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Anomaly detection is a vital technique for exploring signatures of new physics Beyond the Stan-
dard Model (BSM) at the Large Hadron Collider (LHC). The vast number of collisions generated
by the LHC demands sophisticated deep learning techniques. Similarity learning, a self-supervised
machine learning, detects anomalous signals by estimating their similarity to background events. In
this paper, we explore the potential of quantum computers for anomaly detection through similar-
ity learning, leveraging the power of quantum computing to enhance the known similarity learning
method. In the realm of noisy intermediate-scale quantum (NISQ) devices, we employ a hybrid
classical-quantum network to search for heavy scalar resonances in the di-Higgs production channel.
In the absence of quantum noise, the hybrid network demonstrates improvement over the known
similarity learning method. Moreover, we employ a clustering algorithm to reduce measurement
noise from limited shot counts, resulting in 9% improvement in the hybrid network performance.
Our analysis highlights the applicability of quantum algorithms for LHC data analysis, where im-
provements are anticipated with the advent of fault-tolerant quantum computers.
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I. INTRODUCTION

Since the discovery of the Higgs boson, the Large
Hadron Collider (LHC) has been actively searching for
signatures of beyond the Standard Model (BSM). These
searches are typically based on prior knowledge of BSM
properties. Despite extensive model-dependent searches,
there has been no compelling evidence of new physics.
One major challenge is the sheer number of possible new
physics models, which makes it impossible to explore
them comprehensively. Even if all theoretical hypothe-
ses were tested, alternative scenarios might still be over-
looked.

Anomaly detection offers a model-agnostic approach
that does not require prior knowledge of the specific
nature of BSM events. The general strategy in these
analyses is to compare data directly with simulations
across a large number of exclusive final states. Model-
agnostic method has been performed by ATLAS [1–3]
and CMS [4–6]. However, these approaches are sensitive
to a large number of final states, which can lead to the
look-elsewhere effect [7], an increased probability of ob-
serving significant fluctuations simply due to the large
number of compared distributions. Furthermore, these
methods rely heavily on the accuracy of background sim-
ulations, and their validity depends on the accuracy of
background modelling.

In practice, anomaly detection techniques at the LHC
use advanced machine learning models that are trained
on known backgrounds and then applied to detect
events that deviate from the expected patterns [8–25].
These techniques include self-supervised learning meth-
ods, which do not require prior knowledge of the exact na-
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ture of the anomalies. In particular, weakly supervised,
density-based methods identify a signal phase space by
comparing dense regions, which contain both signal and
background, with low density regions containing back-
ground only. This method has been highly successful in
applications such as signal bump hunting [26–32]. The
main advantage of this method is its independence from
the accuracy of event simulations, allowing the model to
be directly applied to the collected LHC data. However,
this approach assumes that the signal is localized in a
phase space, often identified using an invariant mass dis-
tribution, to pinpoint the signal region.

The major issue of the density-based approach is that
the network performance depends on the phase space in-
formation. This means that a simple change in the four
momenta of the final state particles changes the anomaly
score. Similarity Learning (SL) methods mitigate this is-
sue by identifying anomalous signal events based on their
similarity to background events. This is achieved by em-
ploying a pair of neural network encoders that map in-
put events into a latent space, ensuring that signal and
background events are represented distinctly. SL meth-
ods have been used in LHC analysis in [33, 34] and for
anomaly detection in [35].

Recently, quantum computing has been proposed for
anomaly detection in LHC analyses [36–43]. It has been
demonstrated that quantum computers can effectively
learn the similarity between different datasets [44, 45].
One of the most significant advantages of this approach is
the potential for exponential speedup. Classical machine
learning algorithms often scale inefficiently as dataset size
or model complexity increases, whereas quantum algo-
rithms can leverage superposition to perform multiple
computations simultaneously. This could, in principle,
lead to an exponential reduction in computation time
for certain tasks. Additionally, quantum entanglement
enhances the ability of quantum models to capture in-
tricate correlations in the data, further boosting their
performance in complex analyses.

Although classical SL learning and quantum methods
have each demonstrated high performance, a well-defined
quantum SL approach for anomaly detection has yet to
emerge. Employing quantum computing for SL has the
potential to enhance the performance of each approach
individually. On the one hand, the SL method is op-
timized to learn similarities between input events with-
out labels; on the other hand, the quantum computer
provides a high dimensional space, the Hilbert space of
entangled qubits, to analyze the underlying structure of
these events.

In this paper, we investigate the applicability of quan-
tum computers for anomaly detection based on the SL
method. Given the limitation of the current NISQ de-
vices, we consider a hybrid classical-quantum network.
Similar to the classical SL method, the hybrid network
consists of a pair of Transformer encoders that map
the input data into lower-dimension latent space. The
mapped data is then encoded into the qubits with sequen-

tial unitary transformation. Applying a swap test, the
output measurement quantifies the degree of similarity
between the input events. This degree of similarity can
be used as a cut-off score for detecting anomalous events.
In fact, the measured similarity is significantly impacted
by the noise in current quantum computers. This noise
introduces substantial uncertainty in the similarity mea-
surements, thereby reducing the network’s efficiency. We
propose a classical clustering method to alleviate the un-
certainty caused by the currently unavoidable quantum
noise.
This paper is structured as follows. In section II we dis-

cuss the SL methods elaborating the anomaly detection
using classical and quantum SL approaches. In section
III, we outline the strategy for the numerical analysis.
Specifically, we consider the process of heavy scalar res-
onance decaying to di-Higgs at the LHC. The results are
given in section IV and the conclusion in section V.

