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Abstract. A sharp step on a chaotic potential can enhance primordial curvature

fluctuations on smaller scales to the O(10−2) to form primordial black holes (PBHs).

The present study discusses an inflationary potential with a sharp step that results in

the formation of PBHs in four distinct mass ranges. Also this inflationary model allows

the separate consideration of observable parameters ns and r on the CMB scale from

the physics at small scales, where PBHs formation occur. In this work we computed

the fractional abundance of PBHs (fPBH) using the GLMS approximation of peak

theory and also the Press-Schechter (PS) formalism. In the two typical mass windows,

10−13M⊙ and 10−11M⊙, fPBH calculated using the GLMS approximation is nearly

equal to 1 and that calculated via PS is of 10−3. In the other two mass windows 1M⊙

and 6M⊙, fPBH obtained using GLMS approximation is 0.01 and 0.001 respectively,

while fPBH calculated via PS formalism yields 10−5 and 10−6. The results obtained

via GLMS approximation are found to be consistent with observational constraints.

A comparative analysis of fPBH obtained using the GLMS perspective and the PS

formalism is also included.

1. Introduction

The detection of gravitational waves (GWs) [1] from the merger of binary black holes

marked a significant milestone in the field of astrophysics and marked the beginning

of the era of multimessenger astronomy [2]. GWs are ripples in space-time that are

produced by accelerating massive objects, such as binary black hole systems. These

GWs [3] were first predicted by Albert Einstein in his general theory of relativity

in 1915 [4]. However, it took decades of technological advancements to detect these

subtle distortions in space-time. The advent of gravitational wave (GW) detectors
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like the Laser-Interferometer GW Observatory (LIGO) and Virgo paved a new way to

observe these events. The first detection of GWs occurred on September 14, 2015,

by the LIGO observatories. This signal was generated by the merger of two binary

black holes located around 1.3 billion light years away [2]. These GWs travel freely

through the universe once generated and act as a powerful tool to explore the early

universe. Various potential sources for the origin of GWs are investigated, including

reheating after inflation [5, 6, 7], phase transitions [8, 9], topological defects [10, 11],

etc. Moreover, GWs originating from various distinct sources are uncorrelated, leading

to the generation of a stochastic GW background. Consequently, the analysis of GW

signals observed by various pulsar timing array (PTA) experiments, such as NANOGrav

[12], EPTA [13], InPTA, PPTA and CPTA [14] in the nHz frequency range pointed

towards alternative cosmological explanations like GWs generated by cosmic strings

or PBHs [15]. These signals, believed to have originated during the inflationary phase

[16, 17, 18] of the universe, require further clarification through future PTA observations

[19]. Additionally, incorporating data from GW standard sirens into existing cosmic

models enhances precision in determining the interaction strength between dark matter

and dark energy [20].

In the context of inflationary cosmology, if the scalar perturbations are large enough

on small scales, this can result in the production of abundant PBHs. This situation could

arise if the inflationary perturbation spectrum showed a non-Gaussianity and substantial

blue tilt [21], or alternatively if the inflaton field experienced a slower roll for a particular

duration of time that was much shorter than the entire inflationary phase [22, 23, 24, 25].

Due to Hawking radiation, PBHs with a mass smaller than approximately 5× 10−19M⊙

have already undergone evaporation. However, PBHs with a mass greater than this

threshold can remain in stable existence to the present day [26]. The PBHs formed

during the early epoch of our universe could have significant implications [27, 28], as

they might seed the formation of supermassive black holes in galactic nuclei and AGN’s

[29, 30], influence the ionization history of the universe [31, 32] and contribute to the

overall density of dark matter [33, 34]. The abundances of PBHs denoted as fPBH is

characterised by its fraction within the current dark matter content. When fPBH ≈ 0.1,

PBHs become a plausible candidate for dark matter [35, 36]. If fPBH << 10−3 their

potential as a dark matter candidate within the specified mass range can be excluded.

Furthermore, recent studies have shown that, considering the quantum effects

such as the memory burden effect, semiclassical evaporation constraints on PBHs are

altered and this effect slows down the PBHs evaporation, thereby allowing those with

masses below 109g to survive until the present day and significantly contribute to dark

matter [37, 38]. Thus the ultralight PBHs with masses below 109g can have significant

implications for dark matter content and GW phenomology. PBHs with masses 109g

evaporate before big-bang nucleosynthesis (BBN) and can temporarily dominate the

energy density of universe, leading to significant small scale density fluctuations and

can induce stochastic gravitational wave background [39, 40]. Also the memory burden

effect, where Hawking evaporation slows after a PBH has lost about half its mass,
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extends the PBH’s lifetime and enhances the GW signal [41, 42].

