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Lasers are the workhorse of quantum engineering in the atomic-molecular-optic community. How-
ever, phase noise of the laser, which can be especially large in popular semiconductor-based lasers,
can limit gate fidelity. Here, we present a fully-fiberized instrument detecting and correcting the
fast, sub-microsecond, phase fluctuations of lasers. We demonstrate a measurement noise floor of
less than 0.1 Hz2/Hz, and a noise suppression of more than 20 dB for Fourier frequencies in the
1 to 10 MHz region (reaching up to 30 dB at 3 MHz), where noise is critical for Rydberg-based
quantum gates. Finally, we observe the improvement offered by this fast phase noise eater on a
Raman transition driven by two such stabilized lasers. These measurement and correction tech-
niques are important tools for high-fidelity manipulation of the excited electronic states of atoms
and molecules.

I. INTRODUCTION

Over recent decades, quantum simulation and compu-
tation have advanced considerably across platforms, in-
cluding trapped ions [1, 2], superconducting qubits [3],
photonic qubits [4], and cold atoms [5]. To ensure
accurate outcomes of the machine, high-fidelity coher-
ent control is crucial for each platform [6–9]. While
external factors often introduce decoherence, the con-
trol mechanisms themselves can also inadvertently con-
tribute. Specifically, in neutral-atom or trapped-ion sys-
tems, where laser-driven dynamics of a valence electron
play a central role, employing highly stable lasers is cru-
cial. Focusing on the problem of driving transition of
neutral atoms to Rydberg states, the dominant deco-
herence sources [8, 10, 11] include the Doppler effect,
spontaneous emissions via the intermediate state used
for the two-photon excitation, and laser intensity and
phase noise [12, 13]—the latter being the focal point
of this article. Intuitively, the laser phase needs to be
stable on a timescale of 0.1 to 1 microsecond during
which the electron is manipulated (literally, shaken) by
the laser field. A naive, but illustrative, requirement
to suppress the error of a laser-driven quantum gate at
the 10−3 level (0.1 %) would be to ask for less than
ϕrms = (2π) × 10−3 = 6 mrad of phase fluctuation in
1 microsecond. Assuming white frequency noise, this
translates to a power spectral density (PSD) of phase
noise Sϕ(f) = ϕ2

rms/f = 4 × 10−11 rad2/Hz at Fourier
frequency f = 1 MHz, or equivalently a white frequency
noise of Sν(f) = f2Sϕ(f) = 40 Hz2/Hz. In fact, driven
systems are more robust than this simple estimate, and
recent analysis indicate that, at such level of PSD, er-
ror of manipulation are already suppress at the 0.01 %
level [11, 14].

While sources of electromagnetic radiation in the mi-
crowave domain can easily pass such phase noise require-
ments, this can be harder to achieve with lasers, often for
fundamental reasons (the Schawlow-Townes limit). The
best performers are bulk-cavity solid-state lasers (TiS-
apph, Nd:YAG, ...), with well below 1 Hz2/Hz at MHz

Fourier frequencies, thanks to their narrow-linewidth
cavity design, thus offering highly-stable drives already
appreciated by the Rydberg-atom community [15, 16].
But they pose other challenges in terms of wavelength
coverage, as well as size and cost (SWaP-C). A popular
alternative are semiconductor-based lasers, displaying a
much wider coverage and high-level of integration. How-
ever, these lasers have a large quantum-limited frequency
noise floor (106 Hz2/Hz, for a basic Fabry-Perot design).
While this can be mitigated by more advanced architec-
ture, such as with extended-cavity diode lasers (ECDLs),
their noise level (102 − 104 Hz2/Hz) are still too large.
Promisingly, novel designs that recently reached commer-
cialization — based on vertical-external-cavity surface-
emitting laser (VECSEL) [17, 18], or self-injection-locked
(SIL) laser diodes [19, 20] —, could pass the requirement.
Easily measuring the frequency noise of such lasers is a
first motivation of this work.

Alternatively, the phase noise of a laser can be sup-
pressed externally. A first solution is to pass the laser
through a passive filter realized with a high-finesse Fabry-
Perot cavity[21, 22], which demonstrated great improve-
ments [13]. A drawback of this approach is the limited
output power and tunability. Another approach is to
actively correct the laser’s phase. There, feedback cor-
rection on the laser diode current or cavity length is com-
monly employed, and is hugely successful for suppressing
slower technical noise from acoustic fluctuations or ther-
mal drifts. However, this fails at suppressing the fast,
sub-microsecond, phase fluctuation of interest here. The
finite travel time of information around the feedback loop
sets a maximum correction bandwidth of a few MHz [23–
28]. This limitation can be evaded if the correction is not
fed back to the laser, but rather fed forward to a phase
actuator [29–33]. Correcting the fast phase noise with a
feedforward approach is the second aspect of this work.
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II. OVERVIEW

We first gathered in this section the main results of
our work, with the more technical details of the phase
noise measurement and correction covered later. Figure 1
shows a simplified schematic of the fast phase noise eater,
as well as its performance in the time and frequency do-
main. Following Fig. 1(a), a fraction of the laser light is
sent to an interferometer, while the rest goes to a fiber
delay line and then to a fast electro-optic modulator that
will correct the phase. The interferometer converts the
instantaneous frequency noise into a voltage, which is
then reshaped to reproduce the phase noise and finally
applied to the EOM. With precise adjustments of the
feedforward signal, a reduction of the phase noise by up
to a factor of 100 (40 dB in PSD) is conceivable (but
challenging). All details are given in later sections.

