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ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of neonatal mortality and developmental disabilities.
It has been revealed that the temporal behavior of the cerebral blood volume (CBV) carries information on the degree of
hypoxia-ischemia. CBV can be estimated by means of near-infrared spectroscopy. The change of CBV after the insult is related
to the change of CBV during the insult. In this paper, we consider a mathematical model which governs the time evolution of
CBV after the insult. We show that the temporal behavior of CBV can be predicted with the Kalman filter which is based on the
mathematical model.

Introduction
Neonatal hypoxic-ischemic encephalopathy (HIE) causes of death and developmental disabilities in newborns. Therapeutic
hypothermia is often not effective. Thus it is necessary to understand the degree of hypoxia-ischemia (HI) to make treatment
plans1–3. Treatments must be delivered within six hours of birth. Hence early recognition of cerebral hemodynamic changes is
necessary.

Since near-infrared light is particularly absorbed by hemoglobin, cerebral blood volume (CBV) can be estimated with
near-infrared spectroscopy (NIRS) using the time-resolved spectroscopy (TRS, Hamamatsu Photonics K.K.). For the piglet
experiment which will be considered in this paper, two optical fibers (one is for emission and the other is for detection) were
attached to the head of each piglet with the source-detector distance 30mm. In TRS, the time-correlated single-photon counting
technique is used to detect photons. By photon detection with three wavelengths, the oxyHb and deoxyHb concentrations can
be estimated, which can then be converted to CBV4, 5. Compared with X-ray, light is free from radiation exposure. This means
that NIRS measurements can be performed repeatedly. Thus a time series of NIRS imaging is available. The use of NIRS for
monitoring oxygenation of the brain has provided useful insights for the management of newborns6, 7.

An asphyxia piglet model has been established, which exhibits a uniform degree of histopathological brain injury, and the
change in CBV was investigated for the piglets by means of near-infrared imaging8–11. In piglets subjected to the HI insult,
CBV initially rises to a peak and then keeps decreasing until resuscitation. The CBV reduction from the peak during the insult
is related to the severity of brain injuries caused by autoregulatory impairment. Impaired cerebral autoregulation results in
adverse neurological outcomes12, 13. The time evolution of CBV reflects the degree of hypoxia-ischemia. In particular, the
dependence of the temporal change y after the insult on the decay amount x of CBV during the HI insult was investigated14.

To predict the time evolution of CBV after the insult, it is desirable to find a differential equation which governs the
phenomenon. The change of CBV in time takes place as a consequence of extremely complicated blood flows in the body,
which in principle can be described by the fluid dynamics. Without touching detailed blood flows in the head, we seek a
differential equation which is able to reproduce the time evolution of CBV. This is in some sense related to seeking laws
of thermodynamics without statistical mechanics. In this paper, we propose a differential equation which governs the time
evolution of CBV for the piglets. To validate the mathematical model, we predict the time dependence of CBV using the
observed data from the piglet experiments. The Kalman filter was used for the prediction.

The Kalman filter, including the extended Kalman filter, has been used for a pulmonary blood flow estimator15, cerebral
blood flow autoregulation16, 17, and the heart rate detection with reflected light18, microvessel imaging for microvessel density
maps and blood flow speed maps19, and the hemodynamic responses for functional near-infrared spectroscopy20. See a review21
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for the blood flow for the cardiovascular system.
Since it is not easy to obtain the time dependence of CBV for neonates and even newborn piglets, the Kalman filter has

not been used in the context of neonatal HIE. Moreover, to the best of our knowledge, any mathematical model has not been
proposed for the time evolution of CBV for the neonatal HIE.

Results
Figure 1 shows the temporal change y of CBV beginning at the resuscitation from the HI insult for different x. See Ref. 14 for
piglet experiments for the data shown in Fig. 1. Measurements were performed every 10sec and averages of six measurements
were taken to plot the temporal profile every minute. In Fig. 1, the red line with solid circles is y for x = 1.85, the ocher line
with open squares is y for x = 1.324, and the green line with diagonal crosses is y for x = 0.993.
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Figure 1. Time evolutions of the change y of CBV for three cases which are used in this paper.

For each curve in Fig. 1, one-step prediction was done with the Kalman filter. Curves in Fig. 1 are drawn with N +1 points
(ti,yi) (i = 0,1, . . . ,N). Here, N = 20. We note that ti − ti−1 = 1min (i = 1, . . . ,N). In each of five panels of Fig. 2, predicted
values of yi were computed with the Kalman filter using y1, . . . ,yi−1. The linear mathematical model (see below) was used for
the Kalman filter. In this way, the actual values (red) and predicted values (blue) are compared in each panel. In the panels of
Fig. 2, green points show the standard deviation of the error at each time. In the case of x = 0.993, ω = 0.446rad/min. In the
case of x = 1.324, ω = 0.370rad/min. In the case of x = 1.85, ω = 0.243rad/min. In all cases, tc = 1min, xp = 1.5, a = 1,
b = 0.3. The unit of time was hour instead of minute for the Kalman filter, in which case ∆τ = 1/60hr.

