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A new quantum mechanical distribution function nI(ε), is derived for the condition n ≥ g, where
in contrast to the exclusion principle n ≤ g for fermions, each energy state must be populated by at
least one particle. Although the particles share many features with bosons, the anomalous behavior
of nI(ε) precludes Bose-Einstein condensation (BEC) due to the required occupancy of the excited
states, which creates a permanently pressurized background at T = 0, similar to the degeneracy
pressure of fermions. An exhaustive classification scheme is presented for both distinguishable
and indistinguishable, particles and energy levels based on Richard Stanley’s twelvefold way in
combinatorics.

The statistical distribution function, n(ε) for identi-
cal particles has been an essential component of quan-
tum mechanics. Historically, the behavior of n(ε) has
been over-determined by key experimental facts in a
wide variety of physical systems such as the black-
body spectrum, semiconductor heterostructures, astro-
physical spectroscopic measurements, low temperature
T , and condensed matter systems[1–4]. Theoretical ap-
proaches converge, from the grand-canonical ensemble
to the micro-canonical ensemble, as well as the more
mathematically rigorous Darwin-Fowler method of mean
values[5–10].

Consider a system within the microcanonical ensemble
having a fixed number of particles N =

∑

j nj , total en-
ergy U =

∑

j εjnj , and volume V [11]. One can make use
of the mathematical structures found in combinatorial
counting problems, particularly the number of ways that
one can distribute a specified number of balls into a fixed
number of boxes as shown in Table 1, known as Richard
Stanley’s twelvefold way[12]. For quantum systems in
particular there are only three possible arrangements of
the identical balls, of which represent indistinguishable
particles, into the labeled boxes that play the role of dis-
tinguishable energy states. I will introduce the new case
of the second row, third column of Table 1.

Unrestricted sorting of n and g. Starting with second
row, first column of Table 1, the microstate configuration
of bosons can be constructed from the distinct orderings
of gj − 1 lines and nj circles as shown in Fig.1(a)

tBj =

(

gj + nj − 1

nj

)

=
(gj + nj − 1)!

nj !(gj − 1)!
(1)

where the standard manipulations lead to the Bose-
Einstein distribution,

nB
j (ε) =

gj

e(εj−µ)/(kBT )) − 1
(2)

nj ≤ gj - The exclusion principle. Next, by examining
the second row, second column of Table 1 the resulting
distribution represents fermions. This particular occu-
pancy of the energy levels is depicted in Fig.1(b), where

FIG. 1. Typical configurations of the three combinatorially
distinct possibilities for identical particles distributed into
distinguishable states. (a) Unrestricted sorting, allowing for
more than one particle in a state, in addition to empty states.
(b) The exclusion principle, nj ≤ gj , with no more than one
particle per state, and allowing empty states. (c) The new
case introduced here: nj ≥ gj , where all sub-states must be
occupied by at least one particle, while no upper bound is
imposed.

this scenario implies that only one particle can occupy a
sub-state of g,

tFj =

(

gj
nj

)

=
gj !

nj!(gj − nj)!
(3)

This yields the Fermi-Dirac distribution,

nF
j (ε) =

gj

e(εj−µ)/(kBT )) + 1
(4)

nj ≥ gj - The inclusion constraint. The two preceding
scenarios are not exhaustive. The primary purpose of
this paper is to demonstrate the combinatorially distinct
possibility of the second row, third column of Table 1.
The inclusion principle introduced here, is a new case of
quantum statistics. A single particle is attached to ev-
ery positive energy level, requiring nj ≥ gj, such that no
positive energy level is vacant as shown in Fig.1 (c). Al-
though, a similar occupation of the excited states might

http://arxiv.org/abs/2411.09877v1


2

be possible in the classical limit kBT ≫ εj , where the
phase-space density (number of particles per quantum
state) is very high, here it is not assumed that this con-
dition is generated from external conditions. Rather, the
level occupancy is presupposed as an intrinsic property
of the particles. Therefore, the microstate configuration

of interest can be adapted from the surjective case for
identical balls in distinct boxes[12],

tIj =

(

nj − 1

gj − 1

)

=
(nj − 1)!

(gj − 1)!(nj − gj)!
(5)

Table 1: The Twelvefold Way - How many ways can n balls be sorted into g boxes?
{

n
g

}

- Stirling numbers of the 2nd kind

p≤g(n) - integer partitions of n into at most g parts
pg(n) - integer partitions of n into exactly g parts

Ball and Box Set Arbitrary (Any Sorting) Injective (Maximum 1 ball
per box)

Surjective (Minimum 1
ball per box)

Distinct Balls

Distinct Boxes gn g!
(g−n)! g!

