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J. Pérez-Aracil, C. Peláez-Rodŕıguez, Ronan McAdam, Antonello Squintu, Cos-
min M. Marina, Eugenio Lorente-Ramos, Niklas Luther, Verónica Torralba,
Enrico Scoccimarro, Leone Cavicchia, Matteo Giuliani, Eduardo Zorita, Felic-
itas Hansen, David Barriopedro, Ricardo Garćıa-Herrera, Pedro A. Gutiérrez,
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• We propose a framework which identifies key short-term heatwave drivers.

• The proposed method combines dimensionality reduction and evolutionary
algorithms.

• Drivers include climate variables with time lags up to 6 months the event.

• Dimensionality reduction in the spatial domain is considered.
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Abstract

Heatwaves (HWs) are extreme atmospheric events that produce significant soci-
etal and environmental impacts. Predicting these extreme events remains chal-
lenging, as their complex interactions with large-scale atmospheric and climatic
variables are difficult to capture with traditional statistical and dynamical mod-
els. This work presents a general method for driver identification in extreme
climate events. A novel framework (STCO-FS) is proposed to identify key
immediate (short-term) HW drivers by combining clustering algorithms with
an ensemble evolutionary algorithm. The framework analyzes spatio-temporal
data, reduces dimensionality by grouping similar geographical nodes for each
variable, and develops driver selection in spatial and temporal domains, identi-
fying the best time lags between predictive variables and HW occurrences. The
proposed method has been applied to analyze HWs in the Adda river basin in
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Italy. The approach effectively identifies significant variables influencing HWs
in this region. This research can potentially enhance our understanding of HW
drivers and predictability.
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1. Introduction

The occurrence of heatwaves (HWs), characterized by prolonged periods of
abnormally high temperatures exceeding typical local conditions, has become a
pressing concern in recent years due to their severe societal and environmental
impacts [1, 2]. Since 1950, extensive regions worldwide have witnessed numer-
ous prolonged and intense HWs, resulting in significant consequences for human
mortality, regional economies, and natural ecosystems [3, 4, 5, 6, 7]. In agri-
culture, heat stress on crops can significantly reduce yields, leading to food
insecurity. In addition, increased demand for electricity for cooling during HWs
substantially strains power grids. The escalation in the frequency of HWs has
been documented in various parts of the globe in recent years and is at least
partly attributed to the temperature increases driven by anthropogenic warming
[8, 9].

Numerous studies [10, 11, 12] have consistently highlighted that the ongoing
increase in global surface temperatures will lead to significant alterations in the
frequency and intensity of HWs across Europe by the end of this century. This
trend is not confined to Europe; globally, there is also a growing prevalence of
heat extremes, with projections indicating that these events will continue to
increase in the coming decades [13, 14, 15]. Regional differences can be en-
countered in HW projections. Hence, this leads to diverse drivers and climate
forcings on regional scales. The identification of these drivers plays a key role
in understanding regional variations and in developing effective mitigation and
adaptation strategies, as different regions may experience distinct climate im-
pacts due to a combination of local factors and global climate forces. Moreover,
understanding these drivers is crucial for improving forecasts on sub-seasonal
scales, allowing for more accurate predictions of HWs and other extreme events.

When tackling the challenge of HW detection or prediction, it is necessary to
understand the mechanisms responsible for these extreme events. Although the
underlying processes remain not entirely understood [1], an increasing number
of studies have delved into these mechanisms and physical drivers that con-
tribute to the formation and prediction of HWs [16, 17]. HWs are the product
of intricate interactions between large- and small-scale processes that operate
across diverse temporal scales. These events are highly influenced by atmo-
spheric circulation, often regarded as a fast-acting driver, as well as anomalous
conditions in slowly changing climate components, which can serve as proximate
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factors (e.g., land surface) or remote factors (e.g., upper ocean temperature, or
sea ice) affecting HWs occurrence [18, 19, 20]. In the extratropics, atmospheric
circulation patterns that influence HWs include quasi-stationary synoptic-scale
high-pressure systems (anticyclones) [21, 22], whose predictability at a seasonal
scale is low due to the influence of the chaotic variability of the atmosphere
[23]. Finally, long-term trends in frequency, duration, and intensity of HWs
are primarily driven by anthropogenic forcings, including global factors such
as greenhouse gas concentrations and regional factors like land-use/land-cover
changes and aerosol emissions [24]. However, these are out of the scope of this
paper.

