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SCALAR PRODUCTS AND LEFT LCD CODES1

NABIL BENNENNI AND ANDRÉ LEROY2

Abstract. In this article, we introduce new scalar products over finite rings

via additive isomorphisms. This allows us to define new notions of right (re-

spectively left) orthogonal codes, that are not necessarily linear. This leads

to definitions of right (resp. left) dual codes and left LCD codes similar to

the classical LCD codes. Furthermore, we provide necessary and sufficient

conditions for the existence of these codes.
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1. Introduction5

Linear complementary dual codes (LCD) were initially introduced by Massey [4]6

in 1992, with the intention of using them for the so-called two-user binary adder7

channel. Massey proved that the use of an LCD code solves some of the decodability8

difficulties. LCD codes play an important role in practical applications in particular,9

against side-channel and fault injection attacks; for more details cf. [1].10

In this paper, we focus on the class of left LCD codes (left Complementary Dual11

codes) which is important because of their connection with quantum error correction12

and quantum computing [5].13

Skew triangular matrix rings presented in [3] gave us the opportunity to create new14

dot products, which is extremely beneficial for creating left and right dual codes15

different from the classic dual codes. In addition, we stipulated that the codes must16

be left-LCD codes (left-linear Complementary Dual codes).17

This paper is organized as follows. In Section 2, we define a new product on a18

matrix ring Mn(R) via the action of an automorphism θ ∈ Aut(R). This was19

inspired by [3] where a similar construction was defined on upper triangular matrix20

rings. We also introduce new dot products and their left and right orthogonality21

relations. We characterize self-dual codes with respect to this new dot product. We22

study the connections between some subsets of Rn arising from these definitions.23

In Section 3, we study a necessary and sufficient condition for a left linear code to24

be a left LCD code (left linear Complementary Dual codes). We give examples of25

the best known left LCD codes obtained in this way using F4, F8, F9 or F16 for R26

and the Frobenius automorphism for θ.27
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2. New products Via additive isomorphisms1

We will define a new product on a matrix ring Mn(R) via the action of an2

automorphism θ ∈ Aut(R). Let us start with a very general statement.3

Lemma 2.1. Let R,+, . be a ring and S,+ be an additive, abelian group such

that ϕ : R,+ −→ S,+ is an isomorphism of additive groups. Then the following

multiplication ∗ gives S a ring structure.

For s1, s2 ∈ S, s1 ∗ s2 = ϕ(ϕ−1(s1)ϕ
−1(s2))

The map ϕ : R → S is therefore a ring isomorphism.4

Proof. Let R,+, . be a ring and S,+ be an additive (=abelian) group such that5

ϕ : R,+ −→ S,+ is an isomorphism of additive groups. By definition, we have6

s1 ∗ s2 = ϕ(ϕ−1(s1)ϕ
−1(s2)). We compute7

s1 ∗ (s2 ∗ s3) = ϕ(ϕ−1(s1)ϕ
−1(s2 ∗ s3))

= ϕ(ϕ−1(s1)ϕ
−1(ϕ(ϕ−1(s2)ϕ

−1(s3))))

= ϕ(ϕ−1(s1)(ϕ
−1(s2)ϕ

−1(s3)))

= ϕ((ϕ−1(s1)ϕ
−1(s2))ϕ

−1(s3))

= (s1 ∗ s2) ∗ s3.

8

s1 ∗ (s2 + s3) = ϕ(ϕ−1(s1)ϕ
−1(s2 + s3))

= ϕ(ϕ−1(s1)ϕ
−1(s2) + ϕ−1(s1)ϕ

−1(s3))

= ϕ(ϕ−1(s1)ϕ
−1(s2)) + ϕ(ϕ−1(s1)ϕ

−1(s3))

= s1 ∗ s2 + s1 ∗ s3.

9

s1 ∗ ϕ(1R) = ϕ(ϕ−1(s1)ϕ
−1(ϕ(1)))

= ϕ(ϕ−1(s1)1) = s1.

10

ϕ(r1r2) = ϕ(ϕ−1(s1)ϕ
−1(s2))

= s1 ∗ s2 = ϕ(r1)ϕ(r2).

