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Abstract

Stochastic models play an essential role in accounting for the variability and un-

predictability seen in real-world. This paper focuses on the application of the gamma

distribution to analysis of the stationary distributions of populations governed by the

discrete stochastic logistic equation at equilibrium. It is well known that the popula-

tion dynamics of deterministic logistic models are dependent on the range of intrinsic

growth rate. In this paper, we identify the same feasible range of the intrinsic growth

rate for the stochastic model at equilibrium and establish explicit mathematical re-

lation among the parameters of the gamma distribution and the stochastic models.

We analyze the biological implications of these relationships, with particular emphasis

on how the shape and scale parameters of the gamma distribution reflect population

dynamics at equilibrium. These mathematical relations describe the impact of the

variance of the stochastic perturbation on the intrinsic growth rate, and, in particular,

reveal that there are two branches of the intrinsic growth rates representing alternative

stable states at equilibrium.

1 Introduction

Modeling population dynamics is a cornerstone of ecology and biology, as it allows researchers

to understand how populations grow, stabilize, or decline under various environmental pres-

sures. The logistic difference equation has been widely used to model population growth

under resource limitations. In its deterministic form, the logistic equation captures how
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populations initially grow exponentially, then slow down as they approach the carrying ca-

pacity, which reflects the maximum population size that the environment can support. The

discrete deterministic logistic difference equation after scaling is expressed as:

xt+1 = rxt (1− xt) (1)

where xt represents the population size at time t, r is the intrinsic growth rate. This equation

describes the population’s approach to a stable equilibrium under idealized conditions.

However, real-world populations are rarely deterministic; they experience random fluctu-

ations due to environmental variability, demographic stochasticity, and other unpredictable

factors. These stochastic effects motivate the need for stochastic versions of the logistic equa-

tion. To address these real-world complexities, the stochastic logistic equation introduces

randomness into the population dynamics. One considers the stochastic version of (1)

Xt+1 = rXt (1−Xt) ϵt (2)

where Xt is a distribution of population size at a specific time t, ϵt is a small nonnega-

tive perturbation distribution representing some stochastic effects, assumed its mean is 1

(E[ϵt] = 1) and independent of Xt. Stochastic models offer significant advantages in captur-

ing the dynamics of real-world populations. Unlike deterministic models, which predict fixed

outcomes, stochastic models incorporate the inherent randomness and variability observed

in natural systems. Stochastic models allow for the prediction of distributions of population

sizes rather than precise point estimates, offering insights into both the average behavior

and the range of possible fluctuations around it [1, 2, 8, 3, 11, 18, 10, 12]. There are a rich

literature on the study of the stochastic effects for various discrete models [16, 17, 21].

In this paper, we focus on analysis of stochastic logistic difference models at equilibrium

with the gamma distribution. In contrast to deterministic models, in which typically predict

point equilibria, stochastic population models often predict stationary distributions around a

steady state. The gamma distribution, in particular, has been shown to provide an accurate

approximation of these stationary distributions in various ecological contexts [4, 19, 20]. The

successful application of the gamma distribution is especially evident in studies of species

such as the Tribolium beetle, where populations in laboratory settings tend to fluctuate

around a mean equilibrium size due to environmental variability [4, 5, 6, 7].

On the other hand, it is well known that the population dynamics of the deterministic

logistic model (1) such as stable growth, periodic oscillations, chaos, or extinction, are de-

pendent on the value of r. In particular, for 1 < r < 3, the population governed by (1) grows

and eventually reaches a nonzero steady state [13, 14, 15]. In this paper we identify the same
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feasible range of r (1 < r < 3) for the stochastic model (2) at equilibrium, establish explicit

mathematical relation of r with the parameters of the gamma distribution, and analysis the

impact of the variance of ϵt on equilibrium states. In particular, the mathematical formula-

tion suggests that there are two branches of the intrinsic growth rate, r+ and r−, represent

alternative stable states, corresponding to higher a growth rate and lower growth rate. In

addition, the mathematical relation of r is independent from θ, the scale parameter of the

gamma distribution, suggesting that the intrinsic growth rate is primarily a function of the

population’s internal dynamics (reflected by k) rather than the scale of the population size

distribution (governed by θ). This emphasizes the role of internal biological mechanisms in

driving growth, regardless of the absolute population size or its spread.

