
MAPPING CLASS GROUP ORBIT CLOSURES FOR

DEROIN–THOLOZAN REPRESENTATIONS

YOHANN BOUILLY, GIANLUCA FARACO, AND ARNAUD MARET

Abstract. We prove that infinite mapping class group orbits are dense in the character
variety of Deroin–Tholozan representations. In other words, the action is minimal except
for finite orbits. Our arguments rely on the symplectic structure of the character variety,
emphasizing this geometric perspective over its algebraic properties.

1. Introduction

1.1. Motivations and results. The deformation space of representations of the funda-
mental group of an oriented surface S into a group G is known as the character variety
of S and G. When G is an algebraic group, character varieties inherit the structure of
algebraic varieties. On the other hand, when G is a Lie group whose Lie algebra supports
an orthogonal structure which is invariant by the adjoint action of G, character vari-
eties carry a natural (stratified) symplectic structure named after Goldman (Section 2.3).
Sometimes, for instance when G is SL2C, both the algebraic and the symplectic structures
coexist.

One way to deform representations of surface groups is to pre-compose π1S → G by
an automorphism of π1S, giving rise to an action of the mapping class group of S on
the character variety (Section 2.4). It preserves both the algebraic and the symplectic
structures of the character variety. Our goal is to pursue a series of works initiated several
decades ago to understand orbit closures for the mapping class group action on character
varieties. We will consider the case of Deroin–Tholozan representations—in short, DT
representations—which are a special kind of representations of the fundamental group of
a punctured sphere into PSL2R (Section 2.2). They may be thought of as rank-2 cousins
of unitary representations in various ways. For instance, even though DT representations
have Zariski dense image in the non-compact Lie group PSL2R, their deformation spaces
are compact character varieties which we call DT components. DT representations are
also totally elliptic in the sense that they map every simple closed curve to an elliptic
element of PSL2R. Our main result is the following.

Theorem A (Theorem 5.1). Infinite mapping class group orbits of conjugacy classes of
DT representations are dense in their corresponding DT component. In other words, the
mapping class group action on DT components is minimal up to finite orbits.

Goldman raised the question of finding necessary and sufficient conditions on surface group
representations to ensure that their mapping class group orbit is dense in the corresponding
(relative) character variety [Gol06, Problem 2.7]. The combination of Theorem A with the
classification of finite orbits of DT representations from [BM24] fully answers Goldman’s
question over DT components. Finite mapping class group orbits, nevertheless, remain a
rare phenomenon that occurs for a small number of punctures on the underlying sphere
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and only for specific peripheral angles (see eg. [BM24, Section 7]). For instance, Bronstein–
Maret proved in [BM24] that if the underlying sphere has seven punctures or more, then
every orbit is infinite. In that case, Theorem A implies that the mapping class group
action is minimal—every orbit is dense.

Theorem A was already established in the context of 4-punctured spheres by Previte–
Xia [PX05, Theorem 3.3] where the authors cover both the case of DT representations and
representations into SU(2). Since a complete classification of finite mapping class group
orbits was not available at the time, Previte–Xia only concluded minimality for certain
rational peripheral monodromy parameters (see [PX05, Theorem 1.2]). A variation of their
argument can be found in the work of Cantat–Loray [CL09, proof of Theorem C p.2962].
Cantat–Loray actually proved a more precise result: a bounded and infinite mapping class
group orbit in a relative SL2C character variety of a 4-punctured sphere can only be
made of real representations (into SL2R or SU(2)) and it is dense in the unique compact
component of the real points of the character variety [CL09, Theorem C].

Both works by Previte–Xia and Cantat–Loray treat relative SL2C character varieties as
affine algebraic varieties given explicitly by a family of cubic surfaces in C3. We propose a
different approach to prove Theorem A that purely relies on the symplectic structure of DT
components. Instead of parametrizing conjugacy classes of representations using algebraic
coordinates given by trace functions (Section 3.3), we will express our work in terms of the
action-angle coordinates on DT components developed in [Mar21] (Section 2.6). By doing
so, we are able to precisely characterize when the Poisson bracket of two angle functions
(Section 2.5) vanish in terms of angle coordinates (Lemmas 3.3 and 3.10). Somewhat
surprisingly, our computations relate the zero locus of specific Poisson brackets with a real
Lagrangian submanifold of DT components. For instance, in the context of 4-punctured
spheres, if b and d are two simple closed curves in a torso configuration (see Figure 1),
and β and δ are the associated angle functions, then the equation {β, δ} = 0 defines
a Lagrangian submanifold corresponding to RP1 ⊂ CP1 under the symplectomorphism
of [Mar21] between DT components of 4-punctured spheres and CP1 (Remark 3.5).

b

d

dβ = 0

dβ = 0

{β, δ} = 0

Figure 1. On the left: a 4-punctured sphere with two curves b and d in torso config-
uration. On the right: a DT component (which is symplectically a sphere) and the
Lagrangian submanifold cut out by {β, δ} = 0.

This result is used it to identify a family of simple closed curves for which the differentials
of the associated angle functions generate the cotangent space to the DT component at
most points (Corollaries 3.6 and 3.13).

1.2. Related works. Historically, mapping class group orbit closures of infinite orbits
were first understood for representations into SU(2) and for surfaces of positive genus.
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The first milestone is due to Previte–Xia whose results claim that the mapping class group
orbit of the conjugacy class of a representation with dense image in SU(2) is dense in the
corresponding (relative) character variety [PX00a, PX00b]. Recently, Golsefidy–Tamam
have identified inaccuracies in Previte–Xia’s work when the genus of the surface is 1 or 2,
and proposed a revised statement [GT, Corollary 93]. They also construct examples of
representations with dense image in SU(2) for surfaces of genus 1 with 2 punctures and of
genus 2 with 1 puncture, but whose corresponding mapping class group orbit is not dense,
even though infinite [GT, Section 8].

The complete study of orbit closures for representations of a genus-0 surface group into
SU(2) was achieved by Golsefidy–Tamam in the same recent paper. They showed that if
the mapping class group orbit of the conjugacy class of a representation with dense image
in SU(2) is infinite, then it is dense in the associated relative character variety [GT, Theo-
rem J].1 Their result generalizes the work of Previte–Xia on 4-punctured spheres [PX05] to
spheres with an arbitrary number of punctures. Theorem A is the analogue of Golsefidy–
Tamam’s result for DT representations instead of SU(2) representations.2 Unlike in the
positive genus case, it is important to assume the mapping class group orbit to be infinite
because there exist examples of representations of the fundamental group of a 4-punctured
sphere into SU(2) that have dense image but whose associated mapping class group orbit
is finite.3

To completely understand mapping class group orbit closures in character varieties, it is
necessary to identify all finite orbits. Substantial work has been produced on the topic
by different authors over the past decades, so that we now have a complete knowledge of
finite mapping class group orbits of surface group representations into SL2C. We refer the
reader to [BM24, Section 1.3] for a historical account. As for orbit closures, understanding
finite orbits in the case of punctured spheres turned out to be the hardest nut to crack
and also provides the richest zoology of finite orbits.

