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Abstract—Jointly optimizing power allocation and device asso-
ciation is crucial in Internet-of-Things (IoT) networks to ensure
devices achieve their data throughput requirements. Device asso-
ciation, which assigns IoT devices to specific access points (APs),
critically impacts resource allocation. Many existing works often
assume all data throughput requirements are satisfied, which
is impractical given resource limitations and diverse demands.
When requirements cannot be met, the system becomes infeasible,
causing congestion and degraded performance. To address this
problem, we propose a novel framework to enhance IoT system
robustness by solving two problems, comprising maximizing the
number of satisfied IoT devices and jointly maximizing both
the number of satisfied devices and total network throughput.
These objectives often conflict under infeasible circumstances,
necessitating a careful balance. We thus propose a modified
branch-and-bound (BB)-based method to solve the first problem.
An iterative algorithm is proposed for the second problem that
gradually increases the number of satisfied IoT devices and
improves the total network throughput. We employ a logarithmic
approximation for a lower bound on data throughput and design
a fixed-point algorithm for power allocation, followed by a
coalition game-based method for device association. Numerical
results demonstrate the efficiency of the proposed algorithm,
serving fewer devices than the BB-based method but with faster
running time and higher total throughput.

Index Terms—Dual-objective optimization, IoT, service man-
agement, power allocation, device association.

I. INTRODUCTION

The Internet of Things (IoT) has transformed how we
interact with the world, connecting billions of devices to
the Internet and enabling seamless information exchange and
automation across sectors such as healthcare, agriculture,
transportation, and smart cities [1]. This progress, driven
by advances in sensor technology, wireless communication,
cloud computing, and data analytics, has made IoT networks
integral to modern infrastructure. However, as IoT networks
expand, managing the network to maintain a high quality of
service poses several challenges [2], [3], especially interfer-
ence management among connected devices, which weakens
wireless signals, compromises data transmission, and leads
to unreliable connections. Therefore, effective interference
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management [4] is crucial for maintaining signal quality,
reducing packet loss, minimizing latency, and ensuring reli-
able communication, particularly in critical applications like
healthcare monitoring [5], industrial automation [6], and smart
grid systems [1]. IoT networks, typically composed of diverse
devices utilizing various wireless technologies and communi-
cation protocols [7], require robust interference management
techniques to ensure smooth and seamless operation [8]–[10].
Moreover, interference increases energy consumption as de-
vices contend with competing signals, making advanced power
control and interference avoidance mechanisms essential for
extending networks’ lifespan [11], [12].

A large number of researches has been conducted to man-
age interference and enhance IoT networks performance [4],
[10], [13]–[15]. Approaches such as non-orthogonal multiple
access (NOMA) [14], [15] have focused on optimizing data
throughput but rely on successive interference cancellation
(SIC), which demands significant energy and computational
resources, making it less practical for many IoT scenarios.
Alternatively, a fixed-point power control algorithm was pro-
posed in [13] to find the minimum power allocation, enabling
users to overcome interference and ensure an acceptable
connection. Despite these advances, many studies assumed
sufficient resources to meet the data rate requirements for
all IoT devices simultaneously [16]–[18]. This assumption is
often invalid in practice due to power and data rate constraints.
When the system cannot meet these requirements, we de-
fine this circumstance as “infeasible”. Once infeasible issues
happen, existing approaches designed for feasible conditions
become inapplicable, rendering the system unresponsive. This
can lead to congestion, transmission delays, and degraded per-
formance [19]. Moreover, IoT networks often face restricted
resources and intense interference [1], which increases the
likelihood of encountering infeasible conditions. Addressing
the infeasible issue is crucial to ensuring the practical viability
and scalability of IoT deployments, especially for critical
applications like healthcare and traffic management [20]. For
example, at a parking place with IoT devices like cameras and
parking sensors, encountering infeasible circumstances could
prevent the system from serving users, causing disruptions
in traffic management and safety operations. To avoid such
disruptions, it is essential to strategically address infeasibility
by serving a subset of IoT devices to maintain critical services.

This paper introduces an innovative framework aimed at
enhancing the robustness of IoT systems under infeasible
circumstances. Specifically, we examine an IoT network where
multiple APs communicate with IoT devices in the downlink
utilizing the same frequency resource. Each AP transmits
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signals to multiple IoT devices, while an IoT device receives
data from one AP only. We assume perfect channel state
information (CSI) is available, similar to many other related
works in the literature such as [10], [17], [18], [21]–[27].
This assumption, while idealistic, is essential for developing
a robust framework addressing the infeasible issue. By first
establishing a baseline performance under these ideal con-
ditions, we lay the groundwork for future research that will
relax these assumptions and explore more realistic scenarios,
including imperfect CSI. The system information is processed
centrally to manage resources effectively, with an IoT device’s
QoS requirement considered satisfied when its data throughput
exceeds its demand. A critical aspect of this framework is the
joint optimization of AP-IoT device associations and power
allocation. Properly associating IoT devices with APs and
allocating power resources efficiently are keys to optimizing
signal strength, coverage, and interference management [28].
However, to the best of our knowledge, there was no literature
investigating the effect of AP-IoT device association under
infeasible circumstances.

In particular, we divide the IoT devices into two sets. The
first set comprises IoT devices that the system can satisfy
the QoS requirement, and the second set consists of the
remaining IoT devices. We aim to maximize the number of
IoT devices in the satisfied set and serve them first, with
the remaining devices being served later. By doing so, the
system handles potentially infeasible situations more effec-
tively, maintaining system functionality and efficient resource
allocation. We then consider two optimization problems for
power allocation and AP-IoT device association: the first is
to maximize the number of satisfied IoT devices, and the
second is a dual-objective optimization problem to optimize
both the number of satisfied IoT devices and the total network
throughput. The first problem is solved by utilizing a mod-
ified BB algorithm. This method provides a straightforward
approach for maximizing the number of satisfied IoT devices
while also offering a simple mechanism to assess system
infeasibility. For the dual-objective problem, we recognize
a conflict between the objectives: increasing the number of
satisfied devices can reduce overall network throughput due
to stretched resources, while prioritizing network throughput
may decrease the number of satisfied devices. To resolve this
problem, our approach prioritizes optimizing the number of
satisfied IoT devices. We propose an iterative algorithm to
find and add IoT devices into the satisfied set. This is achieved
by alternately optimizing power allocation and AP-IoT device
association. The method effectively increases the number of
IoT devices meeting their QoS requirements by reallocating
resources strategically, ensuring that more devices are served
under the system’s constraints. The non-convex structure of
the data rate formula is managed using the log-approximation
method [29]. Extensive simulations demonstrate that the modi-
fied BB algorithm can serve more IoT devices but with a lower
total network throughput and a higher running time. These
limitations motivate future work to improve the algorithm’s
computational efficiency and scalability for better performance
in large-scale IoT networks. Besides, compared with the equal
power allocation scheme, the proposed power allocation algo-

rithm can improve QoS satisfaction by approximately 50%.
Our main contributions can be summarized as follows:

• We propose a novel framework to address the challenges
of infeasible circumstances in IoT networks where it is
impossible to satisfy the requirements of all IoT devices
simultaneously. Our framework introduces two optimiza-
tion problems: maximizing the number of satisfied IoT
devices and a dual-objective problem that optimizes both
device satisfaction and total network throughput. This
approach ensures efficient operation under challenging
conditions, optimizing both individual device satisfaction
and overall network performance.

• We develop a branch-and-bound-based algorithm to ad-
dress the number of satisfied IoT device maximization
problems and identify infeasible circumstances. For the
dual-objective problem, we proposed an iterative algo-
rithm that increases the number of satisfied devices by
solving total data throughput maximization problems with
respect to the power allocation and AP-IoT device asso-
ciation. We introduce a low-complexity dual fixed-point
algorithm based on the Karush-Kuhn-Tucker conditions
for power allocation and a coalition game model to
determine the optimal device association strategy.

• We conduct extensive simulations and benchmark com-
parisons to validate the efficiency of the proposed frame-
work and provide deeper insights. The results reveal
that branch-and-bound can provide services to more IoT
devices when the requirements from IoT devices are not
too large, albeit with higher running time. For the dual-
objective problem, the proposed AP-IoT device associa-
tion outperforms the geometrical-based AP association,
which assigns each IoT device to the closest AP. Addi-
tionally, the proposed power allocation surpasses the fixed
power allocation, where equal power is distributed to all
devices.

Paper Organization: The rest of the paper is organized as
follows. Related works are reviewed in II. In Section III, we
describe the system model and formulate the optimization
problem with respect to the power allocation and the AP-IoT
device association. In Section IV, we propose an efficient algo-
rithm that obtains the solution to the considered optimization
problem by exploiting the Lagrangian and standard interfer-
ence function. Numerical results are obtained and discussed
in Section V. Finally, Section VI concludes the paper.

Notation: We use boldface lowercase letters and boldface
uppercase letters to denote vectors and matrices, respectively.
Let aT denote the transpose of vector a. We define the
circularly symmetric complex Gaussian distribution with zero
mean and variance σ2 by CN (0, σ2).

II. RELATED WORK

Despite the importance of the infeasible issue in IoT net-
works, research on this challenge is still limited. Some studies,
such as those referenced in [17], [18], discussed the potential
for infeasibility and provided conditions to ensure the system
avoids such scenarios. Therefore, these works primarily focus
on preventing infeasibility rather than offering solutions when
the system becomes infeasible. The paper [21] addressed
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the infeasibility issue in maximizing the total network rate
under minimum data rate constraints but assumed an infinite
power budget, which is impractical for real-world applications.
Indeed, when a finite power budget is considered, the system
becomes more complex, and the proposed approach is not
suitable anymore.

Further studies have addressed infeasible problems under
both data rate constraints and power limitations. For instance,
[27] suggested adjusting the data throughput of users based on
channel gain and interference levels to cope with infeasibility.
However, lowering the QoS requirement is unsuitable for
non-delay-tolerant or precise data requirement applications.
Similarly, the papers [22] and [23] also tackled the problem of
infeasibility under limited power budgets and minimum data
throughput requirements. These studies addressed infeasibility
by using a BB method to select a subset of users, ensur-
ing they meet minimum data rates while optimizing overall
system performance, but these approaches prioritize system
performance over maximizing user satisfaction. In [24]–[26],
the authors addressed infeasibility in uplink cell-free networks
with power and data throughput constraints. Specifically, [24]
proposed a fixed-point algorithm to allocate power resources to
users based on the data throughput constraints. The maximum
power is assigned to users who cannot meet the required
data throughput. The works [25], [26] proposed a new update
for users who cannot meet the required data throughput to
mitigate interference. Nevertheless, similar to [22] and [23],
these studies focus on optimizing overall objectives rather than
maximizing the number of satisfied users.

