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Abstract—Foundation deep learning (DL) models are general
models, designed to learn general, robust and adaptable repre-
sentations of their target modality, enabling finetuning across
a range of downstream tasks. These models are pretrained on
large, unlabeled datasets using self-supervised learning (SSL).
Foundation models have demonstrated better generalization than
traditional supervised approaches, a critical requirement for wire-
less communications where the dynamic environment demands
model adaptability. In this work, we propose and demonstrate
the effectiveness of a Vision Transformer (ViT) as a radio foun-
dation model for spectrogram learning. We introduce a Masked
Spectrogram Modeling (MSM) approach to pretrain the ViT in
a self-supervised fashion. We evaluate the ViT-based foundation
model on two downstream tasks: Channel State Information (CSI)-
based Human Activity sensing and Spectrogram Segmentation.
Experimental results demonstrate competitive performance to
supervised training while generalizing across diverse domains.
Notably, the pretrained ViT model outperforms a four-times
larger model that is trained from scratch on the spectrogram
segmentation task, while requiring significantly less training time,
and achieves competitive performance on the CSI-based human
activity sensing task. This work demonstrates the effectiveness
of ViT with MSM for pretraining as a promising technique for
scalable foundation model development in future 6G networks.

Index Terms—Self-Supervised Learning, Foundation Models,
Deep Learning, Human Activity Sensing, Spectrogram Segmenta-
tion

I. INTRODUCTION

Foundation models (FMs) are first trained on a large, often
unlabeled dataset, allowing them to build broad, adaptable
representations that can be finetuned for various downstream
tasks. This initial pretraining stage is done using self-supervised
learning (SSL), where the model learns underlying patterns and
relationships within the data without relying on labeled exam-
ples [1]–[3]. The model ideally develops a robust understanding
of its target modality, which, in our case, is radio spectrograms.

In fields like computer vision and natural language process-
ing, FMs have set new benchmarks [4]–[7], often surpassing
supervised learning models, specifically designed for individual
tasks. This is largely due to their ability to generalize: FMs
learn flexible and transferable representations that make them
better suited to handle variations in data, perform across diverse
tasks, and adapt to new contexts. Generalization is especially
valuable when labeled data is scarce, as foundation models can
perform well with minimal additional labeled samples.

Deep learning (DL) has demonstrated strong potential when
applied to individual wireless tasks, including automatic mod-
ulation classification [8], channel estimation [9], constellation

and waveform design [10], among others. However, these
models are highly specialized, and there are concerns about
their ability to generalize effectively in real-world scenarios.
Wireless signals are subject to time-varying impairments, and
the communication environment is constantly changing, which
can degrade a DL model’s performance if it fails to adapt.
Introducing the concept of FMs for wireless can potentially
overcome these limitations [11], [12].

We propose FMs for wireless signals as a solution to address
these challenges. By capturing over-the-air radio signals and
pretraining FMs through SSL, there is no need for labeled data.
Additionally, these pretrained models can then serve as back-
bones for multiple tasks, reducing computational costs. Most
importantly, FMs are expected to achieve better generalization
by leveraging their broad, transferable representations, making
them well-suited to handle diverse and dynamic wireless envi-
ronments. The primary contributions of our paper are:

• We propose and demonstrate the effectiveness of a Vi-
sion Transformer (ViT) as a radio foundation model for
spectrogram learning. Adopting ViT as the FM offers
enhanced flexibility, particularly in handling variable in-
put sequences, and increased scalability, as training and
evaluation can be parallelized. ViT also captures long-term
dependencies through its attention mechanisms.

• We introduce a Masked Spectrogram Modeling (MSM)
approach to pretrain the ViT in a self-supervised fashion,
and thoroughly evaluate key design considerations of the
masking procedure and transformer size on performance.

• By finetuning across two downstream tasks, we demon-
strate that the ViT radio FM effectively learns features
that generalize across diverse domains, achieving com-
petitive—or even superior—performance with 4x smaller
model sizes compared to baselines.

