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Abstract

A well-known result of Shalom says that lattices in SO(n, 1) are Lp measure equivalent for
all p < n − 1. His proof actually yields the following stronger statement: the natural coupling
resulting from a suitable choice of fundamental domains from a uniform lattice Λ to a uniform
one Γ is (L∞, Lp). Moreover, the fundamental domain of Γ is contained in a union of finitely
many translates of the fundamental domain of Λ. The purpose of this note is to prove a converse
statement. More generally, it is proved that if a ME-coupling from a non-hyperbolic group Λ to a
hyperbolic group Γ is (L∞, Lp) and the fundamental domain of Γ is contained in a union of finitely
many translates of the fundamental domain of Λ, then p must be less than some p0 only depending
on Γ.
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1 Introduction

Gromov introduced measure equivalence between countable groups as a measured analogue of quasi-
isometry. A classical instance of a pair of measure equivalent groups is given by lattices in a common
locally compact group. Another source of examples is given by orbit equivalent groups. Recall that two
groups Γ and Λ are orbit-equivalent if they admit free measure-preserving actions on a same standard
probability space (X,µ) which share the same orbits: for almost every x ∈ X, Γ · x = Λ · x.

The notion of measure equivalence has been extensively studied over the past 20 years, and we refer
the reader to [Gab05, Sec. 2] for an overview of its main properties as well as its tight connections with
invariants such as cost or ℓ2 Betti numbers. Various rigidity phenomenons have also been uncovered. A
famous example is Furman’s superrigidity results for lattices in higher rank semi-simple Lie groups
[Fur99], which implies for instance that any countable group which is measure-equivalent to a lattice
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in PSL3(R) is commensurable up to finite kernel to another lattice in PSL3(R). Another example is
provided by Kida’s work on mapping class groups of surfaces: he showed that most surfaces can be
reconstructed from the measure equivalence class of their mapping class group [Kid08], and that every
group which is measure equivalent to a mapping class group must actually be commensurable up to
finite kernel to it [Kid10].

In the opposite direction of flexibility, a celebrated result of Ornstein and Weiss implies that all
infinite countable amenable groups are orbit equivalent and hence measure equivalent [OW80]. So
most coarse geometric invariants (such as volume growth) are not preserved under orbit equivalence.
Also, it is known that the class of groups measure equivalent to lattices in PSL2(R) is very diverse and
contains groups that are not virtually isomorphic to lattices of the latter (for instance, all free products
of infinite amenable groups belong to this class). But as we will now see, measure equivalence admits
natural refinements which capture meaningful coarse geometric invariants.

The main motivation for study quantitative versions of measure equivalence is to distinguish groups
that are measure equivalent but have different geometric properties. Beyond the case of amenable
groups, another source of examples are lattices in a same locally compact group. Recall1 that uniform
lattices in rank one simple Lie groups are hyperbolic but non-uniform ones are not hyperbolic, except
for SL(2,R) where all lattices are hyperbolic. Hence these are interesting instances of groups that are
measure equivalent, yet with different geometric properties. With this main application in mind, we
will look for general integrability conditions ensuring that hyperbolicity is preserved under measure
equivalence. We will not state our main results in this introduction as these are quite technical (see
Theorem 4.2 and Theorem 4.1). Instead we shall focus on two specific corollaries.

Uniform versus non-uniform lattices in rank one simple Lie groups. Shalom proved that
any two lattices in SO(n, 1) are Lp measure equivalent for all p < n− 1. When one of the two lattices
is uniform, one can strengthen this statement as follows. Let n ⩾ 2, and let Γ (resp. Λ) be a uniform
(resp. non-uniform) lattice in SO(n, 1). We consider the coupling associated to the action of Λ and Γ
respectively by left and right-translations on the measure space SO(n, 1) equipped with an invariant
Haar measure. Shalom showed that for a suitable fundamental domain XΛ for Λ and any relatively
compact fundamental domain XΓ for Γ, the resulting coupling is an (L∞,Lp) measure equivalence
coupling from Λ to Γ for all p < n − 1. Exploiting the relative compactness of XΓ, one can check
that this coupling satisfies the following additional property: there is a finite subset F ⊂ Λ such that
XΓ ⊂ FXΛ. In what follows, we shall refer to this property that as coboundedness of the coupling. We
summarize this as follows.

Theorem 1 (Shalom [Sha00, Thm. 3.6]). Let Γ and Λ be two lattices in SO(n, 1) such that Γ is uniform.
Then there exists a cobounded coupling from Λ to Γ that is (L∞,Lp)-integrable for all p < n− 1.

By contrast we prove the following rigidity result.

Theorem 2 (see Cor. 4.3). Let Γ be a finitely generated hyperbolic group. There exists p > 0 such that
if there exists a cobounded (L∞,Lp) measure equivalence coupling from a finitely generated group Λ to
Γ, then Λ is also hyperbolic.

Remark 1.1. The value of p for which the conclusion holds is explicit: assuming that Γ admits a
Cayley graph that is δ-hyperbolic and has volume entropy at most α, one can take p = 75δα+ 2. For
the definition of volume entropy, see the paragraph which precedes Theorem 4.1.

We immediately deduce the following converse of Shalom’s result.

Corollary 3. Assume that Γ is a uniform lattice in a center-free, real rank 1 simple Lie group G and
Λ is another lattice of G. There exists p only depending on G such that if there exists a cobounded
(L∞,Lp) coupling from Λ to Γ, then Λ must be uniform as well.