In contrast, our approach takes a different perspective. We
prioritize maximizing the number of satisfied IoT devices, even
at the cost of lower overall throughput. This strategy enhances
reliability and ensures that more devices can operate correctly,
which is crucial for applications where individual device
performance is critical. Additionally, while the joint AP-IoT
device association and power allocation has been recognized
for their potential to enhance overall system performance [28],
[30], [31], existing studies have not explored their impact
under infeasible circumstances. Our framework optimizes both
power allocation and AP-IoT device association, directly ad-
dressing infeasibility to maintain system functionality even
under constrained resources, thereby filling the gaps identified
in previous research.

III. SYSTEM MODELS AND OPTIMIZATION PROBLEM
FORMULATION

We consider an IoT system in which K APs communicate
with N IoT devices in the downlink transmission as illustrated
in Fig. 1. Similar to the concept of other NB-IoT networks,
all APs and IoT devices are located in a small area due to
the limitation in communication range and the power budget.
APs and IoT devices are equipped with a single antenna.
All communication links between APs and IoT devices share
the same time and frequency resource. Therefore, interference
appears in this system, and the IoT devices apply the maximum
likelihood estimator to detect the desired signal. The NOMA is
not suitable for this system since the IoT devices’ resources are
not sufficient to handle the SIC technique [32]. We respectively

Server

...

...

AP     : Access points
ID      : IoT device

: Wireless link
: Fronthaul link

Fig. 1: The considered model of a downlink IoT network with
the participation of multiple APs and IoT devices.

denote the set of IoT devices and APs by
N ≜ {1, . . . , N} and K ≜ {1, . . . ,K}. (1)

In the considered network, a centralized server is utilized
to calculate the resource allocation based on the gathered
information consisting of the power budget of APs and the CSI
between APs and IoT devices. All APs are centrally managed
and controlled by a server. Whenever there are changes within
the network, the APs promptly relay this information back to
the server and await further instructions. As we consider the
downlink communications in an IoT network, we assume an
AP can transmit data to multiple IoT devices simultaneously.
However, one IoT device can only be communicated with one
AP due to IoT devices’ hardware constraints.
A. Signal Model

During the downlink data transmission, the n-th IoT device
receives the desired signal sn ∈ C with |sn|2 = 1 from its
associated AP. The allocated power for the n-th IoT device is
constrained by

0 ≤
∑
n∈N

µk,nPn ≤ Pmax
k , (2)

where Pmax
k is the maximum power that the associated AP

can allocate to the signal. We define p as the vector of power
allocation of all IoT devices, p = [P1, . . . , PN ]T ∈ RN . The
binary variable µk,n represents the AP-IoT device association.
Specifically, in (2), if µk,n = 1, the desired signal of the
n-th IoT device is transmitted from the k-th AP. Otherwise,
µk,n = 0 means no communication between the n-th IoT
device and the k-th AP. The received signal at the n-th IoT
device, denoted by yn ∈ C is given as
yn = µk,nhk,n

√
Pnsn︸ ︷︷ ︸

Desired signal

+

∑
n′ ̸=n,n∈N

∑
k∈K

µk,n′hk,n
√
Pn′sn′

︸ ︷︷ ︸
Mutual interference

+ nn︸︷︷︸
Noise

, (3)

where hk,n denotes the propagation channel between the
n-th IoT device and the k-th AP. We define hn as the
vector of the channel between all APs and the n-th AP,
hn = [h1,n, . . . , hK,n]

T . In the right-hand side of (3), the first
term represents the desired signal for the n-th IoT device. The
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second term denotes mutual interference due to the reusing of
frequency resources. The last term nn is the additive white
Gaussian noise (AWGN) at the n-th IoT device, which is
distributed as CN (0, σ2), where the variance is calculated as
σ2 = BN0 with N0 and B being the power spectral density of
the noise and the bandwidth of each IoT device, respectively.
Since each IoT device is associated with only one AP, the
following constraints are fulfilled,∑

k∈K

µk,n = 1,∀n ∈ N . (4)

The AP-IoT devices association between all APs and the n-
th AP is denoted by µn = [µ1,n, . . . , µK,n]

T ∈ BK , and we
have Ψ = [µ1, . . . ,µN ] ∈ BK×N . Note that ΨΨΨ and p contain
the optimization variables handled hereafter. Since all the APs
transmit their signals to the IoT devices at the same time on the
same frequency, the signal-to-interference-plus-noise (SINR)
ratio for the n-th IoT device is computed as

γn(Ψ,p) =

∑
k∈K
|µk,nhk,n|2Pn∑

n′ ̸=n,n′∈N

∑
k∈K
|µk,n′hk,n|2Pn′ + σ2

=
|µT

nhn|2Pn∑
n′ ̸=n,n′∈N

|µT
n′hn|2Pn′ + σ2

,

(5)

where the numerator is come from the fact that |µ1,nh1,n +
... + µK,nhK,n| = |µT

nhn| = |hk,n| if µk,n = 1 and
µk′,n = 0,∀k′ ̸= k. Similarly, in the denominator, we have∑
k∈K
|µk,n′hk,n|2Pn′ = |µT

n′hn|2Pn′ . The data throughput of

the n-th IoT device is then computed as
Rn(Ψ,p) = log2 (1 + γn(Ψ,p)) . (6)

After that, the total network throughput can be determined as
follows:

Rtot(Ψ,p) =
∑
n∈N

Rn(Ψ,p). (7)

Remark 1: It is important to investigate the data throughput of
each IoT device under the optimal AP-IoT device association
that is of practical interest. Accordingly, the system can
optimize radio resources such as power budget or allocating
frequency. The IoT network model considered in this paper
can vary based on specific applications, for example, in traffic
management [33], relay systems [34], [35], or the Tactile
Internet [36], where IoT devices request the APs to send
information as quickly as possible for timely responses to the
environment. ♢

B. Problem Formulation
1.Conventional joint power allocation and device association
optimization problem:An important key task of every IoT
network is to maximize the overall network throughput while
guaranteeing that every IoT device can meet its required data
throughput. Due to the limited power budget, the restriction
in the association between APs and IoT devices and the
interference between IoT devices, the power allocation and
the AP-IoT devices association have significant impacts on
optimizing the system performance. Moreover, optimizing the
power allocation depends on the given AP-IoT devices asso-
ciation, and vice versa. Therefore, jointly optimizing both the
power allocation and the AP-IoT devices association is needed.

The total network throughput optimization for a downlink
communication IoT system is then formulated as:

maximize
Ψ,p

Rtot(Ψ,p), (8a)

subject to
∑
n∈N

µk,nPn ≤ Pmax
k ,∀k ∈ K, (8b)

Rn(Ψ,p) ≥ Rthr
n ,∀n ∈ N , (8c)∑

k∈K

µk,n = 1,∀n ∈ N , (8d)

where Rthr
n [Mbps] is data throughput required by the n-th

IoT device. The constraints (8b) represent the limited transmit
power of each AP. The constraints (8d) are to guarantee
that each IoT device is associated with only one AP. The
above problem is non-convex due to the non-convex form of
the data throughput of IoT devices at the objective function
and the required data throughput constraints. Note that the
data throughput of every IoT device is reduced significantly
because of the mutual interference, especially with large-size
networks. Moreover, the power budget of each AP is limited,
therefore, the constraints in (8c) are difficult to be satisfied and
the problem in (8) can fall into an infeasible circumstance.

In case the AP power is too limited, the network throughput
maximization without rate constraints can be considered

maximize
Ψ,p

Rtot(Ψ,p), (9a)

subject to
∑
n∈N

µk,nPn ≤ Pmax
k ,∀k ∈ K, (9b)∑

k∈K

µk,n = 1,∀n ∈ N , (9c)

However, in this case, the system tends to allocate most of the
power resources to the IoT devices with the best channel gains
to ultimately maximize the overall throughput. Consequently,
the remaining IoT devices experience very low QoS or even
receive no service from APs.

2.The number of satisfied IoT devices maximization problem
and the dual-objective problem for the power allocation and
the AP association under infeasible circumstances:As dis-
cussed in the previous subsection, the conventional problems
in (8) and (9) have coherent weaknesses. The key issue is the
difficulty of satisfying the individual requirements for every
IoT device. Therefore, it is better to identify and serve a set
of IoT devices in the system’s capability only. Accordingly,
we propose to divide IoT devices into two sets. The first
set contains IoT devices meeting all the constraints, and the
remaining IoT devices belong to the second set. To increase the
number of satisfied IoT devices in the system, we formulate
the following problem:

maximize
Ψ,p

|Q(Ψ,p)|, (10a)

subject to
∑
n∈N

µk,nPn ≤ Pmax
k ,∀k ∈ K, (10b)

Rn(Ψ,p) ≥ Rthr
n ,∀n ∈ Q(Ψ,p), (10c)∑

k∈K

µk,n = 1,∀n ∈ N , (10d)

where Q(Ψ,p) is the set of satisfied IoT devices defined as
Q(Ψ,p) = {n|n ∈ N , Rn(Ψ,p) ≥ Rthr

n }. (11)
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The problem in (10) is a combinatorial problem with the
mixed discrete and continuous variables of the AP-IoT devices
association and the power allocation. There is a total of
N∑
i=1

Ci
N

1 candidates of selecting IoT devices for the satisfied

set and NK candidates of AP-IoT devices association, running
the exhaustive search is inapplicable, especially with large
network sizes. Therefore, finding the optimal solution for the
problem in (10) is impractical. We can change the objective
function of (10) to maximize the minimum data throughput of
all IoT devices, namely the max-min fairness [37]. However,
the max-min fairness problem in large-scale networks as IoT
networks usually leads to a zero rate. Meanwhile, the problem
in (10) ensures the minimum data throughput of an IoT device
is greater than the request. The feasible set of the problem in
(10) is a nonempty set as claimed in Lemma 1.

Lemma 1. For a given number of APs and the limited
power budget at each AP, there always exists a solution to
problem (10).

Proof. For a given feasible point (Ψ′,p′) satisfying both (10b)
and (10d), the satisfied IoT devices set is determined based
on (11), Q(Ψ′,p′). In the worst case, Q(Ψ′,p′) = ∅, and
thus the optimal value of (10) is |Q(Ψ′,p′)| = |∅| = 0. In
contrast, 0 < |Q(Ψ′,p′)| < K indicates that a subset of
IoT devices will be served by at least their quality of service
requirements. If |Q(Ψ′,p′)| = K, the system can guarantee
individual services to all the IoT devices. Note that the feasible
set of problem (10) depends on the constraints (10b) and (10d).
As long as the system exists at least one AP and the power
budget is greater than zero, the feasible set is non-empty.
Consequently, the problem in (10) always exists solutions. The
proof is completed.

Note that this work focuses on addressing the infeasible
problem of (8). Therefore, the relationship between optimizing
Rtot(Ψ,p) in (9) and optimizing |Q(Ψ,p)| in (10) can be
expressed as in Lemma 2 as follows.