II. SIMILARITY LEARNING

SL is designed to learn effective data representations
by comparing pairs of similar and dissimilar features. To
achieve this, an SL network employs two encoders that
process input data in pairs. By contrasting positive pairs,
i.e. those with similar information, with negative pairs
with dissimilar information, the network learns to distin-
guish between signal and background events without re-
quiring labels. This is achieved by mapping input pairs
into a latent space, where positive pairs are positioned
close together, while negative pairs are pushed farther
apart.
The construction of positive and negative pairs is crit-

ical for the success of SL tasks and must be carefully
addressed. Since no labels are used in this approach, we
specifically assume that positive pairs consist of match-
ing each event in the dataset with an augmented ver-
sion of itself, while negative pairs are created by pairing
each event with all other events, excluding itself or its
augmented versions. The augmentations provide vari-
ous perspective and transformations of the same event,
enabling the network to learn robust and meaningful rep-
resentations of unlabeled data. Importantly, these data
augmentations should be Lorentz invariant to ensure con-
sistency with physical principles. We consider three aug-
mentation functions as in [35]:

• Randomly rotate the azimuthal angle ϕ of each par-
ticle in the event with angle sampled from [0, 2π].

• Smearing the η-ϕ coordinates (η being the pseudo-
rapidity) of each particle in the event by resampling
from a Normal distribution centred on the original
η-ϕ values, with a variance equal to the inverse of
the particle’s transverse momentum.

• Smearing the transverse momentum pT of each ob-
ject by resampling from a Normal distribution cen-
tred on the original value, with a variance of the
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inverse of the transverse momentum of the parti-
cle.

These augmentations reflect the imperfection of the
detectors and the symmetry of the events under the ro-
tation of the azimuth angle. Even though the augmented
version of the event may appear different from the origi-
nal event, it still stems from the same interaction process
and should be recognized as similar by the network.

Once positive and negative pairs are projected onto
the latent space of the network via encoders, minimizing
(maximizing) the distance in the network latent space
between the positive (negative) pairs can be done using
a contrastive loss function. Alternatively, one can embed
the projected latent space data onto a Variational Quan-
tum Circuit (VQC) and minimize a Hilbert-Schmidt (HS)
loss function, which is a metric function that measures
the distance between the input pair. This approach can
be considered as the quantum version of classical SL
learning.

In this section, we describe the anomaly detection
method using SL techniques. We consider two networks,
a classical SL network proposed in [46] and a hybrid
classical-quantum network proposed in the current paper.
In both approaches a pair of Transformer encoders with
shared weights are used to encode the high-dimensional
input data into a latent space of the network.

A. Classical similarity learning

At the heart of SL lies the idea that representations of
augmented versions of the same instance (positive pairs)
should be pulled closer in the latent space, while repre-
sentations of different instances (negative pairs) should
be pushed apart. The model is optimized by contrasting
these examples via minimizing a contrastive loss function.
This loss function operates in the latent space where data
points are projected by the network encoders.

During each training iteration, we apply random aug-
mentations to the input data. This results in two dis-
tinct but physically equivalent views for each event in the
training batch. The event pair, original and augmented,
passes through the two encoder networks, generating two
feature representations. Since the encoder weights are
shared between the event pair, the model learns invari-
ant representations robust to the applied physical aug-
mentations. The feature representations are then passed
through a projection head, a fully connected layer, which
projects the representations into a new space where the
contrastive loss function will be applied.

Once the embeddings for all events in the training
batch are computed, the contrastive loss is applied to
maximize the similarity between positive pairs and min-
imize the similarity between negative ones. Contrastive
loss has the form

Lcontras = −
∑
i∈N

log
exp (s(zi, z

′
i)/τ)∑

i ̸=j∈N

exp (s(zi, zj)/τ)
, (1)

where the primed element indicates the augmented ver-
sion of the event and τ is a regularization parameter. The
similarity function s(·, ·) is the cosine similarity between
the input pairs

s(zi, zj) =
zi · zj

∥zi∥∥zj∥
= cosϕij , (2)

with ϕij defining the similarity magnitude between the
two events, i.e., ϕij ∼ 0 when the two events are similar,
while ϕij ∼ 1 when the two events originate from dif-
ferent classes. The regularization parameter τ controls
the sharpness of the similarity distribution: a smaller τ
makes the similarity distribution sharper, placing more
emphasis on “hard” negative events, those that are some-
what similar but not identical. It balances the trade-off
between focusing too much on negatives that are far away
or over-emphasizing hard negatives, which can be diffi-
cult to separate.
After the network is trained, the projection head is

discarded, and the encoder network is used to embed
the inputs into a latent space. The embedded data are
evaluated by freezing the encoder1 and training a simple
Linear Classifier (LC) on top of the learned embeddings.
A simple LC consists of a single fully connected layer
with softmax activation for classification tasks; this takes
the feature vectors produced by the frozen encoder and
tries to map them to the desired output classes, signal or
background based on pseudo labeled data.
This is a common evaluation technique called linear

evaluation. The idea here is to assess the representations
learned by this encoder without further modifying them.
The linear evaluation protocol is based on the assump-
tion that a well-trained encoder will produce high-quality,
discriminative features, even for complex datasets. These
features should ideally contain enough information such
that a simple linear model can easily separate different
classes. If the learned features are good, the LC will per-
form well, even though it has only a linear layer without
any hidden layers and has limited complexity.

B. Quantum similarity learning

Quantum computers offer an alternative approach for
anomaly detection by constructing a hybrid classical-
quantum network for SL, as shown in Figure 1. Similar to
the classical SL, the hybrid version works by using a pair
of classical encoders with shared weights. The encoders
map the input data into a lower-dimensional space. The
dimension of the latent space is fixed by the number of
the used qubits. A VQC with one ancillary qubit is then
used to measure the similarity between the embedded
data by the classical encoders. The VQC first encodes

1 This means that the weights of the encoder are no longer updated
in the subsequent steps.
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the mapped data onto the designated qubits. Once the
data is encoded, parametric unitary gates are applied
to process it. To capture the complexity of the input
data, the VQC can be repeated multiple times, with the
number of repetitions to be optimized for the best perfor-
mance. Finally, to measure the similarity between the in-
put pair, a controlled-swap (CSWAP) test circuit is used
[47]. The CSWAP test calculates the overlap, quantum
fidelity, between the quantum states by projecting the
states onto an ancillary qubit. The final output mea-
sures the similarity between the two states with proba-
bility P = |⟨ψ|ϕ⟩|2, where P = 1 indicates the two states
are identical and P = 0 indicates completely different
states. During the training, a classical optimizer is used
to optimize the free parameters of the classical encoders
and those of the VQC.2 As a result, the hybrid network
takes pairs of positive or negative events and tries to max-
imize (minimize) the quantum fidelity between positive
(negative) pairs.