1This is classical: see for instance [DK18, Example 22.1 and Proof of Theorem 22.32].
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This raises the following question.

Question 1.2. What is the infimum over all p such that the previous result holds? Does it match
Shalom’s value n− 1 for lattices in SO(n, 1)?

As observed by Mikael de la Salle, Corollary 3 is in sharp contrast with what happens for lattices
in higher rank simple Lie groups: indeed if Γ and Λ are lattices in a simple Lie group Γ of rank ⩾ 2,
then if XΛ and XΓ are Dirichlet fundamental domains for Λ and Γ, the resulting measure equivalence
coupling is exponentially integrable [de 19, Lemme 5.6]. Hence we obtain:

Theorem 4 (de la Salle). Let Γ and Λ be two lattices in a simple Lie group of rank at least 2, such
that Γ is uniform. Then there exists a cobounded (L∞, φ) measure equivalence coupling from Λ to Γ,
where φ(t) = exp(ct) for some c > 0.

Coming back to Theorem 2, observe that the L∞ condition from Λ to Γ is the strongest possible. It
can be relaxed to an Lp-type condition, but at the cost of imposing a stretched exponential integrability
condition in the other direction. More precisely, we obtain:

Theorem 5 (see Cor. 4.4). Let Γ be a finitely generated hyperbolic group. For every p > q > 0, if there
is a cobounded (ψ,φ)-integrable measure equivalence coupling from a finitely generated group Λ to Γ,
where φ(t) = exp(tp) and ψ(t) = t1+1/q, then Λ is also hyperbolic.

Remark 1.3. This shows for instance that there does not exist (L2+ε, φ)-integrable measure equivalence
couplings from a hyperbolic group to a non hyperbolic group, where φ(t) = exp(ct) for any c > 0 and
ε > 0.

Once again we deduce the following corollary for lattices in rank 1 simple Lie groups, which again
contrasts with the the case of higher rank lattices.

Corollary 6. Assume that Γ is a uniform lattice in a center-free, real rank 1 simple Lie group G
and Λ is another lattice of G. For every p > q > 0, if there is a cobounded (ψ,φ)-integrable measure
equivalence coupling from Γ to Λ where φ(t) = exp(tp) and ψ(t) = t1+1/q, then Λ is uniform as well.

Remark 1.4. In Corollaries 3 and 6, the case of SL(2,R) was already known and actually a much
stronger conclusion holds in that case: Bader, Furman and Sauer have proved that non-uniform lattices
and uniform ones are not L1 measure equivalent.

Remark 1.5. Theorems 2 and 5 should be compared with a theorem of Bowen saying that if there
exists an (L1,L0) orbit equivalence coupling from a finitely generated accessible group Λ to a virtually
free group, then Λ is virtually free.

Stability of hyperbolicity under quantitative orbit equivalence From an orbit equivalence
coupling, a measure equivalence coupling can be constructed in such a way that both groups share
a common fundamental domain. In particular, such a coupling is automatically cobounded. Hence
Theorem 2 and Theorem 5 have the following immediate corollaries.

Corollary 7. Let Γ be a finitely generated hyperbolic group. There is p > 0 such that if there exists a
(Lp,L∞) orbit equivalence coupling from a finitely generated group Λ to Γ, then Λ is also hyperbolic.

Corollary 8. Let Γ be a finitely generated hyperbolic group. For every p > q > 0, if there is a
(ψ,φ)-integrable orbit equivalence coupling from a finitely generated group Λ to Γ where φ(t) = exp(tp)
and ψ(t) = t1+1/q, then Λ is also hyperbolic.
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Hyperbolicity and embedded cycles. The proofs of Theorem 2 and Theorem 5 are based on the
following characterization of non-hyperbolic spaces. We denote by Cn the cyclic graph of length n.

Theorem 9. [HM20, Proposition 5.1] Let X be a connected graph that is not hyperbolic. Then for all
n ∈ N , there exists a 18-bi-Lipschitz embedded cyclic subgraph in X of length at most n.

The strategy of proof consists in confronting this result with the following one (a very close statement
is proved in [VS14] for the real hyperbolic space).

Theorem 10 (see Corollary 2.3). Let a ⩾ 0, b ⩾ 1, and δ ⩾ 1. There is an integer n0 = n0(a, b) ⩾ 2
such that the following holds. For all δ-hyperbolic geodesic space X, for all n ⩾ n0, if there is a map
φ : Cn → X such that for all x, y ∈ Cn

adCn(x, y) ⩽ d(φ(x), φ(y)) ⩽ bdCn(x, y)

then we have

a < 6δ · log n
n

. (1)

Sketch of proof. We prove Theorem 2 and Theorem 5 by contradiction. Let us briefly sketch the
argument for an orbit equivalence coupling. We assume that Λ is non hyperbolic and consider the map
φn : Cn → Λ provided for some large integer n by Theorem 9. Identifying the orbits of Λ and Γ, we
obtain for a.e. x ∈ X, a map ψn,x : Cn → Γ. By exploiting the integrability condition from Λ to Γ, we
obtain a bound on the Lipschitz constant of ψn,x, which is satisfied on a subset of X of sufficiently large
measure. Observe that this step is trivial under the hypotheses of Theorem 2, as the L∞-condition
ensures that ψn,x is Lipschitz, uniformly with respect to x ∈ X. The more subtle part of the argument
consists in estimating the Lipschitz constant of the inverse of ψn,x, in order to obtain a contradiction
with Theorem 10.