�11

Before coming to the main focus of our paper, let us apply this lemma and give12

an example:13

Example 2.2. (1) Consider Z/nZ and let m ∈ {1, . . . , n} be such that m and14

n are coprime. The map ϕ : Z/nZ,+ −→ Z/nZ+ defined by ϕ(1 +nZ) =15

m + nZ is an isomorphism of additive structure. This gives a new ring16

structure on Z/nZ where the unity will be m+ nZ.17
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(2) Consider Z/8Z and the map ϕ : Z/8Z,+, ∗ −→ Z/8Z,+, ∗ defined by1

ϕ(Z/8Z) = 3× (Z/8Z). 2 ∗ 3 = ϕ(ϕ−1(2)ϕ−1(3)) = ϕ(6.1) = 2.2

I(Z/8Z) = 2.(Z/8Z), ϕ(I(Z/8Z)) = ϕ(2.(Z/8Z)) = ϕ(2) ∗ Z/8Z =3

(6 ∗ (Z/8Z).4

We can apply this lemma to a matrix ringMn(R) and an automorphism θ of R,+5

(not necessarily a ring automorphism). We get an additive isomorphism, denoted6

ϕ : Mn(R) −→ Mn(R), by setting, for A = (Aij) ∈ Mn(R), ϕ(A)ij = θi−1(Aij).7

From ϕ we can create a new product on Mn(R). We describe this product in8

Theorem 2.3.9

Theorem 2.3. Let θ ∈ Aut(R), and ϕ the map defined above. Then the product ∗

defined on Mn(R),+ satisfies, for A = (aij) and B = (bij) we have

(A ∗B)ij =

n
∑

k=1

aikθ
i−k(bkj)

Proof. For 1 ≤ i, j ≤ n, we compute:10

(A ∗B)ij = ϕ(ϕ−1(A)ϕ−1(B))ij = θi−1((ϕ−1(A)ϕ−1(B))ij)

= θi−1(
∑

k

ϕ−1(A)ikϕ
−1(B)kj)

=
∑

k

θi−1(θ1−i(Aik)θ
1−k(Bkj))

=
∑

k

Aikθ
i−k(Bkj).

This concludes the proof. �11

Example 2.4. We define the additive map ϕ by:12

ϕ : M2(R) −→ M2(R)
(

a b

c d

)

7−→

(

a c

b d

)

;

13

(

a b

c d

)

∗

(

a′ b′

c′ d′

)

=ϕ(ϕ−1(

(

a b

c d

)

)ϕ−1(

(

a′ b′

c′ d′

)

))

=ϕ(

(

a c

b d

)(

a′ c′

b′ d′

)

)

=ϕ(

(

aa′ + cb′ ac′ + cd′

ba′ + db′ bc′ + dd′

)

)

=

(

aa′ + cb′ ba′ + db′

ac′ + cd′ bc′ + dd′

)

.
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Example 2.5. We define the additive map ϕ by:1

ϕ : M2(R) −→ M2(R)
(

a b

c d

)

7−→

(

b c

d a

)

;

2

(

a b

c d

)

∗

(

a′ b′

c′ d′

)

=ϕ(ϕ−1(

(

a b

c d

)

)ϕ−1(

(

a′ b′

c′ d′

)

))

=ϕ(

(

d a

b c

)(

d′ a′

b′ c′

)

).

=ϕ(

(

dd′ + ab′ da′ + ac′

bd′ + cb′ ba′ + cc′

)

)

=

(

da′ + ac′ bd′ + cb′

ba′ + cc′ dd′ + cb′

)

.

The map ϕ : Mn(R), . −→ Mn(R), ∗ gives an isomorphism of rings ( see Lemma3

2.1). This new product structure restricted to the subring of upper triangular4

matrices over a finite field F with the Frobenius map was already used in Habibi5

et al [3]. The next proposition is a particular case of Lemma 2.1.6

Proposition 2.6. Let ϕ : Mn(R), . −→ Mn(R), ∗ be the map define by ϕ(aij) =7

θi−1(aij). Then ϕ is an isomorphism of rings.8

Corollary 2.7. The inverse of a matrix A ∈ Mn(R), ∗ is the matrix ϕ(B) ∈9

Mn(R), ∗ where B is the usual inverse of ϕ−1(A).10

Proof. Suppose that ϕ−1(A)B = In, then A ∗ ϕ(B) = ϕ(ϕ−1(A)B) = ϕ(In) = In,11

as desired. �12

In order to introduce a scalar product related to the new product of matrices,13

we are forced to generalize the above construction as follows.14

Let R be a ring, and for any n, k ∈ N, suppose we have an additive isomorphism

ϕn,k : Mn,k(R),+ −→ Mn,k(R),+.