The key point of VQC training lies in the initial encod-
ing of the classical data. This encoding can be viewed as
a mapping of the classical data into the Hilbert space of
the qubits. In this context, data encoding is not merely a
preparatory step; it acts as a feature map that alters the
structure of the classical data in a non-trivial way. Specif-
ically, the encoding gates apply nonlinear operations to
the data, which can alter the distances between the classi-
cal data points once mapped onto the qubit Hilbert space.
If this mapping makes the data linearly separable, it en-
hances the expressive power of the VQC and improves
its classification capabilities. Traditional data encoding
does not change the distance between the states from
the different classes, because it utilizes unitary quantum
gates acting on quantum states, and hence linear opera-
tions, see Appendix A for more details. However, VQC
with “variational encoding” and repeated data embed-
ding offers a novel approach by training the mapping pro-
cess to maximize the distance between data points from
distinct classes, thereby improving classification perfor-
mance. Variational encoding can be written as a sum of
a multi-dimensional partial Fourier series [48]

fθ(x) =

L∑
ω=−L

cω(θ)e
iωx , (3)

with L is the number of the repeated blocks. The fre-
quency spectrum is determined by the eigenvalues of the
data encoding gates, while the Fourier coefficients de-
pend on the overall circuit structure. Since quantum
models yield real-valued outputs, the learned function
can be expressed as a linear combination of sine and co-
sine terms, cos(ω xi) and sin(ω xi). The representation

2 VQC also called parameterized quantum circuit in which the uni-
tary gates are parameterized by free parameters, θ, that control
the rotation magnitude of the qubit.

of quantum models as Fourier sums offers valuable in-
sights into the function space the model can learn. The
frequency spectrum defines the exponential part of the
accessible functions in the quantum circuit, while the
Fourier coefficients dictate how these functions are com-
bined. This perspective reveals the function classes that
the quantum model can learn. With repeated encoding
layers, the VQC behaves like a Fourier sum of trigono-
metric functions, where the embedding blocks determine
the frequencies, and the variational blocks govern the am-
plitude. Repeating this process increases the nonlinear-
ity of the learned function, boosting the expressiveness
needed for high-performing classification.
The structure of a single VQC comprises three main

parts: a variational data encoding layer U(x, θ), a strong
entangled layer and a variational layer U(ϕ). Each of the
three components, highlighted in yellow in Figure 1, will
be described in the following.
Variational encoding layer in which both the data

encoding process and the trainable parameters are in-
tertwined, allowing the circuit to optimally learn how
to encode the classical data. Encoding process acting on
registered qubits in an initial state |0⟩⊗n can be expressed
as [49]

|ψencoded(x, θ)⟩ = U(x, θ)|0⟩⊗n = n∏
i,j,k=1

RZ(xi + θi)RY (xj + θj)RZ(xk + θk)

 |0⟩⊗n ,

(4)

where n represents the number of the qubits and RZ ,RY

are rotational gates around the Z- and Y-axis of the Bloch
sphere, respectively; x represents the latent space data
that are mapped by the encoders pair, and θ are the train-
able parameters that optimize the data encoding during
the training process.
Strong entangled layer increases the expressive

power of a quantum circuit by increasing the number of
the entangled qubits n in which the resulting states are
2n. Entanglement can enhance the expressive power of
the circuit because the system can explore more complex
correlations between qubits, which is necessary for rep-
resenting complex quantum states. For this purpose, we
use the non-parametric Controlled-Z (CZ) gate, a two-
qubit gate that applies the Pauli-Z rotation to the target
qubit. A sequence of CZ gates is applied to all neighbour-
ing qubits in the VQC, resulting in a transformation of
the encoded quantum state as

|ψentangled⟩ =
n−1∏
i=1

CZi,i+1

 n⊗
j=1

|ψencoded⟩j

 . (5)

Variational layer is added to the quantum circuit
after the entanglement. This layer consists of parameter-
ized quantum gates that are optimized during training.
The final quantum states can be expressed as

|ψfinal⟩ = U(ϕ)|ψentangled⟩ , (6)
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FIG. 1. Schematic architecture of the hybrid classical-quantum network for a VQC with 7 qubits. The input to the network
consists of pairs of events: a positive pair, which consists of the original event and its augmented version, and a negative pair,
which consists of the original event with another event in the training batch. Two Transformer encoders with shared weights
are highlighted in green. A projection normalization layer applied to the Transformer outputs is highlighted in blue. The
VQC highlighted in yellow uses 6 registered qubits and an ancillary qubit for measurement. Filled circles represent strong
entanglement with CZ gates, and CSWAP gates are added at the end of the VQC. The network’s output is the fidelity between
the input events, which quantifies the similarity between the two inputs. Visualization of the VQC is done by using a quantum
circuit simulator Quirk.

with U(ϕ) being a unitary rotation defined in Appendix
A.

The VQC can be repeated multiple times to improve
the expressive power of the network. Finally, to esti-
mate an overlap between the processed quantum states
|ψ1

final⟩ and |ψ2
final⟩,3 we use a CSWAP test with an ancil-

lary qubit for measurement [50]. A measurement on this
ancillary qubit in a computational basis provides an esti-
mation of fidelity between two states as |⟨ψ2

final|ψ1
final⟩|2.