Lemma 2. Given a fixed resource set, which includes the
number of APs and the available power budget at each AP,
the system is presumed to operate under infeasible condi-
tions. The optimal solution for maximizing the total network
throughput, Rtot(Ψ, p), without the rate constraint (similar to
that considered in (9)) cannot ensure the optimality in the
number of satisfied IoT devices, and vice versa. Consequently,
optimizing the total network throughput, Rtot(Ψ, p), without
the rate constraint (similar to that considered in (9)) and
optimizing the number of satisfied IoT devices, |Q, (Ψ, p)|
(similar to that considered in (10)) are conflict.

Proof. We prove Lemma 2 by contradiction. Let denote
{Ψ∗,p∗} be the optimal solution obtained by solving prob-
lem (9). The satisfied IoT devices set is then determined as in
(11), and we have

|Q(Ψ∗,p∗)| < |K|.

1Ci
N = N !

i!(N−i)!
is the number of i-combinations from the set of N

elements. Here, N ! =
∏N−1

j=0 (N − j).

The above inequality comes from the fact that the system
is infeasible circumstance. To provide service for more IoT
devices, the system must have a proper policy to move IoT
devices from the unsatisfied IoT device set K \Q(Ψ∗,p∗) to
the satisfied IoT device set Q(Ψ∗,p∗), for example, providing
a new resource allocation solution. By solving the problem in
(10), the proper policy generates a new solution {Ψ′∗,p

′∗} to
maximize the number of satisfied IoT devices, and we have

Rtot(Ψ
′∗,p

′∗) ≤ Rtot(Ψ
∗,p∗).

The opposite approach can be implemented in a similar
manner. Therefore, the optimal solution, {Ψ′∗,p

′∗}, that max-
imizes the number of satisfied IoT devices cannot ensure
the optimality of the total network throughput. Consequently,
maximizing the number of satisfied IoT devices and maxi-
mizing the total network throughput are two conflict objec-
tives.

Based on Lemma 2, the optimal number of satisfied IoT
devices cannot be obtained by solving the problem (9). Con-
sequently, in order to serve more IoT devices, the system must
sacrifice the total network throughput in exchange. However,
if only the problem in (10) is optimized, the radio resource
may not be exploited optimally. We, therefore, also consider
the following dual-objective optimization problem

maximize
Ψ,p

(|Q(Ψ,p)|, Rtot(Ψ,p)) ,

subject to
∑
n∈N

µk,nPn ≤ Pmax
k ,∀k ∈ K,

Rn(Ψ,p) ≥ Rthr
n ,∀n ∈ Q(Ψ,p),∑

k∈K

µk,n = 1,∀n ∈ N .

(12)

In this case, we only need to find a solution that simultaneously
optimizes both the number of satisfied IoT devices and the
total data throughput, given the higher priority for the number
of satisfied IoT devices. The problem (12) is non-convex due
to the non-convexity of the objective function. Besides, the
AP-IoT devices association is a discrete variable, and thus the
problem in (12) is considered as a mixed-integer non-linear
program (MINLP). Unfortunately, this class of problems is
nondeterministic polynomial-time (NP) complete. The prob-
lem requires time that is superpolynomial in the network size.
Besides, in multi-objective optimizations, a feasible solution
that simultaneously optimizes all the objectives does not
typically exist. Therefore, achieving optimal solutions for two
considered variables is inconsequential.

To increase the number of satisfied IoT devices, we can
provide more transmit power to un-satisfied IoT devices. How-
ever, the power budget of each AP is limited; thus, allocating
more power to a specific IoT device will inevitably reduce the
power available for the remaining IoT devices. If some IoT de-
vices are served with insufficient data throughput, we can share
power from satisfied IoT devices to un-satisfied IoT devices.
However, this approach raises the challenge of determining
which IoT devices should receive power and how much each
IoT device should be given. Furthermore, increasing power for
some IoT devices leads to higher interference with other IoT
devices and reduces their data throughput. Subsequently, the
improvement is hard to guarantee, while a reduction in the
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number of satisfied IoT devices could happen. On the other
hand, iteratively adjusting the power of each IoT device can be
impractical due to the significant computational cost involved.
Nevertheless, it is worth noting that the satisfied IoT devices
set is determined by comparing the achievable rate of each IoT
device to the threshold, and thus, the set Q(Ψ,p) is directly
related to Rtot(Ψ,p). Therefore, intuitively, by increasing the
total data throughput of all IoT devices controllably, we can
expect that some IoT devices can meet their requested services,
thus increasing the number of satisfied IoT devices. In the next
section, we will propose a solution to increase the number of
satisfied IoT devices by optimizing the total data throughput.
Remark 2: The APs in the considered IoT network as men-
tioned in Remark 1 are limited in computational ability and
other resources. Cooperation among APs to boost network
performance is challenging due to the limited resources and
backhaul signaling. A server (central processing unit) is usu-
ally utilized to gather information about data transmission,
APs, and IoT devices’ status to manage the network operation.
Regarding the total data throughput maximization problem ex-
pressed in (8), the infeasible problem occurs when the system
cannot find a solution to all IoT devices with their service
requirements. Consequently, the whole system is corrupted. In
contrast, problem (10) and (12) ensure that the system always
works and serves at least a subset of IoT devices, and (12)
still maximize the total data throughput.

♢

Remark 3: Solving problems in (10) and (12) requires the
selection of IoT devices from the set of IoT devices joining the
network. Based on the specific requirement of each network,
IoT devices can be selected based on the priority of the system
or users, [22]. In this work, we assume no priority between
IoT devices, and thus, the system will attempt to optimize the
number of satisfied devices without considering any specific
individual IoT device.

Additionally, while the assumption of perfect CSI is ideal-
istic, it is crucial for the initial development and validation of
our proposed framework. This assumption enables a focused
analysis of the optimization challenges without the added
complexity of imperfect information, laying the foundation for
future studies to address more realistic conditions. ♢

IV. PROPOSED ALGORITHM

It is worth noting that the primal problem in (8) is infeasible,
and thus we propose to solve the number of satisfied IoT
devices maximization problem in (10) and the dual-objectives
function problem in (12), which are inequivalent to the primal
problem in (8). Due to the adversity of the system under
infeasible circumstances and the difficulties of the proposed
problems (10) and (12) as discussed from previous section,
finding the optimal solution for the system cannot be ensured.
Consequently, by prioritizing serving as many IoT devices as
possible, this section proposes solutions to find a good solution
to the system under infeasible circumstances.
A. The number of satisfied IoT devices optimization

Due to the combinatorial nature of the AP-IoT devices
association with a total of NK candidates, the problem in
(10) is extremely difficult to obtain the optimal solution. To

Algorithm 1 Modified Branch-and-Bound for the number
of satisfied IoT devices optimization (the modified BB algo-
rithm).

1: Input: The system parameters N , K, B, σ, Pmax, the
channel state information hn,∀n ∈ N .

2: Generate an arbitrary order of N IoT devices. Set n = 0.

3: repeat
4: n = n+ 1.
5: repeat
6: for k=1:K do
7: Associate the n-th IoT device to the k-th AP.
8: Form the temporary AP-IoT devices association of

n IoT devices, Ψtemp
n .

9: Solve the problem in (13) to achieve p∗
n.

10: if Constraints in (14) are not satisfied. then
11: Pruned node.
12: end if
13: end for
14: until All nodes of the (n− 1)-th level are testified.
15: until n = N or all new nodes are pruned.
16: Output: n∗ number of satisfied IoT devices, the AP-IoT

devices association, Ψn∗ , and the power allocation p∗
n∗ .

overcome this issue, we propose a modified BB algorithm
based on the branch-and-bound method. In detail, we construct
a BB tree that starts from an arbitrary IoT device, which is
considered the root of the BB tree. The system successively
testifies K nodes corresponding to K APs. If the power
consumption needed to meet an IoT device’s required data
throughput falls below the power budget of the considered
AP, the current node will be added to the first level of the BB
tree.

The BB tree then goes to the next level and considers a
new IoT device. At the n-th level, the IoT device of interest
will be attached consecutively to every node of the n − 1-th
levels. The IoT device at the n-th level is then traversed to
all K nodes, and thus we can obtain the temporary AP-IoT
devices association of n IoT devices, Ψtemp

n . The minimum
power consumption of these n IoT devices is achieved by
solving the following problem

minimize
pn

n∑
i=1

Pi,

subject to Ri(Ψ
temp
n ,pn) ≥ Rthr

i ,∀i ∈ {1, ..., n},
(13)

The problem in (13) is a linear program, we can quickly obtain
the optimal solution, p∗

n. Note that the system then testifies
the power budgets of all APs

n∑
i=1

Piµk,i ≤ Pmax
k ,∀k ∈ K (14)

If the power constraints in (14) are violated, the considered
node and its children will be pruned from the BB tree. The
process is repeated until reaching the last level of the BB
tree or all new nodes are pruned. The detailed procedure is
summarized as in Algorithm 1

The performance of the modified BB algorithm 1 will be
affected by the order of IoT devices on the BB tree. Therefore,
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the modified BB algorithm that starts with an arbitrary order
of IoT devices cannot ensure the optimal solution. Searching
for the optimal order of IoT devices for the BB tree requires
the complexity of O(NK). As a result, employing an arbitrary
order of IoT devices in the BB tree is deemed acceptable for
identifying a favorable solution for the system, even under
infeasible conditions. However, the BB tree must reach the
last level with the existence of at least one node to ensure
the non-empty feasible domain for the problem in (8). Subse-
quently, the modified BB algorithm can be used to check the
infeasibility of the original problem in (8).

B. Proposed solution to the dual-objective optimization prob-
lem in (12)

We recall that if the system optimizes the sum of data
throughput without meeting all the IoT devices’ QoS require-
ments, the power budget would be allocated to the IoT devices
with good channel conditions. In this case, the power allocated
to IoT devices with poor channel conditions will be reduced,
which will potentially cause low data throughput for such
IoT devices. Thus, a solution to improve the fairness among
IoT devices while maximizing the overall network throughput
is needed. The high-level idea here is that we will allocate
more power to IoT devices with poor channel conditions to
ensure fairness while ensuring high network throughput for the
whole system. In order to share more power to unsatisfied IoT
devices, we suggest setting the data throughput requirement
of satisfied IoT devices equal to their requested levels. In
this way, the system only allocates a certain amount of the
power budget to these IoT devices to satisfy the request. The
remaining power budget is allocated to the unsatisfied IoT
devices in order to improve the total network throughput.
When the system reallocates the resources with fixed data
throughput constraints, some IoT devices might still receive
more data throughput than needed. In this case, the resources
from these IoT devices can be shared with other IoT devices
again. Therefore, to obtain the final solution, we repeat two
steps: (1) updating the satisfied IoT devices by reallocating the
power budget; (2) solving the data throughput maximization
problem with fixed data throughput constraints.