• We demonstrate the effectiveness of the proposed founda-
tion model by utilizing a real-world dataset that is captured
over-the-air in a software-defined radio testbed. Upon
acceptance, the datasets and code will be publicly available
to encourage further research within the community on FM
for wireless.

The remainder of the paper is structured as follows: Section
II presents the datasets utilized for pretraining the foundation
model, and for the CSI-based human activity sensing and
spectrogram segmentation tasks. Section III outlines the ViT
architecture and algorithm of the self-supervised foundation
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model. Section IV presents numerical experiments conducted
to evaluate the proposed methodology. Finally, section V con-
cludes the paper.

II. TESTBED AND DATASETS

We use three datasets in this paper. The first, the Real-time
Radio Dataset (RRD), consists of over-the-air radio recordings
captured in real-time with a software-defined radio (SDR) test
bed built using PlutoSDRs. The second, the Human Sensing
Dataset (HSD), utilizes Wi-Fi channel state information (CSI)
to detect human activity in an indoor environment. The third
dataset, the Segmentation Dataset (SD), simulates 5G New
Radio (NR) and LTE transmissions in neighboring frequency
bands.

A. Real-time Radio Dataset (RRD)

The RRD dataset consists of recordings of IQ samples, repre-
senting both in-phase (I) and quadrature (Q) components of the
RF signal. Each recording is captured with a center frequency
(ranging from 2.4 to 2.65 GHz), sampling frequency (between
10 MHz and 60 MHz), and duration, typically averaging around
100 ms. Data collection took place in downtown Toronto,
Canada, resulting in 240 recordings, which cover approximately
24 seconds of RF activity. This dataset is used for initial model
pretraining.
Spectrogram Computation. We create spectrograms from
IQ recordings through the following steps: 1) Divide each
recording into non-overlapping 16 ms segments; 2) Compute
the spectrogram for each segment using the short-time Fourier
transform (STFT); 3) Resize each spectrogram to a 224 × 224
shape; 4) Convert the spectrogram to log scale; 5) Normalize
and standardize using dataset-wide statistics.

The dataset parameters are summarized in Table I. Learning
performance is generally robust to these specific parameter
choices, which are selected to balance computational efficiency
and preserve information-rich content.

B. Human Activity CSI-Based Sensing Dataset (HSD)

The HSD dataset contains CSI measurements for six human
activities: running, walking, falling, boxing, arm circling, and
floor cleaning [13]. Each subject performs these activities
between a pair of Wi-Fi access points, each equipped with
three antennas. CSI is measured for each activity, across 114
subcarriers and 3 channels (one per antenna) over 2000 samples
at a 500 Hz rate. Each recording is thus a 3D tensor of
shape 3 × 114 × 2000, paired with its activity label. The
CSI is processed by resizing each recording to a shape of
3×224×224. Then, each channel is normalized and standardized
using dataset-wide statistics. A sample from each class of the
dataset is illustrated in Figure 1 where the horizontal axis is
time and the vertical axis is frequency.

C. NR-LTE Segmentation Dataset (SD)

The SD dataset is created by generating NR and LTE signals,
each transmitted through its respective wireless channel in

TABLE I: RRD Dataset Generation Parameters

Parameters Value

STFT
Parameters

FFT Size 1024
Window Function Hanning

Window Size 512
Hop Size 512

Slicing
Parameters

Duration 16 ms
Resizing Shape (224, 224)

Fig. 1: A sample from each class of the HSD dataset. Only the
CSI of the first antenna is plotted.

Fig. 2: A spectrogram and its segmentation from the SD dataset.

adjacent, non-overlapping bands. We use the Matlab Commu-
nication Toolbox for signal generation, following the guidelines
in [14].

A spectrogram of the NR-LTE signal mixture is computed
and resized to 224 × 224. A corresponding label image is also
created, marking NR signals as 1, LTE signals as 2, and noise
as 0. For more details about data generation, refer to [15].
A sample is illustrated in Figure 2 where the horizontal axis
represents time and the vertical axis represents frequency.