Moving away from character varieties of representations into SL2C, Bouilly–Faraco an-
swered Goldman’s question on orbit closures [Gol06, Problem 2.7] for representations of
closed surface groups into compact abelian Lie groups. Note that when the target group is
abelian, the character variety coincides with the space of representations (the conjugation
action is trivial). They proved that the mapping class group orbit of a representation is
dense if and only if the representation has dense image [BF23, Theorem A].

The study of minimality (or minimality up to finite orbits) is related to a weaker notion
called almost minimality which happens when almost every orbit is dense. Here, “almost
every orbit” refers to the Liouville measure associated to the Goldman symplectic form on
character varieties (Section 2.3)—the so-called Goldman measure. Almost minimality is a
consequence of ergodicity. The mapping class group action on character varieties is known
to be ergodic when the target group is compact. This was first proved by Goldman for
representations of any surface group into SU(2) [Gol97] and later generalized by Pickrell–
Xia to representations of all surface groups into any compact Lie group, with the exception
of the once-punctured torus [PX02, PX03]. Ergodicity of the mapping class group action

1It is worth mentioning that Golsefidy–Tamam also prove an analogous statement for character varieties
of representations into SL2 Zp, where Zp is the ring of p-adic integers. The p-adic version of the theorem
is somewhat weaker than its SU(2) counterpart as they only prove that the closure of an infinite orbit has
nonempty interior [GT, Theorem K].

2Because DT representations only exist for punctured spheres, there is no analogue in positive genus.
3They are the so-called Klein solution and the 237 elliptic solutions discovered by Boalch [Boa05, Boa07]

and Kitaev [Kit06], see also [BM24, Corollary 7.2 and the discussion before].
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on DT components was established in [Mar22] for spheres with an arbitrary number of
punctures, extending results of Goldman about the 4-punctured sphere [Gol03].

There are plenty of other adventures to undertake around the topic of mapping class
group dynamics on character varieties. Here are two examples of unknown territories to
explore. Goldman’s Conjecture [Gol06, Conjecture 3.1] on the ergodicity of the mapping
class group action on intermediate components of the PSL2R character variety of closed
surface groups has only been proven in genus 2 by Marché–Wolff [MW16] and remains
open in higher genuses. Beyond ergodicty, there is the question of unique ergodicity. It
follows from the recent work of Cantat–Dupont–Martin-Baillon that an invariant ergodic
measure for the mapping class group action on the relative SL2C character varieties of
representations of the fundamental group of a 4-punctured sphere is either the Goldman
measure or is supported on a finite orbit [CDMB24].4 It would be interesting to determine
whether a similar classification of invariant measures holds for character varieties on which
we have a good understanding of orbit closures, such as DT components.

1.3. Some ideas about the proof. To prove Theorem A, we need to prove that the
closure of an infinite mapping class group orbit is the whole DT component. Since the
Goldman measure is strictly positive, a closed set is the whole DT component if and only
if it has full measure. By the ergodicity result of [Mar22] (Theorem 2.2), it is therefore
enough to show that the closure of an infinite orbit always has nonempty interior to prove
Theorem A. Constructing the desired open set is the heart of the argument and requires
both an irrationality and a transversality result.

The irrationality statement will follow from Selberg’s Lemma (Theorem 4.1). It implies
that only finitely many rational multiples of π can arise as rotation angles of elliptic
elements in the image of a DT representation (Corollary 4.2). Involving Selberg’s Lemma
in this context is an idea that we borrowed from Cantat–Loray [CL09].

A transversality result is a statement about generating the cotangent space at all (or at
least at most) points in a DT component using differentials of angle functions (Section 2.5)
associated to an explicit family of simple closed curves on the underlying sphere. When
transversality is achieved at a particular point, the Hamiltonian flows of the angle functions
locally parametrize an open neighborhood of the point (Section 3.2) (this explains the
name “transversality”). Being able to generate the cotangent space to a general character
variety using trace functions associated to finitely many fundamental group elements is a
consequence of Procesi’s work [Pro76]. The fact that those fundamental group elements
can be taken to be simple closed curves when the target Lie group is made of rank-2
matrices was observed by Goldman–Xia [GX11, Theorem 2.1]. Transversality results are
usually obtained in an algebraic manner: first, identify sufficiently many trace functions to
generate the coordinate ring of the character variety, then deduce that their differentials
generate the cotangent space at every point. We propose a purely symplectic approach
instead where we establish linear independence between differentials of angle functions by
showing that some Poisson brackets do not vanish (Lemmas 3.3 and 3.10).

More precisely, we’ll identify a minimal set of simple closed curves (where minimal means
that the number of curves is equal to the dimension of the DT component) whose corre-
sponding angle functions have the following properties.

4Their result is more general: the statement holds for stationary ergodic measures, not only invariant
ergodic measures.
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• Their differentials generate the cotangent space to the DT component at every
point in an open dense subset (Corollaries 3.6 and 3.13, as well as Remark 3.14).

• They essentially parametrize the DT component in the sense that prescribing a
value for each angle function determines a finite set of points in the DT component
(Corollaries 3.8 and 3.16).

• The curves can be arranged as the vertices of a connected graph such that whenever
two curves share an edge, the Poisson bracket of the corresponding angle functions
almost never vanishes (Claims 5.18 and 5.22).5

The most challenging argument in the proof of Theorem A consists in showing that an
infinite orbit always contains at least one point—our preferred point—at which transver-
sality is achieved for the set of simple closed curves identified previously (Lemmas 5.3, 5.9,
and 5.16) and which fulfills the expected irrationality condition (Section 5.5). Finding such
a point is not immediate because, for instance, transversality fails to hold at more than
finitely many points of the DT component. Once we have identified our preferred point,
it automatically comes with an open neighborhood foliated by Hamiltonian flow lines by
transversality. The irrationality property says that the value of at least one angle function
at the point is an irrational multiple of π. Arguing using the close connection between
Dehn twists and Hamiltonian flows of angle functions (Section 2.5), we shall eventually
conclude that each of the Hamiltonian flow lines foliating the open neighborhood of our
preferred point are contained in the orbit closure, effectively giving us the open set we
were looking for (Section 5.6).

In order to facilitate the arguments of Section 5, we opt for a proof of Theorem A by
induction on the number of punctures on the underlying sphere. Previte–Xia’s result
from [PX05] for 4-punctured spheres (Theorem 4.3) will serve as the base case. The
parametrization of DT representations by triangle chains developed in [Mar21] clarifies
the inductive scheme on the sphere’s topology, as it aligns naturally with the “gluing” of
representations. A similar inductive approach was also employed in [BM24].

1.4. Organization of the paper. We start by providing a brief review of DT representa-
tions in Section 2, insisting both on the triangle chains parametrization and the subsequent
action-angle coordinates (Section 2.6), as well as the Hamiltonian toric structure of DT
components (Sections 2.5 and 2.7).

Section 3 contains all the transversality statements that we shall need to prove Theo-
rem A (Corollaries 3.6 and 3.13). The main result characterizes the occurrences when the
Poisson bracket of two angle functions vanishes (Lemmas 3.3 and 3.10). We start with
the case of the 4-punctured sphere (Section 3.3), before proceeding with the general case
(Section 3.4).