In case of a measure equivalence coupling, a difficulty arises in the second step of the proof: in
order to estimate the Lipschitz constant of the inverse of ψn,x, we need to go back to Λ and exploit the
lower bound 1

18 on the Lipschitz constant of the inverse of φn. This where the coboundedness condition
comes in, allowing us to relate the fundamental domains of the two groups.

Further remarks and questions. As commented above, the coboundedness assumption plays an
important (though technical) role in the proofs. It would be interesting to know whether it can be
avoided. In particular, this raises the following question.

Question 1.6. Assume n ⩾ 3, and let Γ (resp. Λ) be a uniform (resp. non-uniform) lattice in SO(n, 1).
For what values of p ∈ [1,∞] are Γ and Λ Lp measure equivalent?

Coboundedness was also considered by Sauer in his PhD thesis [Sau02]. His statement (very close
to Shalom’s [Sha04, Theorem 2.1.7.]) is that two amenable finitely generated groups are quasi-isometric
if and only if they admit an L∞ measure coupling which is cobounded in both directions: namely
there exist finite subsets FΛ ⊂ Λ and FΓ ⊂ Γ such that XΓ ⊂ FΛXΛ and XΛ ⊂ FΓXΓ. In general, it
is unknown whether being L∞ measure equivalent implies being quasi-isometric. This justifies the
following question.

Question 1.7. Is hyperbolicity invariant under L∞ measure equivalence?

Plan of the paper. Theorem 10 is first proved in § 2. After recalling the definitions of quantitative
measure equivalence in § 3, we prove our main result, namely Theorem 4.1 from which we deduce the
theorems announced in the introduction.
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2 Geometric preliminaries

Let X be a graph, a discrete path in X of length l ⩾ 1 is a map α : {0, . . . , l} → X such that for all
i ∈ {0, . . . , l − 1}, we have that α(i) and α(i+ 1) are connected by an edge. We will also say that α is
a path from α(0) to α(l), and we will often identify a path to its range.

Every connected graph X is viewed as a metric space (X, d) equipped with the discrete path
metric, defined by setting d(x, y) as the minimum length of a path from x to y. Any discrete path
which realizes the discrete path metric between two points is called a discrete geodesic, and it is
then an isometric embedding from {0, . . . , d(x, y)} to (X, d).

Another important metric space that we can get out of a connected graph X is given by the
(continuous) path metric which we define as in [Gro07, 1.15+]. We first identify each edge to the
interval [0, 1] isometrically, thus obtaining a length structure on our graph. The metric associated to
this length structure is denoted by dl, and it is by definition the continuous path metric on X. It agrees
with the discrete path metric on the vertices of X, and it is geodesic. Every geodesic between vertices
defines a discrete geodesic, and every discrete geodesic can be lifted to a geodesic between vertices.

A (geodesic) triangle in a metric space (X, d) with vertices a1, a2, a3 ∈ X is a set [a1, a2, a3] ⊆ X
obtained by taking the union of a choice of geodesics [a1, a2], [a2, a3], and [a3, a1] between its vertices. In
the same way, we define a (geodesic) n-gon with vertices a1, . . . , an ∈ X, and denote it by [a1, . . . , an].
Given an n-gon where n ⩾ 3, we will frequently call any of its defining geodesics a side.

Now, recall that a geodesic space (X, d) is δ-hyperbolic in the sense of Rips if there exists a δ ⩾ 0
such that for every geodesic triangle [a1, a2, a3] and for every x ∈ [a1, a2], there exists an element y in
either [a1, a3] or [a2, a3] such that d(x, y) ⩽ δ; or equivalently, that the side [a1, a2] is contained in the
δ-neighborhood of [a1, a3] ∪ [a2, a3]. Moreover, we say that a geodesic space (X, d) is hyperbolic if it
is δ-hyperbolic for some δ, and that a finitely generated group Γ with generating set S is hyperbolic
whenever its Cayley graph is hyperbolic when equipped with the continuous path metric.

We shall need the following well-known lemma.

Lemma 2.1. Let X be a δ-hyperbolic geodesic space, let α be a path of length ℓ ⩾ 1 between two points
x1 and x2, and let y belong to a geodesic from x1 to x2. Then

d(y, α) ⩽ δ log2(ℓ) + 1.

Proof. Let us prove it by induction on ⌊ℓ⌋. The case ⌊ℓ⌋ = 1 is clear. So assume n ⩾ 2 and suppose
that the lemma is true for all paths of length < n. Let α be a path of length ℓ ∈ [n, n+ 1[ from x1
to x2, represented as a gray path in the following figure. For every x ∈ α, using that the geodesic
triangle [x1, x, x2] is δ-thin, then either d(y, [x1, x])] ⩽ δ or d(y, [x, x2])] ⩽ δ. By connectedness of α,
there exists x3 such that both conditions are satisfied. By exchanging x1 and x2 if necessary, we can
assume that the portion α1 of α from x1 to x3 has length ℓ1 ⩽ ℓ/2.

x1 x2

x3

y

y′

α1

Hence there exists a point y′ ∈ [x1, x3] such that d(y, y′) ⩽ δ. Now applying the induction hypothesis
to the path α1 and the point y′ ∈ [x1, x3], we obtain

d(y′, α1) ⩽ δ log2(ℓ1) ⩽ δ log2 ℓ+ 1− δ.
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We deduce by the triangle inequality

d(y, α) ⩽ d(y, y′) + d(y′, α1) ⩽ δ log2(ℓ) + 1.