In close relation to the previous discussion, and considering the vast vol-
ume of available spatial and temporal data, employing data-driven method-
ologies becomes indispensable for uncovering potential HW drivers. A limited
body of literature addresses this subject using ML and feature selection and
dimensionality-reduction approaches. Some works [25, 26, 27] employed Princi-
pal Components Analysis (PCA) to reduce and optimize the number of highly
correlated variables, using them as inputs in some ML algorithms. In [28], au-
thors aimed to identify the role of the individual drivers for five HWs in the
recent decade through factorial experiments, which force the model toward ob-
servations for one or several key components at a time, allowing to identify how
much of the observed temperature anomaly of each event can be attributed to
each driver. Other feature selection approaches have been used for different
weather problems in searching for optimal input variables. In [29], an extreme
gradient boosting feature selection algorithm was applied with ML models in
a problem of short-term relative humidity prediction. In [30], a nested loop of
roughly pruned random forests was used for identifying significant drivers of
daily streamflow from large-scale atmospheric circulation in Norway. In [31], a
clustering method was applied to divide Morocco into regions that are spatially
consistent in terms of extreme precipitation and to identify its drivers by analyz-
ing atmospheric circulation anomalies during the occurrence of regional events.
In [32], ML regression-based algorithms were used to identify the drivers of
drought dynamics in the Free State Province. [33] shows the influence of differ-
ent drivers to understand the causal mechanism of HWs over South-West India.
For that purpose, climate model simulations and long-term observational data
were proposed.

This study proposes a general framework for HW driver identification, which
can be applied to other extreme events in the context of detection and event
short-term prediction. The framework is illustrated here to detect HWs in a
European location. Specifically, the framework proposed in this work follows
a two-phase methodology to obtain robust HW driver identification. In the
first phase, a clustering algorithm is applied to variables identified as potential
drivers, extracted from the ERA5 reanalysis dataset [34], and presented as time
series. This clustering step reduces the dimensionality of the spatial domain by
grouping nodes with similar time series patterns. In the second phase, a wrap-
per feature selection approach based on a multi-method ensemble evolutionary
algorithm (PCRO-SL) [35] is employed to identify the most skilful drivers and
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periods for HW forecast over short-term (days to weeks) and seasonal hori-
zons. The optimization algorithm’s fitness function performs a driver selection
by evaluating the performance of an ML model for HW classification based on
a subset of clustered drivers.

The proposed framework is applied to the agricultural districts in the Adda
river basin, located downstream of Lake Como, in the Lombardy region, North-
ern Italy. These districts are part of the Po Valley, one of the most pro-
ductive European agricultural areas, which provides one-third of the national
agricultural production [36]. Understanding the crop risks associated with ex-
treme temperatures is becoming increasingly crucial to planning effective climate
change adaptation strategies.

The manuscript is organized as follows. First, a description of the data,
including potential drivers and target variables used for developing the exper-
iments, is provided in Section 2. Then, the spatio-temporal feature selection
methodology is presented and detailed in Section 3. Subsequently, the exper-
imental work and the results obtained are further described in Section 4. Fi-
nally, in Section 5, there is a discussion on the potential uses of the framework
in wider-scale driver detection and on implications for forecasting.

2. Data description

This section provides a detailed description of the data used for the experi-
ments and the construction of the target. First, regarding HW definition, this
issue has been widely discussed in the literature [17]. This work follows the
widely-used HW definition given in [9] based on cumulative normalized daily
maximum temperature (TX) exceedances. Next, we will provide details on the
potential drivers considered and the target variables considered.

2.1. Potential drivers and target

The variables considered as potential drivers to perform the HW predic-
tion may be categorized into three groups: 1) meteorological variables, local or
remote, 2) climate indices, 3) other variables.

The first group consists of atmospheric, ocean and other variables which
influence climate on various timescales: mean sea level pressure (MSLP), out-
going longwave radiation (OLR), total precipitation (TP), height of the 500 hPa
geopotential (Z500), 2m temperature (T2M), as well as sea surface temperature
(SST), sea ice concentration (SIC) and volumetric soil moisture in the upper
7cm (SM).

The second group, climate indices, are included because long-term indices
are linked to large-scale atmospheric patterns that influence temperature over
extended periods [37]. In addition, long-term indices help distinguish between
climate change variability and natural variability. However, the role of large-
scale drivers and teleconnections in the Adda river basin, as for much of Europe,
is still unclear [38]. First, the NINO3.4 index (area-averaged SST anomaly in
the region 5oS-5oN, 120oW-170oW) is used to represent the El Nino Southern
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Oscillation (ENSO), which is strongly linked with the occurrence of extreme
heat in northern continents [39, 40, 41]. The Indian Ocean Dipole (IOD), whose
association with HWs has been investigated in recent years [42, 33], is calculated
as the difference of area-averaged SST anomaly between the western tropical
Indian Ocean (50oE–70oE, 10oN–10oS) and the southeastern tropical Indian
Ocean (90oE–110oE, OoN-10oS). Lastly, the North Atlantic Oscillation (NAO),
whose impact on European heatwaves has been previously studied in [43, 44, 45],
is derived from the first principal component of Z500 in the North Atlantic
domain.