We continue with some preliminaries in Section 4, including the digression on Selberg’s
Lemma (Section 4.2). We end Section 4 by giving a proof of Theorem A for 4-punctured
spheres which an adaptation of Cantat–Loray’s argument from [CL09]. It is required as a
base case of our inductive proof of Theorem A, and we believe that it will help the reader
to understand better the proof of the general case provided in Section 5.

5This property is not a consequence of the first two in general. Consider, for instance, R2n equipped
with the standard symplectic form

∑
i dxi∧dyi. The coordinate functions x1, . . . , xn, y1, . . . , yn satisfy the

first two properties, but not the last one because the Poisson brackets {x1, xi} and {x1, yi} are identically
zero whenever i ≥ 2.
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2. Background on DT representations

2.1. Overview. We briefly introduce some aspects of DT representations that are rele-
vant for this note. Similar recaps on DT representations can be found in [FM23, BM24]
which we partially duplicate here for the sake of self-containment. Besides recalling their
fundamental properties (Sections 2.2 and 2.3) and their parametrization by triangle chains
(Section 2.6), we insist on some dynamical aspects, covering both the mapping class group
action (Section 2.4) and the toric structure (Sections 2.5 and 2.7).

2.2. Origin and main properties. For every integer n ≥ 3, we fix an oriented topolog-
ical sphere Σ along with a set P of n punctures on Σ. The fundamental group π1Σ can
be presented as

(2.1) π1Σ =
〈
c1, . . . , cn | c1 · · · cn = 1

〉
,

by carefully choosing each ci as the homotopy class of a counterclockwise loop around a
puncture of Σ—a peripheral loop. Such a presentation of π1Σ is called geometric. For an
angle vector α ∈ (0, 2π)P , we introduce the α-relative character variety

Repα
(
Σ,PSL2R

)
as the space of conjugacy classes of representations ρ : π1Σ→ PSL2R which map periph-
eral loops around the punctures p ∈ P to elliptic elements of PSL2R of rotation angles αp.
The conjugacy class of a representation ρ will be denoted by [ρ]. All α-relative character
varieties are smooth manifolds of dimension 2(n − 3), sometimes with an isolated point,
which happens exactly when

∑
p∈P αp is an integer multiple of 2π. We shall adopt the

following terminology

Definition 2.1. An elliptic element of PSL2R has rotation angle ϑ ∈ (0, 2π) if it is
conjugate to a matrix of the form

±
(

cos(ϑ/2) sin(ϑ/2)
− sin(ϑ/2) cos(ϑ/2)

)
.

Whenever the angle vector α satisfies

(2.2)
∑
p∈P

αp > 2π(n− 1),

Deroin–Tholozan proved that Repα(Σn, PSL2R) contains a smooth compact component
diffeomorphic to CPn−3 [DT19]. An analogous compact component exists when instead∑

p∈P αp < 2π; the two are images of each other by the non-trivial outer automorphism of
PSL2R. These compact components had already been identified by Benedetto–Goldman
when Σ is a 4-punctures spheres [BG99]. According to Mondello, the compact com-
ponents discovered by Deroin–Tholozan—which we shall call DT components—are the
unique compact components inside their respective α-relative character varieties [Mon16,
Corollary 4.17]. We will denote DT components by

RepDT
α (Σ) ⊂ Repα(Σ,PSL2R)

and refer to the representations whose conjugacy class lies in RepDT
α (Σ) as DT represen-

tations.
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DT representations have the fundamental property of being totally elliptic, meaning that
every simple closed curve is mapped to an elliptic element inside PSL2R, see [DT19,
Lemma 3.2]. Their image is always a Zariski dense subgroup of PSL2R which is rarely
discrete and therefore often dense. Nevertheless, DT representations all have a geometric
interpretation as holonomies of a certain kind of hyperbolic cone metrics on Σ as explained
in [DT19, Section 4] and further detailed by Fenyes–Maret in [FM23].

2.3. Symplectic and Poisson structures. The diffeomorphisms of [DT19] between DT
components and complex projective spaces are actually isomorphisms of symplectic mani-
folds. The symplectic structure on RepDT

α (Σ) is given by the so-called Goldman symplectic
form ωG [Gol84]. The symplectic form on CPn−3 is the Fubini–Study symplectic form with
total volume equal to

(2.3)
(λπ)n−3

(n− 3)!
, where λ =

∑
p∈P

αp − 2π(n− 1).

Note that λ is a positive constant by (2.2).

Associated to the Goldman symplectic form is the Poisson bracket

{−,−} : C∞(
RepDT

α (Σ)
)
× C∞(

RepDT
α (Σ)

)
→ C∞(

RepDT
α (Σ)

)
defined by {f, g} = ωG(Xf , Xg) for any pair of smooth functions f , g, and whereXf andXg

denote the Hamiltonian vector fields of f and g. Equivalently, {f, g} = df(Xg) = −dg(Xf ).
Goldman famously computed the Poisson brackets of a certain kind of smooth functions
on character varieties constructed from conjugacy invariant functions of the target Lie
group [Gol86]. In Section 3, we will conduct independent computations to characterize
the points inside DT components at which the Poisson bracket of two angle functions
vanishes.

2.4. Mapping class group dynamics. The pure mapping class group of Σ is the group
of isotopy classes of orientation-preserving homeomorphisms of Σ that fix each puncture
individually. We will denote it by PMod(Σ). It is naturally isomorphic to a subgroup of the
group of outer automorphisms of π1Σ by the Dehn–Nielsen–Baer Theorem, as explained
in [FM12, Theorem 8.8]. It therefore naturally acts on any relative character variety
Repα(Σ,PSL2R) by pre-composition and preserves each DT component. The mapping
class group action also preserves the Goldman symplectic form and the associated probabil-
ity Liouville measure νG—the Goldman measure. It turns out that the pure mapping class
group of Σ acts ergodically on every DT component. For 4-punctured spheres, ergodicity
follows from Goldman’s work [Gol03]; the general case was proven in [Mar22].

Theorem 2.2. The action of PMod(Σ) on RepDT
α (Σ) is ergodic with respect to the Gold-

man measure for every angle vector α satisfying the angle condition (2.2).

A consequence of ergodicity is that almost every mapping class group orbit is dense. This
property is sometimes called almost minimality. The purpose of this paper is to go one
step further and prove that every infinite orbit is dense.

Remark 2.3. Interestingly, the mapping class group action on the non-compact components
of Repα(Σ,PSL2R) when Σ is a 4-punctured sphere is partially properly discontinuous,
but can have some ergodic regions too, as related by Palesi in [Pal14].
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2.5. Hamiltonian dynamics. There is another interesting action on RepDT
α (Σ) coming

from Hamiltonian dynamics. To any oriented simple closed curve a on Σ corresponds a
smooth function

(2.4) ϑa : RepDT
α (Σ)→ (0, 2π)

called the angle function of a. It is defined as follows: by total ellipticity of DT represen-
tations (Section 2.2), the image of a under any DT representation ρ is elliptic. We define
ϑa([ρ]) to be the rotation angle of ρ(a) (Definition 2.1). The Hamiltonian vector field of
ϑa will be denoted by Xa. It is defined by the relation ωG(Xa,−) = dϑa. The Hamiltonian
flow of ϑa will in turn be denoted by

Φa : R× RepDT
α (Σ)→ RepDT

α (Σ).

