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Abstract—Effective usage of approximate circuits for various
performance trade-offs requires accurate computation of error.
Several average and worst case error metrics have been proposed
in the literature. We propose a framework for exact computation
of these error metrics, including the error rate (ER), mean
absolute error (MAE), mean squared error (MSE) and the worst-
case error (WCE). We use a combination of SAT and message-
passing algorithms. Our algorithm takes as input the CNF formula
for the exact and approximate circuits followed by a subtractor
that finds the difference of the two outputs. This is converted into
a tree, with each vertex of the tree associated with a sub-formulas
and all satisfying solutions to it. Once this is done, any probability
can be computed by setting appropriate error bits and using a
message passing algorithm on the tree. Since message-passing is
fast, besides ER and MAE, computation of metrics like MSE is
also very efficient. In fact, it is possible to get the entire probability
distribution of the error. Besides standard benchmarks, we could
compute the error metrics exactly for approximate Gaussian and
Sobel filters, which has not been done previously.

I. INTRODUCTION

Over the past decade, approximate circuits have gained trac-
tion as an effective method to trade off error for performance
metrics like energy savings and frequency of operation in error
tolerant applications. Computing the error in these circuits is
an essential step towards determining the acceptability of the
approximation. The system (S) used for error analysis consists
of the exact and approximate circuits along with an error miter
that models the desired error metric. In this paper, our focus is
on exact computation of average and worst case error metrics
that have been proposed in the literature. This includes the
error rate (ER), mean absolute error (MAE), mean squared
error (MSE) and the worst case error (WCE). Evaluation of
these error metrics exactly is challenging since the outputs of
both the exact and approximate circuits have to be known for
all possible values of the inputs.

In the past, methods used for exact error analysis include
exhaustive enumeration, analysis based on binary and algebraic
decision diagrams (BDD/ADD) and model counting (#SAT)
based analysis. Exhaustive enumeration is infeasible for larger
circuits. BDD based error analysis techniques have been pro-
posed in [1]–[5]. In these methods, a BDD is constructed for the
entire system S and traversal of the BDD is used to compute
the error metrics. The miters used for various error metrics
are included in [3]. An alternate method based on symbolic
computer algebra and construction and traversal of ADDs has
been proposed in [6], [7]. The advantage of their technique

is that a single method can be used to get all error metrics,
including relative errors.

Methods proposed in [8], [9] use model counting for com-
putation of certain error metrics. WCE analysis in particular
can be performed effectively using SAT solvers [3], [8]. In [9],
the authors propose circuit aware model counter VACSEM that
integrates logic simulation into a #SAT solver GANAK [10]
and use it to compute ER and MAE.

A. Motivation

BDD based methods have shown limited scalability and we
have not seen results for metrics like MAE and MSE for beyond
32-bit approximate adders. The #SAT solver VACSEM has
proved to be efficient for computation of ER and MAE of up
to 128-bit adders and 16-bit multipliers. Their method depends
on partitioning the system into single output sub-miters. It
does not allow for a straightforward extension to computing
metrics that require a sat-count for a joint assignment of the
error bits, as for example MSE. Moreover, each new error
metric in VACSEM requires construction of the corresponding
error miter, partitioning of the system based on the output of
the error miter and re-synthesizing the partitions before model
counting. In this respect, the one-method-fits-all proposed in
[7] is attractive, but has shown limited scalability.

B. Contribution

Our algorithm takes as input the CNF formula for the
exact and approximate circuits followed by a subtractor that
finds the difference of the two outputs. This is converted into
a tree, with each vertex of the tree associated with a sub-
formulas and all satisfying solutions to it. Once this is done,
any probability can be computed by setting appropriate error
bits and using a message passing algorithm on the tree. Since
message-passing is fast, besides ER and MAE, computation of
metrics like MSE is also very efficient. In fact, it is possible
to get the entire probability distribution of the error. Besides
standard benchmarks, we are able to compute metrics for 128
bit adders as well as approximate Gaussian and Sobel filters,
with competitive runtimes.