Within the framework of single field inflationary models, the formation of PBHs

is plausible when the potential exhibits characteristics like a nearby inflection point

or a saddle-like region. This feature slows the motion of the inflaton field, resulting

in an intensified peak within the perturbation spectrum [43, 44, 45, 46]. In the

present work, we consider a small step-like feature in the base inflationary potential

Vb(φ). This step effectively acts like a speed breaker by locally slowing the scalar

field motion. Consequently, this leads to a sharp increase in the power spectrum at

least to the O(10−2) and inducing stochastic GW background. Thus, the inherent

localised nature of the speed breaker mechanism allows the generation of PBHs across

a broad spectrum of masses spanning from the extremely light weight, 10−17M⊙ to

the immensely massive 102M⊙. Note also that this inflationary model with sharp step

can produce ultralight PBHs which have significant contribution to the totality of dark

matter and are associated with a rich GW phenomology. Remarkably, this inflationary

mechanism allows for a wide range of PBH masses without significantly changing ns

and r on the cosmic microwave background (CMB) scales. We calculate the fPBH using

an approximate method of peak theory (GLMS approximation) [47] and Press-Scheter

(PS) theory [48] and then compare the results.

The structure of our article is as follows. In Section 2 we consider the chaotic

inflationary model featuring a step in its potential, which has a brief period of ultra-

slow roll inflation. The potential parameters are selected such that the feature enhances

the curvature perturbations at small scale, which is essential for PBHs formation, with

out affecting the key observational inflationary parameters like scalar spectral index ns

and tensor to scalar ratio r on CMB scales. The production of PBH and its mass are

discussed in Section 3. Section 4 covers the fractional abundance of PBHs due to this

chaotic inflationary model with sharp step, for four distinct mass windows of PBHs using

the GLMS approximation of the peak theory formalism and also in the PS formalism.

In Section 5, the summary and conclusions are discussed.

2. Chaotic Inflationary model with step

The exploration into the spectrum of adiabatic perturbations within the universe,

particularly in scenarios where singularities are present in the inflation potential, holds

notable importance in the realm of early universe cosmology [24, 49, 50, 51]. In order to

achieve relevant abundances of PBHs [44, 52], from a localised perturbation in inflaton

potential, we consider a chaotic inflationary potential with sharp step given by equation

(1). The step acts as a speed-restraining element by slowing down the motion of the

scalar field. The step in the inflationary potential is achieved by the hyperbolic tangent

function which is distinguished by its characteristics including its height c, width d and

position φstep.

V (φ) =
1

2
m2φ2

[

1 + c tanh

(

φ− φstep

d

)]

(1)
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The occurrence of step in the chaotic inflationary potential [49] can be explained

based on various fundamental physical theories especially symmetry-breaking phase

transitions, supergravity theories, effective field theory and string theory in high-energy

physics framework. Symmetry-breaking phase transitions [53, 54, 55] can induce features

in the inflation potential due to localised changes in the potential energy landscape. In

supergravity theories, the interactions between moduli fields and the inflaton naturally

generate features in inflation potential [56]. In general sharp step in the chaotic potential

can produce different features in the primordial power spectrum depending on the

potential parameters c, φstep and d. The sharp step results in localised oscillations

in the primordial power spectrum [49, 57] and these oscillations are typically more

pronounced at larger scales if the step is encountered earlier during inflation when these

modes are exiting the horizon. Also the step in the potential manifest themselves as

distinct characteristics within the angular power spectrum of CMB [58]. Several studies

focused on a model-independent reconstruction of the primordial spectrum from the

CMB observations have indicated the existence of specific features in the spectrum

[59]. The angular power spectrum of the CMB exhibits notable characteristics such as

suppressions near the multipole moment ℓ = 2, as well as a dip and a bump around

ℓ ≈ 2 and ℓ ≈ 40, respectively [60]. Also, distinct features are observed at ℓ ≈ 300,

between ℓ ≈ 750 and ℓ ≈ 850, and in the range of ℓ ≈ 1800 to ℓ ≈ 2000 [61]. If the sharp

step is positioned such that the inflaton field encounters it later during inflation, the

primordial power spectrum can exhibit a pronounced peak at smaller scales. However,

PBH formation is influenced by small-scale features in the primordial power spectrum.