The third group covers miscellaneous variables such as mean atmospheric
CO2 levels [46] and the specific calendar day of the year (DOY) [47].

Table 1 describes the geographical domain considered for each meteorological
variable. Some have been studied in two domains to account for their varying
influence in various geographical scales. Also, land variables available over the
local region under study are considered as independent potential drivers (MSLP,
OLR, SM, T2M, TP and Z500).

Table 1: Predictive variables considered at each node from the ERA-5 reanalysis dataset.
The specific coordinates corresponding to the geographical limits: Europe: [30-70N, 16W-
44E], Arctic: [48-90N, 180W-180E] and North Atlantic: [0-66N, 90W-40E].

# Variable Domain

1 Mean Sea Level Pressure (MLSP) Global, Europe
2 Soil Moisture (SM) Europe
3 Sea Ice Cover (SIC) Arctic
4 Sea Surface Temperature (SST) Global, North Atlantic
5 Height of the 500 hPa Geopotential (Z500) Global, Europe
9 Total Precipitation (TP) Europe
10 Outgoing Longwave Radiation (OLR) Global, North Atlantic
11 2m Temperature (T2M) Europe

Regarding the target variable, we have selected the agricultural districts in
the Adda river basin (including Lake Como) in the north of Italy (centered
around 46º N, 9º E). For this location, a daily time series of binary HW oc-
currence index over 1950-2022, for the warmest months of the year (May, June,
July and August) using the HW definition given in [9].

2.2. Data extraction and preparation

The detection of HWs presented in this paper is performed based on physi-
cal variables data extracted from ERA5 reanalysis [34]. ERA5 provides hourly
information on a broad set of variables, such as temperature, pressure, precip-
itation, and snowfall, with a resolution of 0.25 degrees in both longitude and
latitude. Daily average values were considered in this case, with a horizontal
resolution of 0.5 degrees. The 72-year ERA5 database, based on data from 1950
to 2022, has been considered for both target and predictive variables. These
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data have been divided into a training period from 1950 to 2010 and a test
period from 2010 to 2022. For the training split, the positive cases (HW oc-
currence) represent 5.1% of the cases, while for the test split, the positive cases
represent 15.1 % of the cases.

The climatology is computed for each calendar day using the 1981-2010
period, and a rolling average of 30 days is applied to smooth this annual cycle.
The local seasonal cycle is removed for each candidate driver to provide a time
series of anomalies.

3. Spatio-Temporal Cluster-Optimized Feature Selection (STCO-FS)

This section presents the proposed framework to identify optimal HW drivers
in spatial and temporal domains. Figure 1 illustrates the methodology flow,
where it is worthwhile to distinguish between the data treatment of potential
predictor variables and the target variable. The possible drivers have been
defined in Section 2.1. The proposed framework has two steps (plus a prepro-
cessing stage), as shown in Figure 1. The first step consists of clustering the
drivers to reduce the spatial dimension. The area-weighted spatial average time
series of clusters are then merged with the local variables and climate indices.
In the second step, a wrapper feature selection method is applied using an evo-
lutionary optimization algorithm and a ML method for selecting the optimal
time frames of each potential driver.

Once the input and target variables have been processed, they are used to
feed supervised ML classification algorithms, which conduct the detection of
the HW occurrence over the Adda river basin in the considered period. The
framework steps are described in the subsequent sections.

3.1. Dimensionality Reduction through Clustering

The clusters represent geographic areas in which the temporal variability is
most similar. Previous studies dictate the use of different domains for certain
variables. SM and precipitation are considered local-scale influences on Eu-
ropean HWs [48]. European temperatures are indirectly linked to Arctic SIC
[49] [50] through impacts on atmospheric circulation, but we assume no link to
Antarctic SIC. North Atlantic SSTs affect the European climate, particularly
in winter [51], but there is some evidence to suggest a lagged influence on sum-
mer heatwaves [52, 53]. Meanwhile, global modes of climate variability, which
influence distant continents via teleconnections, are represented by global SST
patterns. For an explicit consideration of atmospheric dynamics and telecon-
nections, z500 and MSLP are used locally and globally. Extreme heat is often
linked to regional scale circulation anomalies [22], which can be excited and/or
amplified remotely via atmospheric teleconnections [17].