Now, if A ∈ Mn,k(R) and B ∈ Mk,l(R) we define15

(a) A ◦B = ϕ−1

n,l(ϕn,k(A)ϕk,l(B)).16

(b) A ∗B = ϕn,l(ϕ
−1

n,k(A)ϕ
−1

k,l (B)).17

There are many ways of defining the additive maps ϕn,k in general. For instance,

we could use any permutation of the nk entries of the matrices in Mn,k(R). In this

paper, we will consider an automorphism θ of the ring R and construct an additive

map ϕn,k as follows:

ϕn,k(A)ij = (θi−1(ai,j)) where A = (ai,j) ∈ Mn,k(R).

With these notations we have:18
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Lemma 2.8. Let R be a ring, A ∈ Mn,k(R), B ∈ Mk,l(R) and θ ∈ Aut(R). With1

the above notations we have:2

(1) (A ◦B)i,j =
∑

r Airθ
r−i(Br,j)3

(2) (A ∗B)i,j =
∑

r Airθ
i−r(Br,j).4

(3) If n = k the map ϕ : Mn(R),+, . −→ Mn(R),+, ∗ defined by ϕ((Aij)) =5

((θi−1)(Aij)) is a ring homomorphism.6

In (1) and (2) above, these products are additive on both variables but are linear7

only on the left.8

Proof. We have9

(A ◦B)ij = ϕ−1

n,l((ϕn,k(A)ϕk,l(B)))ij

= θ1−i(
∑

s

ϕn,k(A)isϕkl(B)sj)

= θ1−i(
∑

s

θi−1(Ais)θ
s−1(Bsj))

=
∑

s

Aisθ
s−i(Bsj).

A similar computation gives the second formula.10

(3) is left to the reader. �11

Let us remark that in the above definitions of the maps ϕn,k the indices n, k just12

fix the size of the matrices we are working with. In the sequel we will just write ϕ13

and drop the indices.14

We denote by Rn the space of rows M1,n(R) and by nR the space of columns

Mn,1(R). For x ∈ Rn, we denote xt ∈ nR the transpose of x. If we consider ϕ1,n

and ϕn,1, ◦ and ∗ give two scalar products i.e. biadditive maps from Rn × nR into

R. More explicitly we have, for a, b ∈ Rn we have:

a ◦ bt = ϕ−1

1,1(ϕ1,n(a)ϕn,1(b
t)) and a ∗ bt = ϕ1,1(ϕ

−1

1,n(a)ϕ
−1

n,1(b
t)).

In general, these scalar products are neither R-linear nor symmetric in the sense

that, in general, for a, b ∈ Rn a ◦ bt 6= b ◦ at and a ∗ bt 6= b ∗ at. Note that the

orthogonality with respect to these scalar products is not the same as the classical

orthogonality. Similarly, the orthogonalities for both the operations ◦ and ∗ are

different. Let C ⊆ Rn, we define

⊥∗C = { x ∈ Rn | x ∗ ct = 0, ∀c ∈ C} and C∗⊥ = {x ∈ Rn | c ∗ xt = 0, ∀c ∈ C}

⊥◦C = { x ∈ Rn | x ◦ ct = 0, ∀c ∈ C} and C◦⊥ = {x ∈ Rn | c ◦ xt = 0, ∀c ∈ C}

Remarks 2.9. We usually take ϕ1,1 = Id. In these cases15

(1) if ϕ1,n is a left linear map from Rn
R −→ Rn

R. Then scalar products given16

by ∗ and ◦ are left linear but just additive on the right.17

(2) if ϕ1,n is a right linear map from Rn
R −→ Rn

R. Then scalar products given18

by ∗ and ◦ are right linear but only additive on the left.19
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(3) If ϕ1,n and ϕn,1 are the identity maps (on Rn and nR respectively ) then ∗1

is the usual scalar product.2

(4) If ϕ1,n is the identity and for any (b1, . . . , bn) ∈ Rn, ϕ1,n((b1, . . . , bn)
t) =3

