇐= ) µk(c) ∈ S =⇒ c ∈ R if and only if the contrapositive is true, that is,

c /∈ R =⇒ µk(c) /∈ S. By the above proof, for every h′ ∈ S, there exists exactly one
h′′ ∈ S with µk(h

′′) ≡ c′′ such that µ̂k(h
′) = c′′. Define the h′′ satisfying this for h′ as

s(h′). It must be that µk(s(h
′)) = c′′ ∈ R because v̂h′(c′′) > vh′(µk(h

′)). Furthermore, for
two h1 ̸= h2 it cannot be that s(h1) = s(h2) because this would imply µ̂k(h1) = µ̂k(h2).

Suppose, for a contradiction, that some c /∈ R and hc ≡ µk(c) ∈ S. It cannot be that
s(hp) = hc for any hp ∈ S as s(hp) = hc =⇒ µk(hc) ∈ R. Notice, then, S contains |S|
elements that have some s(·). But then there are |S| − 1 homes that can satisfy s(·) at
most. By the pigeonhole principle, at least one home must satisfy s(·) for at least two
homes. As we proved, this is impossible. Hence, the contrapositive must be true, and (A
⇐= ) is true.

(B) Consider the last round that some arbitrary hl ∈ S proposes under a(T ), σ. By
definition, hl must propose to cl ≡ µk(ĥ). For all h

′ ∈ S, µ̂k(h
′) rejects h′. Furthermore,

h′ ∈ S =⇒ µk(h
′) ∈ R =⇒ µk(h

′) ̸= h′, so it must be that every h′ has a proposal
after its rejection by µ̂k(h

′). hl ∈ S =⇒ cl ∈ R which implies that cl receives a
proposal from ĥ ≡ µ̂k(cl). Since this is the last round of proposals for all homes in S,
cl rejected ĥ in favor of some hs /∈ S in a previous round of proposals (if hs ∈ S, this
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means hs is rejected in favor of hl and proposes to another child in a future round, which
contradicts this being the last round of proposals for homes in S). Then, Ucl(hs) > Ucl(ĥ).
Moreover, hs proposed to cl before µk(hs), so vhs(cl) > vhs(µk(hs)) > vhs(µ̂k(hs)). Since
hs /∈ S =⇒ hs ̸= h, vhs(·) = v̂hs(·), and hs must propose to cl under a(T ), σ as well
as â(T ), σ̂. This implies that hs and cl form a blocking pair on µ̂k, a contradiction.
Therefore, it cannot be that h ∈ S.

Finally, h /∈ S =⇒ V̂h(µk(h)) = vh(µk(h)) > v̂h(µ̂k(h)) = V̂h(µ̂k(h)) where the last
equality again holds because v̂h(µ̂k(h)) ≥ 0 by IR. Since vh(µk(h)) > 0, h must receive a
match. Since ah(T ) is compliant and this is the first period where the matchings differ
under a(T ), σ and â(T ), σ̂, this implies this is h’s first match under either pair. h will
accept this match and receive utility V̂ r

h (a(T ), σ) = V̂ k
h (µk(h)) > V̂ k

h (µ̂k(h)). Hence, even
if h accepts the match under â(T ), σ̂, h receives strictly lower utility. If h waits until a
future period to accept a match under â(T ), σ̂, h receives lower utility by Case 2. This
completes the theorem.

Appendix D: Additional Figures

Figure 6: Waiting Costs under K-Bias
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Figure 7: Waiting Costs under K-Variance

Table 3: Envy for Sequential DA, HPDA, CRDA, and HEDA under K-Bias

K-Bias Type 0% 10% 25% 50%
Average envy
Sequential DA 0% 9.18% 8.9% 6.69%
HPDA 0% 8.09% 5.52% 3.54%
CRDA 0% 5.51% 4.58% 2.72%
HEDA 59.1% 52.74% 53.68% 45.55%

Average non-disruption rate
Sequential DA 85% 85% 86% 86%
HPDA 79% 79% 80% 79%
CRDA 79% 82% 83% 83%
HEDA 77% 79% 78% 78%
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Table 4: Envy for Sequential DA, HPDA, CRDA, and HEDA under K-Variance

K-Variance Type 0% 10% 25% 50%
Average envy
Sequential DA 0% 14.93% 37.38% 46.59%
HPDA 0% 9.21% 25.77% 42.68%
CRDA 0% 8.31% 11.67% 16.07%
HEDA 59.1% 56.64% 64.94% 79.68%

Average non-disruption rate
Sequential DA 85% 85% 85% 85%
HPDA 79% 79% 79% 78%
CRDA 79% 82% 85% 89%
HEDA 77% 78% 78% 77%
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