FIG. 1. Measurement and correction of fast phase noise. (a)
Schematic of the phase noise eater. (b) Time traces of the
measured frequency noise with (in blue) and without (in pink)
the feedforward correction. (c) Frequency noise PSD with and
without the correction. The dark blue curve is the detector
noise floor. A cancellation of more than 30 dB is achieved at
a Fourier frequency of 3 MHz, where the noise is suppressed
down to 0.5 Hz2/Hz.

We now describe the results in the time domain shown
in Fig. 1(b). We use a second interferometer, placed af-
ter the phase noise eater, to detect the frequency noise
with (blue traces) and without (pink) activating the feed-

forward path. The output voltage, left vertical axis, is
converted into frequency deviation, right vertical axis,
by using the interferometer calibrated DC sensibility
s0 = 3.1 V/MHz. The left (right) panel shows the inter-
ferometer raw output, observed with an oscilloscope set
on a microsecond (sub-microsecond) timescale. Clearly,
the noise has been largely suppressed indicating good
performance of the technique. The limits of the phase
noise eater can also be distinguished from small noisy
features remaining on very fast scales of tens of nanosec-
onds. The rms deviation is decreased from 200 kHz to 60
kHz, dominated by the faster noise.

For a more quantitative description, we investigate the
correction in the Fourier domain with a spectrum ana-
lyzer (SA), whose output is shown in Fig. 1(c). Sim-
ilar to the time domain, we convert the PSD mea-
sured by the SA into a frequency-noise PSD from the
frequency-dependent sensibility of the interferometer (de-
tailed later). The laser frequency noise with (without)
the active correction is shown in blue (pink). The detec-
tor limit is also plotted in dark blue and obtained when
no light is injected in the interferometer. The peak at 50
MHz originates from the null sensitivity of the interfer-
ometer. The unstabilized output has a white frequency
noise of Sν = 700 Hz2/Hz, attributed to the fundamen-
tal quantum noise (Schawlow-Townes limit) of this laser
source. By activating the feedforward correction, the fre-
quency noise is strongly suppressed in the 1 to 10 MHz
region. The peak suppression is obtained at 3 to 4 MHz,
where the PSD is decreased down to 0.5 Hz2/Hz, which is
31.5 dB below the initial noise level. The noise is remains
below 10 Hz2/Hz over the entire 1 to 10 MHz region, with
the correction decreasing outside this range. The per-
formance of the noise eater fully agrees with its model,
presented later. Its peak performance lies in the region
of maximal sensitivity to frequency noise of fast Ryd-
berg quantum gates [11], whose sensitivity drops quickly
above the Rabi frequency of the laser drive (typically
3 - 5 MHz). At lower Fourier frequencies (< 1 MHz),
usual feed-back stabilization techniques are amply suffi-
cient and it is thus acceptable for the feedforward correc-
tion to not be operative in this region.

The rest of this paper gives details on the results
that have been briefly summarized above. In Sec-
tion III, we elaborate on the measurement of the
phase/frequency noise with a delayed Mach-Zehnder in-
terferometer (MZI), and present frequency noise mea-
surements from a collection of lasers found in the lab-
oratory. Then, in Section IV, we detail the feedforward
scheme, perform a quantitative comparison to its model,
and discuss its performance relative to other reported re-
sults in the litterature. Finally, in Section V, we shine
the phase noise-canceled laser to atoms and observe an
improvement on a Ramsey interfometry signal.
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III. PHASE NOISE MEASUREMENT

In this section, we first discuss how to characterize
phase noise and what method are used to measure it.
We then focus on the realization of our fully fiberized de-
layed MZI to obtain the phase noise spectrum. Finally
we present a collection of phase/frequency noise measure-
ments for a variety of laser found in the laboratory.

A. Phase noise characterization

A laser field with phase noise is described as:

E(t) = E0 cos [2πν0t+ ϕ(t)],

with ϕ(t) a fluctuating phase, and ν0 the (average)
laser frequency. Alternatively, one can also consider
the instantaneous laser frequency deviation ν(t) =
(1/2π)dϕ/dt. We are interested in the variation of these
quantities on timescale of 0.1 to 1 microsecond, or equiv-
alently in the Fourier domain, around Fourier frequen-
cies f of 1 to 10 MHz, where the sensitivity of a Rydberg
quantum gate to laser frequency noise is largest [11]. The
adequate tool to quantify the noise of ϕ and ν is the PSD:
Sϕ (in rad2/Hz) for the phase noise, or Sν = f2Sϕ (in
Hz2/Hz) for the frequency noise. The PSD represents the
variance of the signal contains in a unit frequency band
of 1 Hz centered around f . Throughout this work, we
will rather work with Sν and also note that we use single-
sided PSD (defined for positive Fourier frequencies only).
The PSD can be input directly into a quantum gate error
model based on linear response formalism [11], or used
to reconstruct random realizations of phase noise feeding
numerical simulations [12, 14].