(b∗1, . . . , b
∗
n)

t where ∗ is an involution on R, then ∗ is an Hermitian product.4

Proposition 2.10. Let C ⊆ Rn, we have:5

(1) C∗,⊥ = (ϕn,1(ϕ
−1

1,n(C)⊥))t.6

(2) ϕ−1

1,n(
⊥∗C) = ϕ−1

n,1(C
t)⊥).7

(3) ⊥◦C = ϕ−1

1,n(ϕn,1(C
t)⊥).8

(4) C◦⊥ = ϕ−1

n1 (ϕ1,n(C)⊥).9

Proof. (1) Let the maps

ϕ1,n : M1,n(R) → M1,n(R) ; ϕn,1 : Mn,1(R) → Mn,1(R) and ϕ1,1 = Id.
10

C∗⊥ = {x ∈ Rn|ϕ1,1(ϕ
−1

1,n(c)ϕ
−1

n,1(x
t)) = 0, ∀c ∈ C}

= {x ∈ Rn|ϕ1,1(yϕ
−1

n,1(x
t)) = 0, ∀y ∈ ϕ−1

1,n(C)}

= {x ∈ Rn|ϕ−1

1,n(C)ϕ−1

n,1(x
t) = 0}

= (ϕn,1(ϕ
−1

1,n(C)⊥))t.

Hence the result.11

(2) This is left to the reader.12

(3)We compute:13

⊥◦C = { x ∈ Rn | x ◦ ct = 0, ∀c ∈ C}

= {x ∈ Rn|ϕ−1

1,1(ϕ1,n(x)ϕn,1(c
t)) = 0}

= {ϕ−1

1,n(x)|xϕn,1(c
t) = 0}

= ϕ−1

n,1(ϕn,1(C
t)⊥).

(4) This is left to the reader. �14

Similar results hold for the other scalar products. Thanks to this proposition we15

can characterize self-duality with respect to * via usual orthogonality.16

Corollary 2.11. A code C is a self-dual code for ∗ (i.e. C = C∗⊥) if and only17

ϕ−1

n,1(C
t) = ϕ−1

1,n(C)⊥. Similarly if C =⊥∗ C, then we have ϕ1,n(C) = ϕn,1(C
t)⊥.18

Similar results hold for the other scalar products.19

Examples 2.12. The map ϕ1,3 : M1,3(R) −→ M1,3(R), ϕ1,3(a1, a2, a3) = (λa3, a1, a2),20

where λ ∈ R and ϕ3,1(b1, b2, b3)
t = (b2, b1, b3)

t. The scalar product for ∗ given by21

(a1, a2, a3) ∗ (b1, b2, b3)
t = (λa3, a1, a2).(b2, b1, b3)

t = λa3b2 + a1b2 + a2b322

Let R = F4 = {0, 1, α, α2} with α2 + α+ 1 = 0, λ = α and C = 〈(1, 0, 1), (α, 1, 0)〉.23

Then (C)∗,⊥ = {(x, α2x, αx)|x ∈ F4}.24
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Let θ be an automorphism of R. For n ≥ 1, a = (a1, . . . , an) ∈ Rn, and b =1

(b1, . . . , bn) ∈ Rn, we define ϕ1,n(a) = a and ϕn,1(b
t) = (b1, θ(b2), . . . , θ

n−1(bn))
t.2

Explicitly we have a ∗ bt =
∑

r arθ
r−1(br) and a ◦ bt =

∑

r arθ
1−r(br).3

Proposition 2.13. Let C be a subset of Rn. We have:4

(1) ⊥∗C is always an R-submodule of Rn and C∗⊥ is always additive subgroup5

of Rn.6

(2) Let x, y ∈ Rn, we have x ∗ yt = x · ϕ(y), where · stands for the usual dot7

product.8

(3) We have C ⊆⊥∗ (C∗⊥) and C ⊆ (⊥∗Ct)∗⊥.9

(3′) We have C ⊆⊥◦ (C◦⊥) and C ⊆ (⊥◦Ct)◦⊥.10

(4) We have ⊥∗C = ϕ(Ct)⊥ and C⊥ = ϕ(C∗⊥).11

(4′) We have ⊥◦C = ϕ(Ct)⊥ and C⊥ = ϕ(C◦⊥).12

Proof. (1). These properties are direct consequences of the definitions.13

(2). Let x, y ∈ Rn, we have x∗yt =
∑n

i=1
xiθ

i−1(yi) = (x1, . . . , xn)ϕ((y1, . . . , yn)
t).14

(3). Let (x1, . . . , xn) ∈ C∗⊥ then for any c = (c1, . . . , cn) ∈ C, we have c ∗15

(x1, . . . , xn)
t = 0, i.e.