In Figs. 3 and 4, prediction for longer times was considered. Figure 3 shows an example of y which decays in time and
Fig. 4 shows an example of y which grows in time. In the top left panels of Figs. 3 and 4, predicted values are plotted for the
last 5min. That is, the Kalman filter algorithm did not use observed data for the last 5min. Similarly, in the top right panels of
Figs. 3 and 4, predicted values for the last 10min are plotted. In the bottom panels of Figs. 3 and 4, predicted values for the last
15min are plotted.

The parameters in the proposed mathematical model were chosen to reproduce the observed behavior of y. In particular, the
same β ,b were used for Figs. 2, 3, and 4. Figure 5 illustrates predicted values when other β ,b are used.

The nonlinear mathematical model was used for panels in Fig. 6: (upper left) x = 0.993, b = 0.3, γ = 1.0, β = 0.01, (upper
center) x = 0.993, b = 0.3, γ = 1.0, β = 0.1, (upper right) x = 0.993, b = 0.3, γ = 1.0, β = 1.0, (lower left) x = 0.993, b = 0.3,
γ = 0.5, β = 1.0, (lower center) x = 1.85, b = 0.3, γ = 1.5, β = 0.01, (lower right) x = 1.85, b = 0.3, γ = 1.5, β = 0.1. For
all cases, tc = 1min.

Discussion
As shown in Fig. 1, the change y of CBV has an increasing tendency, a decreasing tendency, or no strong increasing nor
decreasing behavior. The major cause of such variety is the amount x of the drop of CBV during the HI insult between the peak
time and the resuscitation time14. During the HI insult, CBV initially rises rapidly as a compensatory response, followed by
impaired cerebral blood flow autoregulation and vasoparalysis, leading to a gradual decrease in CBV as decompensation sets
in. It was found that a large decrease of CBV from the baseline during the insult was associated with severe brain injury or
mortality14.
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Figure 2. One-step (1min) predictions for (top left) x = 0.993, ω = 0.446, (top right) x = 1.324, ω = 0.370, and (bottom)
x = 1.85, ω = 0.243. Blue circles show the observed data and red circles mean predicted values. Moreover, green circles show
the standard deviation of the estimated error in upper and lower directions.

Since the change of y during 1min is monotonic, the one-step prediction (prediction every minute) worked well as shown
in Fig. 2. In Fig. 2, predicted values agree with the observed data after the first a few minutes of the filtering process of the
Kalman filter.

Longer predictions were performed in Figs. 3 and 4. We can observe that predictions within 10min work quite well. Since
longer predictions were tested using the same time-series data up to 20min, the filter process becomes shorter for longer
prediction. Moreover, since the linear model is used for the Kalman filter, it is not possible to predict nonmonotonic behavior of
CBV.

We properly chose parameters in the mathematical model. This is explained in Fig. 5. The prediction is not successful
if other parameters are chosen. We emphasize that the parameter x,ω depend on individual sample but otherwise the same
parameters were used for all samples in Figs. 2 through 4.

In the prediction of CBV, nonmonotonic behavior of u can be obtained if we use the nonlinear mathematical model, which
has a nonlinear term (see below). Examples of calculated u are shown in Fig. 6. As shown in Fig. 1, the change y has a
decreasing tendency for the first 20min for x = 0.993 and has a increasing tendency for x = 1.85. Their behaviors might not be
monotonic for a long time of a few or several hours. The nonlinear model can produce different time-evolution patterns as
shown in Fig. 6 depending of the choice of γ , β .

In principle, parameters in the mathematical models depend on factors such as blood pressure and heart rate, as well as sex
differences, presence or absence of infections, and severity. For example, it was observed for both piglets14 and fetal sheep22

that if the heart rate increases more during the insult, it also increases more after the insult.

Conclusion
In this paper, we explored the change of CBV during 20 minutes after the HI insult in neonatal piglets with HIE. In general, a
large CBV decrease during the insult causes an increase of the post-insult CBV.

We proposed a mathematical model which can reproduce the behavior that greater decreases in CBV during the HI insult
are followed by more pronounced increases after the insult.

Based on the proposed linear model, we showed that the time evolution of CBV can be predicted with the Kalman filter.
This fact implies that the proposed model governs the change of CBV in time for neonatal HIE.
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Figure 3. Predictions for the last (top left) 5min, (top right) 10min, and (bottom) 15min in the case of x = 0.993, ω = 0.446.

Materials and methods
Model
Let V (t) be the cerebral blood volume (mL/100g) at time t (hr). We suppose that the hypoxic-ischemic period ends at t = 0.
Let tmax > 0 be the maximum time (tmax = 1/3 in this paper). We can express V (t) as

V (t) = vmax − x+ y(t;x), 0 < t < tmax,

where x is the blood volume which goes away from the brain after it reaches the peak vmax until t = 0 and y(t;x) is the change
of the cerebral blood volume for t > 0.