The classic K-means clustering algorithm has been employed to reduce the
spatial dimensionality of the predictive data. Initially introduced by MacQueen
[54], K-means has become one of the most widely used and extensively studied
clustering algorithms. The key input parameter in the K-means approach is
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Figure 1: Scheme of the proposed feature selection framework.

the number of clusters, denoted by k. The algorithm then partitions the data
into k clusters by following defined steps. It is important to note that the pro-
posed methodology allows other possible clustering algorithms (different from
K-means) to cluster the input data.

The proposed method allows the inclusion of any other clustering method
that better fits the problem under study. It is important to note that, at this
stage of the process, the critical point is to reduce the dimensionality of the
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problem, particularly in the spatial domain.
This study implements the clustering algorithm for the 12 predictors out-

lined in Table 1. Next, the area-weighted spatial average for each cluster is
computed. Consequently, a time series is generated for each cluster under con-
sideration. A value of k = 5 clusters has been considered for each predic-
tor field, giving a total of 60 clusters involved in the prediction (5 clusters ×
12 variables = 60 potential drivers). Clustering was applied considering the
training data (from 1950 to 2010) of daily time series anomalies relative to
1981-2010. For each variable, five clusters are obtained, displayed in Figure 3.
For T2M, values over land are only considered. For SIC, areas historically free
of sea ice have been masked out.

Although the number of clusters is arbitrary, it is essential to note that this
work aims to present the methodology but not its best configuration, which may
depend on the location of the study and the different variables considered.

The proposed method allows the introduction of unclustered variables as
potential drivers of the problem. Thus, those variables that do not need to be
spatially grouped can be selected, and their time series are included in the anal-
ysis. This study considers 11 additional features included as potential drivers,
including the climate indexes, the local meteorological variables (MSLP, OLR,
SM, T2M, TP and Z500 taken over the Adda river basin) and the other variables
defined in Section 2.1. Thus, these results in a database of predictor variables
comprising 71 variables arranged as a time series.

3.2. Candidate Selection: the optimization problem

After reducing the dimensionality of the problem in the spatial domain,
our focus shifts to the temporal dimension. Here, the objective is to identify
periods and lags exhibiting the highest predictive skill for each potential driver.
First, the prediction time-horizon is defined, determining how far in advance
predictor data should be considered. This work sets the time horizon to zero
since it is configured as a detection problem. Based on the prediction horizon,
the time lag and sequence length values are searched for each potential driver
under study using evolutionary computation. They represent the lead time and
the window length considered for each variable, which enables us to distinguish
between short-term (low time lag) and long-term (high time lag) predictors. An
illustration is shown in Figure 2. In this work, the maximum time lag is set as
180 days, and the maximum window length is set as 60 days. Therefore, the
evolutionary search could account for a lead time of up to 8 months for each of
the variables.

The process of determining the time lag and the sequence length has been
conducted using a robust and well-established optimization algorithm: the Prob-
abilistic Coral Reef Optimization Algorithm with Substrate Layers (PCRO-SL)
[55, 35]. It is a low-level ensemble for optimization [56], based on evolutionary
computation. It was first proposed as an advanced version of the original CRO
algorithm [57], which was an evolutionary-type meta-heuristic, proposed as a
class of hybrid between Evolutionary Algorithms [58] and Simulated Annealing
[59].
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Figure 2: Illustration of time series: time lag, forecast horizon and sequence length parameters.

The PCRO-SL algorithm further evolves the CRO approach towards a multi-
method ensemble. It generally proceeds as the original CRO, but with a signif-
icant difference: Instead of having a single way of evolving, it considers several
substrate layers of the approximately same size in the reef. Each substrate, in
turn, represents a particular evolution strategy or searching procedure. Thus,
the PCRO-SL is a multi-method ensemble algorithm [56], where several search-
ing strategies are carried out within a single population.

Different combinations of well-known meta-heuristics may be implemented.
In this case, we considered regular combinations of previously defined meta-
heuristics. Specifically, we have defined and applied the following substrates in
the PCRO-SL: Harmony Search (HS), Multipoint crossover(MPx), XOR oper-
ation (XOR) and BLX-α crossover (BLX).

The optimization problem formulation for selecting the optimal time-domain
features for each driver is structured as follows. Each solution generated by the
PCRO-SL consists of an array containing three key variables for each candidate
driver: time lag, sequence length, and a binary indicator determining whether
the driver is included or discarded. Including this binary variable encourages so-
lutions that prioritize minimal information, helping reduce the impact of noise.
The time lag is constrained within [h, 180] days, where h is the time horizon,
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while the sequence length is limited to [1, 60] days. In this initial study, we focus
on a prediction time horizon of h = 0 days, aiming to identify drivers inform-
ing on HW detection (nowcasting) up to time scales longer than six months.
The variation in sequence length allows us to investigate drivers that maintain
significant influence over different periods within the time domain.