The inflationary model in our work also has the advantage that it allows the separate

consideration of observable parameters ns and r on the CMB scale from the physics at

small scales, where PBH formation occur. It is evident from equation (1) that potential

V (φ) is characterised by four parameters {m, c, φstep, d}. However, since the inflaton

mass, m determines the overall CMB normalization, only the parameters {c, φstep, d}
are relevant when considering the PBH formation. In the present study we use the

natural system of units where the reduced planck mass Mpl = 1. The scalar field φ,

value of φ at which step occurs in the potential φstep and the width parameter d are

expressed in units of Mpl while the parameter c is dimensionless. V (φ) has units of

M4
pl maintaining dimensional consistency within the natural units framework. Figure 1

showcases the potential V(φ), where the main plot (a) effectively presents the potential

across the entire range of φ, capturing the overall behaviour of the function. However,

due to the presence of a minor but significant feature (step) in the potential, we employ

an inset (b) to provide a magnified view of the region where the feature is present.

In the context of single-field inflation, the driving force behind inflation is a

minimally coupled canonical scalar field with an appropriate potential V(φ) and the

corresponding action is,

S =

∫

d4x
√−g

[

M2
pl

2
R − 1

2
∂µφ∂

µφ− V (φ)

]

(2)

where R is the Ricci scalar and Mpl is the reduced Planck mass.
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Figure 1. Plot of the chaotic inflationary potential with sharp step and enlarged inset

showcasing the feature.

For a spatially flat universe, the equation of motion of the scalar field and the scale

factor is governed by,

H2 =
1

3M2
pl

[

V (φ) +
1

2
φ̇2

]

(3)

where Hubble parameter, H = ȧ
a
. The extend of inflation is given by the amount of e

folds during inflation,

Ne = ln
a(tend)

a(t0)
(4)

where t0 and tend corresponds to the time at the beginning and the end of inflation. Ne

decreases to zero at the end of inflation.

The standard technique for analysing inflation is the slow-roll approximation. In

the standard slow-roll inflation, values of the slowroll parameters ǫ = 1
2
M2

pl

(

V ′

V

)2
and

η =M2
pl

(

V ′′

V

)

are typically significantly smaller than 1. However, during the ultra-slow

roll stage, there is significant deviation from the standard slow roll conditions. In order

to analyse this, we study the Hubble flow parameters ǫ1 ≈ ǫ and ǫ2 ≡ ǫ̇1
ǫ1H

= −2η + 4ǫ1.
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The step feature in the potential locally modifies the inflaton field dynamics, causing

temporary deviations from slow-roll conditions.

In the slow roll scalar field, an important equation governing the scalar curvature

perturbation (R) is the Mukhanov-Sasaki equation [62, 63]. The equation that governs

the motion of Fourier components, denoted as uk is as follows,

u′′k +

(

k2 − z′′

z

)

uk = 0 . (5)

Here the prime symbol indicates the differentiation with respect to conformal time, k is

the modulus of the wave number.

The scalar power spectrum P(k) is usually defined as

P(k) =

√

k3

2π2

∣

∣

∣

uk

z

∣

∣

∣

2

k≪aH
. (6)

Similarly, the equation that governs the generation of gravitational wave modes by

tensor perturbations(ψ) [1] during inflation is,

v′′k +

(

k2 − a′′

a

)

vk = 0 (7)

where vk = aψk. The power spectrum PT (k) for gravitational waves follows an analogous

form to equation (6) that is,

PT (k) =
k3

2π2

∣

∣

∣

vk

a

∣

∣

∣

2

. (8)

However, the potential in the present work exhibits a distinct step-like feature and as a

result V ′(φ) and φ̇ need not be small. As a consequence of these unique characteristics,

we opt to numerically solve the complete mode equation by the Runge-Kutta method

without resorting to any approximations beyond those inherent in the framework of

perturbation theory. In the context of our analysis it is essential to consider the

observable parameters, scalar spectral index ns and tensor to scalar ratio r. The step

like feature in the present inflationary model is positioned in such a way that it leads

to a brief period of ultra-slow roll inflation, enhancing the power spectrum of curvature

perturbation at small scales, which is important for PBH formation without affecting

ns and r on CMB scale.