We now recall how the phase/frequency can be mea-
sured. For the microsecond timescale of interest, a rather
simple delayed MZI is perfectly adequate. Figure 2(a)
shows the schematic, where the laser is first split in two
arms, with one of them longer by a few meters (i.e., tens
of nanoseconds), and finally recombined with their inter-
ference recorded onto a balanced photo-detector giving
an electronic voltage V (t). The output signal, obtained
as a function of the phase difference between the two
paths, is:

V (t) =
1

2
Vpp cos[2πν0τ + ϕ(t)− ϕ(t− τ)]

≃ 1

2
Vpp[ϕ(t)− ϕ(t− τ)] (1)

with Vpp the peak-to-peak voltage of the fringe, and τ
the delay between the two arms of the interferometer.
The approximation on the second line is obtained when
the MZI is operated at its quadrature point, giving max-
imal sensibility to frequency noise. For phase fluctuation
slower than the delay τ , we can approximate:

ν(t) =
1

2π

dϕ

dt
≈ 1

2π

ϕ(t)− ϕ(t− τ)

τ
(2)

to obtain the frequency-to-voltage conversion:

V (t) ≃ (Vppπτ)× ν(t) = s0 × ν(t) (3)

where we introduced the (DC) sensibility s0. The sensi-
bility can be directly and accurately calibrated by mea-
suring the peak-to-peak voltage Vpp of the MZI fringes
on an oscilloscope, and extracting the delay τ from the
zeroes of the MZI sensibility on a spectrum analyzer,
see following discussion and Fig. 2(c,d). Typically, we
reach a sensibility of ∼ 3 V/MHz depending on the choice
of photo-detector (e.g., with/without a transimpendance
amplifier).
Equation 2 is valid only for phase (or frequency) fluc-

tuations much slower than the timescale set by the MZI
delay τ . Instead, we can derive an exact result by work-
ing in the Fourier domain. Denoting by Ṽ the Fourier
components of V (and similarly for other quantities), we
obtain:

Ṽ =
Vpp

2
(1− e−i2πfτ )ϕ̃

= s0
sin(πfτ)

πτ
ie−iπfτ ϕ̃

= s0
sin(πfτ)

πfτ
e−iπfτ ν̃ (4)

leading to a frequency-dependent sensibility:

s(f) = s0
sin(πfτ)

πfτ
e−iπfτ (5)

We see from this equation, also shown in Fig. 2(d),
that the MZI display zeroes of sensibility at multiple of
1/τ , as well as an overall 1/f -drop beyond the first zero.
We typically use delays τ < 50 ns, such that our region
of interest (f = 1 − 10 MHz) is well within the first
zero, which is especially important for the feedforward
correction. However, for phase noise measurement, we
can also extract information beyond 1/τ (at the cost of a
decreasing sensitivity). We note that the choice of delay
τ is a compromise between sensibility (increasing with τ)
and measurement bandwidth (decreasing with τ).
Before moving to the experimental realization, we

shortly discuss how this frequency discriminator based on
a short-delay MZI compares to other approaches. First,
compared to delayed self-heterodyning with kilometer-
long delays, often used to extract laser linewidth, the ex-
perimental setup is much simpler (to the exception that
the interferometer needs to be actively stabilized to its
quadrature point). Secondly, we point out that since we
are only interested in information at high Fourier fre-
quencies, there is no concern of technical noise (on the
detectors, or on the fibers). Finally, if the lasers are al-
ready stabilized on a narrow linewidth cavity (as often
the case to accurately set the average frequency ν0), it is
possible to extract similar information from the Pound-
Drever-Hall error signal [12], or by beating the laser with
the filtered output of the cavity [33, 34].
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FIG. 2. A delayed MZI as a fast phase/frequency noise dis-
criminator. (a) Schematic and (b) picture of the realiza-
tion with fiberized components. (c) Photo-diode (PD) output
when scanning the stretcher. The peak-to-peak voltage Vpp

is recorded to calibrate the interferometer sensitivity, and the
interferometer is then locked at mid-point. (d) The detector
output is measured with a spectrum analyzer to give the PSD
of voltage noise S (in V2/Hz) as a function of the Fourier fre-
quency f . The curves in the semi-log plot correspond to the
noise obtained when measuring an ECDL laser (pink), and
the detection noise floor set by the transimpedance amplifier
(blue). Inset: MZI sensitivity s to frequency-noise as a func-
tion of the Fourier frequency. The expected nulls of sensitivity
at multiples of f = 1/τ , clearly observed in (d), are used to
precisely calibrate the MZI delay τ = 22.4 ns. (e) Frequency
noise PSD obtained after converting the spectrum analyzer
output S into a frequency-noise PSD Sν = S/s2 using the
calibrated MZI sensitivity.

B. Fiber MZI realization

We assembled a fiberized MZI from individual
polarization-maintaining (PM) components, see
Fig. 2(b). The light is first split by a 50/50 PM
coupler (Thorlabs, PN780R5F2) into a long and short
arm. In the long arm, we place a delay line and a
slow phase actuator (a home-made fiber stretcher with
resonance beyond kHz). The two arms are then recom-
bined on a second 50/50 coupler. We obtain interference
fringes at the two outputs of the MZI, as shown in
Fig. 2(c), with visibility of typically 90 % which are
stable over time. The residual 10 % loss of contrast

is caused by imperfections of the components causing
a slight imbalance of power and polarization between
the two arms, but it does not affect the performance
of the MZI as a frequency discriminator (only slightly
decreases the sensibility). The MZI acts as a frequency
discriminator when the two arms are combined with a
phase difference of π/2, i.e., when the interferometer is
at its quadrature point at the middle of the fringe.
To lock the interferometer, we implemented a slow,