The achieved F1 score dictates the optimal lag selection for each variable.
The F1 score is the harmonic mean of the measures: precision (ratio of correctly
predicted positives to all predicted positives) and recall (ratio between the cor-
rectly predicted positives to all observed positives). The F1-score is widely used
to assess the quality of binary predictions. In our case, the F1-score achieved
by each candidate driver served as the fitness function for selecting optimal
clustered and unclustered variables, with their corresponding time lags and se-
quence length, and other variables. To accomplish this, a deterministic and fast
training classifier, namely the popular Logistic Regressor (LR) [60], was used
(other ML algorithms were tested). When the optimization algorithm provides
a potential solution (comprising three values per driver), the chosen time lags
are concatenated into a tabular format, and LR training is performed. This pro-
cess was conducted using a Cross-Validation (CV) approach: the entire training
data is divided into five validation folds, and the average error encountered for
these folds has been used as the fitness function of the optimization algorithm.

3.3. Machine Learning classifiers

Although a fast-training ML algorithm such as LR is used during the opti-
mization process, a variety of more sophisticated models are subsequently im-
plemented to evaluate the optimal solution the PCRO-SL algorithm provides.
These models include: Light Gradient Boosting Machine (LGBM) [61], Sup-
port Vector Classifier (SVC) [62], Decision Trees (DTs) [63], Random Forest
(RF) [64], Gaussian Naive Bayes (GNB) [65], K-Nearest Neighbours (KNN)
[66], Adaptive Boosting (AB) [67], Multi-Layer Perceptron (MLP) [68], Gradi-
ent Boost (GB) [69] and Extreme Learning Machine (ELM) [70].

These methods are implemented in Python using the following libraries:
sklearn, skelm and lightgbm. The hyperparameters of these classifiers are
determined using a random hyperparameter search with the values considered
in Table 2. A CV with five folds was performed.

4. Experimental work and results

This section describes the experimental work, the results obtained, and the
corresponding discussion. First, Section 4.1 details the drivers the optimization
algorithm selects. Second, Section 4.2 shows the results provided by the ML
models in the detection task. In all experiments, the training period spans
from 1951 to 2009, while the test period covers 2010 to 2020, comprising 18%
of the total data. The training dataset identifies optimal drivers and model
training, whereas the test dataset is reserved exclusively for evaluating model
performance.
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Figure 3: Clusters provided by the K-Means+ algorithm (K = 5) for the first group of
variables: meteorological variables.
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Table 2: Parameters of the experimental setup. The hyperparameters of each model are
described for the models used in this work: Light Gradient Boosting Machine (LGBM), Sup-
port Vector Classifier (SVC), Decision Trees (DTs), Random Forest (RF), Gaussian Naive
Bayes (GNB), K-Nearest Neighbours (KNN), Adaptive Boosting (AB), Multi-Layer Percep-
tron (MLP), Gradient Boost (GB), Extreme Learning Machine (ELM).

ML Methods

LGBM SVC
num leaves 20-200 C 0.1-1000
n estimators 50-500 Gamma 0.001-1

Kernel rbf
DT RF
max depth 1-50 n estimators 100-600
min samples leaf 1-50 bootstraps True/False
GNB KNN
var smoothing -9-0 n neighbors 3-30
AB ELM
n estimators 50-200 n neurons 10-500
learning rate 0.001-10
GB MLP
n estimators 50-300 n layers 1-4
learning rate 0.01-0.2 n neurons 32-512
max depth 1-9 activation relu

solver adam
alpha 0.0001-0.01
batch size 16-64
learning rate 0.0001-0.01
max iters 200-600

4.1. The selected variables

The optimization algorithm is initialized once the potential predictors are
made up, including clusters, unclustered variables, and the local and climate
indices. The clustered variables are shown in Figure 3.

The solution provided by the proposed method is a vector of length 3 ×
number of variables. It represents the time lag, sequence length and a binary
variable with the time steps for which the variable is selected. In this case, the
forecast horizon has been set to 0 since the goal is to validate the methodology
for unveiling potential drivers before attempting a more complex forecasting
problem.

The PCRO-SL optimization algorithm is executed in ten independent runs to
prevent false positives caused by the inherent randomness in this optimization
problem. Figure 4 shows a potential solution the algorithm provides, corre-
sponding to the best solution of all the runs, in terms of CV error. Here, in the
x-axis, the 71 potential drivers are listed. The y-axis shows the temporal scale
(in days relative to the HW occurrence). This plot highlights in blue the time
steps the optimization algorithm selects for each predictor in the case of this
specific example. The red square means that the algorithm has discarded the
specific potential driver.