In this case, the network tries to maximize (minimize)
the fidelity between the two quantum states if they be-
long to a positive (negative) pair. As the calculation for
the fidelity is based on the probability, one needs to per-
form multiple CSWAP tests, and the uncertainty in the
fidelity decreases as O(1/

√
k) with k repetitions of the

CSWAP test.
The output of the hybrid classical-quantum network,

with a VQC of 7 qubits, can be expressed as

⟨ψfinal|σz|ψfinal⟩ with

|ψfinal⟩ =
m−3∏

i

CWAP|c, ψ1
i , ψ

2
i+3⟩ ,

(7)

where m is the number of the registered qubits, c is the
ancillary qubit and the quantum states, and ψ1, ψ2 are
expressed as

|ψ1,2⟩ = U(ϕ)

(
n−1∏
i=1

CZi,i+1 U(T (x1,2), θ)|0⟩⊗n

)
, (8)

3 These states represent the event pair, either positive or nega-
tive pair, being processed by the classical encoders pair and the
repetitions of VQCs.

where n is the number of the registered qubits, T rep-
resents the classical Transformer encoder as described in
Appendix B, and x1,2 is the input event pair, either pos-
itive or negative. The output probability measures the
similarity between the input event pair, with P = 1 when
the two events are identical and P = 0 when the two
events are different.
A training metric loss function is used to maximize the

similarity between positive pairs during the training pro-
cess. The purpose of this loss function is to map events
from positive pairs close together while pushing apart the
negative pairs on the Hilbert space of the qubit. In su-
pervised learning, where labels are provided to identify
the signal and background events during training, a loss
function based on Hilbert-Schmidt (HS) distance can be
used. The HS distance is given by

DHS(ρ, σ) = Tr
[
(ρ− σ)2

]
, (9)

where ρ and σ are the mixed density matrices of each
event in the pair in the training batch:

ρ =
1

M

∑
i∈batch

|ψ1⟩⟨ψ1| and σ =
1

M

∑
j ̸=i∈batch

|ψ2⟩⟨ψ2| ,

(10)
with i, j running over the batch size M . Recalling that
the quantum fidelity between pure states can be ex-
pressed as |⟨ψ1|ψ2⟩|2 = Tr(ρσ) [51], HS loss function can
be defined as [52]

Lsupervised
HS = 1− 1

2
DHS

= 1− 1

2

[
Tr(ρ2) + Tr(σ2)

]
+Tr(ρσ) ,

(11)

with minimum value of the loss function at Tr(ρ2) ∼ 1,
Tr(σ2) ∼ 1 and Tr(ρσ) ∼ 0. In this case, the supervised

https://algassert.com/quirk
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network aims to maximize the purity of the measured sig-
nal and background events while minimizing their overlap
by mapping them to distinct regions within the Hilbert
space of the qubit. For anomaly detection, with no labels
provided, we use a modified loss function

LHS(ρ, σ) = 1− Tr(ρρ′) + Tr(ρσ) , (12)

where ρ′ represents the augmented event of ρ from a
positive pair. The loss function has a minimum value
if the measured quantum fidelities are Tr(ρρ′) = 1 and
Tr(ρσ) = 0. In this case, the network maps events, and
their augmented versions, from different classes far apart
from each other on the Hilbert space of the ancillary
qubit. Notably, we omitted the term Tr(σ2) in the su-
pervised loss, as the SL task involves only positive pairs,
represented by Tr(ρρ′), and negative pairs, represented
by Tr(ρσ).

After training, events from different classes, signal and
background, are clustered away from each other on the
Hilbert space of the qubit, as shown in the middle plot of
Figure 5. The two clusters are then used to test the net-
work performance by computing how close the test event
is to each of the two clusters. This can be achieved by a
fidelity classifier test [52]. A fidelity classifier is defined
as the difference between squares of the inner product
between the embedded test sample |x⟩ and the respec-
tive class encoded by the training samples, |ψ1

trained⟩ and
|ψ2

trained⟩, as [45, 50]

F(x) =
1

M

∑∣∣⟨x|ψ1
trained⟩

∣∣2 − 1

M

∑∣∣⟨x|ψ2
trained⟩

∣∣2 .
(13)

For binary classification, the fidelity classifier assigns
a binary predicted label to the input data according to

Ŷ =

{
−1 if F(x) < 0

+1 if F(x) ≥ 0
. (14)

The output ranges between [−1, 1] with F(x) < 0
(F(x) > 0), indicating the test event most likely belongs
to the first (second) class.

III. ANALYSIS SETUP

In this section, we outline the strategy for our numer-
ical analysis. We focus on the self-supervised study of
events with a final state of four leptons and two b-jets at
the High-Luminosity (HL)-LHC. The anomalous signal
arises from the decay of a heavy scalar resonance into a
pair of Standard Model-like Higgs bosons, through the
process gg → H → hSMhSM, with hSM → Z∗Z → 4ℓ
and hSM → b̄b. We adopt signal benchmark points from
the Two Higgs Doublet Model (THDM) with Type-II
Yukawa coupling. While the di-Higgs final state is a very
difficult final state, it has received attention recently in
relation to the Higgs self-coupling, which has not been
explored yet.

We employ two approaches for anomaly detection anal-
ysis: a classical network and a hybrid classical-quantum
network. Both utilize Transformer encoders to map high
dimensional input data into a lower dimensional latent
space. The hybrid model combines a classical Trans-
former encoder with VQCs. To demonstrate the advan-
tages of deep VQCs with a larger number of qubits, we
explore hybrid networks with VQCs consisting of 7 and
11 qubits. In both configurations, the first qubit is an an-
cillary qubit for measurement, while the remaining qubits
serve as register qubits.

A. Data simulation

For event simulations, the THDM Lagrangian is im-
plemented into SARAH [53] to produce all coupling of
interaction vertices of the model whose numerical values
are computed with SPheno package [54]. MadGraph5
[55] is used to calculate the cross section and parton
level events, and PYTHIA [56] is used for parton shower,
hadronization, heavy flavour decays, and adding the soft
underlying event. Jets are reconstructed from particle
flow objects simulated by DELPHES [57] detector simu-
lation package. We use FastJet [58] package for jet recon-
struction with anti-KT clustering algorithm of R = 0.4
[59].
We use TensorFlow framework [60] to construct the

classical SL network. Scikit-Learn [61] is used to facili-
tate network processing and evaluation. We use Penny-
Lane [62] framework for VQC implementation. We use
the TensorFlow interface in PennyLane to construct and
train the hybrid classical-quantum SL network.4

B. Heavy scalar search

We align our analysis with the latest ATLAS/CMS
heavy resonance search results [63, 64]. The main back-
ground source arises from the production of a single SM
Higgs boson decaying to ZZ∗, with two jets originating
from QCD radiations. Another significant contribution
is the continuum background process pp → ZZ∗. Irre-
ducible backgrounds such as tt̄Z, tt̄W , and three-gauge
boson production are also included in the analysis. Al-
though these irreducible backgrounds can produce the
same final state as the signal, they have much smaller
cross sections and are thus subdominant.
Anomalous signal events are considered from a heavy

scalar resonance in the THDM with Type-II Yukawa cou-
plings. To ensure that the analysis is independent of the
heavy scalar mass, we examine three masses: mH = 0.6,

4 Constructing the VQC as TensorFlow layer, PennyLane requires
Keras version 2. In this work, we use TensorFlow version 1.14.0
in which Keras 2 is part of it.
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0.8, and 1 TeV. These three signal samples are combined
into a single dataset representing the anomalous signal.
The chosen benchmark points satisfy all theoretical and
experimental constraints, as adopted from [65, 66].