Our key contributions in this paper include: 1. Identifying the explicit range of the

intrinsic growth rate r for the stochastic models at equilibrium, consistent with the classical

results on the deterministic logistic equation. 2. Establishing the mathematical relation of r

with the parameters of the gamma distribution, investigating the impact of the perturbation

ϵt on r, providing theoretical insights into population dynamics of the stochastic models

compared to the determinist logistic model. 3. Identify two branches of the intrinsic growth

rate, r+ and r− for (2), representing alternative stable states and corresponding to higher

a growth rate and lower growth rate. 4. Analyzing the biological implications of these

relationships, with particular emphasis on how the shape and scale parameters of the gamma

distribution impact population dynamics at equilibrium.

As a result, we provide a framework for understanding the role of the gamma distribution

in modeling stationary distributions for populations fluctuating around a stable equilibrium.

2 Equilibrium Analysis of Discrete Logistic Equation

2.1 The Gamma Distribution at Equilibrium

The gamma distribution is defined on the interval (0,∞) and is characterized by two positive

parameters: the shape parameter k and the scale parameter θ. Its probability density

function (PDF) is:

f(x; k, θ) =
xk−1e−x/θ

Γ(k)θk
, for x > 0, (3)

where Γ(·) is the gamma function. For positive integer n, Γ(n) = (n − 1)!. In the context

of the gamma distribution, the parameter k (sometimes referred to as the shape parameter)

determines the shape and skewness of the distribution, while the scale parameter θ controls
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the spread of the distribution. This distribution is used in many areas, such as population

dynamics, waiting times for events, and biological processes [9].

From a theoretical perspective, the gamma distribution emerges as a stationary solu-

tion to various stochastic processes, such as birth-death processes and stochastic differential

equations (SDEs), that incorporate randomness into population dynamics. These stochas-

tic models introduce random fluctuations around a deterministic growth process, allowing

for a more realistic representation of natural populations. At the equilibrium of stochastic

logistic equations, the statistical properties of the population become stable over time. The

gamma distribution’s ability to describe populations that stabilize around an equilibrium

point under stochastic effects makes it a compelling tool for modeling real-world population

dynamics. The gamma distribution has been shown to provide an accurate approximation

of these stationary distributions in various ecological contexts [4, 5, 6, 7]. We assume that

the population size Xt in (2) at equilibrium follows a gamma distribution with parameters

k and θ:

Xt ∼ Gamma(k, θ). (4)

The mean and variance of the gamma distribution are:

µ = E[Xt] = kθ, (5)

σ2 = Var[Xt] = kθ2. (6)

The first two moments are:

E[Xt] = µ = kθ, (7)

E[X2
t ] = k(k + 1)θ2. (8)

The higher order moments of Xt are:

E[Xn
t ] = θn

Γ(k + n)

Γ(k)
, (9)

(10)

Because of the nonlinearity in (2), Xt+1 may not necessarily follow the gamma distribu-

tion. However, it is reasonable to assume that the population at equilibrium from specific

time t to t+ 1 maintains the same expectation and variance. Therefore, at equilibrium, we

assume that, for a specific time t,

E[Xt+1] = E[Xt], V ar[Xt+1] = V ar[Xt] (11)

4



which allows us to derive explicit mathematical relations for r in terms of k and θ. These

mathematical relations further confirm the gamma distribution’s flexibility in accommodat-

ing skewed distributions and its ability to model variability around an equilibrium make it

particularly suitable for representing the outcomes of stochastic processes in ecology.