III. VISION TRANSFORMER FOUNDATION MODEL FOR
SPECTROGRAM LEARNING

A. Masked Spectrogram Modeling (MSM)

We introduce the Masked Spectrogram Modeling (MSM)
approach using Vision Transformers (ViT). In this method, we
divide each spectrogram image into 𝑝×𝑝 patches and randomly
sample a subset of these patches using a uniform distribution.



The goal is to reconstruct the missing patches from only the
sampled subset, while the remaining patches—effectively the
masked patches—are excluded. This approach is illustrated in
Figure 3. While this approach resembles a traditional auto-
encoder, a key difference is that the model is trained to
reconstruct the masked patches only, rather than the full set.

We employ high masking ratios (e.g., 80%) as in [7] to
reduce redundancy and make reconstruction more challenging.
This forces the model to rely less on extrapolation from
visible patches, effectively avoiding learning features that are
more local, and instead emphasizing general characteristics that
contribute to the overall representation of the spectrogram, its
underlying structure and statistical patterns.

This approach offers several advantages: masking a large
portion of the spectrogram and only processing the visible
patches makes pretraining more efficient. This method requires
no labeled data, recordings can be captured over-the-air using
software-defined radios (as we have done with the RRD dataset)
and fed into the model directly, making large-scale pretraining
more feasible.

B. Spectrogram Masked ViT Autoencoder

As shown in Figure 3, we use an encoder-decoder archi-
tecture based on a ViT masked autoencoder [7], [16]. This
design is asymmetric in several respects. The encoder processes
the visible patches outputting feature tokens, and the decoder
handles the feature and mask tokens. The decoder reconstructs
the original spectrogram by attending to the feature tokens
provided by the encoder.

Fig. 3: Proposed ViT Foundation Model for Radio Spectro-
grams.

Algorithm 1: Masked Spectrogram Modeling with ViT
Input : spectrogram dataset D, initial model M, patch

size 𝑝, mask ratio 𝛾

Output: foundation model B
B ← encoder of the ViT model M
repeat

foreach spect sample in D do
patches ← PATCHIFY

(
spect sample, 𝑝

)
visible patches ← SAMPLE

(
patches, 𝛾

)
encoder in ←M · EMBED

(
visible patches

)
encoder in ← POS EMBED

(
encoder in

)
encoder out ←M · ENCODE

(
encoder in

)
decoder in
←M · DECODER EMBED

(
encoder out

)
decoder in ←
APPEND REORDER

(
decoder in

)
decoder in ← POS EMBED

(
decoder in

)
decoder out ←M · DECODE

(
decoder in

)
recon patches ← UNPATCHIFY

(
decoder out

)
loss ← LMSM

(
recon patches, visible patches

)
as per equation (1)

BACKWARD
(
M, loss

)
until convergence is reached or another stopping

condition is met;

Function Description

PATCHIFY Splits the input spectrogram into smaller
patches of a specified size 𝑝 × 𝑝.

SAMPLE Selects a subset of patches based on the
mask ratio 𝛾.

EMBED* Prepare the visible patches for the encoder
by mapping them to its embedding space.

POS EMBED Adds sinusoidal positional embeddings to
its input.

ENCODE* Processes the embedded patches through
the encoder transformer blocks.

DECODER EMBED* Prepares the encoder output for the decoder
by mapping it to the decoder embedding
space.

APPEND REORDER Reorders tokens and inserts mask tokens to
restore the original time-frequency order.

DECODE* Processes the reordered tokens through the
decoder transformer blocks, producing the
reconstructed patches.

UNPATCHIFY Combines reconstructed patches back into
a complete spectrogram.

BACKWARD Computes gradients and updates the model
using Backpropagation

TABLE II: Explanation of Functions in Algorithm 1 (* denotes
functions called through the model)

Masked tokens are learnable embeddings which are posi-
tioned in the original locations of the masked patches (i.e., not
inputted to the encoder).