II. BACKGROUND AND NOTATION

A. Notation

Our system consists of the exact and approximate circuits and
a subtractor that computes the difference of the two outputs. Let
𝑦, �̂� : B𝑛 → B𝑚 denote the outputs of the exact and approximate
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circuits. 𝐸 = 𝑦 − �̂� is the 𝑚 + 1 bit error, obtained as the output
of the subtractor in the twos complement form. We denote the
ith bit of 𝑦, �̂� and 𝐸 as 𝑦𝑖 , �̂�𝑖 and 𝑒𝑖 , respectively. Let F denote
the formula for the system in the CNF form. Model counting
or #SAT computes the total number of satisfying solutions
for F, which we denote sat-count(F). sat-count(𝑒𝑖) denotes
sat-count(F | 𝑒𝑖 = 1).
B. Error metrics

A detailed discussion of the error miters for commonly used
error metrics can be found in [3]. For convenience, we briefly
discuss the miters for ER, MAE, MSE and WCE.
Error Rate:(ER) It is the probability of getting an erroneous
output. The miter generally used [3] consists of 𝑚 XOR gates
with inputs 𝑦𝑖 and �̂�𝑖 followed by a tree of OR gates.
Mean absolute error:(MAE) It can be derived as [3]

MAE(𝑦, �̂�) = 1
2𝑛

(
sat-count(𝑒𝑚) +

𝑚−1∑︁
𝑖=0

2𝑖sat-count(𝑒𝑖 ⊕ 𝑒𝑚)
)

(1)

Mean Squared error:(MSE) It can be computed as

MSE(𝑦, �̂�) = 1
2𝑛

(
𝑚∑︁
𝑖=0

22𝑖sat-count(𝑒𝑖) + (2)

𝑚−1∑︁
𝑖=0

𝑚−1∑︁
𝑗=𝑖+1

2𝑖+ 𝑗+1sat-count(𝑒𝑖 ∧ 𝑒 𝑗 ) −
𝑚−1∑︁
𝑖=0

2𝑖+𝑚sat-count(𝑒𝑖 ∧ 𝑒𝑘)ª®¬
Worst case error:(WCE) It can be either positive (𝑒𝑚 = 0)
or negative (𝑒𝑚 = 1). To find positive WCE, each bit from
𝑚 − 1 to 0 is tested for SAT with all prior satisfied bits added
as unit clauses to F ∧ ¬𝑒𝑚. The positive WCE is the binary
number with all the SAT bits set to one and rest to zero. For
negative WCE, the same procedure is followed with SAT for
complement of the error bits and F ∧ 𝑒𝑚. One is added in the
end to the negative WCE to get the two’s complement. The
overall WCE is the maximum of the magnitudes of positive
and negative ones.

C. Factor and Factor product

A factor 𝜙(Y) is a function that maps all possible assign-
ments of variables in Y (denoted Domain(Y)) to a non-negative
real number, that is 𝜙(Y) : Domain(Y) → R ≥ 0. At several
points in our method, we need to compute a factor product
defined as follows. Let X,Y,Z be disjoint sets of variables
and 𝜙1 (X,Y), 𝜙2 (Y,Z) be two factors. The factor product [11,
Chapter 4] 𝜙1𝜙2 gives a factor 𝜓 which is obtained as follows.

∀𝑥, 𝑦, 𝑧 ∈ Domain(X,Y,Z),
𝜓(X,Y,Z = 𝑥, 𝑦, 𝑧) = 𝜙1 (𝑥, 𝑦)𝜙2 (𝑦, 𝑧)

D. Message passing

The sum-product algorithm, which is used to find the
marginal probabilities and partition function of Markov net-
works, can be implemented using a message passing (MP)
algorithm on a graphical representation of the network [11].

Xj

Xi

X1 Xk. . . . . .

Xij

Xi1 Xik

𝑚𝑖→ 𝑗

𝑚1→𝑖 𝑚𝑘→𝑖

Fig. 1: Message passing for a tree. The messages are passed
from leaves to the root.

The product refers to a factor product. MP works as follows.
Each node of a tree is associated with a set of variables Xi
and a factor 𝜓𝑖 (Xi). Let Xij denote the variables common to
nodes Xi and Xj. The message 𝑚𝑖→ 𝑗 from node 𝑖 to node 𝑗 is
computed using the following sum-product operation.