So we are done.

First we need an alternative definition of hyperbolicity in terms of embedded cycles. In what follows,
the cycle Cn of length n ⩾ 2 is the Cayley graph of Z/nZ with respect to the generating set containing
only the element 1 mod n, which we view as a discrete metric space denoted by (Cn, dCn

).

Proposition 2.2. Let (X, d) be a δ-hyperbolic geodesic space, let n be a positive integer. Then for
every a ⩾ 0 and every b ⩾ 1, if there is a map φ : C2n → X such that for every x, y ∈ C2n,

adC2n(x, y) ⩽ d(φ(x), φ(y)) ⩽ bdC2n(x, y)

then we have

a ⩽
4δ log2(bn) + 4 + 2b

n

Before proving the above proposition, let us note the following straightforward corollary, using the
estimate 1

log 2 <
3
2 .

Corollary 2.3. Let a ⩾ 0, b ⩾ 1. There is an integer n0 = n0(b) ⩾ 2 such that the following holds.
For all n ⩾ n0 and all δ ⩾ 1, if X is a δ-hyperbolic geodesic space and if there is a map φ : Cn → X
such that for all x, y ∈ Cn

adCn(x, y) ⩽ d(φ(x), φ(y)) ⩽ bdCn(x, y)

then we have

a < 6δ · log n
n

. (2)

In order to prove the proposition, we need the following additional notion. Given a discrete path β
in a graph Y and a map φ : Y → (X, d) where (X, d) is geodesic, we say that a continuous path α in X
is a φ-direct image of β if it is obtained by concatenating geodesics between φ(β(i)) and φ(β(i+ 1))
where i ranges from 0 to ℓ(β)− 1.

Proof of Proposition 2.2. Let a1, a2 ∈ C2n be such that dC2n(a1, a2) = n and define x1 = φ(a1),
x2 = φ(a2). Consider a geodesic [x1, x2] from x1 to x2. In C2n there are two discrete geodesic paths
from a1 to a2, both with length n. Denote by α and α′ some respective φ-direct images of those paths
in X, which by assumption have length at most bn. Let y ∈ [x1, x2], we deduce from Lemma 2.1 that

d(y, α) ⩽ δ log2(ℓ(α)) + 1 ⩽ δ log2 (bn) + 1,

where ℓ(α) is the length of α, and by the same argument d(y, α′) ⩽ δ log2(bn) + 1. If we then pick zy
and z′y points in C2n such that their φ-images are in α and α′ respectively and minimize the distance
to y, we have

max
(
d(y, φ(zy)), d(y, φ(z

′
y)
)
⩽ δ log2(bn) + 1 +

b

2
. (3)

Note that for any y ∈ [x1, x2], any geodesic from zy to z′y must pass through x1 or through x2.
Moreover there are some y ∈ [x1, x2] for which the first case occurs, and some for which the second
case occurs. For all ε > 0, we may thus find y1, y2 ∈ [x1, x2] such that d(y1, y2) ⩽ ε, the geodesic from
zy1 to z′y1

passes through x1 and the geodesic from zy2 to z′y2
passes through x2.
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ϕ

a1 a2 x1

x2

α

α′

y1 y2

zy1 zy2

z′y1 z′y2

ϕ(zy1)
ϕ(zy2)

ϕ(z′y1
) ϕ(z′y2

)

Then we have that

dCn
(zy1

, zy2
) + dCn

(zy2
, z′y2

) + dCn
(z′y2

, z′y1
) + dCn

(z′y1
, zy1

) = 2n.

Hence one of these four distances is at least n
2 . On the other hand, combining (3) and the fact that

d(y1, y2) ⩽ ε, we obtain the following inequality

d(φ(zy1
), φ(zy2

))+d(φ(zy2
), φ(z′y2

))+d(φ(z′y2
), φ(z′y1

))+d(φ(z′y1
), φ(zy1

)) ⩽ 2(δ log2 (bn)+1+
b

2
)+ ε.

Using our assumption on φ, we thus have the following inequality: for all ε > 0,

an

2
⩽ 2δ log2 (bn) + 2 + b+ ε.

So the proposition follows.

3 Preliminaries on quantitative measure equivalence

We now make the statements from the introduction more precise by enriching a bit the terminology
from [DKLMT22, Sec. 2] and introducing in details quantitative measure equivalence. We denote
systematically smooth actions by ∗ (recall that by definitions, smooth actions are those which admit a
Borel fundamental domain, i.e. a Borel subset intersecting each orbit exactly once).