The presence of a step-like feature in the potential is required on a smaller scale

k ≫ k∗, that results in an amplification of perturbations leading to large enhancement

in the scalar power spectrum while the enhancements are suppressed in the tensor power

spectrum [64]. The enhancement in the scalar power spectrum leads to the generation of

PBHs. Our focus in this section is exclusively on the CMB scales 10−4Mpc−1 to 1Mpc−1,

with the aim of assessing how well the observable parameters are consistent with the

Planck data. In Table 1 the four sets of parameter values {c, d, φstep} have been chosen

to ensure that the values ns and r on the pivot scale of the CMB (k∗ = 0.05Mpc−1) are

consistent with the Planck data, while also facilitating PBH production.
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Set c dMpl φstepMpl ns r

1 -7.91501×10−3 0.029 9.6

2 -6.97333×10−3 0.027 10.2 0.96 0.02

3 -2.70720×10−3 0.003 12.2

4 -2.52303×10−3 0.002 12.32

Table 1. Typical parameter values for the potential enabling PBH production,

consistent with CMB data
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Figure 2. Slow roll parameter ǫ1 plotted as a function of number of e-folds for the

chaotic inflationary potential with sharp step

The step feature modifies the potential locally and then the inflaton field dynamics

quickly settle back into a stable slow-roll trajectory. This behavior confirms the

robustness of the attractor solution in our model. Figures 2 and 3 shows the local

violation of slowroll conditions due to the presence of a step feature in the chaotic

inflationary potential. The parameter ǫ1 remains small while ǫ2 can approach values

around O(1) or higher [65], leading to significant impacts on the abundances of PBHs.

Our analysis reveals remarkable uniformity in the four sets of parameter values.

For all parameter sets, consistently same values are obtained for the spectral index ns

and also for the tensor to scalar ratio r at the CMB pivot scale. This highlights strong

and stable characteristics in the predictions by the model. The scalar power spectrum
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Figure 3. Slow roll parameter ǫ2 plotted as a function of number of e-folds for the

chaotic inflationary potential with sharp step

P(k) and the tensor power spectrum PT (k) on the CMB scale are shown in Figures 4

and 5 respectively. It is obvious that the scalar and tensor power spectra are nearly

scale invariant on CMB scales for all the four sets.
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k [Mpc−1]
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3×10−9

10−8


(k
)

set1
set2
set3
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Figure 4. Scalar power spectrum P(k) on large scale for the chaotic inflationary

model with step, for four distinct parameter sets
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Figure 5. Tensor power spectrum PT (k) for the chaotic inflationary model with step,

for four distinct parameter sets

In this chaotic inflationary model with sharp step, fine tuning of the potential

parameters is required, for the observables ns and r to be consistent with CMB data

and also to enhance primordial scalar power spectrum at small scales at least to the

O(10−2) for the formation of PBHs [66]. Hence a fine tuning of the parameter c of the

inflationary potential by even a small fraction (one part in 107) can significantly change

the peak amplitude of the power spectrum. As shown in Figure 6, for c+10−7 just above

c = −2.52303× 10−3, peak value increases by a factor of 102. However, a decrease in c

by the same amount 10−7 results in a minimal change in the peak amplitude, suggesting

that c is at or very near a threshold where a small increase results in a significant

increase on the peak amplitude. Also, as it is clear from Figures 7 and 8, fine tuning of

φstep up to two decimal places and d up to three decimal places are enough to maintain

the consistency of observables at CMB scale and to maintain the peak of scalar power

spectrum at small scale where the PBHs formation occur.

3. Primordial Blackhole production

The presence of a distinctive feature in the inflationary potential on smaller scales leads

to the formation of PBHs and by fine tuning the antisymmetric perturbation feature

within the inflationary potential, it is possible to generate PBHs [44, 46, 52, 67, 68, 69]in

specific mass ranges that could constitute all dark matter [70]. As depicted in Figure

1, the distinctive step-like feature in the potential has the capacity to significantly

slow the inflaton field, which is inherently undergoing a slow rolling motion. A

significant decrease in φ̇ (with minimal change in the value of H) during the
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Figure 6. Sensitivity of scalar power spectrum to the potential parameter c with

φstep = 12.32 and d = 0.002
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Figure 7. Sensitivity of scalar power spectrum to the potential parameter φstep with

c = −2.52302× 10−3 and d = 0.002.
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Figure 8. Sensitivity of scalar power spectrum to the potential parameter d with

c = −2.52302× 10−3 and φstep = 12.32.

inflationary period results in ǫ decreasing appreciably from its pivot scale. This leads

to a substantial enhancement in the amplitude of the scalar power spectrum. The

observational parameters of the inflationary potential being consistent with large scale

CMB observations, it is essential that P(k) undergoes a significant enhancement at

least by a factor of 107 within 40 e-folds of expansion. The generation of PBHs with

higher masses necessitates the step to be smaller in height (c), and sharper in width

(d). The P(k) calculated using the Mukhanov-Sasaki equation is plotted with respect

to the wavenumber k prior to the end of the inflationary period for four distinct sets

of potential parameters {c, d, φstep}. The analysis reveals notable significance in the

behavior of the scalar power spectrum on different scales, and it is shown in Figure 9.