Figure 4 helps the user to interpret, visually and intuitively, the different
variables that are being chosen, as well as distinguish between variables that
have a sort term influence (in this case, T2M in the European domain over
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the cluster 1, SM in the European domain, cluster 3, and TP in the European
domain over the cluster 3 (see Figure 3), and the T2M and Z500 at the local
node of Lake Como); and others variable with a delayed impact that influence
with a delay of up to 170 days (e.g. OLR over the North Atlantic domain in
cluster 1).

Figure 4: Example of the individual solution provided by the optimization algorithm. Red
boxes represent variables that have not been selected in this particular solution.

The question that can arise when examining individual solutions is whether
or not all the selected time steps provide predictability to the problem or whether
they are noise that has been added to the truly significant variables. To analyse
this aspect, we evaluated all potential solutions generated by each independent
run of the optimization algorithm. A total of 150,000 potential solutions are
generated (15,000 evaluations of the fitness function × 10 independent runs).
Each solution represents a combination of predictor variables, tested on the train
(by 5-fold CV) and test data. The metrics of each combination of drivers are
plotted in Figure 5. Out of these 150,000 possible solutions, the best 10% (in
terms of CV error) have been selected to analyze further the predictor variables
that provide significance for the prediction problem under evaluation. These
selected combinations are represented with red points in the scatter plot of
Figure 5.

The best solutions are then analyzed in the frequency map reported in Figure
6. The darker the colour, the more frequently that variable has been selected in
that time lag. Low intensity means that the corresponding time step has been
barely chosen among the best solutions and is therefore considered noise.
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Figure 5: Test vs train (CV) performance of all the potential solutions tried by the optimiza-
tion algorithm. The solutions represented in red are the ones selected for an in-depth study.
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Figure 6: Heatmap representing the best 10% of solutions the optimization algorithm provides. For a specific time step, darker colours mean that
most proposed solutions select the variable, while light colours denote that it is barely selected.
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It becomes evident that certain variables selected by some solutions merely
introduce noise, obscuring the truly significant variables. Generally, the most
frequently selected features are found on the short-term and sub-seasonal time
scales (i.e. <45 days). Three of the most frequently chosen drivers all have
short lag times (<20 days): T2M-Eur-1 (the regional cluster in which the Adda
basin is found), and local values of SM and TP. These predictors are considered
important over 20 days before the event rather than the day, indicating the im-
portance of persisting conditions. The selection of nearby short-term drivers is
not surprising, particularly given the previously identified roles of soil moisture
and precipitation in summer temperatures [48, 71]. On the sub-seasonal scale,
OLR-Glo-5 (western-central Pacific; 20-30 days), Z500-Eur-2 (eastern Mediter-
ranean; 30-50 days), NAO and IOD (both over 20-55 days) are the most fre-
quently selected predictors. On the seasonal scale, Z500-Eur-5 (North Atlantic;
70-85 days) and SST-Glo-4 (Tropical Pacific; 90-100 days) are the most se-
lected. While the scope of this study is not to perform a process-based study on
how detected features physically impact HW occurrence, it is shown here that
the selection of some features is at least partially supported by evidence. For
other variables, this framework may act as a first step in understanding which
processes need to be studied further.

Regional-scale atmospheric circulation is considered key, judging by the fre-
quent selection of Z500-Eur 2 (eastern Mediterranean; 30-50 days) and Z500-
Eur-5 (British Isles; 70-85 days). However, features such as blocks and ridges are
known to determine the occurrence and intensity of summer HWs in the days
before an event [22], instead of the subseasonal-to-seasonal (S2S) timescales de-
tected here. Meanwhile, the NAO index, representing circulation over the North
Atlantic with impacts on weather across the continent, is also detected as an
important predictor on the S2S timescale (20-55 days). Persistence of NAO
(specifically, of the positive phase), and of the blocking with which it interacts,
has been found before severe heatwave events in the region [72, 45]. It is un-
clear why NAO was also not selected in the 10 days before HWs. Overall, the
selected circulation-based features (in z500 and NAO) likely represent precursor
wave trains and potentially very persistent blocking [16], but the exact mech-
anisms require further inspection. This shows how the framework can provide
motivation and direction for further analysis of extreme event drivers.

Other selected features include the IOD, 20-55 days prior, another intercon-
nection with influences on European climate and extremes in particular [73].
Lastly, the calendar day (DOY) and, to a lesser extent, the global mean atmo-
spheric CO2 concentration are widely selected and therefore considered impor-
tant for the algorithm to identify HWs, but the selection of a specific lag time
for each is considered arbitrary.