3.1 Relations between fundamental domains

In this section, we fix a smooth measure-preserving action Γ ↷ (Ω, µ).
Let X1, X2 be two fundamental domains, we denote by πX1,X2

: X1 → X2 the map which takes
every x ∈ X1 to the unique x′ ∈ X2 ∩ Γ ∗ x. The map πX1,X2

belongs to the pseudo full group of the
action, in particular it is measure-preserving, and its inverse is πX2,X1

.
Say that two fundamental domains X1 and X2 are L∞-equivalent if there is a finite subset F ⋐ Γ

such that for all x ∈ X1, there is γ ∈ F such that such that πX1,X2(x) = γ ∗ x. Observe that L∞-
equivalence is an equivalence relation, and that if some measure-preserving T ∈ Aut(Ω, µ) commutes
with the Γ-action, then X1 is L∞-equivalent to X2 iff T (X1) is L

∞-equivalent to T (X2).
Now let φ : R+ → R+ be a non-decreasing function and assume that Γ is generated by a finite set

SΓ, allowing us to endow Ω with the Schreier metric dSΓ
whose definition is recalled in [DKLMT22,

Def. 2.14]. For the purpose of this paper, we introduce some further terminology and say that two
fundamental domains X1, X2 are φ-similar if∫

X1

φ(dSΓ(x, πX1,X2(x)))dµ(x) < +∞.
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Observe that L∞-equivalence can be recast as the fact that the map x ∈ X1 7→ dSΓ
(x, πX1,X2

(x))
takes only finitely many values, in particular it implies φ-similarity. However, as the name suggests,
φ-similarity is not an equivalence relation in general, for instance when φ(t) = et transitivity might
fail (see also [DKLMT22, Rem. 2.16]). Even worse, it is a priori dependent on the choice of the finite
generating set SΓ we made.

In order to correct this, we introduce as in [DKLMT22] a coarser relation that we called φ-equivalence:
two fundamental domains X1 and X2 are φ-equivalent if there is some ε > 0 such that they are
φε-similar, where φε(t) = φ(εt). We checked in [DKLMT22, Cor. 2.19] that φ-equivalence is an
equivalence relation.

It is important to note that φ-equivalence is equivalent to φ-similarity when φ satisfies that for all
c > 0, there is C > 0 such that for all t ⩾ 0 we have φ(ct) ⩽ Cφ(t). This is notably the case when
φ(t) = tp for some p > 0, and we will make use of this fact without explicit mention.

3.2 (φ, ψ)-integrable measure equivalence

In this section we fix two finitely generated groups Γ = ⟨SΓ⟩ and Λ = ⟨SΛ⟩.
A measure equivalence coupling from Γ to Λ is a measured space (Ω, µ) endowed with commuting

smooth free measure-preserving actions of Γ and Λ and Borel fundamental domains XΓ for the Γ-action,
XΛ for the Λ-action, which both have finite measure.

Definition 3.1. Let φ,ψ : R+ → R+ be two non-decreasing functions. We say that a measure-
equivalence coupling (Ω, µ,XΓ, XΛ) from Γ to Λ is (φ,ψ)-integrable if for every γ ∈ SΓ the Λ-
fundamental domain γ ∗XΛ is φ-equivalent to XΛ , and for every λ ∈ SΛ the Γ-fundamental domain
λ ∗XΓ is ψ-equivalent to XΓ.

As explained in [DKLMT22, Prop. 2.22], since φ-equivalence and ψ-equivalence are equivalence
relations, the definition is unchanged if we quantify over all γ ∈ Γ or all λ ∈ Λ rather than over the
finite generating sets SΓ and SΛ.

We now give the cocycle versions of these definitions: given a measure equivalence coupling
(Ω, µ,XΓ, XΛ), we have the associated cocycles

α : XΛ × Γ → Λ and XΓ × Λ → Γ

uniquely defined by the following statements: for all x ∈ XΛ and γ ∈ Γ, α(γ, x) ∗ (γ ∗ x) ∈ XΛ, and
similary for all x ∈ XΓ and λ ∈ Λ, β(λ, x) ∗ (λ ∗ x) ∈ XΓ.

When we endow Γ and Λ with the natural norms |·|SΓ
and |·|SΛ

associated to their respective
generating sets SΓ and SΛ, we can now state that a measure equivalence coupling (Ω, µ,XΓ, XΛ) from
Γ to Λ is (φ,ψ)-integrable iff the associated cocycles satisfy: for all γ ∈ SΓ there is εγ > 0 such that∫

XΛ

φ(εγ |α(x, γ)|SΛ
)dµ(x) < +∞

and similarly for all λ ∈ SΛ there is ελ > 0 such that∫
XΛ

ψ(ελ |β(x, λ)|SΓ
)dµ(x) < +∞.

Remark 3.2. As in the end of the previous section, note that if φ satisfies that for all c > 0, there is
C > 0 such that for all t ⩾ 0 we have φ(ct) ⩽ Cφ(t), then we can get rid of the factor εγ in the first
inequality, and the same applies to the second inequality mutatis mutandis. This applies in particular
for φ(t) = tp, and thus for Lp conditions, but not for exponential integrability.

Let us denote by · the natural Γ (resp. Λ) action on XΛ (resp. XΓ) given by : for all γ ∈ Γ and
x ∈ XΛ, γ · x is the unique element of Λ ∗ (γ ∗ x)∩XΛ (and symmetrically for all λ ∈ Λ and all x ∈ XΓ,
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λ · x is the unique element of Γ ∗ (λ ∗ x) ∩XΓ). Observe that for all x ∈ XΛ and γ ∈ Γ, the cocycle
α(γ, x) is uniquely defined by the equation α(γ, x) ∗ (γ ∗ x) = γ · x, and a similar statement holds for β.

The equivalence between the above definition and Definition 3.1 is then clear once one notes that α
is connected to the the cocycle of πXΛ,γ∗XΛ : it is uniquely defined by the equation

πXΛ,γ∗XΛ
(x) = α(γ, γ−1 · x) ∗ x.