We studied the tree-level calculations of the power spectrum for the formation

of primordial black holes (PBHs). Recent studies [71, 72, 73, 74, 75, 76, 77] have

examined the impact of small-scale one-loop corrections on the large-scale curvature

power spectrum. However, a detailed analysis of one-loop corrections and the application

of EFT [73, 74] will be pursued in future work to significantly address the backreaction

issue.

In the Carr–Hawking collapse model [78] the mass of a PBH formed during a

specific epoch in the radiation dominated era, originating from the Hubble reentry of

a significant fluctuation mode kPBH is related to the Hubble mass during its formation

[44, 79] and is expressed as follows,

MPBH = γMH = γ
4πM2

pl

H
. (9)

Here γ denoting the efficiency of collapse is taken to have a value of 0.2 for the formation
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Figure 9. Scalar power spectrum P(k) on broader scales for four distinct parameter

sets

of PBHs during the radiative epoch [79, 80, 81]. In the radiative epoch [44],

H2 = Ω0rH
2
0 (1 + z)4

(

g∗

g0∗

)− 1

3

(

gs0∗
g0∗

)
4

3

. (10)

Here g0∗ and gs0∗ represent the effective degrees of freedom for the energy and entropy,

respectively, at the current epoch. Meanwhile, the relativistic degrees of freedom for

the energy density during the radiation-dominated epoch, when PBHs are formed, are

estimated to be approximately g∗ ≈ 106.75 [80], and the present-day radiation density

parameter is characterised by Ω0rh
2 = 4.18 × 10−5. By employing the principle of

conservation of entropy during the adiabatic expansion of universe [44, 45, 79, 81, 82],

M

M⊙

= 1.13× 1015
( γ

0.2

)( g∗

106.75

)− 1

6

(

k∗

kPBH

)2

(11)

where the solar mass M⊙ = 1.99 × 1030 kg and the CMB pivot scale k∗ = 0.05Mpc−1

[83]. The equation (11) suggests that solarmass PBHs are formed when scalar modes

with large fluctuation characterised by a comoving wavenumber kPBH ≈ 107k∗ entering

Hubble radius. The mass of PBHs obtained for four distinct potential parameter sets

are given in Table 2.

Thus we have explored a broader parameter space, which shows how different sets of

parameters leads to PBH formation across different mass ranges. Specifically, this model

leads to the formation of PBHs of 10−13M⊙, 10
−11M⊙, 1M⊙, 6M⊙ without affecting ns

and r values on CMB scale. In a recent work on the PBH production from single

field inflation, PBH mass range was obtained to span from 10−18M⊙ to 10−6M⊙ [67].

In another study [84] of PBHs, the fractional abundance of PBHs mass is determined
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Set c dMpl φstepMpl
MPBH

M⊙

1 -7.91501×10−3 0.029 9.6 10−13

2 -6.97333×10−3 0.027 10.2 10−11

3 -2.70720×10−3 0.003 12.2 1

4 -2.52303×10−3 0.002 12.32 6

Table 2. Potential parameter values enabling PBH production and the PBH mass

using the GLMS approximation, focusing on mass windows such as 10−17M⊙, 10
−13M⊙

and 30M⊙ and achieved a PBH abundance of fPBH ∼ 0.1.

4. Primordial blackhole abundance

The formation of PBHs from large primordial overdensities is a topic of significant

interest, especially given its implications for the nature of dark matter and the potential

observational signatures that PBH could produce [70]. The importance of fractional

abundance fPBH lies in its capacity to quantify the significance of the contribution

of PBHs to the overall dark matter density, a fundamental aspect in understanding

the composition and evolution of the cosmos. Observational constraints on fPBH

as a candidate for dark matter have been derived through various methods. These

constraints arise from considerations related to Hawking radiation and PBH evaporation,

the observation of black hole mergers by the LIGO and Virgo collaborations [35, 36],

impacts on CMB, the Lyman− α forest [85] and 21 cm cosmology [86]. These diverse

constraints provide upper limits on the fraction of PBHs relative to total dark matter,

helping to refine our understanding of the PBH population. The fractional abundance

of PBHs at the current epoch is defined as

f tot
PBH =

∫

dMPBH

MPBH

fPBH(MPBH) . (12)

The fractional abundance of PBHs of a certain mass MPBH at the present epoch is

typically defined by,

fPBH(MPBH) =
Ω0PBH(MPBH)

Ω0DM

(13)

where Ω0PBH(MPBH) is the density parameter of PBHs of mass MPBH and Ω0DM is

the total density parameter of dark matter. Thus, fPBH(MPBH) essentially gives the

fraction of total dark matter that is made up of PBHs of a specific mass MPBH [82].

fPBH(MPBH) = 1.68×108
( γ

0.2

)
1

2

( g∗

106.75

)− 1

4

(

MPBH

M⊙

)−
1

2

β(MPBH)(14)

where β(MPBH) is the mass fraction of PBHs at the time of its formation.