Selected events are required to contain at least four iso-
lated leptons, electrons or muons, with opposite charges,
as well as two jets. To ensure accurate jet measure-
ments and minimize pileup effects, all jets must have
a transverse momentum pT ≥ 20 GeV. Only leptons
with pT ≥ 7 GeV are considered, with the additional
requirement that the leading lepton must have pT ≥ 20
GeV and the second leading lepton must have pT ≥ 15
GeV. All leptons must be separated by ∆R(li, lj) ≥
0.02, and electrons and muons must be separated by
∆R(e, µ) ≥ 0.05, where the angular distance is defined

as ∆R ≡
√

(∆η)2 + (∆ϕ)2.
In each event, all permutations of the selected leptons

are considered for reconstructing the Z boson pair. For
each pair, the lepton combination with an invariant mass
closest to the Z boson rest mass is used to reconstruct
the on-shell Z boson, with a lower mass cut of 40 GeV.
The remaining lepton pair is assigned to reconstruct the
off-shell Z∗ boson, with a lower mass cut of 12 GeV. If
more than one ZZ∗ candidate passes the selection cri-
teria, the one closest to the SM Higgs boson mass, 125
GeV, is chosen. To suppress QCD background from soft
leptons originating from hadron decays, all considered
lepton pairs must have an invariant mass greater than 4
GeV. Additionally, to enhance di-Higgs reconstruction,
the distance between leptons and jet candidates must
satisfy ∆R(l, j) ≥ 0.3.
Events that pass the selection criteria are preprocessed

to match the input dimensions of the networks being con-
sidered. Since both classical and quantum networks uti-
lize the same input, accessed via Transformer encoders,
a single dataset is used for both networks. The input
dataset is structured with dimensions d = (n, p, f), where
n is the number of events, p represents the dimension of
the particle tokens, and f represents the dimension of
feature tokens assigned to each particle. We consider
particle tokens with dimension p = 11: four leptons,
two jets, Z boson pair, hSM pair and the heavy scalar.
All bosons are reconstructed from the four-momenta of
their final-state particles. Each particle token is assigned
six features: transverse momentum, pseudorapidity, az-
imuthal angle, energy, mass, charge, and particle ID. Af-
ter the data is prepared, we combine signal and back-
ground events in one data set and shuffle them. As a
self-supervised task, the combined dataset has no labels
to identify the different events.

C. Network architecture and training

Both classical and quantum networks use the same
Transformer encoders to map the high-dimensional input
data into the latent space of the network. The Trans-
former encoder consists of an input normalization layer

followed by two sequentially repeated Transformer lay-
ers. Each Transformer layer includes a multi-head atten-
tion mechanism with eight attention heads. The output
from the multi-head attention is added to the original
input via a skip connection, ensuring dimensional con-
sistency since the output of the attention heads matches
the dimensions of the input dataset, see subsection B for
details. The resulting output is then passed through a
Multi-Layer Perceptron (MLP) with two fully connected
hidden layers containing 128 and 6 neurons, respectively,
and activated by the ReLU function. A second skip con-
nection adds the MLP output to the output of the multi-
head attention. Notably, the output of each Transformer
layer retains the same dimensions as those of the input,
allowing for the repetition of the Transformer layers. The
final output of the stacked Transformer layers is passed
through a normalization layer, which normalizes the L2

norm to one. This normalization is crucial for computing
similarity in the classical contrastive loss or for further
mapping to the VQC.
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FIG. 2. Training metrics of the classical SL network as a
function of training epochs. The orange distribution repre-
sents the contrastive loss at each epoch, with values indicated
on the left vertical axis. The blue distribution represents the
accuracy of the linear classifier, with values shown on the right
vertical axis. The shaded bands represent the range between
the minimum and maximum values across three runs with dif-
ferent random seeds.

For the classical SL network, a linear projection head
with 500 neurons is added. The output of the projection
head from each of the Transformer encoders is used to
compute the contrastive loss function, Eq. (1), during
the training process.
For the hybrid classical-quantum network with 7 (11)

qubits, a linear projection head with 9 (15) neurons is
added. The output of the projection head from the two
Transformer encoders is concatenated in one vector and
mapped to the VQC. The VQC is repeated 4 times before
the CSWAP gate for fidelity measurement. The final
output is then used to minimize the HS loss function
defined in Eq. (12).
For both network training sessions, a dataset of

200, 000 events is used, with the Adam optimizer [67]
employed to minimize the respective loss function. The



8

0 25 50 75 100 125 150 175 200

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9
T

r(
ρ
ρ
′ )

10−1

100
Quantum network training (7 qubits)

LHS(ρ, σ)

Tr (ρσ)

0 25 50 75 100 125 150 175 200

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
r(
ρ
ρ
′ )

10−2

10−1

100
Quantum network training (11 qubits)

LHS(ρ, σ)

Tr (ρσ)

FIG. 3. Training metrics of the quantum SL network are
shown as a function of the number of training epochs for
a smaller VQC with 7 qubits (top plot) and a VQC with
11 qubits (bottom plot). The light blue distribution repre-
sents the purity of the measured quantum states for positive
pairs, Tr(ρρ′). The dark blue distribution, with dashed edges,
shows the overlap between the measured quantum states of
negative pairs, Tr(ρσ). The orange distribution represents
the total loss function. The left vertical axis shows the val-
ues for the orange distribution, while the right vertical axis
shows the values for the blue distribution. The bandwidth in
each distribution indicates the range between the minimum
and maximum values across three runs with different random
seeds.

networks are trained for 200 epochs with a batch size of
128. Figure 2 illustrates the minimization of the clas-
sical contrastive loss function during training, shown in
orange on the left vertical axis. The accuracy of the LC
used to validate the network, is displayed in blue on the
right vertical axis. The shaded regions in both distri-
butions represent the range of minimum and maximum
values across three training runs with different random
seeds. The accuracy of the LC shows significant varia-
tion due to its simplistic design; it consists of a single
fully-connected linear layer without non-linear parame-
ters, limiting its ability to capture the complex structure
of the input data. However, the key observation is that,
by the end of training, all runs converge to high accuracy.