Deroin–Tholozan proved that Φt
a = Φa(t,−) is π-periodic in the variable t [DT19, Propo-

sition 3.3]. The orbits of Φa are therefore either singular points of ϑa, or embedded circles
of length π. In the sequel, we shall refer to these orbits as a-orbits.

For any pair of disjoint simple closed curves, say a1 and a2, the Hamiltonian flows Φa1

and Φa2 just defined commute by a general result of Goldman [Gol86]. As a consequence,
given a pants decomposition of Σ—that means a collection of n− 3 free homotopy classes
of disjoint simple closed curves—the n − 3 associated flows define a Hamiltonian torus
action of (R/πZ)n−3 on RepDT

α (Σ). Such an action is maximal in the sense that n − 3 is
equal to half the dimension of RepDT

α (Σ) and it was originally used by Deroin–Tholozan
to relate RepDT

α (Σ) and CPn−3 via Delzant’s classification of symplectic toric manifolds,
see [DT19] for details.

The mapping class group action and the Hamiltonian dynamics of angles functions are
related by the following classical identity, traditionally attributed to Goldman [Gol97]. To
an un-oriented simple closed curve a corresponds a element τa ∈ PMod(Σ) called the Dehn
twist along the curve a. A precise definition can be found in [FM12, Chapter 3]. As a
diffeomorphism of RepDT

α (Σ), the Dehn twist τa and the Hamiltonian flow Φa are related
by

(2.5) τa = Φt=ϑa/2
a .

In other words, τa·[ρ] is obtained by rotating [ρ] along its a-orbit by an angle ϑa([ρ])/2. We
can therefore think of the Dehn twist τa as a “discretization” of the Hamiltonian flow Φa.
This interpretation of Dehn twists leads to the following fact.

Fact 2.4. When ϑa([ρ]) is an irrational multiple of π, the τa-orbit of [ρ] is dense inside
its a-orbit.

2.6. Parametrization by triangle chains. Using total ellipticity of DT representations,
it is possible to build a combinatorial model for RepDT

α (Σ) in terms of polygonal objects
in the hyperbolic plane called triangle chains. We briefly recall Maret’s construction of
triangle chains from [Mar21] and refer the reader the original paper for more details.

To associate a triangle chain to a DT representation, one first picks a pants decomposition,
say B, of Σ. We always work with so-called chained pants decompositions, meaning that
every pair of pants contains at least one of the punctures of Σ. The next step is to find a
geometric presentation of π1Σ which is compatible with B in the following sense. Recall
that a geometric presentation of π1Σ has generators c1, . . . , cn that satisfy c1 · · · cn = 1
(Section 2.2), where each ci is the homotopy class of a peripheral loop. Such a presen-
tation is said to be compatible with B, if the n − 3 pants curves lift to the fundamental
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group elements bi = (c1 · · · ci+1)
−1 for i = 1, . . . , n − 3. The pants decomposition of Σ

given by b1, . . . , bn−3 is called the standard pants decomposition associated to the geomet-
ric generators (c1, . . . , cn). It is always possible to find a geometric presentation of π1Σ
which is compatible with a given chained pants decomposition, as explained in [Mar21,
Appendix B].

c1 b1 b2 b3 c6

c2 c3 c4 c5

Note that a geometric presentation of π1Σ induces a bijection P → {1, . . . , n} which gives
a labeling of the punctures. In practice, we will use this labeling to index variables, such
as the angle vector α, on {1, . . . , n} rather than on P.

Now that we have found a compatible geometric presentation to our chosen pants decom-
position B, we can explain how to associate a triangle chain to a DT representation ρ
which we will call the B-triangle chain of ρ. It is made of the following n− 2 hyperbolic
triangles.

• Draw the fixed points C1, . . . , Cn of ρ(c1), . . . , ρ(cn) respectively—the exterior ver-
tices—and the fixed points B1, . . . , Bn−3 of ρ(b1), . . . , ρ(bn−3) respectively—the
shared vertices. Here we are using that ρ is totally elliptic in order to say that
ρ(b1), . . . , ρ(bn−3) are elliptic.

• Draw a geodesic segment between two of these points if the corresponding curves
on Σ belong to the same pair of pants. We end up with a chain of n− 2 triangles
whose vertices are (C1, C2, B1), (B1, C3, B2), . . . , (Bn−3, Cn−1, Cn).

C1

C2

C3

C4

C5

C6

B1

B2

B3
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Chains of triangles enjoy the following pleasant properties, see [Mar21, Section §3.2] for
more details and proofs.

• The interior angle at each exterior vertex Ci is π − αi/2.

• The two interior angles on each side of a shared vertex Bi add up to π.

• The triangles are clockwise oriented for the order of points given above.

It is possible that triangles overlap or that up to all but one triangle are degenerate to a
single point. We shall say that the triangle chain is singular whenever this happens and
regular otherwise. It is however not possible that all the triangles are degenerate since the
total area of the triangles in the chain is λ/2, where λ is the positive constant introduced
in (2.3).

The realization of DT representations as triangle chains can be used to produce action-
angle coordinates for RepDT

α (Σ), as explained in [Mar21]. The action coordinates are
given by the angle functions (introduced in (2.4)) associated to the pants curves of B.
For simplicity, we shall write βi = ϑbi . It is another important feature of triangle chains
that the interior angles on both sides of the shared vertex Bi are equal to π − βi/2 and
βi/2, as shown on the picture below. The angle coordinates γ1, . . . , γn−3 are the angles
“between” consecutive triangles in the chain. It is worth mentioning that not all the angles
γ1, . . . , γn−3 are well-defined when some triangles in the chain are degenerate.

C1

C2

C3

C4

C5

C6

B1

B2

B3

γ1

γ2

γ3

π − β1/2 π − β2/2

π − β3/2

The action coordinates β1, . . . , βn−3 along with the angle coordinates γ1, . . . , γn−3 com-
pletely parametrize RepDT

α (Σ). Since these coordinates were constructed from the pants
decomposition B, the actions of the Dehn twists τb1 , . . . , τbn−3 can be expressed in a simple

way. If [ρ] ∈ RepDT
α (Σ) is not fixed by τbi and it has coordinates (β1, . . . , βn−3, γ1, . . . , γn−3),

then the coordinates of τbi ·[ρ] are the same as those of [ρ] except for

(2.6) γi(τbi ·[ρ]) = γi + βi.

For more details, the reader is invited to consult [Mar21].
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2.7. Moment map. The functions β1, . . . , βn−3 are essentially the components of a mo-
ment map for the Hamiltonian torus action described in Section 2.5. A convenient choice
of a moment map µ : RepDT

α (Σ) → Rn−3 is the following. We define µi([ρ]) as 1/λ times
the non-negative area of the (i+1)th triangle in the B-triangle chain of [ρ], where λ is the
constant introduced in (2.3). In other words, µ = (µ1, . . . , µn−3) with

µ1 =
1

2λ
(α3 − β1 + β2 − 2π)

µ2 =
1

2λ
(α4 − β2 + β3 − 2π)

...