β(MPBH) =
ρPBH

ρtot

∣

∣

∣

formation
. (15)
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Analysing the formation and abundances of PBHs in the early universe offers a unique

window into the primordial density fluctuations. During the radiation dominated era,

on comoving scale, density contrast δ can be linearly related to R by the following

expression [47],

δ =
4

9

(

k

aH

)2

R . (16)

The dimensionless power spectrum of the density contrast Pδ is related to the primordial

comoving curvature power spectrum P(k) as

Pδ(k) =
16

81

(

k

aH

)4

P(k) . (17)

The abundances of PBHs can be calculated through Pδ(k). For this, it is necessary to

initially smooth out the perturbation across a specific scale R = 1
kPBH

. This is essential

to circumvent the issues related to nondifferentiability and divergence at high values of

k within the radiation field. This smoothing procedure is achieved by incorporating a

window function W (k,R) [87, 88, 89] within the Fourier space. The variance of the

density contrast that is coarse-grained on a specific scale, R = 1
kPBH

= 1
(aH)PBH

is

expressed as,

σ2
δ =

∫

dk

k
Pδ(k)W

2(k,R) . (18)

The choice of window function can significantly influence the statistical properties of the

smoothed density field, thereby influencing the estimated PBHs abundances. Gaussian

window function W (k,R) is used to smooth or coarse grain the original density contrast

field δ on a certain comoving Hubble scale R. Here the Gaussian window function

W (k,R) was chosen since it provides a smoother and more continuous suppression of

contributions from large scales, avoiding the oscillations in the power spectrum that

can arise from the sharp cutoff characteristics of other window functions such as top-

hat function [47, 90]. The expression for the Fourier transform of Gaussian window

function is given by

W (k,R) = exp

(

−1

2
k2R2

)

. (19)

W (k,R) play a pivotal role in this context acting as a filter that emphasizes fluctuations

on scales close to R and suppresses fluctuations on smaller scale. Using equations (17),

(18), (19) and the fact R = 1
kPBH

= 1
(aH)PBH

, we can obtain the expression for the

variance of the density contrast σδ as,

σ2
δ =

16

81

∫

dk

k

(

k

kPBH

)4

exp

(

− k2

k2PBH

)

P(k) . (20)

Additionally, the spectral moment corresponding to the ith order of smoothed density

contrast is defined as

σ2
i =

∫ ∞

0

dk

k
k2iW 2(k,R)Pδ(k) =

16

81

∫ ∞

0

dk

k
k2iW 2(k,R) (kR)4P(k) (21)
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where i = 0, 1, 2, ... and σ0 = σδ.

Thus it is obvious that the σi depends upon the primordial scalar power spectrum

P(k) and hence fPBH is very sensitive to the peak value of P(k).

One can calculate β(MPBH) by employing various methodologies within the

theoretical framework, including the GLMS approximation [47] of peak theory, Press-

Schechter (PS) formalism [48], peak theory [91, 84] and other approximations inherent

to peak theory [90, 92, 93]. In this work, our focus is on the determination of β(MPBH)

using the GLMS approximation and the PS formalism.

4.1. GLMS Approximation

Green, Liddle, Malik, and Sasaki (GLMS) introduced a convenient approximation of

peak theory [47]. GLMS approximation is an approach that involves the computation

of β(MPBH) using the peak theory formalism. This framework introduces the primordial

over-density condition in relation to the peak amplitude of a fluctuation mode as opposed

to the average value employed in the PS theory. In the peak theory formalism, the peak

amplitude of β(MPBH) (and consequently of fPBH(MPBH)) generally exhibits higher

values. Within the framework of peak theory, the peak value denoted as the relative

density contrast ν plays a pivotal role. This parameter is defined as the ratio of density

fluctuation δ to its standard deviation σδ; ν = δ
σδ

and its threshold νth = δth
σδ

. It is

important to note that νth is not a constant value, as it varies due to the dependence of

σδ on the chosen smoothing scale R. The PBH formation threshold δth depends on the

shape of the collapsing overdensity region . Thus it is obvious that δth depends not only

on the amplitude of scalar power spectrum but also on the shape of these power spectrum

[94, 95]. Also the PBH formation in the early universe is influenced by the equation

of state (EOS) at the time of formation and δth have a strong dependence on EOS

[96, 97, 98]. δth depends on the primordial non-Gaussianities in the initial perturbation

field which inturn affects the PBHs abundances [99]. In addition the critical threshold

for PBH formation is not largely influenced by asphericities in the initial perturbation

and it indicates that the PBH formation threshold remains largely unchanged [100] but

it is significantly influenced by anisotropies in the initial density perturbation [101].