The training metrics for the hybrid classical-quantum
network are shown in Figure 3 for a VQC with 7 qubits
(top plot) and a VQC with 11 qubits (bottom plot). In
both plots, the dark blue distribution represents the over-

lap between negative pairs, which decreases during train-
ing. In contrast, the purity of the positive pairs increases.
This indicates that during training, the network enhances
the purity of positive pairs while minimizing the over-
lap between negative pairs, effectively mapping similar
events closer together and pushing dissimilar events far-
ther apart in the Hilbert space. The total HS loss func-
tion, shown in light blue, exhibits a continuous decrease
throughout the training process.
A more complex VQC with a larger number of qubits

can represent more complicated data compared to one
with fewer qubits. This arises from the increased dimen-
sionality of the Hilbert space and the greater expressibil-
ity of quantum states within that space. A larger num-
ber of qubits allows for more entanglement and provides
additional degrees of freedom for the unitary transforma-
tion U(θ), which enhances the VQC’s ability to represent
complex data. Specifically, as the number of qubits in-
creases, so does the number of parameters θ, enabling
more intricate transformations of the input data. This
explains the improvement in network performance as the
number of qubits in the VQC increases.

IV. RESULTS

In this section, we test the performance of different net-
works when applied for the search for anomalous data in
the four-leptons and two-jets final state. The discrimina-
tive power of each network will be a measure of how well
the signal and background can be characterized through
their different features, all entangled together into sev-
eral low-level information of the final state particles in
each event. This can be quantified by computing the
Receiver Operating Characteristic (ROC) curve. The
ROC curve visualizes the True Positive Rate (TPR), sig-
nal events that are correctly identified by the network,
against the False Positive Rate (FPR), the signal events
that are incorrectly identified by the network as back-
ground events, for different threshold values of the net-
work output. The better the discrimination performance
between signal and background events, the higher the
TPR over the FPR.
For the classical SL network, after the network train-

ing, LC layer is added to one of the Transformer en-
coders.5 This new setup is used to test the network per-
formance and is used for anomaly detection tasks.
For the quantum network, the trained dataset is sep-

arated into two groups according to the fidelity mea-
surements. This can be done by matching the trained
events with F > 0.5, which indicates the events from the
same class, to their counterpart with F < 0.5. In this
case, training events are divided into two classes, signal

5 As both Transformer encoders share their weights, it does not
matter which Transformer encoder we choose.
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and background, in which we can use the fidelity classi-
fier to evaluate the network performance as mentioned in
Eq. (13).
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FIG. 4. ROC curve for the used hybrid classical-quantum net-
works, with 7 and 11 qubits, tested on 10, 000 events. These
networks are trained and evaluated using a classical emulator
without any noise consideration.

Figure 4 shows the ROC curve for the hybrid classical-
quantum networks for a test sample with 10, 000 events.
The hybrid network with 11 qubits (green distribution)
has the superior performance over the network with 7
qubits (orange distribution). This is expected as the ex-
pressive power of the network increase with the number
of the qubits. The Area Under the Curve (AUC) quanti-
fies the accuracy of the network prediction, and it is used
to evaluate the performance of the networks. Specifically,
the AUC for the quantum networks, with 7 and 11 qubits,
are 93.8% and 96.1%, respectively. By comparison, the
AUC for the classical SL network is 95.0%.

The measurement results for quantum circuits are sub-
ject to shot noise, which refers to the statistical fluctua-
tions with the limited number of measurements. In each
shot, the quantum state is projected onto one of the com-
putational bases, based on the probability distribution
determined by the wave function. Increasing the number
of shots improves the accuracy of the measurement.

The impact of shot noise is illustrated in Figure 5.
The left plot shows the Bloch-sphere representation of
the ancillary qubit with initial training events in which
the weights are randomly initialized. The middle plot
shows the distribution of training events on the ancil-
lary qubit after 200 epochs of training with 10, 000 shots,
where the two classes are clearly separated. In contrast,
the right plot demonstrates the effect of network training
for the same number of epochs but with only 10 shots.
Here, shot noise blurs the distribution of each class, re-
sulting in a significant overlap between the two classes.
This severely degrades the classification performance of
the network when using a fidelity-based classifier. Specif-
ically, the AUC is 79.0% with 10 shots, compared with
96.1% with 10, 000 shots.

A. Refining few-shot measurement performance

To mitigate the reduction in network performance
caused by shot noise for the small number of measure-
ments, we replace the fidelity classifier with a clustering
algorithm operating in the Hilbert space of the ancillary
qubit. This can be achieved by utilizing a single classi-
cal Transformer encoder alongside the VQC, substitut-
ing the CSWAP test gates with simultaneous measure-
ments along the X,Y and Z axes of the Bloch sphere.
These measurements allow us to identify the position of
each projected event on the Bloch sphere. By employing
a clustering algorithm, we can categorize the projected
events into two classes, signal and background. The per-
formance of the network is evaluated based on the prox-
imity of each test event to the centre of the two clusters.
Hierarchical Density-Based Spatial Clustering of Ap-

plications with Noise (HDBSCAN) is applied to cluster
the measured states of the training events. It has been
introduced in [69] and was first used for jet clustering in
[70].
At its core, HDBSCAN works by first calculating a core