sub-kHz, feedback loop with an Arduino DUE board
monitoring the MZI output and controlling the fiber
stretcher.
The two outputs of the last coupler are detected with

photo-diodes. A balanced detection, where the two
photo-currents from each output are substracted, is pre-
ferred as it rejects (in first-order) the intensity noise
from the laser while doubling the sensitivity to frequency
noise. The photo-current can either be read directly on a
spectrum analyzer, which allows the lowest measurement
noise floor, or input to a transimpendance amplifier. We
used the second approach (with the Thorlabs PDB425A)
to drive the feedforward path, at the cost of a slight in-
crease of noise floor (see next section). The amplifier
bandwidth of 100 MHz is well beyond the MZI first zero
of sensitivity.

C. Laser frequency noise analysis

We now turn to the analysis of the signal from the
MZI containing information of the frequency/phase
noise of the laser. We first discuss the calibration of the
MZI sensitivity and then discuss the detection noise floor.

a. Calibration The full fringes are observed by scan-
ning the fiber stretcher, see Fig. 2(c), which allows to
extract the peak-to-peak voltage Vpp. Note that we
show here the low-bandwidth amplified output of a sin-
gle photo-diode, while for the spectral measurement we
use the balanced signal from the two photo-diodes which
has higher bandwidth and is further amplified. Then,
the interferometer is locked at mid-fringe, the quadra-
ture point, allowing to observe frequency noise as voltage
fluctuations shown in Fig. 1(b).
We then read-out the detector output with a spectrum

analyzer to obtain the PSD of voltage S (in V2/Hz).
The zeros of sensibility of the MZI appears strikingly
at multiple of 1/τ MHz , allowing to precisely calibrate
the MZI delay τ = 22.4 ns. Together with the measured
peak-to-peak voltage Vpp, this completes the charac-
terization of the MZI sensibility s0 = Vppπτ . For the
signals shown in Fig. 2, we have s0 = 1.57 V/MHz.
This calibration procedure is simple and accurate, and
is repeated for each interferometers or lasers used in
this work. With this sensitivity, we can now convert S
(V2/Hz) into the PSD of frequency noise Sν = R/s2 × S
(Hz2/Hz). We note that for a careful quantitative
measurement, one has to set the spectrum analyzer
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detection mode to average rms power (and not the
default peak mode, or logarithmic average [35]), and to
remember that a spectrum analyzer gives single-sided
PSD in case one wants to convert it into two-sided PSD.

b. Noise floor When using a biased photo-detector
for measurement, the electronic noise floor is first fun-
damentally set by the thermal Johnson noise of the
R = 50Ω impedance whose PSD is S = 4kBTR =
−180 dBm/Hz (0.2 nV/

√
Hz) at room temperature. In

practice, this noise source is overwhelmed by the spec-
trum analyzer electronic noise floor, typically at S ≃
−160 dBm/Hz (2 nV/

√
Hz). This converts into a fre-

quency noise floor of Sν ≃ 5 × 10−3 Hz2/Hz. When
using the transimpendance amplifier, the noise floor in-
creases to typically 0.1 Hz2/Hz, as shown as a blue curve
in Fig. 2(d).

In the Fourier frequency range of 1 to 10 MHz, we
reached this detector electronic noise floor. At lower fre-
quencies, we however observed a large increase of noise,
peaking at 30 kHz, caused by the electronic feedback
loop stabilizing the interferometer. This is a combina-
tion of the large electronic noise of the Arduino DUE
and a resonance of the fiber stretcher. This could be
suppressed with better electronics. We conclude that
this simple setup is perfectly adequate for measuring fast
phase noise on the microsecond timescale and faster, but
not for longer timescale.

D. Gallery of laser frequency noise

We now show a collection of frequency noise for lasers
found in the laboratory and under various conditions.
We start by comparing the noise of five different types of
lasers on Fig. 3(a): a DBR (distributed Bragg reflector)
semiconductor diode laser from Vescent/Photodigm, an
ECDL from Toptica, a VECSEL from Vexlum, a SIL
laser from OEWaves, and finally a solid-state TiSapph
laser from Sirah.

As expected, the fast frequency noise of these lasers
drastically depends on their architecture, with the DBR
laser reaching a white frequency noise floor of 10 000
Hz2/Hz while the solid-state laser noise floor is below
the sensibility of 0.01 Hz2/Hz of our detection scheme.
The ECDL is around 100 Hz2/Hz, limited as the DBR
by the fundamental quantum noise of lasers given by the
Schawlow-Townes formula SST

ν = hν0ν
2
c /P , with P the

output power, ν0 the laser frequency, and νc the laser
cavity linewidth [36]. This noise is especially high for
ECDL and DBR due to the limited power that can be
extracted from side-emitting diodes (below 100 mW) as
well as by the large cavity bandwidth (GHz or more).
In contrast, a VECSEL would have orders of magnitude
smaller Schawlow-Townes noise-floor thanks to the multi-
Watt power accessible with the surface-emitting design as
well as by the MHz linewidth of their cavity (associated
to the much lower gain in this design). In fact, the mea-