∑

ciθ
i−1(xi) = 0, i.e. (c1, . . . , cn) ∈

⊥,∗ {(x1, . . . , xn)}, this16

gives the first inclusion. The second is obtained similarly.17

(3’),(4) and (4’) are obtained similarly. �18

Let us remark that all the assertions of the above Proposition 2.13, except (2),19

are valid in the general setting of ∗ and ◦.20

21

3. Left LCD codes and Applications22

In this section, we fix θ ∈ Aut(R). We will use the ∗ multiplication for matrices23

as defined in Lemma 2.8. Analogues of the results that we will obtain are also true24

for the ◦ multiplication. We give the definition of a ∗-LCD code and a necessary25

and sufficient condition for a code is a ∗-LCD code.26

Definition 3.1. A left linear code C is ∗-LCD if C ∩C∗⊥ = {0} (C ∩⊥∗C = {0}).27

If C is a left linear code, we can define it via a set of row bases {c1, . . . , ck} ⊆ Rn.28

So if H is the k×n matrix defined by these vectors, we have that C = RkH . Since29

the map ϕ is a bijection, we can also define the code C by C = Rk ∗G for a matrix30

G ∈ Mk,n(R).31

Lemma 3.2. Let R be a commutative ring, y ∈ Rk and G ∈ Mk,n(R), we have32

(y ∗G)t = ϕ(G)t ∗ ϕ−1(yt).33

Proof. We compute (y ∗G)t = (yϕ(G))t = ϕ(G)tyt = ϕ(G)tϕ(ϕ−1(yt))34

= ϕ(G)t ∗ ϕ−1(yt). This concludes the proof. �35

Theorem 3.3. Let R be a commutative field and G ∈ Mk,n(R). The code C =36

Rk ∗G is a left *-LCD code if and only if G ∗ ϕ(G)t ∈ Mn(R) is invertible.37
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Proof. Assume that the matrix G∗ϕ(G)t ∈ Mn(R) is invertible, and let mathbfc ∈1

C ∩⊥,∗ C. There exists u ∈ Rk such that mathbfc = u ∗G. Since mathbfc ∈⊥,∗ C,2

we have that for every y ∈ Rk, mathbfc ∗ (y ∗ G)t = 0. We thus get that 0 =3

(u ∗G) ∗ (y ∗G)t. The above lemma then gives 0 = u ∗G ∗ ϕ(G)t ∗ ϕ−1(yt). Since4

y ∈ Rk, our assumption gives that u = 0 and hence c = 0. Conversely, let us show5

that if C ∩⊥,∗ C = {0} then G ∗ ϕ(G)t is invertible. Assume to the contrary that6

G ∗ ϕ(G)t is not invertible and let v ∈ Rk be such that v ∗G ∗ ϕ(G)t = 0. For any7

e = e′ ∗G ∈ C, we have v ∗G ∗ et = v ∗G ∗ (e′ ∗G)t∗ = v ∗G ∗ϕ(G)t ∗ϕ−1(e′t) = 0.8

We thus have that v ∗G ∈ C ∩⊥,∗ C, a contradiction. �9

Remarks 3.4. The above result has analogues in all the three remaining orthogo-10

nals viz. C∗,⊥,⊥,◦ C and C◦,⊥. Notice that for the right orthogonals C∗,⊥, C◦,⊥ we11

have to use a right linear code C defined by a matrix H ∈ Mn,k(R), i.e. C = HRk.12

3.1. Results and computation. In this subsection, we present examples of good13

left LCD codes and dual code C⊥∗ form the from Theorem 3.3 and Proposition14

2.10 ( ϕ−1(C⊥) = C∗⊥) over (GF (4)), (GF (8)), (GF (9)) and (GF (16)) . These15

codes ( left LCD) are either optimal or have the same parameters as best known16

linear codes available in the database [2].17

18

19
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Table 1. Examples of best known and optimal left-LCD codes

over GF (4) and GF (8)