However, several numerical and analytical investigations have suggested the permissible

range for δth. In particular for the formation of PBH during the radiation dominated

epoch, these studies have indicated that δth could range from 0.33 to as high as 0.66.

δth is related to the equation of state of the background w [96, 102, 103] and we studied

nearly monochromatic PBH mass functions and adopted a threshold value of δth = 0.414.

In order to study statistical properties of peaks in the density field, where PBHs

could form, peak theory is used. The number density of the peaks is expressed as

n(r) =
∑

p δD(r − rp), where δD represents the Dirac delta function and rp signifies

the position where δ reaches a local maximum. This requirement of identifying local

maxima requires not only the density contrast but also its spatial derivatives upto the

second order, leads us into the realm of a ten dimensional joint probability distribution
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function P ({yi}). This set of variables {yi}, density contrasts and its derivatives y1 = δ,

y2 = ∂1δ, ..., y5 = ∂1∂1δ, ..., and y10 = ∂2∂3δ allows us to capture the local behavior of

the density field around each peak. The density contrast field is assumed as a Gaussian

random field and the joint distribution of these variables is also gaussian [104].

P ({yi}) =
exp

(

1
2

∑

ij ∆yiM−1
ij ∆yj

)

√

(2π)10detM
(22)

whereM represents the covariance matrix, ∆yi = y− < yi >. A sequence of dimensional

reductions ultimately lead to the simplification of P ({yi}) to P (ν), a one dimensional

conditional probability distribution function [91]. Using the P (ν) distribution function,

the number density of peaks n(νth) for cases ν > νth can be expressed in an integral

form,

n(νth) =
1

(2π)2

(

σ2√
3σ1

)3 ∫ ∞

νth

G(γ, ν) exp

(

−ν
2

2

)

dν . (23)

Here the parameter γ =
σ2

1

σδσ2

within the function G(γ, ν) encapsulates the characteristics

of the δ profile, bearing essential information about its shape and profile. Hence, the

fraction of the PBH mass can be calculated as

β(MPBH) =
1√
2π

(

Rσ2√
3σ1

)3 ∫ ∞

νth

G(γ, ν) exp

(

−ν
2

2

)

dν . (24)

Due to the inherent complexity of the G(γ, ν) function, several approximations have

been proposed. In particular, Green, Liddle, Malik, and Sasaki (GLMS) proposed the

approximation where ν ≫ 1 and γ ≈ 1, simplifying the situation to only two independent

spectral moments: σδ and σ1. Within this GLMS approximation, the expression for

β(MPBH) can be analytically obtained as

β(MPBH) =
1

√

(2π)

(

Rσ1√
3σδ

)3
(

ν2th − 1
)

exp

(

−ν
2
th

2

)

. (25)

In accordance with the parameter values in Table 2, fPBH(MPBH) within our model

has been plotted in Figure 10 employing the GLMS approximation in peak theory

formalism and it is found to be consistent with the recent observational constraints.

4.2. Press-Schechter formalism

Now, let us turn our attention to the calculation of β(MPBH) using PS formalism.

Within the framework of the PS formalism, β(MPBH) for a specific mass value is defined

as the likelihood that the density contrast δ smoothed over the comoving Hubble scale

R = 1
kPBH

= 1
(aH)PBH

through an appropriate window function exceeds the threshold δth
required for PBH formation [96, 94, 105].

β(MPBH) = γ

∫ 1

δth

P(δ)dδ (26)
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Figure 10. Fractional abundance of PBHs in the framework of GLMS approximation

in peak theory formalism is plotted as a function of PBH mass. This graphical

representation pertains to the four distinctive cases discussed in Table 2. The shaded

region represents the constraints on fPBH from various observational limits, including

PBH evaporation, microlensing, GWs, PBH accretion and dynamical constraints

β(MPBH) = γ

∫ 1

δth

dδ√
2πσδ

exp

[

− δ2

2σ2
δ

]

≈ γ
σδ√
2πδth

exp

[

− δ2th
2σ2

δ

]

. (27)

The equation (27) implies the dependence of β(MPBH) on the chosen value of δth and

for nearly monochromatic PBH mass functions δth = 0.414.