FIG. 3. Gallery of laser frequency noise PSD. (a) Five lasers of
different types: semiconductor-based DBR, ECDL, VECSEL,
SIL, and solid-state-based TiSapph. (b) Four different ECDLs
from the same manufacturer. (c) Frequency noise before and
after frequency doubling with SHG in an enhancement cav-
ity. (d) Noise reduction using a feedback loop with different
settings of the PID parameters. (e) Noise measured with the
home-made MZI (pink) and a commercial phase noise ana-
lyzer (blue).

sured noise level of the VECSEL at 10 Hz2/Hz is prob-
ably limited by thermal and carrier-density fluctuation
created by intensity noise of the pump, rather than by the
Schawlow-Townes limit [18, 37]. For the TiSapph laser,
its noise level is so low that we cannot measure it with
our finite measurement noise floor, in agreement with its
expected Schawlow-Townes level at 10−5 Hz2/Hz. The
SIL laser display a noise level of 0.6 Hz2/Hz, which is ex-
plained by the self-stabilization mechanism of the laser
when coupled to a high-Q resonator [19, 38, 39]. Unfor-
tunately, no fiber-based laser was available at the time
of these measurements, but one could expect frequency
noise at a level below 10 Hz2/Hz.

For all lasers, expect the VECSEL, we used home-
made MZIs described previously and all measurements
have in common a displayed noise level largely increas-
ing below 100 kHz, originating from the MZI and not the
lasers. In contrast, for the VECSEL, we used a commer-
cial phase noise analyzer (OE4000 from OEwaves), whose
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performance remains excellent at lower Fourier frequen-
cies. We note that, at MHz Fourier frequencies, the com-
mercial system detection noise floor is 1 Hz2/Hz, while
the simple MZI can reach a 0.1 Hz2/Hz level. We could
even push down to 0.01 Hz2/Hz (see the TiSapph curve
in Fig. 3(a)), by using a single biased photo-detector and
were then limited by intensity noise of the laser. We also
compare, in Fig. 3(e), the measured noise with our home-
made MZI and with the commercial phase noise analyzer
for the ECDL laser. The agreement is very good, except
in the 10 kHz range where the MZI exhibits large noise,
described earlier.

In Fig. 3(b), we compare the noise spectra of four lasers
of identical architecture (ECDLs), from the same manu-
facturer but with different wavelengths, and obtain very
similar frequency noise characteristics. In Fig. 3(c), we
compare the fast frequency noise of a laser before and
after frequency doubling using SHG (second harmonic
generation) in an enhancement cavity (with a linewidth
of 100 kHz): as expected, the noise power is multiplied
by 4 at low Fourier frequency, but is filtered above the
cut-off frequency of the cavity. This filtering action of a
narrow linewidth cavity is used in Ref. [13] to passively
reduce the noise of diode lasers. In Fig. 3(d), we illus-
trate the effect of a feedback loop on the noise reduction
within the loop bandwidth: for the fastest (PI corner at
500 kHz) and highest gain setting, the noise can be re-
duced below 300 kHz, but a servo bump appears at 1
MHz. In the next section, we will see how the fast feed-
forward noise eater is effective in this region where the
feedback approach fails.

IV. FEEDFORWARD CORRECTION

Having described how the MZI acts as a simple and
fast frequency discriminator, we now shift our focus to
reducing the phase/frequency fluctuation by applying a
feedforward correction on a fast phase modulator [29–
33]. As mentioned previously, while it is common to use
a feedback loop to stabilize a system, this approach is
plagued with finite loop time of several tens to hundreds
of nanoseconds which strongly limits the possibility to re-
duce fast, sub-microsecond (> MHz), fluctuations. Here,
a feedforward correction is more adapted as the delay in
processing the signal (detection, amplification, filtering,
...) can be effectively canceled by delaying the optical
signal by the same amount in several meters of fiber. On
the other hand, this approach requires fine tuning to ef-
ficiently cancel the noise: the overall gain has to be set
precisely to unity and the delay (phase) to zero. This
can be compared to the more relaxed requirement of a
feedback loop where one aim for the largest gain possible
and a phase lag below 180◦.

We will now explore the requirement on the feedfor-
ward path to reach large noise reduction, describe the
experimental setup and discuss the results.

A. Theory

As described in the previous section, the MZI fre-
quency discriminator output is proportional to frequency
fluctuation Ṽ = sν̃. As we apply the correction with a
phase modulator, we need to convert this signal to be
proportional to phase fluctuation ϕ̃. We realize this step
using a first-order passive low-pass filter (LP) with re-
sponse:

sLP =
1

1 + if/fc
. (6)

Well above the cut-off frequency fc, this filter effectively
integrate the output of the MZI giving Ṽ ≈ −isfc/f ×
ν̃ = −sfcϕ̃ which is proportional to phase fluctuation.
We also introduce the phase modulator characteristics
Vπ (the voltage for which a π-phase shift is applied), an
overall variable gain G and delay τd, and note that the
polarity of the correction is adjusted by locking the MZI
interferometer either on the positive or negative slope.
This leads to a Fourier-frequency-dependent correction
C(f)ϕ̃ applied by the phase modulator with:

C(f) = ±πfcGs0
Vπ

if/fc
1 + if/fc

sin (πfτ)

πfτ
e−i2πfτd . (7)