{

n
g

}

Identical Balls

Distinct Boxes
(

g+n−1
n

) (

g
n

) (

n−1
g−1

)

Distinct Balls
Identical Boxes

∑g
j=0

{

n
j

}

1 if n ≤ g
{

n
g

}

Identical Balls
Identical Boxes p≤g(n) 1 if n ≤ g pg(n)

For large values of n and g, the total number of mi-
crostates becomes a product, tT ≈

∏

j
nj !

gj !(nj−gj)!
and af-

ter the use of Stirling’s approximation: lnN ! ≈ N lnN −
N , the entropy S = ln tT can be expressed as.

S =
∑

j

nj lnnj − gj ln gj − (nj − gj) ln (nj − gj) (6)

Next, we develop the condition for an entropy maximum.
Derivatives are taken with respect to nj . The macrostate
conditions dN =

∑

j dnj = 0 and dU =
∑

j εjdnj = 0
are enforced with Lagrange multipliers α and β,

dS

dnj
=

∑

j

ln

(

nj

nj − gj

)

− α− βεj = 0 (7)

Evidently, a dimensional analysis of the thermodynamic
potential dU = 1

βdS − α
β dN , reveals the correspondence

with kBT = 1/β and the chemical potential µ = −α/β.
After solving for nj, the final expression becomes,

nI
j (εj) =

gje
β(εj−µ)

eβ(εj−µ) − 1
(8)

Consider a three dimensional, non-interacting gas of

these particles with energy εp = p2

2m . Apparently, the
fixed background of excited states will have important
thermodynamic consequences. It may be tempting to as-
sign a spin s to such quantum particles, where in the
absence of a magnetic field, the degeneracy factor is

g = 2s + 1. However, no assumptions about the per-
mutation symmetry under the exchange of two particles
should be made without a more rigorous development of
the Fock space. Naively, in the number occupancy basis
the eigenstates are given by,

|np1
, np2

, · · ·npN
〉 ∝ (|ψp1

〉)np1 (|ψp2
〉)np2 , · · · (|ψpN

〉)npN

(9)
In order to enforce the inclusion principle mathemati-
cally, the state |Γ〉 defined below,

|Γ〉 = |1, 1, 1, · · · 〉 (10)

must vanish after applying annihilation operator ap |Γ〉 =
0, for all values of p. This condition will definitely have
consequences for the structure of the wavefunctions. On
the other hand, for the usual bosonic case, a “simple”
BEC transition occurs where the ~p = 0 state is macro-
scopically occupied at T = 0[4, 6],

|BEC〉 = |N, 0, 0, · · · 〉 ∝
(

a†p=0

)N−1 ∏

p6=0

ap |Γ〉 = 0

(11)
Thus, the |BEC〉 state is forbidden because of the con-
dition ap |Γ〉 = 0.
Alternatively, one can derive Eq.(8) exactly, with

no approximations by applying the grand canonical
ensemble[13]. The conventional approach takes on sum-
mations over each occupation number np, with allowed
values: [0, 1] for fermions and [0, 1, 2, . . . ] for bosons. For
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FIG. 2. Comparison of the 3 quantum distributions. Unlike
(nB)/g and (nF )/g, which decay to zero at (ε − µ) ≫ kBT ,
(nB)/g saturates at unity.

the new case considered here: [1, 2, . . . ] or np 6= 0. The
grand partition function for that system becomes,

ZG =
∏

p

∑

np 6=0

e−β(εp−µ)np =
∏

p

e−β(εp−µ)

1− e−β(εp−µ)
(12)

where the geometric series converges only if e−β(ε−µ) < 1,
which is true for µ < 0. Therefore, the average particle
number for a single particle sub-state: ZG =

∏

p
Zp be-

comes,

〈np〉 = kBT
1

Zp

(

∂Zp

∂µ

)

V,T

=
eβ(εp−µ)

eβ(εp−µ) − 1
(13)

Hence, Eq.(8) that was derived earlier within the micro-
canonical ensemble is also confirmed by the grand canon-
ical ensemble approach, given that for a single particle
level, g 〈np〉 = nI(εp). As expected, the particle num-

ber variance σ2
N = kBT

(

∂〈np〉
∂µ

)

V,T
∼ (kBT )2

(ε−µ)2 , retains the

bosonic form at kBT ≫ εj since the fixed occupancy of
excited states should not significantly contribute to σN .
Thermodynamics. It is useful to express Eq.(8) as,

nI
j (εj) = nB

j (εj) + g (14)

An analysis of various thermodynamic quantities in terms
of different components will help to elucidate the physical
properties of the system. The ~p = 0 contribution should
be separated and treated carefully, especially as T →
0, or where the fugacity z = eµβ → 1. In the limit
of large V , and constant specific volume v = V/N , the
sums over discrete energy levels for the excited states can
be replaced by integrals over g

∑

~p6=0· · · = g V
(2π~)3

∫

d3p.