Generator Matrix [n, k, d]q Type of Codes










1 0 0 0 w5 w2 1

0 1 0 0 w2 w2 1

0 0 1 0 w4 w6 w6

0 0 0 1 w6 1 w6











[7, 4, 4]8 C⊥,∗ Left-LCD











1 0 0 0 w2 0 w2

0 1 0 0 1 1 0

0 0 1 0 w2 w w2

0 0 0 1 0 w2 1











[7, 4, 3]4 C⊥,∗ Left-LCD







1 0 0 w2 w2 w2 1

0 1 0 1 1 0 1

0 0 0 1 w2 w2 w2






[7, 3, 4]4

⊥∗C







1 0 0 w2 w2 w3 w5 w6 w4 w

0 1 0 w5 w4 w2 w w4 w3 w6

0 0 1 w w5 w6 w6 w4 w w4






[10, 3, 8]8 C⊥∗ Left-LCD







1 0 0 w3 w3 w2 w6

0 1 0 w4 w5 1 w2

0 0 1 w4 w4 w4 w4






[7, 3, 4]8

⊥∗C



















1 0 0 0 0 0 w2 1 1 w2 w

0 1 0 0 0 0 w2 w 0 w 0

0 0 1 0 0 0 0 1 w2 w2 1

0 0 0 1 0 0 0 0 w w2 1

0 0 0 0 1 0 w2 0 0 1 w2

0 0 0 0 0 1 w2 w2 w 1 w2



















[11, 6, 4]4 C⊥,∗ Left-LCD















1 0 0 0 0 w 1 w2 0 0 0

0 1 0 0 0 w2 0 1 w2 w2 0

0 0 1 0 0 0 0 w 1 w 1

0 0 0 1 0 0 0 w 0 w2 w2

0 0 0 0 0 0 1 1 0 w w2















[11, 6, 4]4
⊥∗C
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Table 2. Examples of best known and optimal Left LCD codes

over GF (9) and GF (16)

Generator Matrix [n, k, d]q














1 0 0 0 w7 0 w w5 w 2 w3 w3 w3 w3 0 1 w2 w3 1

0 1 0 0 w6 0 w2 w3 w2 0 w6 w2 w 1 w5 w3 0 2 1

0 0 1 0 1 0 2 w3 0 w5 w3 0 w3 1 2 w6 w6 w5 w5

0 0 0 1 w5 0 w3 w2 w w3 1 w2 w7 w2 w3 2 w5 w3 w7

0 0 0 0 0 1 w7 2 w2 w3 1 w7 w5 w5 w w6 w7 w w















[19, 5, 12]9







1 0 0 0 w7 0 w w5 w 2 w3 w3 w3 w3 0 1 w2 w3 1

0 1 0 0 w2 0 w6 w w6 0 w2 w6 w3 1 w7 w 0 2 1

0 0 1 0 0 1 0 2 w3 0 w5 w3 0 w3 1 2 w6 w5 w5






[19, 3, 13]9















1 0 0 0 0 1 w7 2 w2 w3 1 w7 w5 w5 w w6 w7 w w

0 1 0 0 w5 0 w3 w7 w3 2 w w w w 0 1 w6 w 1

0 0 1 0 w2 0 w2 w3 w2 0 w6 w2 w 1 w5 w3 0 2 1

0 0 0 1 1 0 2 w 0 w7 ww 0 w2 1 2 w2 w2 w7 w7

0 0 0 0 w5 0 w3 w2 w w3 1 w2 w7 w2 w3 2 w5 w3 w7















[19, 5]9



















1 0 0 0 0 0 0 w10 w4 w6 w4 w13 w w9 w13 w5 1

0 1 0 0 0 0 w12 w10 w9 w11 w11 w12 w2 w13 w12 w12 w12

0 0 1 0 0 0 w14 w7 w8 w9 w10 w w10 w5 w12 1 w

0 0 0 1 0 0 w3 w3 w9 w12 w6 w3 w2 w3 1 w3 1

0 0 0 0 1 0 w5 w2 w12 w5 w10 w12 w4 w6 w9 w10 w12

0 0 0 0 0 1 w10 1 w10 w5 w10 1 w10 1 w5 1 1



















[17, 6, 10]16
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