The noise (in PSD) will be reduced as Sout
ν /Sin

ν = |1−C|2,
thus requiring to adjust the overall correction C as close
as possible to 1.
a. Precision on the adjustable settings Let’s first

consider how precisely the gain and delay have to be
set to reach a noise cancellation of |1 − C|2 = −30
dB [40]. For a pure gain mismatch, this requires |C|
to be within 3 % of unity, which can be obtained
by adjusting the variable gain G. For a pure delay
|1−C| ≈ arg(C) = 2πfτd, the requirement on the phase
error is arg(C) < 0.03 rad (1.7◦), or, if expressed as a
delay, τd < 0.5 ns at f = 10 MHz which corresponds to
a cable length of 10 cm.

b. Frequency-dependence of the LP and MZI Two
other sources of imperfection are the frequency-
dependent response of the low-pass filter and the MZI
discriminator, which are explicitly written in Eq. (7) and
shown in Fig. 4(c).
The MZI discriminator response includes a pure de-

lay (absorbed in the definition of τd) and a frequency-
dependent gain error increasing as C ≃ 1 − x2/6 (with
x = πfτ). Operating at −30 dB of noise reduction re-
stricts the Fourier frequency to f ≲ 0.15/τ , so below 7.5
MHz for the MZI delay τ = 20 ns used later.
The LP filter converges to a pure integrator only for

f ≫ fc, with a LP gain error decreasing as 1/(2y2) with
y = f/fc, and a phase error converging much slower as
1/y. Consequently, f > 30fc is required to reach the 0.03
rad error target and thus the -30 dB cancellation level.
Adjusting the overall delay, it is possible to cancel the
phase error (and obtain an improved noise cancellation)
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at a finite Fourier-frequency by sacrificing response at
larger f , as shown in Fig. 4(c). Such peaked performance
at the zero-crossing of the phase error can be seen in
Ref. [40].

The range of Fourier frequency 30fc < f < 0.15/τ
of efficient feedforward operation can be widened by de-
creasing the cut-off frequency fc and the MZI delay τ ,
however this comes at the cost of decreasing the MZI
sensibility s0 and more filtering of its output by the LP
filter, such that a larger gain G is required.

B. Implementation

Figure 1 shows the full setup. The laser light to be
stabilized is first split in two paths: a measurement path
with around 100 µW sent to a MZI discriminator, and a
correction path consisting of a ∼ 10 meter delay-line and
a phase modulator. After correction, the light is sent to
a second MZI discriminator to characterize the efficiency
of frequency/phase noise reduction.

The MZI setup has been described in the first section.
Its output now goes to a delay line consisting in a few
meters of BNC cable set with a precision of 10 cm (0.5 ns,
SRS DB64). We then adjust the feedforward gain with
a combination of fixed attenuators with steps as small
as 10 % (1 dB), while for finer adjustment we attenuate
the optical power to the MZI (Thorlabs V800PA). The
signal then goes to a fixed-gain amplifier (iXblue, DR-
VE-0.1-MO, 26 dB, > 100 MHz bandwidth). The noise
introduced by the amplifier is dominated by the input
noise originating from the amplified photo-detector and
can be neglected.

The output of the amplifier is connected to an RC
low-pass filter (R = 1 kΩ, C = 2.7 nF, fc = 60 kHz)
realized with SMD components to reduce parasitic in-
ductance and ensure correct operation up to 50 MHz (we
observed a resonance at 100 MHz). The signal then fi-
nally goes to the fiber EOM (iXblue, NIR-MPX800-LN-
0.1, >100 MHz bandwidth, Vπ = 1.1 V), whose high
input impedance of 10 kΩ insures that the filter is not
loaded. We measured that the gain flatness of the correc-
tion system (amplifier, filter, EOM response) was better
than the 3 % required for a 30 dB noise cancellation over
the 1-10 MHz range.

In contrast to a previous work using a free-space
electro-optic modulator [32], the use of a fiber EOM dras-
tically decreases the requirement on the driving voltage,
allowing to easily reach much larger bandwidth. How-
ever, fiber-based EOMs typically specify a maximum in-
put power of 10-100 mW due to the photo-refractive ef-
fect, while free-space EOMs do not have such limitations.

C. Results

The performance of the phase noise eater were briefly
presented in Section II. Here, we provide a deeper anal-

FIG. 4. Feedforward correction results. (a) Elements in the
feedforward path. (b) Noise correction (in ratio of PSD)
achieved experimentally (light blue) compared to the esti-
mated limits set by the noise-floor (dark blue), LP filter dis-
persion (dot-dashed line), MZI discriminator roll-off (dashed),
delay error (dotted) and the sum of these (solid black line)
(c) Estimated noise reduction |1 − C|2 (in dB) as a function
of Fourier-frequency f (top) originating from the phase error
argC (middle) and gain error |C| (bottom). Three different
length of delay line are shown. (d) Noise reduction for several
LP cut-off frequencies fc and model (dot-dashed). (e) Noise
reduction for several delays and model (dotted).

ysis with a comparison to the expected limits. As shown
in Fig. 4(b), the measured correction (light blue line) is
in excellent agreement with the model (solid dark line).
We now go into each of the contributions to the full

model. First, the finite noise floor of the detection, origi-
nating from the photo-diode transimpendance amplifier,
sets a frequency-independent limit of the correction to
33 dB (dark blue measurement) which dominates around
f = 3−5 MHz. Second, at lower frequency, the correction
is limited by the LP filter dispersion (Fourier-frequency-
dependent phase-lag), as demonstrated by the perfect
match with the dot-dashed line. We further illustrate
this by varying the cut-off frequency (fc) in Fig. 4(d).
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Third, at the highest frequencies, the MZI response roll-
off explains the degrading performance of the feedforward
correction (dashed line). Fourth, we show with the dot-
ted line the contribution of a 0.5 ns mismatch of delay
(the smallest resolution we had), which is not expected
to contribute at this level. For illustration, we also show,
in Fig. 4(e), how the correction is affected by larger de-
lays of 4 and 8 nanoseconds set on purpose. Finally, by
including all four independent imperfections into a single
curve (solid line), we obtain a good agreement with the
measured correction ratio.