Indeed it follows that dSΓ
(x, πXΛ,γ∗XΛ

(x)) =
∣∣α(γ, γ−1 · x)

∣∣
SΓ
, so since the action of γ−1 on XΛ is

measure-preserving, the φ-integrability of x 7→ dSΓ(x, πXΛ,γ∗XΛ(x)) is equivalent to that of x 7→
|α(γ, x)|SΓ

(and the symmetric phenomenon holds for β).
Finally, let us recall the cocycle relations satisfied by α (and β mutatis mutandis): for all x ∈ XΛ

and all γ, γ′ ∈ Γ we have
α(γ′γ) = α(γ′, γ · x)α(γ, x).

4 Rigidity of hyperbolicity

We now prove rigidity results, saying that hyperbolicity is preserved under cobounded measure
equivalence couplings satisfying certain integrability conditions. To simplify the exposition, we choose
to state two results, but the second one should be seen as a degenerate version of the first one (where
one of the conditions becomes an L∞-condition). Anyway the two results share basically the same
proof, which consists in confronting Proposition 2.2 with Theorem 9. Since these results are quite
technical, we shall first deduce two more appealing corollaries (namely Theorem 2 and Theorem 5 from
the introduction).

Let us start with some notation: given a group Γ equipped with a finitely generated subset
SΓ, we denote the growth function VolSΓ(n) = |Sn

Γ | and define the associated volume entropy as

Ent(SΓ) = lim supr→∞
log(VolSΓ

(r))

r .

Theorem 4.1. Let Γ and Λ be two finitely generated groups such that Γ is δ-hyperbolic. We let L ⩾ 1
and φ, ψ and r be non-decreasing unbounded functions. Assume that the following conditions are
satisfied:

lim
n→∞

n2r(n)VolSΓ
(r(n))

φ(n/r(n))
= 0; (4)

and2 for all large enough n,
r(n)

18
⩾ 4(δ + 1) log2 n+ 3ψ−1(3Ln). (5)

Assume that (Ω, µ) is a cobounded measure equivalence coupling from Λ to Γ, normalized so that
µ(XΓ) = 1, and such that the associated cocycles α : Γ × XΛ → Λ and β : Λ × XΓ → Γ satisfy the
following properties.

(i) for all s ∈ SΓ, ∫
XΛ

φ(|α(s, x)|SΛ
)dµ(x) <∞;

(ii) for all t ∈ SΛ ∫
XΓ

ψ(|β(t, x)|SΓ)dµ(x) ⩽ L.

Then Λ is hyperbolic.

Assuming that β is bounded, we have the following variant.

2The constant 18 in (5) comes from the use of Theorem 9, while the right-hand term comes from the use of
Proposition 2.2.
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Theorem 4.2. Let Γ and Λ be two finitely generated groups such that Γ is δ-hyperbolic. We let φ and
r be increasing unbounded functions. Assume that (4) holds, and that for all large enough n,

r(n)

18
⩾ 13(δ + 1) log n. (6)

Assume that (Ω, µ) is a cobounded measure equivalence coupling from Λ to Γ, normalized so that
µ(XΓ) = 1, and such that the associated cocycles α : Γ × XΛ → Λ and β : Λ × XΓ → Γ satisfy the
following properties.

(i) for all s ∈ SΓ, ∫
XΛ

φ(|α(s, x)|SΛ
)dµ(x) <∞;

(ii) for all t ∈ SΛ

|β(t, ·)|SΓ ∈ L∞(XΓ).

Then Λ is hyperbolic.

Theorem 2 is an immediate consequence of the following corollary of Theorem 4.2.

Corollary 4.3. Let Γ be a finitely generated δ-hyperbolic group and let p > 75δ Ent(SΓ) + 2. Assume
that there exists a cobounded (L∞,Lp)-integrable measure equivalence coupling from a finitely generated
group Λ to Γ. Then Λ is hyperbolic.

Proof. We apply Theorem 4.2 with p = 75δ(Ent(SΓ) + ε) + 2 for some ε > 0. We let r(n) = 75δ log n.
By definition of Ent(SΓ), we have VolSΓ

(r(n)) = o(e(Ent(SΓ)+ε/2)r(n)). Hence we deduce that

VolSΓ(r(n)) = o(n75δ(Ent(SΓ)+ε/2)),

which combined with the fact that φ(t) = t75δ(Ent(SΓ)+ε)+2 implies that (4) is satisfied. Thus, Λ is
hyperbolic.

Corollary 4.4. Let Γ be a finitely generated hyperbolic group. For every p > q > 0 such that if there is
a cobounded (ψ,φ)-integrable measure equivalence coupling from a finitely generated group Λ to Γ where
φ(t) = exp(tp) and ψ(t) = t1+1/q, then Λ is also hyperbolic.

Proof. We consider our cobounded (φ,ψ)-integrable measure equivalence coupling (Ω, XΓ, XΛ, µ) and

normalize µ such that µ(XΓ) = 1. We pick η strictly between q and p, we let r(n) = n
η

1+η , and we
define

L = max
s∈SΛ

∫
XΓ

ψ(|β(s, x)|SΓ)dµ(x).