The next step involves determining the variables that contribute robustly
as potential drivers. For this purpose, a threshold has been established in
the frequency map of the selected variable, such that only those time steps
of each variable selected more frequently than the threshold are considered. As
the threshold value increases, the number of predictor variables considered de-
creases, ultimately isolating those consistently present variables in nearly all
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of the best solutions. The impact of varying the input variables on classifier
performance can be observed in Table 3, which presents the evolution of the
F1-score metric on the test dataset as the threshold increases. The threshold
is expressed in percentiles: for instance, a threshold of 0.5 indicates selecting
features that appear in at least 50% of the solutions depicted in the heat map
shown in Figure 6. Figure 7 depicts how the performance of the LR classifier
improves with the threshold until an upper limit (0.85, i.e. 85 % of the time is
selected), beyond which predictions worsen.

The group of input variables that are involved in the optimum threshold
(0.85, Figure 8(c)) is the same as previously indicated when analyzing Figure
6, with some variables concerning the local conditions at short term, and other
variables involving broader geographical scales and remote regions with predic-
tive skill on the medium and long ranges (e.g. SSTs).

Table 3: Evolution of test F1-scores when increasing the agreement threshold in the selected
drivers across the experiments.

Threshold Test F1-score CV F1-score Nº of features

0.50 0.6785 0.6374 585
0.75 0.7389 0.6377 214
0.85 0.7615 0.6475 146
0.95 0.7462 0.6147 105

Figure 7: Evolution of test F1-scores in HW detection when increasing the agreement threshold
(reducing the number of selected drivers).

4.2. Results for different Machine Learning models

Finally, the optimum combination of drivers, corresponding to a threshold
equal to 0.85, is used to train a pool of ML classifiers (Section 3.3). The test
error metrics for these methods are shown in Table 4. The predictive results
provided by the best-performing model, GB (an F1-score of 0.7906), are further
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(a) Threshold: 0.5 (b) Threshold: 0.75

(c) Threshold: 0.85 (d) Threshold: 0.95

Figure 8: Features that are most often chosen by the solutions proposed by the optimization
algorithm, in the case of HW index. A threshold of 0.5 represents that these variables appear
in at least 50% of the 15000 best solutions.

detailed in Figures 9 and 10, which demonstrate the excellent performance of
the classification task and the accuracy of the model to detect the HW days over
the test domain, with consistent results in all the months and years analyzed.

5. Conclusions and further research

Understanding the drivers behind the formation of Heatwaves (HWs) is vital
to enhance our ability to anticipate, forecast and mitigate the impacts of these
extreme events, ultimately reducing the risks to human health, economies, and
ecosystems. Researchers can develop more sophisticated models that improve
predictive capabilities by recognizing the complex interactions between atmo-
spheric conditions, oceanic patterns, and terrestrial processes. This enhanced
understanding also informs the development of effective adaptation and mitiga-
tion strategies, ensuring societies are better equipped to handle the increasing
frequency and severity of HWs driven by climate change.
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Table 4: Test error metrics for the different ML classification methods assessed, considering the
HW index as the target variable. Models are trained with the selected features corresponding
to threshold 0.85.

Recall Precision F1-score

LR 0.7436 0.7803 0.7615
LGBM 0.7094 0.8177 0.7597
SVC 0.7051 0.7933 0.7466
DT 0.7350 0.7818 0.7577
RF 0.6068 0.8658 0.7136
GNB 0.9658 0.3435 0.5067
KNN 0.0983 0.7931 0.1749
AB 0.7009 0.7923 0.7438
MLP 0.6966 0.7376 0.7165
GB 0.7906 0.7906 0.7906
ELM 0.1752 0.7736 0.2857

Figure 9: Results from the top-performing ML classifier (GB) over the test period, considering
the HW index as the target variable. Black boxes correspond to days with extreme tempera-
ture, while red circles denote days predicted by the model as extreme

This study proposes a comprehensive framework to investigate the inter-
actions between HWs and potential physical drivers across multiple spatio-
temporal scales (STCO-FS). The proposed methodology follows a two-phase
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Figure 10: Results provided by the GB model over the test period, considering the HW
index as the target variable. Each year, the frequency of actual and predicted HW days is
accumulated monthly (top figures) and seasonal (bottom figures). The figures on the left
represent the real and predicted time series. The right figures show the scatter plot between
the actual vs predicted HW days, featuring a high correlation.

approach: initially, a clustering algorithm is applied to reduce spatial dimension-
ality by grouping similar time series data from the ERA5 reanalysis database.
Additional variables, such as climate indices and local meteorological factors,
are then incorporated into the database. In the second phase, a multi-method
ensemble evolutionary algorithm (PCRO-SL) identifies significant periods and
clusters relevant to HW occurrences. This approach determines which variables
are crucial for HW prediction and the specific time frames in which they are
most influential, distinguishing between short-term and long-term drivers.