2.2 Expectation Condition at Equilibrium

Since ϵt is independent, we have

E[Xt+1] = E [rXt (1−Xt) ϵt] = E [rXt (1−Xt)]E[ϵt]. (12)

Since E[ϵt] = 1, and at equilibrium, (E[Xt+1] = E[Xt] = µ), we have

µ = r
(
µ− E[X2

t ]
)
. (13)

Subtract rµ from both sides and simplify it:

µ(1− r) = −rE[X2
t ]. (14)

Substituting µ = kθ and E[X2
t ] = σ2 + µ2 into the equilibrium equation (14):

kθ(1− r) = −r
(
kθ2 + k2θ2

)
. (15)

Divide both sides by kθ (since k, θ > 0):

(1− r) = −rθ(1 + k). (16)

Solve for θ:

θ =
r − 1

r(1 + k)
. (17)

Therefore, this suggests that for r > 1, this equilibrium may exist under the gamma distri-

bution assumption.

2.3 Variance Condition at Equilibrium

In addition to the mean, we can compare the variance condition at equilibrium

Var(Xt+1) = Var(Xt).
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This provides additional conditions that can help determine the gamma distribution param-

eters. To compute Var(Xt+1), we need E[Xt+1] and E[X2
t+1]:

Var(Xt+1) = E[X2
t+1]− (E[Xt+1])

2 .

We already have E[Xt+1] = µ = kθ. To compute E[X2
t+1], we expand X2

t+1:

X2
t+1 =

(
rXt − rX2

t

)2
ϵ2t

=
(
r2X2

t − 2r2X3
t + r2X4

t

)
ϵ2t

We take expectations:

E[X2
t+1] =

(
r2E[X2

t ]− 2r2E[X3
t ] + r2E[X4

t ]
)
E[ϵ2t ]. (18)

At equilibrium, Var(Xt+1) = Var(Xt) = kθ2. Therefore,

E[X2
t+1]− (kθ)2 = kθ2 (19)

and

E[X2
t+1] = kθ2(1 + k). (20)

We can cancel θ2 from both sides as θ > 0:

E[X2
t+1]

θ2
= k(1 + k). (21)

Compute the required terms:

E[X2
t ] = θ2k(k + 1),

E[X3
t ] = θ3

Γ(k + 3)

Γ(k)
= θ3(k + 2)(k + 1)k,

E[X4
t ] = θ4

Γ(k + 4)

Γ(k)
= θ4(k + 3)(k + 2)(k + 1)k.

With cancellation of θ2, (21) and (18) give(
r2k(k + 1)− 2r2θ(k + 2)(k + 1)k + r2θ2(k + 3)(k + 2)(k + 1)k

)
E[ϵ2t ] = k(1 + k).
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Dividing by E[ϵ2t ] and subtracting k(k + 1) at both sides give

(r2 − 1)k(k + 1)− 2r2θ(k + 2)(k + 1)k + r2θ2(k + 3)(k + 2)(k + 1)k =
k(1 + k)

E[ϵ2t ]
− k(k + 1).

Multiplying by −1 at both sides produces

(1− r2)k(k + 1) + 2r2θ(k + 2)(k + 1)k − r2θ2(k + 3)(k + 2)(k + 1)k =
E[ϵ2t ]− 1

E[ϵ2t ]
k(k + 1).

Since V ar[ϵt] = E[ϵ2t ]− E[ϵt]
2 = E[ϵ2t ]− 1,

(1− r2)k(k + 1) + 2r2θ(k + 2)(k + 1)k − r2θ2(k + 3)(k + 2)(k + 1)k =
V ar[ϵt]

V ar[ϵt] + 1
k(k + 1).