We first determine an initial satisfied IoT device set, de-
noted by Q(Ψ∗,(0),p∗,(0)). Therein, the initial AP association,
Ψ∗,(0), is determined based on the best large-scale fading
selection. Particularly, µ∗,(0)

k,n = 1 if ζk,n ≤ ζj,n,∀j ∈ K, and
µ
∗,(0)
j,n = 0,∀j ̸= k, j ∈ K. Here, ζk,n is the path loss between

the k-th AP and the n-th IoT device. Besides, the initial power
allocation, p∗,(0), is obtained by solving the following problem

maximize
p

Rtot(p), (15a)

subject to
∑
n∈N

µ
∗,(0)
k,n Pn ≤ Pmax

k ,∀k ∈ K. (15b)

We note that the non-convexity of the objective function
is challenging to solve problem (15). Our approach is to
transform (15) into a convex optimization problem by applying
the log approximation as introduced below:

log2(1 + z) ≥ α(z′) log2(z) + β(z′), (16)
where z and z′ are two non-negative values. In (16), the log

Algorithm 2 Proposed solution to problem (15)

1: Input: System parameters N , K, B, σ, Pmax; Channel
state information hn,∀n ∈ N , the AP association Ψ∗,(0),
the initial power vector p[0], and the tolerance ϵ1.

2: Set i = 0 and calculate α(p[0]) and β(p[0]).
3: repeat
4: i← i+ 1.
5: Solve the problem (24) and obtain p[i].
6: Update α(p[i]) and β(p[i]).
7: until ∥p[i]− p[i− 1]∥ ≤ ϵ1.
8: Output: p∗,(0).

transformation factors α(z′) and β(z′) are defined as follows:

α(z′) =
z′

1 + z′
, (17)

β(z′) = log2(1 + z′)− z′

1 + z′
log2(z

′). (18)
We emphasize that the bound in (16) is tight, i.e., the inequality
holds with the equality as z = z′. We now apply the
approximation in (16) to provide the lower bound of the data
throughput Rn as follows:
Rn(p) ≥ R̃n(p) = B (αn(p′) log2(γn(p)) + βn(p′)) , (19)

where the following definitions hold

αn(p′) =
γn(p′)

1 + γn(p′)
,

βn(p′) = log2(1 + γn(p′))− γn(p′)

1 + γn(p′)
log2(γn(p

′)).

(20)

with recalling that Rn(p) = R̃n(p) as p = p′. Let us define
α(p′) = {αn(p′)} ∈ RN×1, (21)

β(p′) = {βn(p′)} ∈ RN×1, (22)
then the problem in (15) is approximated as follows:

maximize
p

R̃tot(p) =
N∑

n=1

R̃n(p),

subject to 0 ≤
∑
n∈N

µ
∗,(0)
k,n Pn ≤ Pmax

k ,∀k ∈ K.
(23)

An iterative algorithm is proposed to solve problem (15) for
a tight approximation. Particularly, there are two main steps
comprising: (1) optimizing R̃tot(p) while considering the log
transformation factors as constant values; and (2) updating the
log transformation factors according to the new power vector.
Therefore, in the i-th iteration, we solve the following problem

maximize
p

N∑
n=1

B
(
αn(p[i− 1]) log2(γn(p))

+ βn(p[i− 1])
)
,

subject to 0 ≤
∑
n∈N

µ
∗,(0)
k,n Pn ≤ Pmax

k ,∀k ∈ K.

(24)

We observe that problem (24) has a hidden-convex form.
For such, we apply the transformation Pn = exp(P̄n) to
transform (24) into a convex problem and obtain the global
solution by using a general-purpose optimization toolbox. The
log approximation method is terminated when the variation
between two consecutive iterations is smaller than a sufficient
small tolerance ϵ1. The procedure of solving (15) is provided
in Algorithm 20, and its convergence is shown in Lemma 3.

Lemma 3. By solving problem (24) and updating the log
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transformation factors iteratively as in Algorithm 20, the
objective function of (15) will be non-decreased and converged
to a fixed point.

Proof. The proof is available in Appendix A.

Lemma 3 confirms the convergence of Algorithm 3 thanks
to the exploitation of the log approximation and convex
feasible set. For given Ψ∗,(0) and p∗,(0), the satisfied IoT
devices set is defined as follows:
Q∗(Ψ∗,(0),p∗,(0)) = {n|Rn(Ψ

∗,(0),p∗,(0)) ≥ Rthr
n ,∀n ∈ N},

(25)
which indicates the initial set of satisfied IoT devices. We
stress that Q∗(Ψ∗,(0),p∗,(0)) ⊆ K and its features are ob-
served as follows.

Remark 4: After solving problem (15) by exploiting Algo-
rithm 20 to obtain the power coefficients p∗,(0) and together
with Ψ∗,(0), there are two special observations of the satisfied
IoT device set. If Q∗(Ψ∗,(0),p∗,(0)) = ∅, it implies that no IoT
device is satisfied its data throughput requirements at the initial
solution. To improve the service management, we allocate the
maximum transmit power to an IoT device with the smallest
path loss (strongest channel gain), Pn = Pmax

k if ζn,k ≤
ζi,j ,∀i ∈ N , j ∈ K. In contrast, we allocate the zero transmit
power to the remaining IoT devices, Pn′ = 0,∀n′ ̸= n. By
this policy, the prioritized IoT device will attain the highest
received signal strength and no mutual interference. Once the
IoT device meets the minimum data throughput, we add the
IoT device to the initial satisfied IoT device set. Otherwise,
the selected IoT device cannot meet the data throughput,
and the system cannot serve IoT devices with their service
requirements. If |Q∗(Ψ∗,(0),p∗,(0))| = N , it means that all
IoT devices are served with requested services. ♢

We then solve the total data throughput maximization prob-
lem with the fixed quality of service constraints from satisfied
IoT devices with respect to the limited power constraint in
(8b) and the AP-IoT devices association in (8d) as below

maximize
Ψ,p

Rtot(Ψ,p), (26a)

subject to (8b), (8d), (26b)

Rn(Ψ,p) = ξthr
n ,∀n ∈ Q∗(Ψ∗,(t−1),p∗,(t−1))

(26c)
where t is the iteration index. Due to highly coupling of
mutual interference, we introduce the constraint (26c), ξthr

n =
Rthr

n + Rthr
n τ , to avoid the undesired situations that the data

throughput values of IoT devices in Q∗ are slightly smaller
than the threshold, in which τ is sufficiently small tolerable
constant. The constraint (26c) is to ensure that the system can
serve the satisfied IoT devices in Q∗ with only their service
requirements. With a finite power level Pmax, the remaining
power of each AP should be allocated to other IoT devices,
and it is expected that their data throughput will increase and
meet the requirements. The set of satisfied IoT devices will
be updated after solving the problem in (26),
Q∗(Ψ∗,(t),p∗,(t)) = {n|Rn(Ψ

∗,(t),p∗,(t)) ≥ Rthr
n ,∀n ∈ N}.

(27)
As mentioned before, the problem in (26) is difficult to
simultaneously optimally obtain both Ψ and p. Thus, we

suggest sequentially obtaining each variable while considering
the others fixed. In the following subsections, we will provide
the solutions to the power allocation and the AP associa-
tion problems. The solutions to sub-problems guarantee non-
decreasing the number of satisfied IoT devices and the total
data throughput.

Remark 5: The modified BB algorithm can be used to initial-
ize the set of satisfied IoT devices. However, this initialization
will force the system to provide services to the set of IoT
devices that have already been allocated resources to achieve
the required data throughput only. Therefore, fixing the data
throughput of these IoT devices and optimizing the resource
allocation again will be trivial. ♢

C. Total Data Throughput Maximization Problem With The
Quality of Service Constraints

In this subsection, we find the solution to problem (26) in
an iterative manner. One observes that the AP association for
the IoT devices impacts mutual interference and the power
allocation under the limited power budget. Each IoT device
can select one of the K APs, a total of NK possibilities
should be exhaustively searched to obtain the global optimum.
Consequently, obtaining both the AP association and the power
allocation is nontrivial for a large-scale network. Therefore,
we propose transforming the problem into two sub-problems
corresponding to solving the power allocation and the AP-IoT
device association. Optimizing the two sub-problems is not
equivalent to optimizing the original problem. To achieve a
good solution, an alternative algorithm is needed to acquire
the solution to each optimization variable iteratively. For
convenience, we remove the iteration index at all notations
in this sub-section.

1.Power allocation with equal data throughput constraints:For
a given AP association, the power allocation optimization is
rewritten below

maximize
p

Rtot(p), (28a)

subject to
∑
n∈N

µk,nPn ≤ Pmax
k ,∀k ∈ K, , (28b)

Rn(Ψ,p) = ξthr
n ,∀n ∈ Q∗. (28c)

We use the log approximation method to get the lower bound
on the data throughput formula and transform problem (28)
into a tractable form, which is given by

maximize
p

R̃tot(p) =
N∑

n=1

R̃n(p), (29a)

subject to 0 ≤
∑
n∈N

µk,nPn ≤ Pmax
k ,∀k ∈ K, (29b)

αn(p̄) log2(γn(p̄)) + βn(p̄) = ξthr
n ,∀n ∈ Q∗.

(29c)
The iterative algorithm as in Algorithm 20 is also applied
to optimize the objective of the problem in (28). At every
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iteration, we need to solve the following problem

maximize
p̄

N∑
n∈N/Q∗

B
(
αn(p̄[i− 1]) log2(γn(p̄))

+ βn(p̄[i− 1])
)
, (30a)

subject to

0 ≤
∑
n∈N

µk,n exp(P̄n) ≤ Pmax
k ,∀k ∈ K, (30b)

αn(p̄[i− 1]) log2(γn(p̄)) + βn(p̄[i− 1]) = ξthr
n ,∀n ∈ Q∗,

(30c)
where Pn = exp(P̄n), and the data throughput of each satis-
fied IoT device in Q∗ is removed from the objective function
of problem (30) since the network treats their services as
constants. However, due to the constraints (30c), problem (30)
is non-convex. At this step, we suggest applying the partial
Lagrangian function defined as follows:
L(p̄,θ) =

∑
n∈N

B (αn(p̄[i− 1]) log(γn(Ψ, p̄)) + βn(p̄[i− 1]))

−
K∑

k=1

θk(

N∑
n=1

µk,n exp(P̄n)− Pmax
k ),

(31)
where θk is the dual variable corresponding to the power
constraint of the k-th AP, and θ = [θ1, ..., θN ]. The equal
data throughput constraints, (30c), are not introduced to the
multipliers and are used as back-tracking conditions to update
the power. Based on the Lagrangian function in (31), the dual
optimization problem is formulated as:

minimize
θ

g(θ) = maximize
p̄

L(p̄,θ),

subject to θn ≥ 0,∀n ∈ N .
(30c).