Following these observations, further improvements of
the phase noise eater can be envisioned. The low and
high frequency response can be improved by having a
slower filter (decrease fc) and faster MZI discriminator
(decrease τ), and by optimizing the amplifier to compen-
sate for the decreased sensibility. Also, an automatic gain
control procedure acting on the continuously-variable op-
tical attenuator, would allow to keep optimized condi-
tions even for drifting laser power at the MZI input that
otherwise disturbs the overall gain [40].

Finally, we comment on the influence of the phase noise
eater on intensity noise. Electro-optic modulators (ei-
ther free-space or waveguide-based) used for applying the
phase correction also slightly affect the intensity, an effect
called Residual Amplitude Modulation (RAM). For our
device, we measured a ratio of intensity to phase mod-
ulation of -59 dB (changing the phase by 1 rad affects
the intensity by 0.1 %). We note that the RAM depends
strongly on the DC bias applied to the EOM (probably
caused by some etalon effect), and can be further de-
creased by 30 dB for an optimal bias. Operating at such
a sweet spot would however require a dedicated locking
procedure of the bias point as it otherwise drifts. For
this discussion, we picked the point of maximum RAM.
The excess RIN (relative intensity noise) caused by the
feedforward correction is simply RIN = RAM × Sϕ. In
practice, for the laser shown in Fig. 1, with a measured
frequency noise of 1000 Hz2/Hz and RIN of -150 dBc/Hz,
we observed that the RIN doubles at f = 1 MHz (the
excess RIN from the feedforward is equal to the laser
RIN). We conclude by pointing out that such low level
of RIN have a negligible contribution to the error budget
of quantum gates [11].

D. Discussion

We now compare the performance described above to
other approaches. First, compared to a feed-back sta-
bilization, where noise suppression can easily reach 50
dB at kHz frequencies but fails at MHz due to the finite
loop time and bandwidth limitations, the feedforward ap-
proach is very effective in cancelling noise between 1 to
10 MHz. With respect to filtering by a cavity where noise
is suppressed as (fc/f)

2 for f ≪ FSR (fc is the cavity
linewidth, FSR the free spectral range), we have similar
noise reduction as with fc ∼ 100 kHz up to 3 MHz (where

we reach peak performance), while for higher Fourier fre-
quencies our feedforward method suffers from the lim-
ited bandwidth of the interferometer (50 MHz), much
smaller than the typical bulk cavity FSR in the GHz
range. Other differences are the more limited output
power from a filtering cavity (typically sub-mW) com-
pared to the phase noise eater limit of the electro-optic
modulator (10-100 mW for a waveguide-version, Watt-
level in free-space); as well as in the reduced footprint
and complexity of the fully-fiberized phase noise eater.
Finally, other feedforward noise suppression results

have already been reported in the litterature. With
the same configuration as reported here, Hashemi and
coworkers reduced the frequency noise of a DBR laser
with a white noise floor at Sν ∼ 106 Hz2/Hz by 15 dB
for f up to 100 MHz [29, 30]. This large bandwidth was
made possible by using a smaller delay in the interferome-
ter at the cost of a reduced sensitivity (and thus increased
noise floor), which is reasonable there given the large ini-
tial noise of the DBR laser used in their work. Other
approaches than using a delayed interferometer for fre-
quency noise measurement and feedforward are also pos-
sible. In Ref. [32], the authors perform an heterodyne
measurement between the noisy laser and its filtered ver-
sion at the output of a cavity, and demonstrated 20 dB
suppression at sub-MHz Fourier frequencies and 3 dB
at 5 MHz. In Refs. [33, 40], Chao, Hua and coworkers
instead directly use the same Pound-Drever-Hall error
signal as used for feedback stabilization on a reference
cavity, and feedforward its high-frequency components,
directly proportional to phase noise, to an electro-optic
modulator. They achieve 30 dB of cancellation in the
0.3 − 3 MHz range, a broader range than with our MZI
measurement thanks to the wider region where the PDH
signal is proportional to phase noise (for fc ≪ f ≪ FSR).
The absolute noise was however not reported (only the
relative cancellation for an intentionally added modula-
tion), neither the measurement noise floor, so it is yet
unclear if the noise can be pushed below the 10 Hz2/Hz
level. Such cancellation performance were also later re-
produced independently, achieving 30 dB at 2 MHz [41].