Note that θ = (r−1)
r(1+k)

, therefore,

(1− r2)k(k+1)+ 2r(r− 1)k(k+2)− (r− 1)2k · (k + 2)(k + 3)

k + 1
=

V ar[ϵt]

V ar[ϵt] + 1
k(k+1) (22)

Dividing both sides by k(r − 1), we have

(1− r2)k(k + 1)

k(r − 1)
+
2r(r − 1)k(k + 2)

k(r − 1)
−
(r − 1)2k · (k + 2)(k + 3)

k + 1
k(r − 1)

=
V ar[ϵt]

V ar[ϵt] + 1

k + 1

r − 1
(23)

After simplification, equation (23) becomes:

−(r + 1)(k + 1) + 2r(k + 2)− (r − 1)(k + 2)(k + 3)

k + 1
=

V ar[ϵt]

V ar[ϵt] + 1

k + 1

r − 1
(24)

Multiply equation (24) by k + 1:

−(r + 1)(k + 1)2 + 2r(k + 2)(k + 1)− (r − 1)(k + 2)(k + 3) =
V ar[ϵt]

V ar[ϵt] + 1

(k + 1)2

r − 1
(25)

The left side of (25) is

−rk2 − 2rk − r − k2 − 2k − 1 + 2rk2 + 6rk + 4r − rk2 − 5rk − 6r + k2 + 5k + 6
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Thus, with simplification of the left side of (25), we arrive at

−r(k + 3) + 3k + 5 =
V ar[ϵt]

V ar[ϵt] + 1

(k + 1)2

r − 1
(26)

Since r > 1, it follows that

−r(k + 3) + 3k + 5 ≥ 0 (27)

and

1 < r ≤ 3k + 5

k + 3
< 3 (28)

Multiply both sides of (26) by (r − 1):

(r − 1)
(
− r(k + 3) + 3k + 5

)
=

V ar[ϵt]

V ar[ϵt] + 1
(k + 1)2 (29)

Simplification of the left side of (29) leads to:

−r2(k + 3) + 4kr + 8r − 3k − 5 =
V ar[ϵt]

V ar[ϵt] + 1
(k + 1)2 (30)

Now express (30) as a quadratic equation in terms of r:

(k + 3)r2 − (4k + 8) r +

(
3k + 5 +

V ar[ϵt]

V ar[ϵt] + 1
(k + 1)2

)
= 0. (31)

Let A, B, and C in (31) for computing its discriminant as:

A = k + 3, B = − (4k + 8) = −4k − 8, C = 3k + 5 +
V ar[ϵt]

V ar[ϵt] + 1
(k + 1)2

and

B2 = 16k2 + 64k + 64,

4AC = 4(k + 3)

(
3k + 5 +

V ar[ϵt]

V ar[ϵt] + 1
(k + 1)2

)
= 4(k + 3)(3k + 5) +

4V ar[ϵt](k + 3)(k + 1)2

V ar[ϵt] + 1

= 12k2 + 56k + 60 +
4V ar[ϵt](k + 3)(k + 1)2

V ar[ϵt] + 1
.
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Thus the discriminant D = B2 − 4AC of the quadratic equation with respect to r is given

by:

D =
(
16k2 + 64k + 64

)
−

(
12k2 + 56k + 60 +

4V ar[ϵt](k + 3)(k + 1)2

V ar[ϵt] + 1

)
= 4k2 + 8k + 4− 4V ar[ϵt](k + 3)(k + 1)2

V ar[ϵt] + 1

= 4(k + 1)2
(
1− V ar[ϵt](k + 2)

V ar[ϵt] + 1

)
.