In light of the above discussion, we make the following new model:

y(t;x) =

{
x tan(ωt), 0 < t ≤ tc,

u(τ;x)+ y(tc;x), τ = t − tc, tc < t < tmax,

where ω is a positive constant. We give ξ (x) as

ξ (x) =
x− xp

cos(ωtc)
,

where (xp,yp) satisfies

ωtc = tan−1
(

yp

xp

)
.

Linear model
Let us consider the equation of motion in the presence of friction:

d2u
dτ2 =−b

du
dτ

, b > 0.

We give the initial conditions as

u(0) = 0,
du
dτ

(0) = aξ (x),

4/8



observation

prediction

5 10 15 20
t [min]

-2

-1

0

1

2

change of CBV

observation

prediction

5 10 15 20
t [min]

-2

-1

0

1

2

change of CBV

observation

prediction

5 10 15 20
t [min]

-2

-1

0

1

2

change of CBV

Figure 4. Predictions for the last (top left) 5min, (top right) 10min, and (bottom) 15min in the case of x = 1.85, ω = 0.243.

where a is a positive constant.
The solution to the linear model is obtained as

u(τ) =
a
b

ξ (x)
(

1− e−bt
)
.

Nonlinear model
Nonmonotonic behavior of u can be obtained if the motion is considered in a potential W ,

d2u
dτ2 =−b

du
dτ

− dW
du

, b > 0,

where

W =
β

4ξ (x)2 u4 − βγ2

2
u2, β > 0, γ > 0.

We note that the double-well potential W has two minima at u =±γξ , and one local maximum at u = 0. From the equation of
motion we obtain the following Duffing-type equation.

d2u
dτ2 +b

du
dτ

−βγ
2u+

β

ξ (x)2 u3 = 0, τ > 0,

u(0) = 0,
du
dτ

(0) = aξ (x).

We note that βγ2 means stiffness, and β/ξ 2 indicates the degree of nonlinearity.

The Kalman filter
The Kalman filter is described below using the linear mathematical model. We have

d
dτ

(
u
v

)
=

(
v

−bv

)
, τ > 0,(

u(0)
v(0)

)
=

(
0

aξ (x)

)
.
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Figure 5. These graphs correspond to the top right panel of Fig. 3. In the case of x = 0.993, (left) a = 10 and (right) b = 3
while other parameters are the same as the parameters used in Fig. 3.
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Figure 6. (upper left) x = 0.993, γ = 1.0, β = 0.01, (upper center) x = 0.993, γ = 1.0, β = 0.1, (upper right) x = 0.993,
γ = 1.0, β = 1.0, (lower left) x = 0.993, γ = 0.5, β = 1.0, (lower center) x = 1.85, γ = 1.5, β = 0.01, (lower right) x = 1.85,
γ = 1.5, β = 0.1. For all cases, b = 0.3 and tc = 1min.

Let us discretize time as tk = k∆τ (tc = kc∆τ). We can write(
uk
vk

)
=

(
uk−1 + vk−1∆τ

vk−1 −bvk−1∆τ

)
for k = kc +1, . . . . Let us set

F =

(
1 ∆τ

0 1−b∆τ

)
, H =

(
1 0

)
.

The state equation and observation equation are given by

xk = Fxk−1 +w(1), yk(x) = Hxk +w(2),

where w(1) ∈ R2 and w(2) ∈ R are Gaussian noise for the system and measurement noise. Let Q, R be diagonal system noise
and measurement error covariance matrices:

Q = E
[
w(1)w(1)T

]
∈ R2, R = E

[
w(2)2

]
∈ R,

where E[·] denotes the expectation value. We set Q = 0.01I, R = 0.01, where I is the 2×2 identity matrix.
Let x̂k be the estimated state vector. The calculation consists of the prediction and update steps23. The prediction step is

done as follows. We have

R2 ∋ x̂k|k−1 = F x̂k−1, R2×2 ∋ Pk|k−1 = FPk−1FT +Q.
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Here, the error covariance matrix Pk is given by

Pk = E
[
(xk − x̂k)(xk − x̂k)

T ] .
Initially we set Pkc = I. Then the update step is performed as follows:

R ∋ zk = yk −Hx̂k|k−1,

R ∋ Sk = HPk|k−1HT +R = {Pk|k−1}11 +R,

R2 ∋ Kk = Pk|k−1HT S−1
k =

(
{Pk|k−1}11
{Pk|k−1}21

)
1
Sk

,

R2 ∋ x̂k = x̂k|k−1 +Kkzk,

R2×2 ∋ Pk = (I −KkH)Pk|k−1.

Let us consider the j-step prediction. After k = kM , we have

x̂kM+i = F x̂kM+i−1,

PkM+i = FPkM+i−1FT +Q

for i = 1, . . . , j.
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