Note that ψ−1(t) = t
q

1+q . So (5) follows from the fact that η > q. Finally, take ε > 0 such that

max
s∈SΓ

∫
XΛ

φε(|α(s, x)|SΛ
)dµ(x) <∞,

where φε(t) = φ(εt). Note that n/r(n) = n
1

1+η . Hence φε(n/r(n)) = exp(εpn
p

1+η ), while

VolSΓ(r(n)) ⩽ |SΓ|n
η

1+η

Hence since η < p, we have
VolSΓ(r(n))/φε(n/r(n)) = O(n−k)

for any k > 0. So (4) is satisfied and we conclude by Theorem 4.1 that Λ is hyperbolic.
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Proof of Theorems 4.1 and 4.2. Recall that we use the notation ∗ for smooth actions and · for the
induced actions on the respective fundamental domains. Let us start by strengthening the coboundedness
condition.

Claim 4.5. Replacing Condition (5) and Condition (6) respectively by the slightly weaker conditions

r(n)

18
⩾ 4δ log2 n+ 3ψ−1(3Ln)− 3, (7)

and
r(n)

18
⩾ 13δ log n, (8)

it is enough to prove Theorem 4.1 and Theorem 4.2 under the assumption that XΓ ⊆ XΛ.

Proof of the claim. Assuming we have a coupling satisfying the conditions of Theorem 4.1 (resp.
Theorem 4.2), we build a new coupling satisfying Condition (7) (resp. Condition (8)) with XΓ ⊆ XΛ.

Since our initial coupling is cobounded, there exists a finite subset F of Λ such that XΓ ⊆ F ∗XΛ.
Consider the new coupling space Ω̃ : = Ω× F , let K be a finite group which acts simply transitively
on F , and let Γ̃ = Γ×K act on Ω̃ by (γ, k) ∗ (ω, f) = (γ ∗ ω, kf). This action is smooth, and we take
as a fundamental domain the set

X̃Γ̃ : =
⊔
f∈F

(XΓ ∩ f ∗XΛ)× {f}

The Λ-action on Ω̃ is the action on the first coordinate; a fundamental domain is provided by

X̃Λ =
⊔
f∈F

(f ∗XΛ)× {f}.

Viewing both Γ and K as subgroups of Γ̃, the latter has SΓ̃ = SΓ ∪K as a finite generating set. In fact,

with this generating set Γ̃ is δ̃-hyperbolic, with δ̃ = δ + 1. It follows that Condition (8) holds in this
new setup. Also observe that the volume growth of Γ̃ is at most |K| times that of Γ, so Condition (4)
is preserved.

In what follows, we implicitely use the fact that our quantitative conditions (i) and (ii) can be
recast using the notion of φ-similarity between fundamental domains of a smooth action as explained
in Section 3. We also use the straightforward fact that L∞-equivalence refines φ-similarity.

We can now show that condition (i) is still met by the new generating set SΓ̃ = SΓ ∪K. Indeed X̃Λ

is L∞-equivalent to the fundamental domain XΛ × F , and for all γ ∈ Γ, x ∈ XΛ and f ∈ F we have
dSΛ

(γ ∗ (x, f), γ · (x, f)) = dSΛ
(γ ∗ x, γ · x), so for all γ̃ ∈ SΓ̃ we have that γ̃ ∗XΛ × F is φ-similar to

XΛ × F , so γ̃ ∗ X̃Λ is φ-similar to X̃Λ.
For condition (ii), we have, by construction, for all x ∈ XΓ and all f, f ′ ∈ F the inequality

dSΓ̃
((x, f), (x, f ′)) ⩽ 1, so for every λ ∈ Λ we have

dSΓ̃
(λ · (x, f), λ ∗ (x, f)) ⩽ 1 + dSΓ(λ · x, λ ∗ x) = 1 + |β(λ, x)|SΓ

,

hence the new coupling satisfies the same conditions replacing ψ(t) by ψ̃(t) = ψ(max{t − 1, 0}) in
Theorem 4.1. Note that for n large enough, ψ−1(3Ln) ⩾ 1. Since ψ̃(t) = ψ(t − 1) for all t ⩾ 1, we
deduce that for large enough n,

r(n)

18
⩾ 4δ̃ log2 n+ 3ψ̃−1(3Ln)− 3.

So the claim is proved. □claim
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From now on, we assume that XΓ ⊆ XΛ and we normalize the measure so that µ(XΓ) = 1. Suppose
by contradiction that Λ is not hyperbolic. Theorem 9 provides us with a cycle Cn of arbitrary large
length n, and a map Cn → Λ which is 1-Lipschitz and contracts distances at most by a factor 18. In
what follows we consider Cn as a subset of Λ. Let K be such that

∫
XΛ

φ(|α(s, x)|SΛ)dµ(x) ⩽ K for all
s ∈ SΓ.

For every x ∈ XΓ we denote by bx : Λ → Γ the map defined by bx(λ) = β(λ−1, x)−1 for every
λ ∈ Λ. We will use throughout the following straightforward consequence of the cocycle relation: for all
u, v ∈ Λ, we have

bx(u)
−1bx(v) = β(v−1u, u−1 · x)−1. (9)

We endow Γ and Λ with their usual left-invariant Cayley metrics, denoted by dSΓ
and dSΛ

respectively
(so the map γ 7→ γ−1 ∗ x is an isometry if we endow Γ ∗ x with the Schreier metric that we previously
used and denoted by dSΓ

as well).

Upper estimates for the restriction of bx to Cn. In the case of Theorem 4.2, we trivially have
that bx is a.e. L-Lipschitz for some constant L.