(32)

We emphasize that the Lagrangian function in (31) sets an
upper bound to the objective function of problem (29). We,
therefore, optimize L(p̄,λ) with respect to P̄n, n ∈ N/Q∗.
For such, the corresponding derivative is computed as
∂L(p̄,θ)
∂P̄n

=
1

ln(2)
Bαn(p̄[i− 1])−

N∑
n′=1,
n′ ̸=n

Bαn′(p̄[i− 1])

×
∑K

k=1 |µk,ngk,n′ |2 exp(P̄n)

ln(2)
(∑N

j=1,j ̸=n′
∑K

k=1 |µk,jgk,n′ |2 exp(P̄j) + σ2
)

−
K∑

k=1

θkµk,n exp(P̄n) = 0,∀n ∈ N/Q∗.

(33)
From (33), after a back transformation Pn = exp(P̄n), a set of
fixed-point solutions to the power allocation of unsatisfied IoT
devices is formed as in (35a). Meanwhile, the back-tracking
condition (30c) is rewritten as

Pn

K∑
k=1

|µk,ngk,n|2

∑
n′ ̸=n,n′∈N

K∑
k=1

|µk,n′gk,n|2Pn′ + σ2

=2

ξthr
n
B

−βn(p[i−1])

αn(p[i−1]) ,∀n ∈ Q∗.

(34)
The power allocation of satisfied IoT devices in Q∗ is then
determined by a set of fixed-point solutions as in (35b).

Algorithm 3 Dual interference function-based method for
power allocation with equality of service constraints (DIF-PA).

1: Input: The system parameters N , K, B, σ, Pmax, the
channel state information hn,∀n ∈ N , the AP association
Ψ∗,(t−1), the power vector p[0] = p∗,(t−1), and the
tolerance ϵ1.

2: Set the iteration index i = 0. Calculate α(p[0]) and
β(p[0]).

3: repeat
4: i← i+ 1. Set s = 0.
5: repeat
6: Calculate p(s+ 1) = I(p(s)) as in (38).
7: Update Lagrangian multipliers θk(s+ 1) =⌈

θk(s) + ϵθ

(∑N
n=1 µk,n exp(P̄n)− Pmax

k

)⌉+
.

8: s← s+ 1.
9: until Convergence.

10: Update α(p∗[i]) and β(p∗[i]) using (20).
11: until ∥p∗[i]− p∗[i− 1]∥ ≤ ϵ1.
12: Output: The power allocation vector p∗,(t).

According to the IoT device status, i.e., either satisfied or
unsatisfied, (35a) and (35b) can be written as

p = I(p), (36)
where the following definition holds

I(p) = [I1(p), ..., IN (p)]T , (37)
and In(p) is defined as in (35a) and (35b) according to the
served data throughput. From initial transmit powers in the
feasible domain, p(0), we then have the following update

p(s+ 1) = I(p(s)), (38)
where s is the iteration index. The Lagrangian multipliers are
updated to penalize the violation of limited power constraints
as follows:

θk(s+ 1) =

[
θk(s) + ϵθ

(
N∑

n=1

µk,n exp(P̄n)− Pmax
k

)]
.

(39)
where ϵθ is a sufficiently small step size. By utilizing the
updates in (38) and (39), the convergence of the fixed-point
equation is proved as in Lemma 4 by following the standard
interference function in [13].

Lemma 4. I(p) given in (36) with its elements defined in
(35a) and (35b) is a standard interference function (SIF). As a
consequence, starting from a feasible point and iteratively up-
dating the transmit power coefficients based on (38) converges
to a fixed point that optimizes the objective of problem (30).

Proof. The proof is provided in Appendix B

After obtaining the optimized transmit powers for all the IoT
devices, they are exploited to update the log approximation
factors as in (20). The details of the proposed optimization
strategy are summarized in Algorithm 3. We note that Algo-
rithm 3 will monotonically increase the objective function of
(29), Rtot(p), which always converges to a fixed-point solution
by utilizing the same methodology as shown in Lemma 20.
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Pn =
Bαn(p[i− 1])

∑
n′ ̸=n

Bαn′(p[i− 1])

K∑
k=1

|µk,ngk,n′ |2

∑
j ̸=n′

K∑
k=1

|µk,jgk,n′ |2Pj+σ2

+
K∑

k=1

ln(2)θkµk,n

= In(p),∀n ∈ N/Q∗. (35a)

Pn =

2

ξthr
n
B

−βn(p[i−1])

αn(p[i−1])

( ∑
n′ ̸=n

K∑
k=1

|µk,n′gk,n|2Pn′ + σ2

)
K∑

k=1

|µk,ngk,n|2
= In(p),∀n ∈ Q∗. (35b)

2.AP association:Given the power allocation, we reformulate
the problem with respect to Ψ as below

maximize
Ψ

Rtot(Ψ), (40a)

subject to
∑
n∈N

µk,nPn ≤ Pmax
k ,∀k ∈ K, (40b)∑

k∈K

µk,n = 1,∀n ∈ N , (40c)

Rn(Ψ,p) = ξthr
n ,∀n ∈ Q∗ (40d)

The constraint in (26c) is extremely difficult to satisfy, and
thus the feasible set of the problem in (40) is almost empty.
Therefore, we change the target of the AP association problem
to optimize the total data throughput while guaranteeing the
minimum data throughput for all IoT devices in the given
satisfied IoT devices set. We rewrite the above optimization
problem while keeping the total power constraint, (40b), and
the AP-IoT devices association constraint, (40c), as follows:

maximize
Ψ

Rtot(Ψ)

subject to (40b), (40c),

Rn(Ψ,p) ≥ Rthr
n ,∀n ∈ Q∗.

(41)

Our approach is to apply the coalition game method to search
an AP association structure, which aims to provide a better
total data throughput to all IoT devices. Therein, IoT devices
in the system play the role of players, while the change
of AP association from each IoT device is considered as
a strategy. We define the set of IoT devices being served
by the k-th AP as Nk = {n|µk,n = 1, n ∈ N}. The
current AP association structure of all IoT devices is then
defined as F curr = {N1, ...,NK}. We now have two conditions
Nk ∪ Nj = ∅,∀k, j ∈ K and ∪

k∈K
Nk = N . If the n-th IoT

device change the AP association from k-th to j-th, a new
AP association structure is formed F temp = (F curr\Nk,Nj)∪
(Nk\n) ∪ (Nj ∪ n). The new AP association structure is
accepted if it satisfies these two following updated policies

Rn(F temp) ≥ ξthr
n ,∀n ∈ Q∗, (42)

Rtot(F temp) > Rtot(F curr), (43)
where (42) ensures that IoT devices belonging to the satisfied
IoT devices set Q∗ still meet the required data throughput.
Meanwhile, (43) ensures that we only can change the AP
association of unsatisfied IoT devices when the total data
throughput is improved. The expectation of the final AP
association structure is that all IoT devices agree that this
structure is the best from every IoT devices’ view. Intuitively,
no IoT device can find a better strategy to improve the player’s
utility. Given the strategies, updated policies, and the set-up

Algorithm 4 Coalition game-based AP association (CG-APA)

1: Input: The system parameters N , K, B, σ, Pmax, the
channel state information hn,∀n ∈ N , the power vector
p∗,(t−1).

2: Initialized: F curr based on the AP association Ψ∗,(t−1).
3: repeat
4: Set ι = 0.
5: for n = 1 : N do
6: for k = 1 : K do
7: Assume that n ∈ Nj then F temp =

(F curr\Nk,Nj) ∪ (Nk\n) ∪ (Nj ∪ n).
8: Compute Rn(F curr) and Rn(F temp),∀n ∈ N .
9: if (42) is violated then

10: Continue.
11: else if (42) is satisfied then
12: Set F temp = F curr.
13: ι = 1.
14: end if
15: end for
16: end for
17: until ι = 0.
18: Output: The AP association Ψ∗,(t).

target, we repeatedly traverse through all IoT devices in the
system and change their AP association until obtaining the
final AP association structure. We introduce the variable ι to
stop the loop. In particular, we set ι = 0 at the beginning
of every loop, and the algorithm runs through all IoT devices
to testify whether they can find a new AP that achieves a
higher total network throughput. If ι = 0 after the algorithm
traverses to all IoT devices, no IoT device wants to change its
AP association, and the algorithm stops. Whereas ι = 1 means
that at least one IoT device changes the AP association and
forms a new AP association structure in the system, therefore,
the algorithm sets ι = 0 and testifies all IoT devices again.
The detailed method is provided in Algorithm 4. Note that the
number of APs and IoT devices is limited, thus, the number
of AP association structure candidates is finite. Therefore,
Algorithm 4 always stops at a certain iteration.
D. Alternative Algorithm

In order to obtain the final solution, an alternating algorithm
is proposed. To start the algorithm, we set up the initial AP-IoT
devices association, Ψ∗,(0), and the power allocation, p∗,(0), as
in Subsection IV-B. The power allocation problem with fixed
rate constraints is resolved first in every loop as in Subsection
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Algorithm 5 Alternative algorithm to solve the problem in
(12) (AA Algorithm)

1: Input: The system parameters N , K, B, σ, Pmax, the
channel state information hn,∀n ∈ N , and the tolerance
ϵ2.

2: Initialize the AP association Ψ∗,(0) as mention early in
Subsection IV-B.

3: Calculate p∗,(0) based on Algorithm 20.
4: Calculate Rn(Ψ

∗,(0),p∗,(0)),∀n ∈ N and
Rtot((Ψ

∗,p∗,(0))).
5: Determine the set of satisfied IoT devices
Q∗(Ψ∗,(0),p∗,(0)) based on (11).

6: repeat
7: t← t+ 1.
8: Solve the problem (28) to obtain p∗,(t) given Ψ∗,(t−1).

9: Solve the problem (40) to obtain Ψ∗,(t) given p∗,(t−1).

10: Calculate Rn(Ψ
∗,(t),Ψ∗,(t)),∀n ∈ N and

Rtot(Ψ
(t),p(t)).

11: Update Q∗,(t) = {n|Rn(p∗,(t)) ≥ Rthr
n ,∀n ∈ N}.

12: Calculate

∇ =
Rtot(Ψ

∗,(t),Ψ∗,(t))−Rtot(Ψ
∗,(t−1),p∗,(t−1))

Rtot(Ψ∗,(t−1),p∗,(t−1))
.

13: until (|Q∗,(t)| == |Q∗,(t−1)|) and (∇ ≤ ϵ2).
14: Output: Ψ∗,fin,p∗,fin.