V. ATOM INTERROGATION

In the preceding sections, we have detailed our ap-
proach for measuring and quantifying phase noise within
a laser, and presented a feedforward scheme to actively
diminish this noise. In this fourth part, we investigate
in situ interrogation of cold 87Rb atoms and observe im-
proved fidelity of manipulation thanks to the noise re-
duction. Such improvements after phase noise reduction
have been observed in Rydberg excitation [13] and molec-
ular state transfer [41].
The experiment is performed on a 87Rb platform pre-

viously described [42], with an array of up to hundred
atoms. We did not operate on the Rydberg transi-
tion, but rather on a Raman transition between the
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FIG. 5. Atom interrogation. (a) Ramsey interferometry
scheme for sensing the laser phase noise. (b) Energy levels
and the two laser drives involved in the Raman transition.
(c) Frequency noise spectrum of one of the laser drive with
(without) phase noise cancellation in light blue (pink). The
exaggerated servo-bump is reduced by more than 20 dB, as
well as the white-noise level initially around 100 Hz2/Hz. (d)
Ramsey fringes on the clock states with (without) phase noise
cancellation in light blue (pink), showing clear improvement
with the phase noise eaters.

two ground states, see Fig. 5(b). It has the advantage
of removing the Doppler and E-field noise present for
Rydberg states, thus better isolating the effect of laser
phase noise. We interrogate the atoms with a Ramsey
sequence, shown in Fig. 5(a), that can be interpreted
as an atomic MZI with the atoms serving as a stable
phase reference. We use two independent 780 nm ECDL
laser sources, detuned by the intermediate 5P3/2 state
by 3 GHz, and frequency locked 6.8 GHz apart on inde-
pendent frequency references: a high-finesse Fabry-Perot
cavity for laser 1 and a spectroscopy cell for laser 2. Both
lasers have their phase stabilized by two phase noise eater
systems. The frequency noise PSD of laser 1 is displayed
in Fig. 5(c). The frequency lock was badly tuned on pur-
pose to enhance the servo-bump, strikingly visible at 700
kHz. When the phase noise eater is activated, the PSD
is decreased by more than 20 dB.

The measured Ramsey fringe is presented in Fig. 5(d)

and is described by:

P0(t) =
1

2
+

1

2
cos [(δt+∆ϕ(t)]

with δ = 2π× 4.8 MHz the chosen two-photon detuning,
and ∆ϕ(t) = ϕ(t) − ϕ(0) the phase difference after an
interrogation time t. Without feedforward stabilization,
we observe Ramsey fringes with little overall damping
but a contrast periodically reaching near zero. To inter-
pret this, it is useful to look at the phase noise spectral
density of the lasers. Since the PSD is strongly peaked
around fp, we can approximately model the laser phase
as ϕ(t) = a × cos(2πfpt + θ), with θ a random phase
with uniform sampling (for each experimental realiza-
tion), and a a random amplitude described by a Rayleigh
distribution with rms given by the phase noise measure-
ment [14]. Consequently, the variance of ∆ϕ periodically
reaches a maximum (minimum) at odd (even) integer val-
ues of 2fpτ . This model is in agreement with the results
shown in Fig. 5(d). At t = 1/(2fp) = 0.7 µs, the fringe’s
contrast is 0 and it revives fully at t = 1/fp = 1.4 µs.
When we turn on the phase noise eater, the modulation
of the Ramsey fringes completely disappears as the laser
phase is sufficiently stabilized.
We conclude this section by noting that the interroga-

tion of atoms to judge the level of phase noise was not
very sensitive. We had to increase the phase noise, by
badly tuning the feedback loop, to see a clear effect on
the Ramsey signal. More refined measurements could
lead to a better sensitivity [11, 41].

VI. CONCLUSION AND OUTLOOK

We have described a simple, and powerful, technique
to quantify the fast phase noise of laser sources. While
this is far from a new technique, as it dates back from
the invention of the laser [43, 44], we believe that its im-
portance for high-fidelity manipulation of the electronic
states of neutral atoms, ions, and molecules, called for a
modern presentation with all information needed to eas-
ily reproduce the measurement setup.
We then characterized a collection of lasers, which dis-

played frequency noise varying by more than 8 orders
of magnitude depending on their design. In particular,
we illustrated that semiconductor lasers, with advanced
designs such as VECSEL or SIL lasers, have a satisfy-
ingly low level of noise. While they do not reach the per-
formance of a solid-state laser, it should be more than
enough for high-fidelity manipulation. We expect that
this comparison will guide experimentalists in the choice
of the most adequate lasers.
In the second part of this work, we showed how the

phase noise measurement can be used for a feedforward
correction of the phase. We achieved up to 30 dB of
cancellation at a Fourier frequency of 3 MHz, and more
than 20 dB in the 1-10 MHz, bringing the laser phase
noise below the Hz2/Hz level. The performance of the
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system was discussed and matched well with calculations.
We finally highlighted the effect of improving the laser
phase noise when manipulating the coherence of single
neutral atoms.

We envision that this phase noise eater could
be used with standard, low-cost, easy to assemble,
semiconductors-based ECDLs whose phase noise is how-
ever unacceptable for the most demanding applications;
instead of opting for the more expensive commercial
products based on VECSEL and SIL. Combined with the
usual PDH technique, it offers a low-noise laser source
over the Fourier spectrum ranging from a few Hz to
10 MHz, with applications for the manipulation of Ry-
dberg atoms [11, 13, 14, 32, 45], atomic interferome-
ters [22, 46], for coherent transfer between molecular

states [41, 47, 48], or for trapped ion quantum gates [9].
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