µn−3 =
1

2λ
(αn−1 + αn − βn−3 − 2π).

For convenience, we also introduce

µ0 =
1

2λ
(α1 + α2 + β1 − 4π).

The image of µ inside Rn−3 is isometric to the standard polytope of Rn−3 of side length λ.
It is called themoment polytope of µ and was first described by Deroin–Tholozan in [DT19].
The preimage of the interior of the moment polytope is an open and dense part of
RepDT

α (Σ) that fibrates into Lagrangian tori via µ. We denote it by

R
◦
epDT

B,α(Σ) ⊂ RepDT
α (Σ)

because it depends on the initial choice of pants decomposition B. It consists of all [ρ]
whose B-triangle chain is regular. The fibers of the moment map that lie inside R

◦
epDT

B,α(Σ)
will be called regular fibers. The preimage of the boundary of the moment polytope is made
of smaller dimensional isotropic tori called irregular fibers. The points in the irregular fibers
are characterized by at least one triangle being degenerate in the B-triangle chain.

It was already observed in [BM24, Lemma 5.1] that the inequalities µi ≥ 0 and αi < 2π
implies that

(2.7) β1 < β2 < · · · < βn−3.

In the following, it will be useful to switch point of views between the components of the
moment map µ and the action coordinates β1, . . . , βn−3. We shall also require a criterion
to identify the fixed points of a given Dehn twist in terms of triangle chains. The following
fact is an immediate consequence of the definition of the moment map µ.

Fact 2.5. For any [ρ] ∈ RepDT
α (Σ) and any i = 1, . . . , n − 3, the following equivalences

hold.

(dβi)[ρ] = 0 ⇔ µ0([ρ]) = · · · = µi−1([ρ]) = 0 or µi([ρ]) = · · · = µn−3([ρ]) = 0
(2.8)

⇔ τbi ·[ρ] = [ρ]

⇔ the bi-orbit of [ρ] is a point

In other words, the critical points of βi coincide with the fixed points of the Dehn twist τbi
and they consist of all the points whose B-triangle chain is of the following shape: all the
triangles to either the left or the right of the shared vertex Bi are degenerate.
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3. Infinitesimal transversality via Poisson brackets

3.1. Overview. The goal of this section is to describe an explicit family of simple closed
curves on Σ whose angle functions, once differentiated, generate the cotangent space to
RepDT

α (Σ), at least at every point of R
◦
epDT

B,α(Σ). By adopting a geometric perspective,
this happens when enough Hamiltonian flow lines meet transversely at every point (Sec-
tion 3.2). We begin with the case of a 4-punctured sphere (Section 3.3) before generalizing
the arguments to an arbitrary number of punctures (Section 3.4) for two reasons. First,
it brings some clarity on the technical arguments involved, and, second, the transversal-
ity result for n = 4 (Corollary 3.6) is slightly stronger than its generalization (Corol-
lary 3.13).

3.2. Local transversality. We start by explaining how to parametrize a neighborhood
of a point by using Hamiltonian flow lines. Let M denote a 2m-dimensional symplectic
manifold and f1, . . . , f2m : M → R be Hamiltonian functions such that the cotangent space
to M at some point x has basis (df1)x, . . . , (df2m)x. The Inverse Function Theorem implies
the existence of an open neighborhood U ⊂ M of x which can be parametrized by the
cube (−ε, ε)2m ⊂ R2m via the diffeomorphism

Ψ: (−ε, ε)2m → U ⊂M

(t1, . . . , t2m) 7→ Φt1
f1
◦ · · · ◦ Φt2m

f2m
(x).

Lemma 3.1. For every permutation (f ′
1, . . . , f

′
2m) of (f1, . . . , f2m), there exists ε′ > 0 such

that the map

Ψ′ : (−ε′, ε′)2m →M

(t1, . . . , t2m) 7→ Φt1
f ′
1
◦ · · · ◦ Φt2m

f ′
2m

(x)

is a well-defined diffeomorphism onto an open subset U ′ of U .

Proof. The Inverse Function Theorem implies the existence of ε′ > 0 such that Ψ′ is a well-
defined diffeomorphism onto an open subset U ′ ofM . What we have to prove is that we can
shrink ε′ if necessary to guarantee that U ′ ⊂ U . This follows from a standard topological
argument. The decreasing sequence of compact subsets Ψ′([−1/n, 1/n]2m) ⊂ U ′ converges
to the singleton {x} and must therefore eventually be contained inside U . □

In particular, when we are dealing with two Hamiltonian functions f and g such that
the Poisson bracket {f, g}(x) ̸= 0, then f is a diffeomorphism from a small open interval
around x along its g-orbit to an interval in R. The same conclusion holds if we permute
the roles of f and g. This gives us the following fact.

Fact 3.2. If {f, g}(x) ̸= 0, then there are densely many points in an open interval around
x contained in its g-orbit whose value under f is an irrational multiple of π.

3.3. The 4-punctured sphere. Let us consider first the case of a sphere with four
punctures. We work with an arbitrary geometric presentation of π1Σ with four genera-
tors c1, c2, c3, c4 and its standard pants decomposition B given by the fundamental group
element b = (c1c2)

−1. The family of curves we want to consider is the following:

b = (c1c2)
−1, d = (c2c3)

−1, e = (c1c3)
−1.
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b

d

c2 c3

c4c1

e

c2 c3

c4c1

It is known since Fricke, Klein and Vogt that the coordinate ring of the relative SL2C
character variety of Σ with boundary traces 2 cos(αi/2) can be generated using the trace
functions Trb, Trd, and Tre associated to the curves b, d, and e for any angle vector α (see
for instance [CL09]). Recall that the trace function associated to a fundamental group el-
ement γ ∈ π1Σ is the function Trγ defined on the character variety by Trγ([ρ]) = Tr(ρ(γ)).
Being able to identify generators of the coordinate ring has geometrical implications: the
differentials dTrb, dTrd, and dTre generate the cotangent space to the relative character
variety at every point.

We show how to circumvent the algebraic geometry and reprove this statement by com-
puting Poisson brackets. We shall use the action-angle coordinates (β, γ) from Section 2.6.
Since DT representations take values in PSL2R (and not SL2R), it will be more convenient
to work with angles functions (already introduced in (2.4)) rather than trace functions.
We abbreviate δ = ϑd and ε = ϑe. We start by characterizing the points at which the
Poisson brackets {β, δ} and {β, ε} vanish.

Lemma 3.3. When Σ is a 4-punctured sphere, a point [ρ] ∈ RepDT
α (Σ) with coordinates

β = β([ρ]) and γ = γ([ρ]) satisfies

{β, δ}([ρ]) = 0 ⇐⇒ (dβ)[ρ] = 0 or γ ∈ {0, π}
{β, ε}([ρ]) = 0 ⇐⇒ (dβ)[ρ] = 0 or γ ∈ {β/2, β/2− π}.

In particular, since β ∈ (0, 2π), we have {β, δ}([ρ]) = {β, ε}([ρ]) = 0 if and only if
(dβ)[ρ] = 0.