IV-C1. Next, the AP-IoT devices association is obtained via
the coalition game-based method as in Subsection IV-C2.
The procedure is terminated after checking two following
conditions in order: the improvement in the number of satisfied
IoT devices is first checked and the improvement in the total
network throughput is the second condition. If the number
of satisfied IoT devices cannot be increased, the procedure
is stopped when the total data throughput cannot increase
higher than a sufficient small threshold, say ϵ2. The detailed
procedure is summarized as in Algorithm 5. In the following
Lemma, the convergence of Algorithm 5 will be proved.
Convergence speed and running time will be given in Section
V to evaluate the computational requirements of Algorithm 5
for the system.

Lemma 5. Given the limited number of APs, K, and the lim-
ited power budget at APs, Pmax

k ,∀k, the optimization problem
in (8) is considered to be infeasible. Therefore, achieving the
optimal or a local solution cannot be ensured. The problem
in (8) is reformulated as the dual objective problem in (12) in
order to transform the problem in (8) into a feasibility and find
a good solution to the system under infeasible circumstances.

Therefore, the problem in (12) is solved by Algorithm 5
that prioritizes providing services to as many IoT devices from
the IoT devices set N as possible. Particularly, Algorithm 5
gradually finds and adds potential IoT devices into the set of
satisfied IoT devices, Q, by repeatedly reallocating the radio
resources via solving the problem in (26). Algorithm 5 ensures
the non-decrease of the number of satisfied IoT devices. When
the number of satisfied IoT devices is fixed, Algorithm 5 also

guarantees the non-decrease of the total network throughput
and always converges.

Proof. The proof is given in Appendix C.

E. Complexity Analysis
The optimal solution of the problem in (13) can be achieved

via a matrix-inversion computation. The complexity of the
modified BB algorithm is in the order of O(N1N

2), where
N1 is the number of iterations needed to achieve the conver-
gence of the modified BB algorithm. Meanwhile, the com-
putational complexity of AA Algorithm is in the order of
O(N2N3KN

3 + N2N4KN
2), where N2 and N3 are the

numbers of iterations for convergence of AA algorithm and
DIF-PA algorithm, respectively. Besides, N4 is the maximum
number of iterations for the convergence of the coalition game-
based AP association algorithm. In the worst case, both the
modified BB algorithm and CG-APA algorithm experience the
complexity as the exhaustive search with NK possible of AP-
IoT devices association candidates. Due to the consideration
of infeasible circumstances, the complexity of the modified
BB algorithm can be reduced significantly by pruning many
branches. The use of AA algorithm consisting of DIF-PA and
CG-APA algorithms requests a higher order of complexity
in exchange for a better network throughput. However, it
should be noted that the practical running time depends on the
network size and specific convergence thresholds, and thus, the
time complexity will be evaluated in the next section.

V. PERFORMANCE EVALUATION

In this section, the performance of our proposed algo-
rithms is evaluated via extensive numerical results together
with comparisons with several benchmarks. In particular, the
proposed AP association is compared with the nearest AP
association method. Meanwhile, the performance of the dual
interference function-based method is compared with an equal
power allocation scheme, where all IoT devices are allocated
by a power level. Note that we conducted simulations on a
personal computer equipped with the following configuration:
[AMD Ryzen 5 5600G with Radeon Graphics 3.90 GHz and
an installed RAM of 16.0 GB].
A. Channel Model and System Parameters

Even though the radio environment varies over time and
frequency, we adopt the quasi-static model where all the
propagation channels follow uncorrelated Rayleigh distribu-
tion patterns, which are formulated as [38],

hk,n ∼ CN (0, ϑk,n),∀k ∈ K, n ∈ N , (44)
where ϑk,n is the large-scale fading coefficient, which is
derived from the path loss and the shadowing fading. Specif-
ically, we formulate ϑk,n as follows [38]:

ϑk,n = ζk,n10
ψσk,n

10 , (45)
where ψ = 7 is the standard deviation of shadowing and σk,n
is distributed as CN (0, 1). Meanwhile, the path loss coefficient
ζk,n is defined as, [38],

ζn,k [dB] = −(120.9 + 37.6 log10(dn,k)), (46)
where dn,k is the distance between the n-th IoT device and
the k-th AP. We consider a circle communication area with a
radius of r meters. Inside this area, there are N IoT devices
and K APs. The distance between two APs should exceed
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Fig. 2: An example coordinates of 5 APs and 15 IoT devices.

Table I: System parameters [39].
Cell radius (r) 300 [m]

Maximum transmit power of each AP (Pmax) 23 [dBm]

Bandwidth B 180 [kHz]

Power spectral density of the thermal noise (σ) -174 [dBm/Hz]

Minimum distance between two APs 30 [m]

Lagrangian multiplier step size (κ) 0.0001

Terminated conditions (ϵ1 and ϵ2) 0.0001

30 [m] to avoid multiple APs locating at the same area. We
illustrate an example of our network in Fig. 2, where the
random location of APs and IoT devices are shown. The
common network parameters are selected based on the 3gpp
standard of NB-IoT [39] and are listed in Table I.
B. Numerical Results

We first introduce two following benchmarks: i) Nearest AP
association (Nearest-APA) [38]: Each IoT device selects the
closest AP in terms of geometry. In this way, each IoT device
will have the channel gain condition with the lowest path
loss; ii) Equal power allocation (Equal-PA) [40]: The transmit
power is fixed, and all are equal to each other. To demonstrate
the efficiency of proposed algorithms, the following methods
will be compared:
i) Brute Force: The system applies brute force to find the

solution that serves the most number of IoT devices.
ii) The modified BB algorithm: The system applies the

modified BB algorithm to achieve both power allocation
and association with AP-IoT devices.

iii) Proposed DIF-PA + Proposed CG-APA: The system
applies the AA algorithm, where the proposed DIF-
PA and the proposed CG-APA are used to achieve the
power allocation and the AP-IoT devices association,
respectively.

iv) Proposed DIF-PA + Nearest-APA: The system applies
AA algorithm, where the proposed DIF-PA and the
nearest CG-APA are used to achieve the power allocation
and the AP-IoT devices association, respectively.

v) Equal-PA + CG-APA: The system applies AA algorithm,

Fig. 3: The achievable rate of IoT IoT devices with different
solutions when the system has 8 IoT IoT devices and 3 APs.

where Equal-PA and CG-APA are used to achieve the
power allocation and the AP-IoT devices association,
respectively.

vi) Equal-PA + Nearest-APA: The system applies AA algo-
rithm, where the proposed DIF-PA and the nearest CG-
APA are used to achieve the power allocation and the
AP-IoT devices association, respectively.

Fig. 3 illustrates the detailed data throughput of IoT devices
when the system deploys different power allocation solutions
and AP association methods. The network has eight IoT
devices with the minimum data throughput requirement of 0.5
(bits/s/Hz) from all IoT devices. When the system applies the
modified BB algorithm, seven IoT devices are satisfied the
exact requested data throughput while only the 8-th device
is out of service. On the other hand, six IoT devices can
satisfy their request when the system combines the proposed
DIF-PA and CG-APA. Specifically, one IoT device obtains a
data throughput of 1.1 (bits/s/Hz), and three IoT devices with
data throughput higher than 0.7 (bits/s/Hz). The numerical
result implies that AA Algorithm simultaneously optimizes
both the number of satisfied IoT devices and the total network
throughput. Therein, the total network throughput is around
5.5 (bits/s/Hz), which outperforms the system applying the
modified BB algorithm with a total network throughput of 3.5
(bits/s/Hz) only. Meanwhile, the benchmark that involves a
combination of the proposed DIF-PA and Nearest-APA can
serve five IoT devices with a total data throughput of 4.4
(bits/s/Hz). Overall, the proposed CG-APA can consistently
achieve greater performance than Nearest-APA. When the
system applies Equal-PA and the proposed CG-APA, only
four IoT devices can meet their requirements. Lastly, three
IoT devices can meet the requested data throughput, and
one obtains a very high data throughput of 2.7 (bits/s/Hz).
However, three IoT devices obtained a data throughput of 0.4
(bits/s/Hz), in which two out of three IoT devices improved
their data throughput over the requirement when the system
used the proposed DIF-PA and the proposed CG-APA.

Figs. 4 and 5 illustrate the convergence regarding the
average number of satisfied IoT devices and the total network
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Fig. 4: The convergence in the average number of satisfied
IoT devices when the system serves 15 IoT devices with the
minimum data throughput 0.5 (bits/s/Hz) by 5 APs.

Fig. 5: The convergence in the total network throughput when
the system serves 15 IoT devices with the minimum data
throughput 0.5 (bits/s/Hz) by 5 APs.

throughput, respectively. We can observe the first underlying
cost of the modified BB algorithm and the proposed DIF-PA
from Fig. 5 is that the total network throughput experiences
a significant reduction in exchange for an increase in the
number of satisfied IoT devices. This disadvantage can be seen
clearly when the system applies the modified BB algorithm,
where the system can satisfy approximately 7.8 IoT devices
with a running time of 43ms, however, the total data network
throughput is only 3.9 (bits/s/Hz). Meanwhile, the system
deploying the proposed DIF-PA and the proposed CG-APA
converges in approximately 7 iterations on average, with a
time consumption of around 2.3ms, resulting in a total network
throughput of approximately 7.0 (bits/s/Hz), which is superior
to applying the modified BB algorithm. Alternatively, by com-
bining the proposed DIF-PA with Nearest-APA, the system
converges quicker after 6 iterations with a time consumption
of approximately 2.1ms and a total network throughput of
6.7 (bits/s/Hz). Upon reaching convergence, the combination
of the proposed DIF-PA and CG-APA manages to serve an
average of 6.3 satisfied IoT devices. This performance slightly

Fig. 6: The left figure shows the averaged number of satisfied
IoT devices and the right figure shows the probability that
the system can serve at least 5 or 7 IoT devices at least 0.5
(bits/s/Hz) when the system has 15 IoT devices and 3 APs.

surpasses that of the proposed DIF-PA coupled with Nearest-
APA, which yields an average of approximately 5.8 satisfied
IoT devices. In contrast, when the system focuses solely on
AP-IoT device associations, the complexity and calculation
requirements reduce noticeably, resulting in minimal time
consumption. However, this approach significantly reduces
performance. Particularly, the system deploying Equal-PA with
the proposed CG-APA method can serve 3.9 IoT devices with
a total network throughput of 6.8 (bits/s/Hz). The combination
of Equal-PA and Nearest-APA performs the poorest, providing
services to only 2.4 IoT devices.