The framework has been successfully applied to an agriculturally intensive
region in North Italy, demonstrating its ability to detect key HW drivers ef-
fectively. A standard definition of HW has been considered. Regarding the
potential drivers considered, 8 variables covering different geographic domains,
together with three climate indexes (ENSO, NAO and IOD) and local meteoro-
logical conditions, have been incorporated into the study. The results indicate
strong HW detection capabilities, with nowcasting error metrics of 0.8363.

For the specific drivers identified in each case, relationships have been estab-
lished between the occurrence of heat waves and various variables across different
spatio-temporal scales. The key selected predictors for the Adda River basin are
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regional-scale temperature and atmospheric circulation in the 20 days before the
event and ENSO, IOD and NAO on sub-seasonal to seasonal timescales. While
some of these connections have been suggested in previous work, this study
indicates the locations and time frames in which specific mechanisms can be
studied and is thus a powerful tool and first step in understanding processes
and predictability.

The proposed method offers a series of advantages that are outlined as fol-
lows: (1) It enables the discovery of new potential drivers in both temporal and
spatial domains simultaneously; (2) By grouping meteorological variables into
clusters, the dimensionality of the problem is significantly reduced, and the level
of granularity can be adjusted as a parameter of the algorithm; (3) Encoding
the problem by establishing lag time and the length of the selected window for
each predictor variable reduces the dimensionality in the time domain, thereby
simplifying the evolutionary process; (4) The use of a robust evolutionary al-
gorithm (PCRO-SL), along with a fast, efficient, and deterministic classifier,
allows the resolution of a complex optimization problem within a short period.

Future lines of research will focus on several key areas. Firstly, the frame-
work will be extended to predict HWs with a longer prediction horizon (i.e.,
S2S) and to tackle predicting the number of HWs on a seasonal scale. Addi-
tionally, future research will examine how the selected drivers vary depending
on the region under investigation and the data they are applied to (e.g., histori-
cal or future climate simulations). This continued research will further enhance
the predictive power and applicability of the framework, contributing to more
effective HW management and mitigation strategies. Moreover, given the flex-
ibility and modularity of the framework, both predictors and target data can
be changed, meaning it can be applied to other extremes with ease. How the
clusters are created can also be analysed. Unconnected clusters often arise from
variability unrelated to the seasonal cycle. (i.e. not removed when calculating
the anomaly). A new way to avoid this is being under study.

Code and data availability

https://github.com/GheodeAI/STCO-FS.git
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in morocco: Spatial dependence and climate drivers, Weather and climate
extremes 40 (2023) 100556.

[32] I. R. Orimoloye, A. O. Olusola, J. A. Belle, C. B. Pande, O. O. Olo-
lade, Drought disaster monitoring and land use dynamics: identification of
drought drivers using regression-based algorithms, Natural Hazards 112 (2)
(2022) 1085–1106.

[33] G. Dalal, T. Pathania, A. Koppa, V. Hari, Drivers and mechanisms of
heatwaves in south west india, Climate Dynamics (2024) 1–15.

[34] H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi,
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[71] C. Ardilouze, L. Batté, M. Déqué, E. van Meijgaard, B. van den Hurk,
Investigating the impact of soil moisture on european summer climate in
ensemble numerical experiments, Climate Dynamics 52 (2019) 4011–4026.

[72] M. Drouard, K. Kornhuber, T. Woollings, Disentangling dynamic contri-
butions to summer 2018 anomalous weather over europe, Geophysical Re-
search Letters 46 (21) (2019) 12537–12546.

[73] S. Behera, J. V. Ratnam, Y. Masumoto, T. Yamagata, Origin of extreme
summers in europe: the indo-pacific connection, Climate dynamics 41
(2013) 663–676.

27

https://doi.org/10.1162/089976600300015565
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1162/089976600300015565
www.aaai.org
www.aaai.org
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.neucom.2005.12.126

	Introduction
	Data description
	Potential drivers and target
	Data extraction and preparation 

	Spatio-Temporal Cluster-Optimized Feature Selection (STCO-FS)
	Dimensionality Reduction through Clustering
	Candidate Selection: the optimization problem
	Machine Learning classifiers

	Experimental work and results
	The selected variables
	Results for different Machine Learning models

	Conclusions and further research