For real solutions, the discriminant D must be non-negative. Therefore, the condition for

real solutions is:

0 < k ≤ 1

V ar[ϵt]
− 2. (32)

We now have the maximum of the feasible variance of ϵt

0 ≤ V ar[ϵt] ≤ 0.5. (33)

Using the quadratic formula, we have

r± =

4k + 8± 2(k + 1)

√
1− V ar[ϵt](k + 2)

V ar[ϵt] + 1

2(k + 3)
(34)

=

2k + 4± (k + 1)

√
1− V ar[ϵt](k + 2)

V ar[ϵt] + 1

k + 3
. (35)

It is easy to see that both r± ≥ 1. Since r+ > r− and
1− V ar[ϵt](k + 2)

V ar[ϵt] + 1
≤ 1 and therefore

2k + 4− (k + 1)

√
1− V ar[ϵt](k + 2)

V ar[ϵt] + 1
≥ k + 3

2.4 Biological Interpretation

2.4.1 V ar[ϵt] = 0

When the variance of ϵt is zero or sufficient small, equation (26) becomes

−r(k + 3) + 3k + 5 = 0 (36)
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We can solve for r in terms of k

r =
3k + 5

k + 3
(37)

From equation (37), it follows that
5

3
< r < 3.

When V ar[ϵt] is sufficient small or zero, we have the explicit expression of r in terms of k,

(37) and the refined restriction on r: 5
3
< r < 3. The expression for the growth rate r in

terms of k is given by (37) and in Figure 1. Upon calculating the derivative of r with respect

to k, we find:
dr

dk
=

4

(k + 3)2
(38)

This derivative indicates that r increases with k, but the rate of increase slows down as k

becomes larger. For the case when the relative variance of ϵt is sufficient small, since r is

entirely determined by k, the shape parameter, it indicates that the dynamics of popula-

tion growth depend on the underlying structure of the population rather than its absolute

size. This can be particularly relevant in biological systems where growth is more strongly

tied to population interactions (e.g., competition, mating availability) rather than just the

magnitude of the population at any given time.

Figure 1: Plot of r in terms of k

It is well known that the population dynamics of the deterministic logistic model (1), such

as stable growth, periodic oscillations, chaos, or extinction, are dependent on the value of r.

If 1 < r < 3, the population grows and eventually reaches a nonzero steady state[13, 14, 15].
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For the stochastic logistic equation (2), the feasible range of r, (5
3
, 3) ⊂ (1, 3), at equi-

librium implies a form of population regulation, where the population does not experience

explosive growth that would destabilize the system. The population may begin to oscil-

late around the carrying capacity, but these oscillations are damped over time. Eventually,

the population settles at the equilibrium. From a biological perspective, this can represent

species that have evolved mechanisms for self-regulation, such as density-dependent factors

like competition for resources or social structures that limit reproductive success at high

population densities. This range of r suggests that while the population has enough repro-

ductive capacity to grow quickly, it also has internal or external checks that prevent it from

overshooting the carrying capacity by a large margin. This could be relevant for species

with moderate growth rates that balance reproduction with survival, ensuring long-term

persistence in stable environments.

2.4.2 Impact of Var(ϵt)

From the discussion in the above section, at equilibrium, the parameters must satisfy 0 ≤
V ar[ϵt] ≤ 0.5 and 0 < k ≤ 1

V ar[ϵt]
− 2, and the explicit expression of r in terms of k,Var(ϵt)

r± =

2k + 4± (k + 1)

√
1− V ar[ϵt](k + 2)

V ar[ϵt] + 1

k + 3
. (39)

We would like to see its impact on r through simulations in Figure 2. The four figures

illustrate the relationship between the growth rate r and the parameter k under different

values Var(ϵt).

First, we note that all values of r in Figure 2 are within the range (1, 3), as expected for the

both deterministic and stochastic logistic models. In particular, for the deterministic logistic

model, populations grow and stabilize in the same range, where the growth rate balances

with the carrying capacity, allowing the population to approach a stable state [13, 14, 15].

(39) indicates there are two branches, r+ and r− of the intrinsic growth rate r, represent-

ing alternative stable states as shown in Figure 2. The branch r+ generally corresponds to

higher growth rates and a more resilient population, suggesting a higher-density equilibrium.