Fig. 6(a) shows the average number of satisfied IoT devices
versus benchmarks that are averaged over different 10, 000
realizations of user locations and shadow fading. Meanwhile,
Fig. 6(b) illustrates the percentage that the system serves at
least a certain number of IoT devices, i.e., 5 or 7 IoT devices.
More specifically, Fig. 6(a) displays the superior performance
of the modified BB algorithm and the proposed DIF-PA
compared to Equal-PA. Approximately 6.8 IoT devices can be
satisfied when the system applies the modified BB algorithm.
When the system applies the proposed DIF-PA, approximately
5.7-6.3 IoT devices are served, where the exact number
depends on the selected AP association method. Specifically,
combining the proposed DIF-PA and CG-APA can serve an
average of 6.3 IoT devices. However, the proposed DIF-PA
and Nearest-APA can only satisfy 5.8 IoT devices on average.
In contrast, the Equal-PA only provides service to around 2.4-
3.8 IoT devices. In Fig. 6(b), 89% of the realizations, the
modified BB algorithm can serve at least 5 IoT devices. When
the system shares the radio resource via optimizing the dual-
objective function, we observe that 66% of the realizations,
the system can serve at least 5 IoT devices when utilizing the
combination of the proposed DIF-PA and CG-APA. Whereas
the combination of the proposed DIF-PA and Nearest-APA
only achieves 55%. Furthermore, utilizing Equal-PA and the
proposed CG-APA can serve more than 5 IoT devices by
their requirements with the probability of less than 0.1. With
more than 7 IoT devices in the network, Equal-PA with any
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Fig. 7: The number of satisfied IoT devices and the total data
throughput versus the change in the required data throughput
when the system has 15 IoT devices and 5 APs.

AP association method cannot serve any IoT device to meet
their requirement. The combination of the proposed DIF-PA
and CG-APA can help at least 7 IoT devices achieve a data
throughput higher than the threshold with the probability of
approximately 0.16. Meanwhile, by exploiting the proposed
DIF-PA and Nearest-APA, the system provides service for
more than 7 IoT devices with the probability of only about
0.07. Finally, with the modified BB algorithm, the probability
of serving at least 7 IoT devices is approximately 20.5%.

Fig. 7 illustrates network performance as the required data
rate varies. It highlights the efficiency of optimizing just
the number of satisfied IoT devices versus optimizing both
the number of satisfied devices and total network through-
put. Using the modified BB algorithm, approximately 10.1
IoT devices are served when the required data throughput
is 0.3 (bits/s/Hz). This number decreases as the required
data throughput increases, dropping to 3.95 IoT devices at
1.5 (bits/s/Hz). The proposed DIF-PA method, particularly
when combined with the CG-APA approach, shows superior
performance compared to Equal-PA. Specifically, the DIF-PA
method combined with CG-APA serves an average of 8.2
IoT devices at 0.3 (bits/s/Hz), while the Equal-PA method
combined with CG-APA serves around 7.7 devices, and the
Equal-PA method combined with Nearest-APA serves about
6.2 devices. Interestingly, as the required data throughput
increases, the modified BB algorithm becomes less effective
compared to the DIF-PA method combined with CG-APA,
particularly under high data rate demands. This is because
the modified BB algorithm adds users sequentially, which
becomes inefficient when user requirements are too high. In
contrast, the DIF-PA method selectively serves users that are
easier to satisfy with higher data rates, making it more effec-
tive in challenging conditions. As the required data throughput
increases, the number of satisfied devices decreases across all
methods, though total network throughput generally increases,
except for the Equal-PA method combined with Nearest-APA.
At a requirement of 0.6 (bits/s/Hz), the number of satisfied
devices for the Equal-PA method drops rapidly to 2-3 IoT
devices, while the DIF-PA method shows a more gradual

decline. At 1.5 (bits/s/Hz), the DIF-PA method combined with
CG-APA achieves a total network throughput of approximately
20 (bits/s/Hz) while serving around 4.2 devices, compared to
3.8 devices with the DIF-PA method combined with Nearest-
APA. Notably, CG-APA consistently yields about 8% more
satisfied devices than Nearest-APA.

Table. II shows the system performance versus different net-
work settings when the requested data rate of all IoT devices is
0.5 (bits/s/Hz). It is obvious that both the number of satisfied
IoT devices and the total network throughput increase as more
APs are added to the network. When the system applies the
proposed DIF-PA and the CG-APA, the number of satisfied
IoT devices increases from 4.7 to 6.2 when the number of
APs increases from 3 and 5, respectively. These numbers of the
proposed methods are smaller than the modified BB algorithm,
around 15 − 20% at all settings. However, the proposed
methods outperform the modified BB algorithm in terms of
total network throughput. While the system combining DIF-
PA and CG-APA serves 6.2 IoT devices with a total of 7.1
(bits/s/Hz), that of the modified BB algorithm is 7.8 IoT
devices but with only 3.9 (bits/s/Hz). In comparison with dif-
ferent power allocation methods, DIF-PA presents a significant
gap compared to Equal-PA. In detail, applying the Equal-
PA and the CG-APA, the number of satisfied IoT devices is
only around one-third of the combination of the DIF-PA and
the CG-APA with the same set-up. Around 0.8 and 2.7 IoT
devices are served the requested data rate when the system
has 3 and 5 APs, respectively. Meanwhile, in terms of IoT
devices-AP association, the proposed CG-APA also shows an
improvement compared to the nearest-APA. When the number
of APs increases from 3 to 5, the system applying DIF-PA and
CG-APA can serve 4.7 to 6.2 IoT devices, while combining
DIF-PA with Nearest-APA, the system serves 4.4 to 5.9 IoT
devices only. When the number of IoT devices joining the
network increases, only the system that uses the proposed DIF-
PA presents an increasing trend in both the number of satisfied
IoT devices and the total network throughput. The network
that uses the proposed DIF-PA and the proposed CG-APA can
provide the required service to an average of 5.9 IoT devices,
which is better than the network that uses the proposed DIF-
PA and Nearest-APA around 8− 12%. Without the proposed
DIF-PA, the system that uses Equal-PA with CG-APA only
serves 3.5 IoT devices when the network exists 12 IoT devices,
and this number decreases quickly to 1.5 when the number
of IoT devices increases to 15. This situation is because as
more IoT devices join the network, the mutual interference
will substantially increase as well. Nonetheless, Equal-PA
does not adjust the power levels appropriately, resulting in a
significant increase in the gap between the proposed DIF-PA
and Equal-PA. With the modified BB algorithm, the system
maintains the number of satisfied IoT devices at 7.8 with a
total network throughput of 3.9 (bits/s/Hz) since this method
keeps adding IoT devices to the system one after another
without considering how many IoT devices are joining the
network. However, the total network throughput when the
system applies the proposed DIF-PA and CG-APA increases
from 6.9 to 7.5 (bits/s/Hz) when the number of IoT devices
increases from 12 to 18.
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Table II: Number of satisfied IoT devices and the network sum rate with different network sizes. The left and right values
show the number of satisfied IoT devices and the total network throughput, respectively.

K N DIF-PA + CG-APA DIF-PA + Nearest-APA Equal-PA + CG-APA Equal-PA + Nearest-APA Modified BB Algorithm

3 15 4.7/5.3 4.4/4.8 0.8/3.5 0.8/3.2 6.7/3.4

4 15 5.5/6.3 5.3/5.7 1.9/5.1 1.7/4.5 7.4/3.7

5 15 6.3/7.1 5.9/6.4 2.7/6.6 2.5/5.7 7.8/3.9

5 12 5.9/6.9 5.5/6.7 3.5/7.1 3/5.8 7.8/3.9

5 18 6.3/7.2 6.1/6.9 2.4/6.3 2.1/5.4 7.8/3.9

5 24 6.6/7.5 6.4/7.2 1.5/5.6 1.5/5.1 7.8/3.9

Table III: Number of satisfied IoT devices and the running
time (millisecond) with different network sizes. The left and
right values show the number of satisfied IoT devices, while
the right value indicates the running time.

K N DIF-PA
+ CG-APA

DIF-PA
+ Nearest-APA BB Algorithm Brute Force

2 8 3.7/0.97 3.47/0.94 5.03/1.2 5.2/1.8

3 8 4.6/1.3 4.3/1.1 6/2.6 6.5/64.1

3 12 5.8/1.5 5.5/1.3 6.5/2.7 7.4/91141

5 15 6.3/2.3 5.9/2.1 7.8/41 −/−

5 20 6.5/4.9 6.2/4.4 7.8/41.4 −/−

5 25 6.7/9.5 6.4/8.7 7.8/41.9 −/−

Table III shows the system’s performance in terms of the
number of satisfied IoT devices and the running time when
the required data rate of all IoT devices is 0.5 (bits/s/Hz). The
system’s running time that applies Equal-PA and Nearest-APA
can be ignored due to the lack of computational requirements.
Meanwhile, the running time of the proposed CG-APA can
be evaluated by observing its combination with the proposed
DIF-PA. Thus, the combination of Equal-PA and the proposed
CG-APA will not be illustrated. For convenience, we call
the combination of the proposed DIF-PA and the CG-APA
as the proposed method. We can observe that the brute
force method always achieves the highest value because it
searches all candidates. The number of IoT devices the system
can serve when applying the brute force method is higher
than those of the proposed method and the BB algorithm,
approximately 20% and 8%. However, the computational cost
makes this gap impractical. The running time of the brute
force method increases dramatically. For instance, with 2 APs
and 8 IoT devices, the running time is only around 2ms and
exponentially increases to 64ms when the system has 3 APs.
The running time becomes unacceptable, around 91, 141ms,
when the system has 3 APs and 12 IoT devices. Meanwhile,
with the same setup, the running times of the proposed method
and the BB algorithm are only 1.7ms and 2.7ms, respectively.
As the network expands, the brute force method’s running time
is too long, leading us to disregard it in further comparisons.
In comparison between the proposed method and the BB
algorithm, both methods request more running time when more
IoT devices join the networks. However, the proposed method
is significantly more time-efficient. For example, with 5 APs,
the running time increases from 2.3ms for 15 IoT devices
to 9.5ms for 25 devices. When the system uses Nearest-APA

Fig. 8: Number of satisfied IoT devices when the CSI is
imperfect.

combined with DIF-PA, the running time is reduced by about
5% compared to the proposed method. Meanwhile, the running
time of the BB algorithm highly depends on the number of
APs since the number of nodes that the BB tree must search
at each level increases exponentially with the number of APs.
The running time of the BB algorithm is 2.7ms with 12 IoT
devices and 3 APs in the network and increases to 41ms with
15 IoT devices and 5 APs in the network.

To evaluate the performance of the system under imperfect
CSI, we consider the model where the estimated channel
between the n-th IoT device and the k-th AP is represented by
h

′

k,n = ρhk,n where ρ is the imperfect factor, and the channel
error is calculated as

√
1− ρ2CN (0, ϑk,n). Accordingly, we

can calculate the SINR of n-th IoT device as γn(Ψ,p) =∑
k∈K

ρ2|µk,nhk,n|2Pn∑
n′ ̸=n,n′∈N

∑
k∈K

|µk,n′hk,n|2Pn′+
∑
k∈K

µk,n(1−ρ2)ϑk,n+σ2 . All pro-

posed approaches to perfect CSI circumstances remain un-
changed for imperfect CSI. Fig. 8 represents the performance
of the proposed methods versus the error factor 1− ρ2.