𝑚𝑖→ 𝑗 (Xij) =
∑︁

Xi\Xij

𝜓𝑖

∏
𝑘∈Neighbours(𝑖)\ 𝑗

𝑚𝑘→𝑖 (Xik) (3)

Essentially, the factor product of 𝜓𝑖 and incoming messages
from the neighbours of 𝑖 other than 𝑗 is marginalized over
variables that are not shared by nodes 𝑖 and 𝑗 .

III. PROPOSED ALGORITHM

Let X be the set of variables in the formula F, S(F) be the
set containing all satisfying solutions of F. Our algorithm has
the following steps.

1) Partition and model count for partitions: We first convert
F into a hypergraph using the method in [12]. Each clause in
F is a vertex in the hypergraph and each variable 𝑥 ∈ X is
a hyperedge. A hyperedge 𝑥, connects all the vertices(clauses)
that contain 𝑥 or its complement. A hypergraph partitioner is
then used to partition F into 𝑃 partitions, F1, · · · ,F𝑃 , such
that F =

∧𝑃
𝑖=1 F𝑖 and X =

⋃𝑃
𝑖=1 X𝑖 . The partitioning is done

with a limit on the maximum number of clauses in each
partition. To partition the hypergraph corresponding to F, we
use the hypergraph partitioner [13]. It produces partitions with
minimum number of cuts, which corresponds to minimizing the
number of shared variables between partitions.

Following this, we use a #SAT solver to obtain S(Fi). This
is efficient since the number of clauses in each partition is
limited. For each partition, we construct a table T(Fi) = {𝑠 ∈
S(Fi), 𝑐(𝑠)}, where 𝑐(𝑠) is the number of solutions containing
the assignment 𝑠. At this point 𝑐(𝑠) = 1 for all entries in the
table and sat-count(Fi) =

∑
𝑠 𝑐(𝑠). Note that each table is a

factor. Fig. 2(b) shows an example CNF F partitioned into three
partitions, {F1,F2,F3} and their corresponding tables T(Fi).

2) Graph construction: The partitioned formula is con-
verted to graph 𝐺 as follows. The vertices of 𝐺 are 𝑉𝑖 =
{Fi,Xi,T(Fi)}. Each table is a factor associated with the
corresponding vertex. An edge 𝐸𝑖, 𝑗 connects two vertices 𝑉𝑖
and 𝑉 𝑗 in 𝐺 if Xi ∩Xj ≠ ∅. Fig. 2(a) shows the example graph
G with Xi,j shown on the edges.



(a) Construct graph G from partitions

𝑉1 𝑉2

𝑉3

{F1, X1 = {𝑎, 𝑏, 𝑐}} {F2, X2 = {𝑎, 𝑑, 𝑒}}

{F3, X3 = {𝑏, 𝑑, 𝑓 }}

X1,2 = {𝑎}

X
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𝑉1 𝑉3
X1,3 = {𝑏, 𝑑}

{F1 ∧ F2,
X1 = {𝑏, 𝑑, 𝑒}}

{F3, X3 = {𝑏, 𝑑, 𝑓 }}

T(F1 ) c
𝑎 𝑏 𝑐

F F F 1
F T F 1
T T F 1
T T T 1

T(F2 ) c
𝑎 𝑑 𝑒

F F T 1
F T F 1
T F T 1
T T T 1

(b) Merge and marginalize until tree

T(F3 ) c
𝑏 𝑑 𝑓

F F F 1
F T T 1
T F F 1
T T T 1

T(F1 ) c
𝑎 𝑏 𝑐 𝑑 𝑒

F F F F T 1
F F F T F 1
F T F F T 1
F T F T F 1
T T F F T 1
T T F T T 1
T T T F T 1
T T T T T 1

Merge T(F1 ) and T(F2 )