The average particle number becomes the sum of three
terms,

N =
∑

p

nI(εp) = N0(z) +N1(z) +N2 (15)

The first term describes the number of particles occupy-
ing the ground state energy,

N0(z) = nI(εp=0) =
g

1− z
(16)

of which, diverges at z = 1. Moreover, N1(z) and N2 ac-
count for the excited states of the nB term and occupied
background respectively,

N1(z) =
V

(2π~)
3

∫

nB (εp) d
3p =

gNv

λ3
f+
3/2(z) (17)

N2 =
gV m3/2

√
2π2~3

∫ Ω

0

ε1/2dε =
4

3
√
π

gNv

λ3

(

Ω

kBT

)3/2

(18)

where the thermal wavelength is defined by λ =
~
√

(2π)/(mkBT ) and the generalized ζ function is de-

fined by f+
ν (z) = 1

(ν−1)!

∫∞

0
xν−1

z−1ex−1dx [14]. Upon in-

spection, it is clear that Eq.(18) would seem problematic
since it diverges at the upper limit of integration. Con-
sequently, a high energy cutoff Ω should ensure finite
results.
In order to determine whether the system transitions

into a “simple” BEC state, it is necessary to study the
behavior of the condensate fraction,

ν0 = lim
N→∞

N0(z)/(N(z)) (19)

Since N1(z = 1) has a limiting value in the conventional
BEC transition, N1(z = 1) ∝ T 3/2, and therefore the
number of excited states arising from N1(z = 1) vanishes
at low temperatures. However, sinceN2 is independent of
both T and z, there cannot be a macroscopic occupation
of the ground state unless Ω is sufficiently small. Thus,
ν0 can never reach the value of 1 and a complete BEC
transition is not possible. This should be apparent from
the outset since a significant fraction of the excited states
are permanently occupied and can never move into the
ground state energy.
The pressure P can be determined from the grand po-

tential Φ, starting with Eq.(12):

P = −Φ

V
=

1

V β
ln (ZG) =

1

V β

∑

p

ln

(

e−β(εp−µ)

1− e−β(εp−µ)

)

=
gkBT

λ3
f+
5/2(z) +

4

5
√
π

g

λ3
Ω5/2

(kBT )3/2
− µN2

V
(20)
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The common wisdom suggests that as the distribution
function of a quantum gas flattens, which generally oc-
curs as T increases, then P increases, reflecting a shift
away from quantum effects and toward classical ideal gas
behavior. Furthermore, higher excited state occupation
results in a higher average kinetic energy of the gas, which
translates directly to higher P , since it is associated with
particle collisions and their average momentum transfer.
When approaching the T → 0 limit of Eq.(20), P ∼ Ω5/2,
which is similar to the degeneracy pressure of fermions
PF = 2

5εF
N
V , where the cutoff Ω is analogous to the Fermi

level, εF .

After examining the second row of Table. 1, an ex-
haustive analysis of the possible distribution functions
for identical particles populating distinguishable energy
levels has been undertaken. However, the fourth row
suggests the possibility of indistinguishable energy lev-
els. The Gibbs paradox points out that from from a
classical standpoint, the non-extensivity of the entropy
arises due to the neglect of the factor 1/N ! when over-
counting configurations of the partition function for iden-
tical particles[11]. It would be an interesting endeavor
to study the consequences of the microstates being con-
structed from different integer partitions of n into g parts.
New paradoxical inconsistencies could arise from enforc-
ing the mathematical conditions that account for identi-
cal energy states.

To conclude, a classification scheme for identical par-
ticles has been developed by applying important results
from enumerative combinatorics, namely the twelvefold
way of n balls sorted into g boxes. The distribution func-
tion, nI(ε) for n ≥ g quantum particles has, for the
first time, been derived exactly from within the micro-
canonical and the grand canonical ensembles. At first
glance, many of its features are similar to bosons how-
ever a “simple”, non-fragmented BEC state is prevented
and the system exhibits a T = 0 pressure that is energy
cutoff dependent. In other words, the system shares fea-
tures of both fermions and bosons. Such particles could
have tremendous implications in various high energy, as-

trophysical and cosmological theories, specifically dark
matter candidates. Unlike ordinary matter, dark matter
is “collisionless” under normal conditions, meaning dark
matter particles rarely interact with each other or with
regular matter in a way that would create traditional
pressure[15]. Furthermore, the inclusion principle could
possibly explain some anomalies in astrophysical obser-
vations. For example, in galactic halos, a non-fermionic
T = 0 pressure present in dark matter could act as a sta-
bilizing factor against gravitational collapse. In galaxy
clusters, this helps the dark matter halo retain its shape,
size, and density profile[16].
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