Proof. In the first place, we notice that if (dβ)[ρ] = 0 then {β, δ}([ρ]) = 0. Thus let us
assume that (dβ)[ρ] ̸= 0. This means that [ρ] lies in the regular fibers of the moment map
(Section 2.7) or, equivalently, that the B-triangle chain of [ρ] consists of two non-degenerate
triangles. Since {β, δ} = −dδ(Xb) by definition of the Poisson bracket (Section 2.3), we
have that {β, δ}([ρ]) = 0 if and only if [ρ] is a singular point of the function δ restricted
to the b-orbit of [ρ] and similarly for ε.

We would like to compare the three triangle chains of [ρ] associated to the three pants
decompositions B, D, and E determined, respectively, by the fundamental group elements
b, d, and e. To do so, we first need to find a geometric presentation of π1Σ compatible
with each pants decomposition. Because of the definition of b, the geometric generators
(c1, c2, c3, c4) are compatible with the pants decomposition given by b = (c1c2)

−1. We
also note that (c2, c3, c4, c1) are geometric generators compatible with d = (c2c3)

−1 and
(c1, c3, c4, (c3c4)

−1c2(c3c4)) are geometric generators compatible with e = (c1c3)
−1. We are

assuming that the B-triangle chain of [ρ] is regular, so it is made of two non-degenerate
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triangles (C1, C2, B) and (B,C3, C4) joined at the shared vertex B. They have respective
interior angles (π − α1/2, π − α2/2, π − β/2) and (β/2, π − α3/2, π − α4/2).

Let D and E denote the fixed points of ρ(d) and ρ(e) and let δ = δ([ρ]) and ε = ε([ρ]).
The first triangle in the D-triangle chain of [ρ] has vertices (C2, C3, D). Such a triangle
is degenerate if and only if C2 = C3, which can only happen when γ = 0. In that case,
(dδ)[ρ] = 0 by Fact 2.5 and {β, δ}([ρ]) = 0. Otherwise, the triangle (C2, C3, D) is non-

degenerate and has interior angles (π − α2/2, π − α3/2, π − δ/2). The first triangle in the
E-triangle chain of [ρ] has vertices (C1, C3, E). It is degenerate exactly when C1 = C3,
which implies γ = β/2 − π and {β, ε}([ρ]) = 0 as above. Otherwise, it is non-degenerate
and has interior angles (π − α1/2, π − α3/2, π − ε/2).

C4

C1
C3

C2

B

D

π − α2/2

γ
π − α3/2

π − δ/2

C4

C1
C3

C2

B

E

π − β/2
π − α1/2

γ
π − α3/2

π − ε/2

The hyperbolic law of cosines applied to the triangle (C2, C3, D) gives

(3.1) − cos(δ/2) = − cos(α2/2) cos(α3/2) + sin(α2/2) sin(α3/2) cosh(d(C2, C3)).

If we apply it again to the triangle (C2, C3, B), we obtain

(3.2) cos(γ) =
cosh(d(C2, B)) cosh(d(C3, B))− cosh(d(C2, C3))

sinh(d(C2, B)) sinh(d(C3, B))
.

We can eliminate the term cosh(d(C2, C3)) in both equations (3.1) and (3.2) to obtain

cos(δ/2) = cos(γ) · k1 + k2

(3.3)

k1 = sin(α2/2) sin(α3/2) sinh(d(C2, B)) sinh(d(C3, B))

k2 = cos(α2/2) cos(α3/2)− sin(α2/2) sin(α3/2) cosh(d(C2, B)) cosh(d(C3, B)).

Since α2, α3 are fixed parameters and d(C2, B), d(C3, B) are constant along b-orbits, we
conclude that both k1 and k2 are constant along b-orbits. Note that k1 vanishes if and only
if C2 = B or C3 = B, which is equivalent to (dβ)[ρ] = 0 by Fact 2.5. Differentiating (3.3)
along the b-orbit of [ρ], we obtain

(3.4) {β, δ}([ρ]) = −(dδ)[ρ](Xb) =
−2k1 sin(γ)
sin(δ/2)

(dγ)[ρ](Xb).

Recall that (dγ)[ρ](Xb) ̸= 0 because γ is the angle coordinate paired with β. Moreover,

since δ takes values in (0, 2π), sin(δ/2) never vanishes. As a consequence, we conclude
from (3.4) that {β, δ}([ρ]) = 0 if and only if sin(γ) = 0; that is γ ∈ {0, π}.

Analogously, the hyperbolic law of cosines applied to the triangle (C1, C3, E) gives

(3.5) − cos(ε/2) = − cos(α1/2) cos(α3/2) + sin(α1/2) sin(α3/2) cosh(d(C1, C3))
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and, when applied to the triangle (C1, C3, B), it gives

(3.6) − cos(β/2− γ) =
cosh(d(C1, B)) cosh(d(C3, B))− cosh(d(C1, C3))

sinh(d(C1, B)) sinh(d(C3, B))
.

As above, if we combine equations (3.5) and (3.6) we obtain

(3.7) cos(ε/2) = cos(β/2− γ) · k′1 + k′2,

where k′1 and k′2 are constant along b-orbits and k′1 vanishes if and only if (dε)[ρ] = 0.
Because β is also constant along b-orbits, after differentiating (3.7) along the b-orbit of [ρ],
we obtain

(3.8) {β, ε}([ρ]) = −(dε)[ρ](Xb) =
2k′1 sin(β/2− γ)

sin(ε/2)
(dγ)[ρ](Xb).

For the same reasons as before, we conclude from (3.8) that {β, ε}([ρ]) = 0 if and only if
sin(β/2− γ) = 0, which is equivalent to γ ∈ {β/2, β/2− π}. □

Remark 3.4. Lemma 3.3 is expressed in terms of the action-angle coordinates (β, γ). It is
also possible to formulate an analogous statement in terms of the action-angle coordinates
associated to the pants decomposition D. The conclusion would then be that

{δ, β}([ρ]) = {δ, ε}([ρ]) = 0 ⇐⇒ (dδ)[ρ] = 0.

Remark 3.5. It is quite interesting to observe that the locus of points in RepDT
α (Σ) where

{β, δ} = 0 identifies with RP1 ⊂ CP1 (the blue curve on the picture below) under the
symplectomorphism from [Mar21, Section 4] and the locus where {β, ε} = 0 is its image
by a “half Dehn twist” along the curve b.

γ = 0 γ = π

dβ = 0

dβ = 0

β−→

Corollary 3.6. When Σ is a 4-punctured sphere, the cotangent space to RepDT
α (Σ) is

generated by dβ, dδ, and dε at every point:

T ∗RepDT
α (Σ) =

〈
dβ, dδ, dε

〉
.

Proof. We first prove that the three Poisson brackets {β, δ}, {β, ε}, and {δ, ε} can never
vanish simultaneously. If there were a point [ρ] ∈ RepDT

α (Σ) at which all three brackets
vanished, then (dβ)[ρ] = (dδ)[ρ] = 0 as a consequence of Lemma 3.3 and Remark 3.4.