T(F1 ) c
𝑏 𝑑 𝑒

F F T 1
F T F 1
T F T 3
T T F 1
T T T 2

Marginalize {𝑎, 𝑐}

𝑚(1,2)→3 c
𝑏 𝑑

F F 1
F T 1
T F 3
T T 3

Marginalize {𝑒}

(c) Message passing

T(F3 ) c
𝑏 𝑑 𝑓

F F F 1
F T T 1
T F F 3
T T T 3

Factor product

Fig. 2: (a) Partitioning the CNF formula F with error variables 𝑒 and 𝑓 into F1,F2,F3 and constructing graph G (b) Merging
F1 and F2 and marginalizing X1,2 w.r.t {𝑎, 𝑐} (c) Message passing

3) Merge and Marginalize: Assume that 𝑉𝑖 and 𝑉 𝑗 are
connected by an edge 𝐸𝑖, 𝑗 . MERGE(𝐺,𝑉𝑖 , 𝑉 𝑗 ) replaces the
two vertices by a single vertex 𝑉𝑖 associated with the formula
Fi ∧ Fj and the modified variable set Xi = Xi ∪ Xj. The
resultant table T(Fi) is the factor product of T(Fi) and T(Fj). It
contains all satisfying solutions 𝑠 of the modified formula with
𝑐(𝑠) = 𝑐(𝑠𝑖) × 𝑐(𝑠 𝑗 ). The total number of satisfying solutions
of the merged node is sat-count(Fi) =

∑
𝑠 𝑐(𝑠). Neighbours of

𝑉 𝑗 are then connected to 𝑉𝑖 , with the same associated common
variables. For any 𝑉𝑘 ∈ Neighbour(𝑉 𝑗 ) if Xk ⊂ Xi, then 𝑉𝑘 is
also merged with 𝑉𝑖 . This merge will not result in any increase
in the table size, but the counts in T(Fi) will get updated.
Fig. 2(b) shows an example where the tables T(F1) and T(F2)
are merged resulting in an updated T(F1).
Marginalize: Let 𝑄𝑖 = {𝑥 : 𝑥 ∉ 𝐸 and 𝑥 ∈ Xi, 𝑥 ∉ Xj, 𝑗 ≠ 𝑖}
be the set of variables that are not the error variables and are
present exclusively in Xi. The marginalization step removes the
variables 𝑥 ∈ 𝑄𝑖 from T(Fi) and updates the table as follows.
For each 𝑥, if 𝑠0 = {𝑠, 𝑥 = False} and 𝑠1 = {𝑠, 𝑥 = True} are
satisfying assignments of variables for Fi, then

T(Fi) = {𝑠 ∈ S(Fi), 𝑐(𝑠) = 𝑐(𝑠0) + 𝑐(𝑠1)}

The variable list in Fi is updated as Xi = Xi \ 𝑄𝑖 . Fig. 2(b)
illustrates the marginalization of 𝑄1 = {𝑎, 𝑐} from T(F1).

Algorithm 1 has the main steps. The vertices that result in
smaller table sizes are preferred for merging. An estimate of the
size of the merged table is used to choose the vertex pairs. The
edges are sorted in increasing order of the estimated merged
sizes. Edges with estimates larger than a predefined limit are
filtered. Pairs of vertices from disjoint edges in this filtered
list are chosen greedily to merge starting with the least size.
The Merge and Marginalize steps procedure continues until the

graph G becomes a tree or the nodes can no longer be merged
without the resultant table size exceeding the limit.

Algorithm 1 Merge and Marginalize until tree

Require: CNF F, Number of partitions 𝑝, Table size threshold
𝑇𝑆

1: {F1,F2, . . . Fp} = PARTITION(F, 𝑝)
2: Construct an undirected-graph 𝐺 = (𝑉, 𝐸) with

𝑉𝑖 = {Fi,Xi,T(Fi)}, 𝐸 = ({𝑉𝑖 , 𝑉 𝑗 ) | 𝑉𝑖 , 𝑉 𝑗 ∈ 𝑉,Xi,j ≠ ∅}
3: while 𝐺 is not a tree do
4: for all (𝑉𝑖 , 𝑉 𝑗 ) ∈ 𝐸 do
5: 𝑤𝑖, 𝑗 = Estimated size of merging T(Fi) and T(Fj)
6: end for
7: Sort 𝐸 in increasing order of 𝑤𝑖, 𝑗