Under the assumption of Theorem 4.1, we claim that with probability at least 2/3, the restriction
of bx to Cn is ψ−1 (3Ln)-Lipschitz. Here we use the integrability condition for β. For every u and v
adjacent in Cn there exists an su,v ∈ SΛ such that u = vsu,v. By (9), we have:

dSΓ(bx(v), bx(u)) = |bx(u)−1bx(v)|SΓ = |β(su,v, u−1 · x)|SΓ .

Next consider for any u ∈ Cn the set of all x ∈ XΓ such that ψ(|β(su,v, u−1 ·x)|SΓ) ⩾ 3Ln. By Markov’s
inequality, these sets have measure at most 1

3n and therefore the set of all x ∈ XΓ such that bx is
ψ−1 (3Ln)-Lipschitz in restriction to Cn has measure at least 1− n · 1

3n = 2
3 . So our claim follows.

Lower estimates for the restriction of bx to Cn. Providing lower estimates on the quasi-isometric
embedding constants is more involved as this requires to apply the cocycle α to Cn. We shall use the
inverse relation between α and β and the inclusion XΓ ⊆ XΛ: for all x ∈ XΓ and λ ∈ Λ

α(β(λ, x), x) = λ (10)

We claim that we have the following key inequality.

Claim 4.6. For every R > 0, and u and v in Λ , we have

µ
({
x ∈ XΓ : dSΓ

(
bx(v), bx(u)

)
⩽ R

})
⩽ KR

VolSΓ(R)

φ
(

dSΛ
(u,v)

R

) .
Proof of the claim. For any γ ∈ Γ, we define the set

Aγ = {x ∈ XΓ : bx(u)
−1bx(v) = γ−1}.

By (10) and (9), we have that for every x ∈ Aγ ,

α
(
γ, u−1 · x)

)
= α

(
β(v−1u, u−1 · x), u−1 · x

)
= v−1u,

from which we deduce that
∣∣α (

γ, u−1 · x)
)∣∣

SΛ
= dSΛ

(u, v).

Let us start giving an upper bound of µ(Aγ) as a function of |γ|. Write γ = s1 . . . s|γ|SΓ
with si ∈ SΓ.

By the cocycle relation and the triangular inequality, there exists an i such that the set{
x ∈ Aγ :

∣∣∣α(
si, si+1 . . . s|γ|SΓ

· (u−1 · x)
)∣∣∣

SΛ

⩾
dSΛ

(u, v)

|γ|SΓ

}
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has measure at least
µ(Aγ)
|γ|SΓ

. Letting s = si, we have that

µ

({
y ∈ XΛ : |α(s, y)|SΛ ⩾

dSΛ(u, v)

|γ|SΓ

})
⩾
µ(Aγ)

|γ|SΓ

,

from which we deduce the following upper bound on the measure of Aγ :

µ(Aγ) ⩽ |γ|SΓ µ

({
y ∈ XΛ : |α(s, y)|SΛ ⩾

dSΛ
(u, v)

|γ|SΓ

})
By Markov’s inequality, we deduce

µ(Aγ) ⩽
K|γ|SΓ

φ
(

dSΛ
(u,v)

|γ|SΓ

) .
Using that φ is non-decreasing, we get that for all R > 0,

µ
(
{x ∈ XΓ : |bx(v)−1bx(u)|SΓ

⩽ R}
)
=

∑
γ∈BΓ(eΓ,R)

µ(Aγ)

⩽
∑

γ∈BΓ(eΓ,R)

K|γ|SΓ

φ
(

dSΛ
(u,v)

R

)
⩽ KR

VolSΓ(R)

φ
(

dSΛ
(u,v)

R

) .
So the claim is proved. □claim

Applying Claim 4.6 with R = r(n)
n dSΛ

(u, v), u, v ∈ Cn, observing that dSΛ
(u, v) ⩽ n, we obtain

µ

({
x ∈ XΓ : dSΓ(bx(v), bx(u)) ⩽

r(n)

n
dSΛ(u, v)

})
⩽
Kr(n)VolSΓ(r(n))

φ(n/r(n))
.

As there are at most n2 pairs (u, v) in Cn, we deduce that

µ

({
x ∈ XΓ : ∃u, v ∈ Cn : dSΓ(bx(v), bx(u)) ⩽

r(n)

n
dSΛ(u, v)

})
⩽
Kn2r(n)VolSΓ

(r(n))

φ(n/r(n))
.

By (4), there exists n0 such that for n ⩾ n0, there exists a subset B of XΓ of measure at least 2/3 on
which for all u, v ∈ Cn,

dSΓ(bx(v), bx(u)) ⩾
r(n)

n
dSΛ(u, v).

Finally, for all x in the subset A ∩B which has positive measure, we deduce for every u, v ∈ Cn that

andCn(u, v) ⩽ dSΓ(bx(v), bx(u)) ⩽ bndCn(u, v),

where in the case of Theorem 4.1, an = r(n)
18n and bn = ψ−1 (3Ln); and in the case of 4.2, an = r(n)

18n and
bn = L. In the first case, assuming (7), we have

r(n)

18
⩾ 4δ log2 n+ 3ψ−1 (3Ln) ,

from which we deduce that for n large enough (as bn → ∞),

nan ⩾ 4δ log2 n+ 3bn > 4δ log2(bnn) + 4 + 2bn,

which contradicts Proposition 2.2. Similarly, in the second case, we check that (8) contradicts
Corollary 2.3.
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