In terms of the B-triangle chain of [ρ], (dβ)[ρ] vanishes if and only if C1 = C2 or C3 = C4

by Fact 2.5. Similarly, in terms of the D-triangle chain of [ρ], (dδ)[ρ] vanishes if and only if
C2 = C3 or C4 = C1 for the same reason. Thus, whenever both (dβ)[ρ] and (dδ)[ρ] vanish,
three out of the four vertices {C1, C2, C3, C4} must coincide. In particular, both triangles
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in the B-triangle chain of [ρ] would be degenerate and this is impossible. As a consequence,
we conclude that dβ and dδ cannot both vanish at the same point in RepDT

α (Σ).

So, for an arbitrary point [ρ] ∈ RepDT
α (Σ), one of the real numbers {β, δ}([ρ]), {β, ε}([ρ]),

or {δ, ε}([ρ]) is non-zero. Let us assume first that {β, δ}([ρ]) ̸= 0. Then, by definition of
the Poisson bracket, we get that ωG(Xb([ρ]), Xd([ρ])) ̸= 0. This implies that the tangent
space of RepDT

α (Σ) at [ρ] is generated by Xb([ρ]) and Xd([ρ]) because it is a 2-dimensional
vector space. Equivalently, the cotangent space at [ρ] is generated by (dβ)[ρ] and (dδ)[ρ].
In the same fashion, if {β, ε}([ρ]) ̸= 0, then we would similarly obtain that the cotangent
space at [ρ] is generated by (dβ)[ρ] and (dε)[ρ] and if {δ, ε}([ρ]) ̸= 0, then it is generated
by (dδ)[ρ] and (dε)[ρ]. □

Remark 3.7. If we study the proof of Corollary 3.6 carefully, we shall learn which pair
of differentials {dβ, dδ, dε} form a basis of the cotangent at every point. We would then
obtain the following three possibilities.

(dβ)[ρ] ̸= 0 and γ([ρ]) /∈ {0, π} =⇒ T ∗
[ρ]Rep

DT
α (Σ) =

〈
(dβ)[ρ], (dδ)[ρ]

〉
(dβ)[ρ] ̸= 0 and γ([ρ]) ∈ {0, π} =⇒ T ∗

[ρ]Rep
DT
α (Σ) =

〈
(dβ)[ρ], (dε)[ρ]

〉
(dβ)[ρ] = 0 =⇒ T ∗

[ρ]Rep
DT
α (Σ) =

〈
(dδ)[ρ], (dε)[ρ]

〉
We can infer yet another consequence from the trigonometric computations in the proof
of Lemma 3.3. It says that each pair of angle functions (β, δ) and (β, ε) essentially
parametrizes RepDT

α (Σ) (up to finite redundancy).

Corollary 3.8. When Σ is a 4-punctured sphere, a b-orbit intersects a d-orbit or an
e-orbit in at most two points. In other words, if ζ ∈ {δ, ε}, then the map

(β, ζ) : RepDT
α (Σ)→ (0, 2π)2

is at most two-to-one.

Proof. Let us fix a b-orbit, or in other words, let us fix a level set of the function β. If the
b-orbit is a single point, the conclusion is immediate. Assume now that the b-orbit is a
circle. In that case, it is parametrized by the angle coordinate γ. If we look again at the
system of trigonometric equations (3.3), we see that once the value of δ is prescribed, there
are at most two values of γ that solves the system (one being 2π minus the other). This
shows that a b-orbit intersects a d-orbit in at most two points. If we instead combine (3.5)
and (3.6), we can write a similar argument to show that a b-orbit intersects an e-orbit in
at most two points. □

Remark 3.9. An alternative argument (of algebraic flavor) to prove Corollary 3.8 can be
found in [BM24, Fact 4.3].

3.4. General case. We proceed with the general case where the number of punctures n
on Σ is arbitrarily large. We fix a geometric presentation of π1Σ with generators c1, . . . , cn
and consider its standard pants decomposition B. When Σ has five punctures or more,
we shall only provide a family of simple closed curves whose angle functions generate the
cotangent space at every point of R

◦
epDT

B,α(Σ). Recall from Section 2.7 that R
◦
epDT

B,α(Σ) is

the open and dense subset of RepDT
α (Σ) that consists of all regular fibers of the moment
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map associated to the pants decomposition B. The simple closed curves that we want to
consider are indexed by i = 1, . . . , n− 3:

bi = (c1 · · · ci+1)
−1, di = (ci+1ci+2)

−1, ei = c−1
i+2bi−1 = (c1 · · · cici+2)

−1.

c1 b1 b2 b3
. . .

c2 c3 c4 c5

d1 d2 d3

c1 . . .e1 e2
e3

c2 c3 c4 c5

The fundamental group elements b1, . . . , bn−3 are the ones defining the standard pants
decomposition B. The associated action-angle coordinates introduced in Section 2.6 are
(β1, . . . , βn−3, γ1, . . . , γn−3). The curves di and ei intersect bi twice and are disjoint from
all other curves bj for j ̸= i. It will be convenient to abbreviate the corresponding angle
functions by δi = ϑdi and εi = ϑei .

We start by characterizing the points of R
◦
epDT

B,α(Σ) at which the Poisson brackets {βi, δi}
and {βi, εi} vanish. We shall express such a condition in terms of the action-angle coordi-
nates associated to B.

Lemma 3.10. If [ρ] ∈ R
◦
epDT

B,α(Σ) has coordinates (β1, . . . , βn−3, γ1, . . . , γn−3), then for
every i = 1, . . . , n− 3 it holds that

{βi, δi}([ρ]) = 0 ⇐⇒ γi ∈ {0, π}
{βi, εi}([ρ]) = 0 ⇐⇒ γi ∈ {βi/2, βi/2− π}.

In particular, since βi ∈ (0, 2π), {βi, δi} and {βi, εi} cannot simultaneously vanish on
R

◦
epDT

B,α(Σ).

Proof. We shall work with the B-triangle chain of [ρ] and, since we are assuming that
[ρ] lies in R

◦
epDT

B,α(Σ), all the triangles in the chain of [ρ] are non-degenerate. Unlike the
situation in Lemma 3.3, the curves di and ei are not pants decompositions on their own.
We would like to complete each of them into pants decompositions Di and Ei of Σ. We
can take the pants decomposition Di to be the standard pants decomposition associated
to the geometric generators

(ci+1, ci+2, . . . , cn, c1, . . . , ci).

The first triangle in the Di-triangle chain of [ρ] has vertices (Ci+1, Ci+2, Di) and interior
angles (π−αi+1/2, π−αi+2/2, π−δi/2), whereDi is the fixed point of ρ(di) and δi = δi([ρ]).
It can be degenerate and this happens exactly when Ci+1 = Ci+2, which is only possible
if γi = 0. In that case, (dδi)[ρ] = 0 by Fact 2.5 and thus {βi, δi}([ρ]) = 0.
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Similarly, the pants decomposition Ei will be taken to be the standard pants decomposition
associated to the geometric generators

(c1, . . . , ci, ci+2, ci+3, . . . , cn, (ci+2 · · · cn)−1ci+1(ci+2 · · · cn)).
The ith triangle in the Ei-triangle chain of [ρ] has vertices (Bi−1, Ci+2, Ei), where Ei is
the fixed point of ρ(ei) (we are adopting the convention that B0 = C1). It is degenerate
if and only if Bi−1 = Ci+2, which implies γi = βi/2 − π. In that case, {βi, εi}([ρ]) = 0
because (dεi)[ρ] = 0 by Fact 2.5. Otherwise, the triangle (Bi−1, Ci+2, Ei) is non-degenerate
and the interior angle at Bi−1 coincides with the interior angle at Bi−1 in the triangle
(Bi−1, Ci+1, Bi) from the B-triangle chain of [ρ]. This is because the B-triangle chain and
Ei-triangle chain of [ρ] have the same first i− 1 triangles. It is thus equal to βi−1/2 (with

the convention that β0 = 2π − α1). The other two angles are π − αi+2/2 and π − εi/2,
with εi = εi([ρ]).