8: L = Filter edges in 𝐸 with 𝑤𝑖, 𝑗 > 𝑇𝑆 and choose
disconnected edges with smallest weights

9: for all (𝑉𝑖 , 𝑉 𝑗 ) ∈ 𝐿 do
10: 𝑉𝑖 = {Fi ∧ Fj,Xi ∪ Xj, FACTORPROD(T(Fi),T(Fj))}
11: end for
12: Rebuild 𝐺 with updated 𝑉𝑖
13: for all 𝑉𝑖 ∈ 𝑉 do
14: Xmarg = Xi \

⋃
(𝑉𝑖 ,𝑉𝑗 ) ∈𝐸

Xj // variables unique to Xi

15: MARGINALIZE(T(Fi), Xmarg)
16: end for
17: end while

The tables used in our merge algorithm are hash tables with
(satisfying solutions, counts) forming the (key, value) pairs.
The satisfying solutions are stored as compact bit-vectors to
minimize the table’s memory footprint. A efficient parallel
hash table [14] is used in our implementation. To decide if
two connected vertices can be merged, an estimate of the
resultant table size after merging is required. An exact estimate



involves counting the distinct assignments in the merged table
which is runtime/memory intensive. An approximate estimate
is adequate for relative ordering of edges and filter edges with
large tables. This is the standard count-distinct problem in data
streams, efficiently solved by the HyperLogLog algorithm [15].

4) Message passing: We use the message passing algorithm
on the tree obtained after the Merge and marginalize procedure
in order to get the desired sat-count. Use of the message-
passing algorithm requires that the tree satisfies the running
intersection property (RIP). This property is defined as follows:
if vertices 𝑉𝑖 and 𝑉𝑘 share a variable 𝑥, then every vertex 𝑉 𝑗 in
the path between 𝑉𝑖 and 𝑉𝑘 must contain 𝑥. The tree obtained
after the Merge and Marginalize algorithm always satisfies this
property, as shown in the following theorem.

Theorem 1. When graph 𝐺 becomes a tree, (RIP) is satisfied.

Proof. The initial graph G is constructed so that there is an
edge between a pair of vertices in G iff they have variables in
common. When the Merge step merges 𝑉 𝑗 with 𝑉𝑖 , neighbours
of 𝑉 𝑗 are connected to 𝑉𝑖 with each edge associated with
the same common variables. Marginalization does not affect
variables associated with the edges. After repeated merge-and-
marginalize steps, assume that G is converted to a tree. The
proof is by contradiction. Assume RIP is not satisfied. This
implies there exists 𝑉 𝑗 in the path from 𝑉𝑖 to 𝑉𝑘 with 𝑥 ∈ Xi
and 𝑥 ∈ Xk, but 𝑥 ∉ Xj. By definition, there must be an edge
from 𝑉𝑖 to 𝑉𝑘 resulting in a loop, which is not possible since
G is a tree. □

The message passing algorithm is implemented as follows.
The graph G is now considered as a rooted directed tree, with
tables T(Fi) associated with vertex 𝑉𝑖 . Each table is modified
using messages from its children as follows

T(Fi) = T(Fi) ·
∏

𝑣∈children(𝑖)
𝑚 𝑗→𝑖 (4)

A node in the tree can be updated only after all its children
are updated. The product in equation (4) is a factor product.
The message 𝑚 𝑗→𝑖 from node 𝑗 to node 𝑖 is a factor (table)
that is computed as follows. The variables in the table are the
common variables Xi,j. Let 𝑠 denote an assignment of Xj and 𝑠𝑥
an assignment of Xi,j To get the number of satisfying solutions
𝑐(𝑠𝑥), we marginalize over the variables Xj \ Xi,j, i.e.,

𝑐(𝑠𝑥) =
∑︁

Xj\Xi,j

𝑐(𝑠) (5)

Therefore, 𝑚 𝑗→𝑖 = {𝑠𝑥 , 𝑐(𝑠𝑥)}. This is illustrated in Fig.2(c)
for the example. As shown in the figure, after the Merge and
marginalize procedure, we have two tables T(F1) and T(F3).
The variables common to the two tables are 𝑏 and 𝑑. The
message 𝑚1→3 is the table obtained after marginalizing the
variable 𝑒.