The encoder is larger than the decoder in terms of capacity,
it performs the majority of the computation. As a result, the
encoder can function independently as a feature extractor, while
the decoder can be discarded. The approach is detailed in
Algorithm 1. In the following, we provide the high-level details



of the ViT architecture.
Encoder. Each input patch is embedded using a linear projec-
tion, and sinusoidal positional embeddings are added to create a
token. The purpose of the positional embeddings is to indicate
the order, as transformers lack a built-in ordering mechanism.
The tokens are then processed through a series of transformer
blocks, producing the output feature tokens.
Decoder. At the decoder, a linear projection is applied to
match the feature token dimension to the decoder embedding
dimension. The original time-frequency ordering of the re-
sulting tokens is restored with mask tokens inserted in place
of the masked patches. Sinusoidal positional embeddings are
added as well. The sequence of tokens is then processed by a
series of transformer blocks and the output is the reconstructed
spectrogram.
By processing only a subset of the tokens using the larger
encoder and handling the full set with the smaller decoder,
this design enables the training of much larger models without
extensive computational resources.
Objective. We train the model in a self-supervised way to
reconstruct the masked patches. The loss function LMSM of
MSM task can be written as:

LMSM =
1

𝑁𝑀

𝑁∑︁
𝑛=1

∑︁
𝑖 𝑗

vec
(
X(𝑛)
𝑖 𝑗

)
− vec

(
X̂(𝑛)
𝑖 𝑗

)2

2
Imask (𝑛, 𝑖, 𝑗)

(1)
where 𝑁 is the batch size, 𝑀 is the total number of patches,
X(𝑛)
𝑖 𝑗
∈ R𝑝×𝑝 is the input patch at position (𝑖, 𝑗) in sample 𝑛,

and X̂(𝑛)
𝑖 𝑗
∈ R𝑝×𝑝 denotes the reconstructed patch at position

(𝑖, 𝑗) for sample 𝑛. The vectorization operation vec flattens each
patch into a vector, ∥ · ∥2 is the 𝐿2 norm and Imasked (𝑛, 𝑖, 𝑗) is
an indicator function that outputs 1 if patch (𝑖, 𝑗) in sample 𝑛

was masked and 0 otherwise.
The encoder of the self-supervised pretrained ViT masked

autoencoder serves as our radio foundation model which can
be finetuned for downstream tasks. We finetune for two down-
stream tasks: CSI-based human activity sensing and spectro-
gram segmentation, introduced next.

C. CSI-based Human Activity Sensing

The task is to classify CSI measurements into one of six
distinct human activity classes. We utilize the ViT encoder
from the pretrained model as a feature extractor, adding a
linear layer as a classification head on top. The ViT encoder
is entirely frozen, only the linear classifier is finetuned on the
dataset. The pretrained model was originally trained on single-
channel spectrograms, whereas here the input is a three-channel
tensor representing the CSI. To accommodate this difference,
the positional embeddings are modified to align with the new
input, while the remainder of the encoder remains unchanged.
The CSI data is divided into patches in the same manner as the
spectrograms. The model outputs a softmax probability vector,
and the loss function is the label smoothing cross-entropy,

defined as:

LHSD = − 1
𝑁

𝑁∑︁
𝑛=1

𝐶∑︁
𝑖=1

(
𝑦
(𝑛)
𝑖
· (1 − 𝛼) + 𝛼

𝐶

)
· log

(
�̂�
(𝑛)
𝑖

)
(2)

where 𝑁 is the batch size, 𝐶 = 6 is the number of classes,
𝑦
(𝑛)
𝑖
∈ [0, 1] is the true label for class 𝑖 (either 0 or 1 for

sample 𝑛), �̂�
(𝑛)
𝑖
∈ [0, 1] is the model’s predicted probability

for class 𝑖, and 𝛼 ∈ (0, 1) is the smoothing factor. Unlike
traditional cross-entropy, label smoothing distributes a small
probability to incorrect labels, preventing the model from
becoming overly confident which enhances generalization. The
degree of smoothing is determined by 𝛼.