distance for each data point on the Bloch sphere, which
reflects the local density around that point by measuring
its distance to nearby points. Using these core distances,
it computes a mutual reachability distance between each
pairs of points. This modified distance metric takes the
local density into account, ensuring that points in dense
regions are treated differently than those in sparser areas.
Next, HDBSCAN constructs a minimum spanning tree
from these mutual reachability distances, connecting all
points in the dataset. This tree helps organize the data
into a hierarchical structure, where clusters emerge as re-
gions of high density are identified. By progressively re-
moving the largest edges in the minimum spanning tree,
the algorithm forms clusters at different density levels,
creating a hierarchical tree of clusters. The final step
involves analyzing this tree to find the most stable clus-
ters. The algorithm selects these stable clusters as the
final output. Points that do not belong to any cluster
are classified as noise, and this is an important feature
for the anomaly detection task.
The results of the HDBSCAN clustering are illustrated

in Figure 6. The left plot represents the projected train-
ing events on the ancillary qubit when the measurement
is performed using 10 shots. HDBSCAN is used to clus-
ter these events in two clusters6. The right plot shows
the result of HDBSCAN clustering, with the training
events grouped into two classes: signal and background.
The centre of each cluster was computed, and the net-
work performance was evaluated based on the proximity
of test events to the cluster centres. As a result, the

6 HDBSCAN automatically determines the number of clusters. We
adjusted the algorithm’s internal parameters to result in two clus-
ters. Specifically, the minimum number of points per cluster was
set to half the size of the training dataset.
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FIG. 5. Bloch sphere representation of the ancillary qubit with 20, 000 projected training events (orange points). Left:
distribution of training events at the initial training step. Middle: distribution after 200 epochs of training with 10, 000
measurement shots, where signal events are distinctly separated from the background. Right: distribution after 200 epochs of
training with only 10 measurement shots, where noise from the limited number of shots increases the overlap between signal
and background events. In the right plot, the distinct positions of the two clusters diminished due to noise from the few-shot
measurements. The Bloch sphere simulation is performed using the QuTiP package [68].

FIG. 6. Bloch sphere representation of the training events is
shown with 10 shots before applying HDBSCAN for clustering
(left) and after clustering with HDBSCAN (right). Blue and
red points represent the projected events from each cluster,
as determined by the HDBSCAN results. Simulation of the
Bloch sphere representation is done using QuTiP package [68].

network performance improved from an AUC of 79.0%,
using the fidelity classifier, to 89.7% after applying HDB-
SCAN. While this discussion focuses on mitigating shot
noise, this method can also be applied to address other
sources of noise, making it suitable for tests on real quan-
tum computers.

V. CONCLUSION

In this paper, we apply SL for anomaly detection
searches for a heavy scalar resonance decaying to the di-
Higgs boson at the LHC. We adopt two similarity learn-

ing networks, classical and hybrid classical-quantum.
Both networks comprise a pair of Transformer encoders
that share their weights. The role of the transformer
encoder is to map the high-dimensional input data into
a lower-dimension latent space. A projection head is
added to the latent space data to compute the contrastive
loss function, while for the hybrid classical-quantum net-
work, the latent data is mapped onto VQC exploiting
the power of quantum computers to express high com-
plex data structure. The similarity of the input pair is
then computed in terms of the overlap between the mea-
sured quantum state using CSWAP test gates. A metric
loss function, the HS loss function, is used to minimize
the overlap between the measured quantum state of the
events from positive pairs and maximize the overlap be-
tween events from negative pairs.

To demonstrate the capability of the VQC with a
larger number of qubits, we explore two hybrid classical-
quantum networks with 7 and 11 qubits. In the ideal
case, where quantum noise is ignored, the hybrid net-
work with 11 qubits outperforms the other networks.
However, when quantum noise from a limited number
of measurement shots is introduced, the performance de-
grades significantly. To address this, we utilize the qubit
Hilbert space to recluster the mapped events from dif-
ferent classes. By applying HDBSCAN, a density based
clustering algorithm, the network performance improved
by 9% over the fidelity classifier test. While this tech-
nique effectively mitigates shot noise, it can also en-
hance performance in the presence of other quantum
noise sources that affect the measurement of the quantum
fidelity.

Although SL can efficiently be adjusted for anomaly-
detection tasks, a challenge lies in selecting negative
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pairs. In practice, negative samples are often assumed
to be dissimilar by default, but this may not always hold
true. Finding more informative or hard negative sam-
ples, those that are difficult to distinguish from positive
ones can greatly improve the performance of the model;
identifying these samples, however, remains a challenge.
Another challenge is that SL requires large batch sizes to
store negative samples, which is computationally expen-
sive.

Finally, while current quantum devices are limited,
fault-tolerant quantum computing promises to overcome
these limitations in the future. Simulating quantum ma-
chine learning methods prepares for the eventual deploy-
ment of quantum algorithms on fault-tolerant quantum
computers. By simulating the behaviour of quantum al-
gorithms in ideal conditions, we can predict their perfor-
mance and scalability, laying the groundwork for future
breakthroughs. The LHC data analysis offers the best en-
vironment for testing the validity of quantum algorithms
with the current NISQ computers and the scalability for
fault-tolerant quantum devices.
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Appendix A: Basics of VQC training

Quantum computers can carry out supervised and un-
supervised learning by leveraging parameterized quan-
tum circuits, which act as models that map input data
to predictions. These circuits, known as VQCs, extract
features from classical data by first encoding them into
quantum states. After the data is encoded, unitary trans-
formations are applied to these quantum states, and the
results are measured by projecting them onto the com-
putational basis. The encoding method of classical data
plays a crucial role in determining the expressive power
of the VQC.

In applying variational methods to approximate the
eigenvalues and eigenvectors of the Hamiltonian on a
quantum computer, the process can be simplified into
three main stages that define the algorithm’s workflow:

• Prepare the states by encoding the classical data
onto quantum computers, with some trainable pa-
rameters.

• Measure the expectation values from the readout
qubit.

• Use some classical optimizer to obtain new values
for the trainable such that the measured expecta-
tion values are closer to the prediction value.

• Iterate this procedure until a loss function is mini-
mized.