Algorithm 2 has the main steps in the message passing
algorithm. It first picks the root node 𝑟 and adds all the
leaf nodes to a queue. A node is popped from the queue,
a message is passed from the node to its parent and the
corresponding factor product is computed. Once the node has

received messages from all its children, it is added to the queue.
The procedure terminates once we reach the root node, at which
point the queue is empty.

The required sat-count can be computed using the following
theorem

Theorem 2. On termination of the MP algorithm, the required
sat-count for F can be obtained as

sat-count(F) =
∑︁

𝑠∈T(Xr )
𝑐(𝑠)

where 𝑟 is the root node and T(Xr) is the table corresponding
to the root node.

Proof. Assume that the tree consists of two nodes 𝑉1 and 𝑉2
with variables X1 and X2, representing the formula F = F1∧F2.
Let the tables for the two nodes be T(X1) = {𝑠, 𝑐(𝑠)} and
T(X2) = {𝑠, 𝑐(𝑠)}, where 𝑠 and 𝑠 are satisfying assignments
of F1 and F2. Let X12 = X2 ∩ X2. Then 𝑚 𝑗→𝑖 = T(X12) =
{𝑠12, 𝑐(𝑠12)}, where 𝑐(𝑠12) is obtained by marginalizing entries
of T(X2) over the X2 \ X12 as shown in equation (5). The
factor product T(X1)𝑚2→1 modifies 𝑐(𝑠) in T(X1) as follows.
For 𝑠 = {𝑠X1\X12 , 𝑠12} ∈ T(X1), 𝑐(𝑠) = 𝑐(𝑠) × 𝑐(𝑠12) i.e. it
multiplies the count of the consistent solutions in the two tables.
Therefore, ∑︁

𝑠∈T(X1 )
𝑐(𝑠) = sat-count(F)

In the MP algorithm, each node accumulates messages from its
children and computes the factor product with its own table.
The sum of the counts in the resulting table is thus the sat-count
for the conjunction of formulas of the node and its children.
The theorem follows since the MP algorithm terminates when
the root node receives messages from all its children. □

Fig. 2(c) depicts the message passing and factor product for
finding the sat-count(F). 𝑉3 is designated the root node and the
factor product of T(X3) and the message gives final table at
the root, with sat-count(F) = 8.5) Error-metric computation: In order to compute various
metrics, we need to find the sat-count for various assignments
of the error bits. At this point the graph is a tree. Therefore,
we just need to set the values of the error bits and run the
message passing algorithm to get the required sat-counts. We
compute ER as one minus the probability that the error is zero,
which can be obtained by setting all the error bits to zero and
finding the resultant sat-count. MAE and MSE are computed
by running the MP algorithm for each setting of appropriate
pairs of bits as shown in equations (1) and (2).

IV. RESULTS

All experiments were done on a Intel i7-13700 CPU with
64GB of RAM, running Ubuntu 24.04. In all our experiments,
a maximum of eight threads were used to execute parallel
portions of the code. The benchmarks used for the evaluation
of our algorithms are: (a) BACS [16] benchmarks, (b) VAC-
SEM [9], (c) Generic Accuracy (GeAr) configurable adders
from KIT [17], (d) Low Power Approximate Adders (LPAA),
including AMA [18], AXA [19], and LOA [20] of various
lengths and (e) Gaussian-3 × 3 filter and Sobel filters.