D. Spectrogram Segmentation

The task is to segment the input spectrogram into three
classes: noise, NR signal, and LTE signal. We use the pre-
trained ViT encoder as a feature extractor, adding two standard
transformer decoder blocks on top as a segmentation head. The
ViT encoder is kept frozen, and only the decoder is finetuned.
Since the input is a spectrogram, no modifications are made
to the positional embeddings. The model’s output is a 3D
tensor providing a probability distribution for each pixel in the
segmented spectrogram. We use label smoothing cross-entropy
as the loss function, which is defined as follows:

LSG = − 1
𝑁𝑀

𝑁∑︁
𝑛=1

𝐶∑︁
𝑘=1

∑︁
𝑖 𝑗

(
𝑦
(𝑛)
𝑖 𝑗𝑘
· (1 − 𝛼) + 𝛼

𝐶

)
· log

(
�̂�
(𝑛)
𝑖 𝑗𝑘

)
(3)

Here, 𝑀 is the total number of pixels in the segmented image,
𝐶 = 3 is the number of classes, 𝑦

(𝑛)
𝑖 𝑗𝑘
∈ [0, 1] is the correct

label at pixel (𝑖, 𝑗) for class 𝑘 in sample 𝑛, �̂�
(𝑛)
𝑖 𝑗𝑘
∈ [0, 1] is

the predicted probability at pixel (𝑖, 𝑗) for class 𝑘 , and 𝛼 is the
smoothing factor.

IV. RESULTS AND DISCUSSION

We perform self-supervised pretraining with masking on
the RRD dataset, then evaluate the learned representations by
finetuning. For finetuning, the decoder is discarded, and the
frozen ViT encoder serves as a feature extractor, with only
the task-specific head updated. No masking is done during
finetuning. Three models are pretrained: ViT-S (small), ViT-
M (medium), and ViT-L (large), with details provided in
Table III. Here, different sizes refer to the encoder, while
the decoder remains largely unchanged. First, we evaluate the
models’ reconstruction performance across various masking
ratios, followed by assessing generalization capabilities on the
CSI Sensing and Segmentation datasets.

A. Reconstruction Performance

First, we showcase reconstruction examples for ViT-M from
which it is clear that the model exhibits strong performance.
This is illustrated in Figure 4. Each row shows the original
spectrogram on the left, followed by the masked spectrogram
and the corresponding model’s reconstruction for different
masking ratios. The reconstructed spectrograms closely match
the originals, with reasonable differences. To evaluate the



TABLE III: Pretrained ViT Models

Model
Encoder Decoder

patch size embed dim* depth† attn. heads # params (M) embed dim* depth† attn. heads # params (M)
ViT-S 16 512 12 8 38 256 8 16 7
ViT-M 16 768 12 12 85 512 8 16 26
ViT-L 16 1024 24 16 302 512 8 16 26

* embed dim is the embedding dimension which is also known as the transformer width.
† depth is the number of transformer blocks.

Fig. 4: Reconstruction results of ViT-M at various masking
ratios pretrained with a 75% masking ratio.

Fig. 5: A spectrogram and its corresponding resource grid using
a pooling filter of size 4.

Fig. 6: Reconstruction Accuracy vs Mask ratio of ViT-S pre-
trained at various masking ratios.

reconstruction capability of the models, we need a robust recon-
struction accuracy metric. Relying solely on visual comparison
is not enough. Hence, we transform each spectrogram into a
resource grid composed of resource blocks. To transform the
spectrogram. average pooling is first applied without overlap
between pooled patches (i.e., stride equal to the kernel size). A
threshold, 𝛿, is then applied to the pooled grid to binarize it,
designating vacant resource blocks as 0 and occupied ones as
1. The threshold 𝛿 is determined empirically by the formula:

𝛿 = 𝜇 + 0.5 × 𝜎 (4)

where 𝜇 and 𝜎 represent the mean and standard deviation of
the spectrogram, respectively. A sample for the transformation
is illustrated in Figure 5. We then evaluate the models’ recon-
struction performance across various masking ratios, including
but not limited to those used during pretraining. A model’s
robustness is measured by its ability to maintain strong recon-
struction performance even when applied to masking ratios it
was not trained on. Although higher masking ratios increase
reconstruction difficulty, the model is expected avoid collapse.
As illustrated in Figure 6, pretrained models with higher
masking ratios maintain their strong performance when dealing
with different masking ratios. Similar to results for vision and
audio, the ideal masking ratio for pretraining is around 70% to
80%. Hence, we only finetune the models pretrained with these
masking ratios.

B. Finetuning Performance

To evaluate finetuning performance on the HSD and SD
classification and segmentation datasets, we use confusion
matrices (per-class accuracy) and overall accuracy. We present
finetuning results for the HSD dataset first, followed by the SD
dataset. For both datasets, we use the pretrained ViT encoder
as a feature extractor which is kept frozen, and finetune the
task-specific head. Table IV summarizes the accuracy results,
including models pretrained at masking ratios of 70%, 75%,
and 80%, as well as a baseline model trained from scratch
directly on the HSD dataset. The highest accuracy is achieved
by ViT-M trained from scratch, with a 5% accuracy margin
compared to the pretrained ViT-M model. We attribute this
difference to the inherent distinctions between CSI data and
spectrograms, suggesting that more extensive pretraining could
reduce this gap. Figure 7 displays the confusion matrices for
ViT-M pretraining at a 75% masking ratio versus training from
scratch. The primary source of accuracy differences lies in the



pretrained model’s tendency to confuse run and walk, due to
their close distribution.

For the SD dataset, Table V presents the results, including
models pretrained with masking ratios of 70%, 75%, and 80%,
alongside a baseline model trained from scratch.

TABLE IV: Mean accuracy of ViT finetuned on the HSD
dataset, pretrained at masking ratios of 70%, 75%, and 80%.
The table also includes results for a model trained from scratch.

Masking ratio (%)
Scratch

Model 70 75 80

ViT-S 90.2 90.9 89.0 98.1

ViT-M 92.0 93.9 85.9 98.9

ViT-L 89.3 88.6 85.6 98.1

Fig. 7: Confusion matrices of ViT-M trained from scratch and
pretrained with a 75% masking ratio.

TABLE V: Mean accuracy of ViT finetuned on the SD dataset,
pretrained at masking ratios of 70%, 75%, and 80%.

Masking ratio (%)
Scratch

Model 70 75 80

ViT-S 97.0 96.8 96.4 97.2

ViT-M 97.9 97.6 97.5 97.1

ViT-L 97.5 97.3 97.5 97.7

Fig. 8: Confusion matrices of ViT-L trained from scratch and
ViT-M pretrained with a 70% masking ratio.

The best model is the pretrained ViT-M with a 70% masking
ratio, which slightly outperforms the best scratch-trained model,
ViT-L, while being four times smaller. Figure 8 provides
confusion matrices for these models.

V. CONCLUSION

In this paper, we proposed ViT as a radio foundation
model for spectrogram learning which offers superior modelling
capabilities, support for variable-length input sequences and
computational efficiency. We also introduce a Masked Spec-
trogram Modeling (MSM) approach to pretrain the ViT in a
self-supervised fashion, and thoroughly evaluate the effects of
masking ratios and transformer size on performance. Experi-
mental results indicate that the ViT-based model generalizes
well to unseen datasets, achieving comparable or superior per-
formance to larger models trained from scratch, while utilizing
fewer resources. Notably, the pretrained ViT model surpasses
a four-times larger scratch-trained model on the spectrogram
segmentation task and achieves competitive performance on the
CSI-based human activity sensing task. We believe that this
ViT-enabled MSM will enable scalable, large-scale pretraining,
fostering the development of robust radio foundation models
capable of generalizing across a wide range of tasks.
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