This state might be stable for species that grow in environments with sufficient resources. In

contrast, the branch r− represents a lower growth rate, where populations may be more vul-

nerable to fluctuations. Populations at r− might represent a low-density equilibrium, which

could be more susceptible to environmental variability and potentially at risk of extinction

under high environmental variance.
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Figure 2: Plots of r in term of k

The condition 0 < k ≤ 1
Var[ϵt]

− 2 suggests that the feasible range of k values is restricted

by the environmental variance Var(ϵt). Smaller values of Var(ϵt) extend the range of k,

which implies that populations with larger k (more symmetrical and regular population

distribution) are better supported in stable environments with low variability. As we can

see from Figure 2 that for most k, in particular when it is not too large, r is increasing

with respect to k. As a result, smaller values of Var(ϵt) indicate more potential for a stable

equilibrium across a broader range of r. Thus, the shape parameter k plays a significant role

in defining the equilibrium conditions for populations in fluctuating environments.

For smaller values of Var(ϵt), such as Var(ϵt) = 0.0001 and Var(ϵt) = 0.001, the feasible

range of k is extensive. Populations in this setting are expected to exhibit a wide range of

equilibrium growth rates, with both r+ and r− branches present. A higher k value under

low variance suggests that the population distribution is less skewed and more resilient, with

potential for a stable equilibrium across a broader range of r. Populations with this setup

are analogous to species in stable environments that experience minimal environmental vari-

ability, allowing them to maintain predictable population dynamics around the equilibrium.

As Var(ϵt) increases (e.g., Var(ϵt) = 0.1 and Var(ϵt) = 0.4), the range of k values for
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stable solutions shrinks. This indicates that populations in fluctuating environments with

high variance are limited in terms of the shape parameter k, which restricts their capacity

to achieve stable equilibria.

The independence of r from θ suggests that the intrinsic growth rate is primarily a

function of the population’s internal dynamics (reflected by k) rather than the scale of the

population size distribution (governed by θ). This emphasizes the role of internal biological

mechanisms in driving growth, regardless of the absolute population size or its spread.

3 Conclusion and Discussion

In this work, we explored the use of the gamma distribution to study the populations gov-

erned by discrete a stochastic logistic equation at steady state. We investigated mathematical

insights into the relation between gamma distribution parameters and the stochastic logistic

difference equation at equilibrium, and derived explicit relationships between the param-

eters of the gamma distribution and the intrinsic growth rate r of the stochastic logistic

difference equation and the variance of small perturbation; and identified a feasible range of

r for the stochastic model at equilibrium, which is consistent with the classical results on

the dynamics of the deterministic logistic equation. In addition, we provided the ecological

interpretations of these relations and their implications from an ecological perspective. For

example, we identified there are two branches, r+ and r− of the intrinsic growth rate r at

equilibrium representing alternative stable states.

Several future directions of research can address the challenges identified in this study

and extend the current work. Future work will extend the analysis to more complex discrete

stochastic models that include additional biological factors, such as age structure, migration,

or environmental effects. These models may require the development of new theoretical

tools to account for the complexity of real-world population dynamics. A more rigorous

mathematical framework is needed to prove the relationships between the parameters of

stochastic models and their stationary distributions. These mathematical results will provide

deeper insights into the behavior of populations governed by stochastic dynamics and may

help identify conditions under which the gamma distribution (or other distributions) can

provide valid approximations.

With appropriate scaling, (2) can incorporate a parameter for carrying capacity. Alter-

native distributions that respect the carrying capacity of population sizes, such as the beta

distributions, might provide more suitable models for describing stationary distributions in

such systems. These alternative approaches could allow for more accurate modeling of real-

world population dynamics while retaining key characteristics like variability and skewness.
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Finally, future work could use real-world ecological population data to validate the the-

oretical relations of the stochastic models with the gamma distribution. This validation will

involve fitting the model to empirical data, determining the parameters of the stochastic

models and the gamma distribution, comparing them with theoretical results in this paper.

This process will help ensure that the theoretical results align with the real-world behavior

of fluctuating populations.
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