Source Benchmark
Our approach runtime(s) VACSEM runtime(s)

Overhead WCE P(WCE) ER MSE MAE Total ER MAEP I+M

BACS

abs diff 0.06 0.02 0.0001 0.0001 0.0001 0.0001 0.0001 0.08 0.001 0.005
adder32 0.001 0.48 0.0002 0.0001 0.0001 0.0005 0.0003 0.49 0.006 0.007
buttfly 1.63 0.11 0.0031 0.0001 0.0001 0.0023 0.0005 1.76 0.012 0.354
mac 0.0002 0.02 0.0002 0.0001 0.0001 0.0001 0.0001 0.02 0.001 0.003
mult8 1.23 0.43 1.6363 0.0013 0.0013 0.0802 0.0371 3.41 0.002 0.003
x2 0.19 0.03 0.0005 0.0006 0.0006 0.0168 0.0080 0.25 – –

GeAr ACA II N32 Q16 0.82 0.02 0.0020 0.0001 0.0001 0.0036 0.0004 0.86 – –
ACA I N32 Q8 1.74 0.25 0.0060 0.0022 0.0025 0.9958 0.0950 3.11 – –

VACSEM
add128 2.77 0.25 0.0016 0.0001 0.0001 0.0003 0.0001 3.02 2.353 0.343
binsqrd 1.58 0.77 0.0047 0.0074 0.0068 0.0462 0.0412 2.45 0.008 0.103
mult10 1.58 6.35 0.0067 0.0091 0.0095 0.0774 0.0416 8.07 0.012 0.019

TABLE I: Runtimes to evaluate the error metrics for BACS and VACSEM benchmarks. P is the partitioner runtime and I+M is
the runtime to initialize tables and recursively merge/marginalize.

Algorithm 2 Message passing on a tree and evaluation of
sat-count
Require: Directed rooted tree 𝐺 = (𝑉, 𝐸)

1: r = Root vertex of 𝐺
2: 𝑄 = {all leaves of 𝐺} // Initialize queue with leaves
3: 𝐷 = ∅ // Processed vertices
4: while 𝑄 ≠ ∅ do
5: for all 𝑣 ∈ 𝑄 do
6: 𝑢 = parent(𝑣)
7: T(F𝑢) = T(F𝑢) · 𝑚𝑢→𝑣 // factor-product
8: end for
9: 𝐷 = 𝐷 ∪𝑄// Messages passed for all 𝑄

10: 𝑄 = ∅
11: for all 𝑣 ∈ 𝑉 do
12: if 𝑣 ∉ 𝐷 and children(𝑣)∈ 𝐷 then
13: 𝑄 = 𝑄 ∪ {𝑣}
14: end if
15: end for
16: end while
17: return

∑
𝑠∈S(𝑟 )

𝑐(𝑠) // sum the counts of the root

Table I has the runtimes for various error metrics for select
benchmarks from BACS, GeAr, and VACSEM. To compute any
error metric using our algorithm, there is an overhead com-
prising CNF partitioning, initial table generation using #SAT
solver [21], and merging and marginalizing. All error metrics
are obtained after setting appropriate error bits and running the
message passing algorithm. In these benchmarks, the majority
of runtime is spent in the overhead part. It can be seen from
the table that message passing takes an insignificant amount of
the total time. Time taken for MSE is only marginally larger
than MAE. The MAE and ER obtained matches with values
obtained using VACSEM. For some of the smaller benchmarks
we verified the other metrics with exhaustive enumeration.
For ER and MAE, VACSEM is faster as seen in Table I.
Note however, that the runtimes for VACSEM do not include
the overhead of synthesizing multiple partitions. Not having
to synthesize the netlist repeatedly for various error metrics
is a salient attribute of our algorithm. Once the merge and
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Fig. 3: Histogram of error probabilities for the BACS bench-
mark mult8 generated using our algorithm.

marginalize routine generates a tree, message passing helps
quickly evaluate all error metrics.

One of the strengths of our algorithm is that we can obtain
any probability, including the entire probability distribution of
the error. Fig. 3 shows the histogram of error probabilities for
the mult8 benchmark. It was obtained by setting the error bits
for each possible value of the error and finding the resultant
sat-count using the message passing algorithm. Further, each
data point on the histogram can be generated independent of
others which helps in parallelization of the routine. For the
mult8 benchmark, generation of histogram took 0.8s.