The parameterization of the data encoding can influ-
ence the decision boundaries of the final predictions, and
should therefore be selected to best suit the problem at
hand [71, 72]. There are several types of parameteri-
zations, including basis encoding, amplitude encoding,
and angle encoding. These methods map input data
to qubits based on fixed rotations, while another ap-
proach is to train the data encoding to maximize the
Hilbert space distance between different inputs [49, 73].
A more recent technique involves repeated and incremen-
tal encoding [74], which maps high-dimensional classical
data into a Variational Quantum Circuit (VQC) using
fewer qubits. For angle encoding, a common choice is to
use single-qubit Pauli rotation gates, Rα(x) = e−ixσα/2,
where σα (α = X,Y, Z) are the three Pauli matrices.
Pauli rotation gates are single qubit gates that encode a
single classical input to a single qubit. One can instead
use a more generic rotation to encode three features into
a single qubit via sequential rotations as [75]

U = eiδRZ(α)RY (β)RZ(γ)

=

(
ei(δ+(α+γ)/2)cβ −ei(δ−(α−γ)/2)sβ
ei(δ+(α−γ)/2)sβ ei(δ−(α+γ)/2)cβ

)
,

(A1)

where cβ = cos(β/2) and sβ = sin(β/2). The global
phase eiδ = ±1 is chosen such that the determinant of U
is 1. From these parameter definitions, we can utilize a
maximum of three input dimensions per unitary opera-
tion [76, 77]. After the quantum states are prepared, the
VQC maps the prepared state to another state via a set of

unitary transformations, |ψ(x, θ)⟩ = U(θ⃗)|x⟩, with θ⃗ are
the tunable parameters to minimize the error between
the model predictions and the true values. In general,
the unitary transformations of the prepared states can
be decomposed into a series of sequential unitary gates
as

U(θ⃗) = Uj(θ⃗σ) . . . U3(θ⃗γ)U2(θ⃗β)U1(θ⃗α) , (A2)

with j representing the maximum number of unitary
gates in the quantum layer. For circuits with a larger
number of qubits, U is composed of unitary rotation gates
and entangling gates. Common two-qubit entangling
gates include Controlled-NOT (CNOT) and Controlled-
Z gates, which do not have tunable parameters. These
gates flip the state of one qubit based on the value of a
control qubit. Increasing the number of entangled qubits
in the circuit takes advantage of interference effects, en-
abling the input data to be mapped to a higher dimen-
sional space and allowing learning from small datasets
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[40, 78, 79]. After all unitary operations are applied, the
expectation value of the quantum state can be measured
on one of the computational basis states using the Pauli-
Z operator on the readout qubit as

fθ(x) = ⟨ψ(x, θ)|σZ |ψ(x, θ)⟩ , (A3)

where σZ is the Pauli-Z operator. Optimization of the
quantum circuit parameters can be done by minimizing
a loss function between the eigenvalues of the measured
quantum state and the true labels. Here, as in the clas-
sical machine learning methods, minimization of the loss
function can be done using classical optimizers such as
the Adam optimizer. The backpropagation is computed
using the parameter shift rule [80, 81] as

∂

∂θ
F =

F(θ + δ)−F(θ − δ)

2
, (A4)

where F is the quantum circuit and δ = π/2. After op-
timizing the parameters of the quantum circuit, network
performance can be evaluated on a new unseen dataset.

Appendix B: The role of the Transformer encoders

In an SL task, the encoders pair plays a pivotal role
by facilitating the simultaneous processing of the input
pairs. In this framework, two identical neural-network
encoders with shared weights are employed to project
the input pairs onto low dimensional space. It is cru-
cial to share the weights across the two encoders when
comparing the embedding from different augmentations
of the same input. By enforcing the same weights, the
two encoders have a shared understanding of the fea-
tures that constitute similarity. This specific structure
of the two encoders is independent of the type of the
neural network or the structure of the input data. Ac-
cordingly, different types of neural network encoders can
be used, e.g. multi-layer perceptron, graph neural net-
work or attention-based Transformer encoder.

Transformers have recently gained attention for par-
ticle cloud analysis at the LHC due to thier ability to
model complex and high dimensional data. The moti-
vation to apply transformer encoders to particle clouds
stems from their inherent ability to model interactions
between particles irrespective of their spatial proximity
[82, 83]. This can be guaranteed by structuring the in-
put data in which events are represented as unordered
sets of particles where each particle is characterized by
its low level information, e.g. four momenta and spatial

coordinates. The core of Transformer layers is the atten-
tion mechanism that enables the model to focus selec-
tively on different parts of the input sequence. In general,
the attention mechanism operates by assigning different
weights to different elements in the input sequence, em-
phasizing the more relevant parts while downplaying the
less relevant ones.
Considering the input dataset as Xi,j with i, j repre-

senting the particle and feature tokens, respectively. A
fully connected linear layer is used to generate tunable
matrices as

Qi,d = Xi,j ·WQ
j,d, Ki,d = Xi,j ·WK

j,d,

Vi,j = Xi,j ·WV
j,j ,

where Q,K and V are the query, key and value matrices,
respectively, W are the tunable matrices added by the
fully-connected linear layer, and the dimension d maps
the inputs to higher dimensions. The scaled dot attention
score can be computed as

αi,i = softmax

(
Qi,d ·KT

i,d√
N

)
, (B1)

where N is the size of the input data and the normal-
ization factor

√
N is added to avoid exploding gradients.

Attention output is computed by multiplying the atten-
tion score by the V matrix as

Zi,j = αi,i · Vi,j . (B2)

The attention of Eq. (B2) describes a single attention
head. Multiple parallel attention heads are employed for
our analysis:

Oi,j = concatenate
(
Z1

i,j ,Z2
i,j . . .Zn

i,j

)
·Wn∗j,j , (B3)

with Wn∗j,j being the learnable linear transformation
matrix to retain the dimensions of the input. The com-
puted attention is then used to scale the input via a skip
connection as

X̃i,j = Oi,j +Xi,j . (B4)

The transformed dataset X̃i,j highlights the importance
of individual particle tokens in the event in the network
classification decision. Additionally, the transformed
dataset has the same dimensions as the input dataset,
therefore the multi-head attention layer can be applied
repeatedly. A final normalization fully connected projec-
tion layer is added to map the attention output into a
single vector that can be passed to the contrastive loss
or to be embedded onto the VQC.
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