Substituting equation (20) in (27), one can compute β(MPBH) within the framework

of PS formalism and hence the fPBH(MPBH). In accordance with the parameter values

in Table 2, fPBH(MPBH) within our model has been plotted in Figure 11 employing the

PS formalism.

In addition we compare the PBH masses in four typical mass windows with the PBH

abundances derived from the GLMS approximation and the PS theory. It is observed

that the PS theory consistently underestimates fPBH by a significant margin, typically

by two to three orders of magnitude in comparison to peak theory [84], and it is shown

in Figure 12.
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Figure 11. Fractional abundance of PBHs in the framework of Press-Schechter

formalism is plotted as a function of PBH mass. This graphical representation pertains

to the four distinctive cases discussed in Table 2. The shaded region represents the

constraints on fPBH from various observational limits, including PBH evaporation,

microlensing, GWs, PBH accretion and dynamical constraints

5. Conclusions

PBHs have the potential to have a highly significant impact on various astrophysical

and cosmological phenomena. PBHs make a substantial contribution to the current

density of dark matter in the universe. Furthermore, PBHs may serve as seeds for the

emergence of supermassive blackholes and give rise to the formation of binary blackhole

systems, which are pertinent to the detection of gravitational waves by observatories like

LIGO and Virgo. In the framework of the inflationary paradigm, formation of PBHs

offers a captivating realm for research. In these models large modes of fluctuation that

exit the Hubble radius during inflation can result in the PBH formation when they

renter it during the radiation dominated era. In a typical single-field inflation model,

the presence of a feature resembling a near-inflection point can significantly enhance the

primordial fluctuations to several orders of magnitude leading to PBH formation.

In this work we consider an inflationary model that incorporates a sharp step on

a chaotic potential. The sharp step functions as a deceleration mechanism for the

inflaton, causing it to reduce its speed. This inturn significantly increases the amplitude

of scalar perturbations. It is intriguing to observe that, for the cosmological abundances

of PBHs formation to occur, the primordial scalar power spectrum needs to be enhanced

to the order of 10−2. The straightforward nature of our potential enables the separate
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Figure 12. Comparative analysis of the fractional abundance of PBHs across four

different PBH mass scales as in Table 2 in the framework of GLMS perspective and

PS formalism. The shaded region represents the constraints on fPBH from various

observational limits, including PBH evaporation, microlensing, GWs, PBH accretion,

and dynamical constraints

consideration of observables such as ns and r on the CMB scale and at small scales where

one expects PBHs formation. As a result, our model can account for the formation of

PBHs on a small scale in four distinct mass ranges, ranging from an incredibly small

10−13M⊙ to 6M⊙. When adjusting the parameters, as φstep increases, the peak of the

scalar power spectrum P(k) shifts to larger scales resulting in an increase in the mass

of PBHs without affecting the values of ns and r on the CMB scale. It is worth noting

that the conventional approach for determining the fractional abundances of PBHs at

present, as employed in our study, relies on the assumption that the mass of PBHs

remains constant up to the present era. We systematically compute the fractional

abundance of PBHs using GLMS approximation within the framework of peak theory

and using PS formalism. Using the GLMS approximation of peak theory, the formation

of PBHs with masses 10−13M⊙ and 10−10M⊙ results in fPBH ≈ 1 respectively. This can

contribute to all dark matter alone. The PBHs with masses 1M⊙ and 10M⊙ result in

fPBH ≈ 0.01 and 0.001 respectively. Observations of black hole mergers by the LIGO

and Virgo collaborations constrain the abundances of PBHs to be fPBH ≤ 0.01 within

the mass range of 1 to 300M⊙. The fractional abundance of PBHs determined is in

alignment with this observational constraints.

Also it is noted that the PS theory significantly underestimates the fPBH of PBHs

by a factor of two to three orders of magnitude. This underestimation occurs because
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the PS theory simplifies the more comprehensive peak theory, leading to a systematic

bias, especially in the context of USR inflation. In general, the peak theory is more

solidly grounded, and the PS theory should be seen as its simplified version, so we

need to be careful when interpreting the results. In conclusion this article is focused on

exploring the formation and fPBH of PBHs through the use of the GLMS perspective of

peak theory, with a specific focus on chaotic potential with a sharp step. Also this step

feature in the inflationary potential step allows the decoupling of CMB-scale observables

from small-scale physics, facilitating the PBH formation as a dark matter candidate.
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