We can observe that the performance of all methods de-
creases when the error factor increases due to the fact that
a higher error factor leads to lower received signal strength
and higher interference. The performance of the proposed
DIF-PA decreases more rapidly compared to Equal-PA under
imperfect CSI. This is because the SINR is impacted by
the lower signal strength and increased interference due to
channel errors. Additionally, fixing the data rate for users, who
often have good channels, makes DIF-PA more vulnerable to
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Table IV: Number of satisfied IoT devices (Num-sat-IDs), the total network throughput (Tot-throughput), and the running time
(second) with large network sizes.

K N DIF-PA + CG-APA DIF-PA + Nearest-APA Modified BB Algorithm
Num-sat-IDs Tot-throughput Running time Num-sat-IDs Tot-throughput Running time Num-sat-IDs Tot-throughput Running time

20 50 14.4 41.4 0.07 10.8 30.1 0.06 19.74 19.74 0.7

30 100 22.1 57.9 0.61 17.8 44.8 0.43 29.3 29.3 6.2

50 100 28.7 81.4 0.67 22.7 67.9 0.49 47.1 47.1 21.1

50 200 35.2 93.3 5.72 27.7 71.9 4.63 47.2 47.2 56.9

70 200 41.7 114.1 6.75 35.5 97.9 4.82 67.9 67.9 146.9

imperfection, accelerating performance reduction. Conversely,
with equal power allocation, the number of satisfied IoT
devices decreases linearly as the additional interference from
channel estimation error is fixed. Specifically, the number of
satisfied IoT devices using the proposed DIF-PA and CG-APA
reduces significantly from 4.7 with 1− ρ2 = 0, the perfect CSI
scenario, to 2.7 with 1− ρ2 = 0.05. Meanwhile, the CG-APA
method still outperforms the nearest-APA method by 5-10%,
even under imperfect CSI conditions.

Table. IV provides a comparative analysis of three different
methods, including DIF-PA + CG-APA, DIF-PA + Nearest-
APA, and the modified BB algorithm, across large network
sizes. The table presents key metrics, including the number
of satisfied IoT devices (Num-sat-IDs), total network through-
put (Tot-throughput), and the running time required by each
method. The results indicate that the combination of the DIF-
PA and CG-APA methods delivers a strong balance between
the number of satisfied IoT devices and total throughput,
consistently outperforming the system deploying the DIF-PA
and Nearest-APA methods. While the modified BB algorithm
achieves slightly higher satisfaction in terms of IoT devices,
the system that uses the proposed DIF-PA and CG-APA
methods shows a significantly more efficient running time.
This efficiency becomes particularly apparent as the network
size increases, making the proposed method more scalable than
the modified BB algorithm. For example, with 50 APs and 100
IoT devices, the DIF-PA and CG-APA method requires only
0.67 seconds, compared to 21.1 seconds for the modified BB
method. As the number of IoT devices increases to 200, the
running time of all methods grows, but the DIF-PA and CG-
APA combination remains efficient, with a running time of
5.72 seconds for 50 APs and only increasing slightly to 6.75
seconds for 70 APs. In contrast, the modified BB method re-
quires 146.9 seconds for 70 APs, illustrating a significant dif-
ference in scalability and computational efficiency. The DIF-
PA combined with the Nearest-APA method, while providing
lower total network throughput and fewer satisfied IoT devices,
demonstrates a notably low running time, approximately 20%
lower than the DIF-PA and CG-APA combination. This trade-
off demonstrates the efficiency of the resource-sharing scheme,
suggesting that further accelerated methods for the GA can
be applied to improve running time while maintaining or
even enhancing overall network performance. Note that all
simulation results were obtained using a personal computer.
In practice, the computation can be significantly faster on a
higher-performance computer or cloud infrastructure, reducing
the running time.

We recognize that while our proposal has demonstrated
the efficiency and strong potential of the resource-sharing
scheme, further refinement will be conducted to enhance
its practical applicability. Specifically, ongoing research will
focus on improving resource-sharing strategies to better adapt
to imperfect CSI and large-size networks. These enhancements
will ensure that our framework remains robust and effective
across a broader range of real-world IoT environments.

VI. CONCLUSION

We investigated the infeasible issue in IoT networks where
the QoS requirements cannot simultaneously be satisfied for
all the IoT devices. To make the network more practical
and robust, we identified the satisfied IoT devices that the
system is capable of providing. Accordingly, with respect to
the device association and power allocation, we proposed to
solve the two problems, i.e., the number of satisfied IoT de-
vices maximization and the dual-objective problem, including
the number of satisfied IoT devices and the total network
throughput. The former problem was solved via a modified
BB algorithm. Moreover, using the modified BB algorithm, the
infeasibility of the system was determined. The dual-objectives
problem was then solved with a higher priority for the number
of satisfied IoT devices. Since the formulated problem is
non-convex, an iterative algorithm gradually increases the
number of satisfied IoT devices by sharing the power budget
from the high data throughput to lower ones. The device
association was attained by applying the coalition game, while
a dual fixed-point algorithm was provided to obtain the power
allocation. Simulation results demonstrated the efficiency of
both solving the maximization of the cardinality of the satisfied
set and solving the dual-objective problem. The modified BB
algorithm could provide service to more IoT devices but with
lower total network throughput and longer running time. In
addition, when the system is in extremely harsh conditions,
the system applying the proposed DIF-PA was more efficient
in both the number of satisfied IoT devices and the total
network throughput compared to other methods. In comparison
to Equal-PA, the system that uses the proposed DIF-PA serves
more IoT devices of up to 50%. Our proposal has shown
strong resource-sharing efficiency, but there is room for further
enhancement. To improve performance under imperfect CSI
and in large-scale networks, ongoing research will refine
our strategies, ensuring the framework remains robust and
adaptable to real-world IoT environments.
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∂In(p)
∂Pn

=

(Bαn,l log2(e))
∑

j ̸=n,j∈N
Bαj,l

ln(2)(|µTj gn|
2)

2(
ln(2)

( ∑
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|µTj gn′ |2Pn′+σ2

))2

( ∑
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Bαn′(p[i− 1])
∑K
k=1 |µk,ngk,n′ |2∑

j ̸=n′

∑K
k=1 |µk,jgk,n′ |2Pj+σ2 +

∑K
k=1 ln(2)θkµk,n

)2 > 0,∀n ∈ N/Q.

∂In(p)
∂Pn

= 0,∀n ∈ Q.

(48)

APPENDIX A
PROOF OF LEMMA 3

Let us first denote the optimal solution to problem (15) in
the i-th iteration of Algorithm 3 as p∗[i]. Then, we observe
the following series of inequalities
Rtot(p∗[i− 1])

(a)
= R̃tot(p∗[i− 1],α(p∗[i− 1]),β(p∗[i− 1])

(b)

≤ R̃tot(p∗[i],α(p∗[i− 1]),β(p∗[i− 1])

(c)

≤ Rtot(p∗[i]).
(47)

At p∗[i − 1], we have Rtot(p∗[i − 1]) = R̃(p∗[i − 1]) since
α and β are calculated at p∗[i − 1] as in (20). Next, we
optimally solve (24) to obtain p∗[i − 1]), and thus (b) is
always true. From [35], we have log2(1 + z) ≥ α log(z) +
β for any α and β. Therefore, log2(1 + γn,l(p∗[i])) ≥
αn,l(p∗[i−1]) log2(γ

(i)
n,l(p

∗[i]))+βn,l(p∗[i−1]). Consequently,
Rtot(p∗[i]) ≥ R̃(p∗[i]), and the inequatlity (c) is satisfied. In
addition, Rtot(p) is bounded above due to the limited power
budget. As a result, solving the problem (15) using Algorithm
3, the value of Rtot(p) always increases and converges. The
proof is completed.

APPENDIX B
PROOF OF LEMMA 4

From [13, Theorem 2], three standard interference function
conditions include

1) Positivity: I(p) > 0.
2) Monotonicity: If p ⪰ p′, then I(p) ⪰ I(p′).
3) Scalability: For any γ > 1, γI(p) ≻ I(γp).

We first observe from (35a) and (35b) that the positivity is
always guaranteed due to the non-negative values of power.
Next, we take the derivative ∂In(p)

∂Pn
> 0 as in (48). The

derivative of In(p),∀n ∈ N is always positive. Therefore,
In(p),∀n ∈ N is an increasing function. We can deduce
that In(p1) > In(p2) if p1 ⪰ p2 and the monotonicity
property is ensured. Finally, for any real number γ > 1,
we can easily show that γIn(p) > In(γP ),∀n ∈ N . Thus,
the fixed-point equation in (38) is a standard interference
function. Consequently, it converges into a unique solution.
Besides, (35) is desired from the conditions to optimize the
Lagrangian function and provides a sub-optimal solution to
the problem in (30). Furthermore, Pn = exp(P̄n) is a one-
to-one transformation, and thus the convergence point of (35)
maximize the objective of (30). The proof is completed.

APPENDIX C
PROOF OF LEMMA 5

Given the initial set of the AP association Ψ∗,(0), solving the
problem in (15) to achieve p∗,(0) and determine the satisfied

set at t = 0, Q∗(Ψ∗,(0),p∗,(0)). Given fixed AP-IoT devices
association, Algorithm 3 is used to solve the problem in
(28) and yields the solution p∗,(t). As the constraint (26c)
is considered in (28), we then have

|Q(Ψ∗,(t−1),p∗,(t))| ≥ |Q(Ψ∗,(t−1),p∗,(t−1))|. (49)
After solving the power allocation, the AP-IoT devices as-
sociation is obtained via Algorithm 4. Therein, the updating
conditions (42) and (43) guarantees{

|Q(Ψ∗,(t),p∗,(t))| ≥ |Q(Ψ∗,(t−1),p∗,(t))|,
Rtot(Ψ

∗,(t),p∗,(t)) ≥ Rtot(Ψ
∗,(t−1),p∗,(t)).

(50)

Based on (49) and (50), we have
|Q(Ψ∗,(t),p∗,(t))| ≥ |Q(Ψ∗,(t−1),p∗,(t−1))|. (51)

We now guarantee a non-decrease in the number of satis-
fied IoT devices. When the number of satisfied IoT devices
converges, the power allocation and the AP-IoT devices as-
sociation are still optimized until the total network through-
put converges also. Obtaining the power allocation via DIF-
PA algorithm ensures the improvement in the total network
throughput. Based on (50), we can ensure the non-decreasing
of the total network throughput when the satisfied set is fixed.
In addition, all variables are limited by constraints, and thus
both the number of satisfied IoT devices and the total network
throughput value are bounded. Therefore, the convergence of
Algorithm 5 is guaranteed. Besides, due to the consideration
of the infeasible problem, the local or global solution is not
taken into account, and Algorithm 5 provides a good solution
to the problem. The proof is now completed.
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