In Table II, we report the runtimes to compute the error
metrics for three 128-bit low power approximate adders. The
number of non-zero error bits in the output affects the runtime
of all the steps in our algorithm. The graph 𝐺 used to merge and
marginalize becomes proportionally denser. The tables are also
larger since there are a larger number of variables that cannot
be marginalized. The net effect of all these is the increase
in runtimes. The column NE in Table II shows the number
of error bits in the output of the adders. As expected, the
runtimes increase with the number of approximate bits. We
have tried up to 120 approximate bits, which is larger than the
number of error bits in the approximate adders used to evaluate
VACSEM (11 bits). The runtimes are also weakly dependent
on the approximation used in the adder. The MSE for the
approximate adders is larger than 1071 for 120 approximate bits.
We could verify the MSE for some adders against analytical



LPAA NE
Runtime(s)

Overhead WCE ER MSE MAE TotalP I+M

AMA1

32 3.5 0.3 0.0247 0.0007 0.49 0.04 4.4
64 3.7 0.4 0.0143 0.0010 1.31 0.05 5.5
90 4.0 0.4 0.0153 0.0012 3.68 0.13 8.1

120 4.2 0.4 0.0119 0.0007 8.37 0.15 13.1

AMA2

32 2.8 0.1 0.0075 0.0004 0.07 0.01 3.1
64 2.7 0.1 0.0077 0.0003 0.22 0.01 3.1
90 2.7 0.1 0.0080 0.0004 0.46 0.02 3.3

120 2.6 0.2 0.0087 0.0003 1.24 0.03 4.1

AXA2

32 6.3 0.7 0.0195 0.0002 0.18 0.01 7.3
64 5.8 0.7 0.0212 0.0003 0.70 0.07 7.4
90 5.9 0.6 0.0214 0.0002 1.31 0.04 7.9

120 5.6 0.9 0.0207 0.0011 12.36 0.69 19.6

TABLE II: Runtimes to evaluate the error metrics for various
128-bit LPAA adders. NE is the number of erroneous output
bits; P is the partitioner runtime and I+M is the runtime to
initialize tables and recursively merge/marginalize.

LPAA
Runtime(s)

Overhead WCE ER MSE MAE TotalP I+M

G

AMA2 1.3 1.8 0.0598 0.0001 0.0016 0.0009 3.3
AMA5 1.2 1.4 0.2613 0.0168 0.1840 0.0553 3.2
AXA2 1.3 2.0 0.0749 0.0010 0.0138 0.0072 3.4
LOA 1.6 1.5 0.1770 0.0424 0.8173 0.3294 4.6

S

AMA2 0.9 3.4 0.0006 0.0095 0.3645 0.1042 4.8
AMA5 1.2 2.5 0.0005 0.0001 0.0045 0.0015 3.8
AXA2 1.0 4.9 0.0005 0.0094 0.3526 0.0992 6.3
LOA 1.0 0.9 0.0006 0.0001 0.0023 0.0008 2.0

TABLE III: Runtimes to evaluate the error metrics for filters; G
and S are the 3x3 Gaussian and Sobel filters respectively. NE is
the number of erroneous output bits; P is the partitioner runtime
and I+M is the runtime to initialize tables and recursively
merge/marginalize.

expressions [22]. This showcases the ability of our approach to
compute such large errors accurately.

Table III has the results for 3 × 3 approximate Gaussian
and Sobel filters used in gradient filters for image processing.
These have been recently used for design space exploration in
[23]. The metric usually used is PSNR, which can be computed
using MSE. Exact MSE for these filters has not been obtained
previously. Only LOA has been used in [23], but we tried it
with various approximate adders. The runtimes are less than
10s, showing that our tool is useful for exploration.

V. CONCLUSION

We have proposed an algorithm based on #SAT and message
passing that can be used for exact computation of a variety
of error metrics. Besides the standard metrics, we can obtain
various probabilities including the entire probability distribution
function. We have been able to obtain MSE of approximate
filters used in image processing, which has not been done
previously.

Currently, we partition the problem by partitioning the hy-
pergraph corresponding to the formula F. In future, we plan
to explore partitioning at the circuit level and then convert
each partition into a CNF formula. Also, within our framework,
we can also use BDDs, logic simulation or other methods to
generate the initial tables.
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