Bi+1

Bi−1
Ci+2

Ci+1

Bi

Di

π − αi+1/2

γi

π − αi+2/2

π − δi/2

Bi+1

Bi−1
Ci+2

Ci+1

Bi

Ei

π − βi/2

βi−1/2

γi

π − αi+2/2

π − εi/2

Once we observed that βi−1 is constant along bi-orbits, we can apply the same trigono-
metric computations as in the proof of Lemma 3.3 to the triangles shown in the pictures
above to obtain relations of the kind

(3.9) cos(δi/2) = cos(γi) · k1 + k2, cos(εi/2) = cos(βi/2− γi) · k′1 + k′2,

where k1, k2, k
′
1, k

′
2 are constant along bi-orbits. The conclusion follows as in Lemma 3.3.

□

Remark 3.11. Lemma 3.10 is a more precise version of [Mar22, Lemma 3.3]. Not only it
says that the Poisson bracket {βi, δi} vanishes at most two points along each bi-orbit, it
also gives the precise value of the angle coordinates γi at which this happens.

Remark 3.12. The observation made in Remark 3.5 extends as follows. The set of points
in R

◦
epDT

B,α where all the Poisson brackets {βi, δi} vanish for every i = 1, . . . , n − 3 is

mapped inside the real Lagrangian submanifold RPn−3 ⊂ CPn−3 by the symplectomor-
phism of [Mar21, Section 4].

Corollary 3.13. The cotangent space to RepDT
α (Σ) at every point of R

◦
epDT

B,α(Σ) is gener-
ated by the differentials dβi, dδi, and dεi:

T ∗R
◦
epDT

B,α(Σ) =
〈
dβi, dδi, dεi | i = 1, . . . , n− 3

〉
.

Proof. Lemma 3.10 says that, for every i = 1, . . . , n − 3, the Poisson brackets {βi, δi}
and {βi, εi} cannot both vanish on R

◦
epDT

B,α(Σ). Let us first assume that {βi, δi}([ρ]) ̸= 0.
Recall that, since the curve di is disjoint from the curves bj for j ̸= i, it follows that
{βj , δi}([ρ]) = 0 for every j ̸= i. The functions β1, . . . , βn−3, γ1, . . . , γn−3 form a system of
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action-angle coordinates for R
◦
epDT

B,α(Σ), implying that the cotangent space to R
◦
epDT

B,α(Σ)
has everywhere a basis given by dβi, dγi for i = 1, . . . , n − 3. When we express (dδi)[ρ]
is this basis, the coefficient in front of (dγj)[ρ] is equal to {βj , δi}([ρ]) (up to maybe a
sign). We conclude that (dδi)[ρ] has zero coordinate for (dγj)[ρ] when j ̸= i and non-zero
coordinate for (dγi)[ρ]. In other words, we can write (dγi)[ρ] as a linear combination of
(dδi)[ρ] and (dβ1)[ρ], . . . , (dβn−3)[ρ]. The same conclusion for (dεi)[ρ] holds if we are in the

case {βi, εi}([ρ]) ̸= 0. This shows that the cotangent space to R
◦
epDT

B,α(Σ) at [ρ] is generated
by (dβi)[ρ], (dδi)[ρ], and (dεi)[ρ] for i = 1, . . . , n− 3. □

Remark 3.14. Our proof of Corollary 3.13 actually shows the following stronger statement:
a basis of the cotangent space to R

◦
epDT

B,α(Σ) at [ρ] is given by (dβ1)[ρ], . . . , (dβn−3)[ρ] and
carefully picking one of (dδi)[ρ] and (dεi)[ρ] for every i = 1, . . . , n−3. Moreover, we can pick
(dδi)[ρ] over (dεi)[ρ] as long as {βi, δi}([ρ]) ̸= 0, which happens exactly when γi /∈ {0, π}
by Lemma 3.10 (here γi denotes the ith angle coordinate of [ρ]). In other words,

[ρ] ∈ R
◦
epDT

B,α(Σ) and γi /∈ {0, π} ∀i =⇒ T ∗
[ρ]R

◦
epDT

B,α(Σ) =
〈
dβi, dδi | i = 1, . . . , n− 3

〉
.

Remark 3.15. The conclusion of Corollary 3.13 only holds at points of R
◦
epDT

B,α(Σ), and in
general not on the whole DT component if n ≥ 5. The reason is that there are points
[ρ] ∈ RepDT

α (Σ) where the three differentials (dβi)[ρ], (dδi)[ρ], (dεi)[ρ] vanish simultaneously
for some i (consider for instance points [ρ] for which both moment map components µi−1

and µi vanish). In order to generate the cotangent space at every point of RepDT
α (Σ) using

the differential of angle functions associated to a specific family of simple closed curves
one would necessarily have to consider more curves than just bi, di, and ei.

We can formulate a generalization of Corollary 3.8 for an arbitrary number of punctures.
It says that the angle functions β1, . . . , βn−3 and δ1, . . . , δn−3 essentially parametrizes
R

◦
epDT

B,α(Σ) (up to finite redundancy).

Corollary 3.16. For every choice of ζi ∈ {δi, εi}, the preimage of every point under the
map

(β1, . . . , βn−3, ζ1, . . . , ζn−3) : R
◦
epDT

B,α(Σ)→ (0, 2π)2(n−3)

consists of at most 2n−3 points.

Proof. It’s enough to show that the prescription of a value for βi, as well as a value for
δi or εi forces the angle coordinate γi to take one among two possible values for every
i = 1 . . . , n− 3. This, however, follows directly from (3.9). □

4. Density of infinite orbits: preliminaries

4.1. Overview. This section is a preparation to the proof that infinite orbits are dense
in DT components (Theorem 5.1). We introduce one of the key tools: Selberg’s Lemma
(Section 4.2). We also include a proof that closures of infinite orbits are open for DT
representations of 4-punctured spheres (Section 4.3).

4.2. Order of rational rotations. The image of a DT representation may contain ellip-
tic elements of PSL2R whose angle of rotation are rational multiples of π. We call them
rational rotations. We would like to understand which rational rotations can simultane-
ously be in the image of a DT representation. It turns out that only finitely many rational
rotation angles are possible. This is a consequence of Selberg’s Lemma.
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Theorem 4.1 (Selberg’s Lemma). A finitely generated linear group over a field of char-
acteristic zero is virtually torsion free.

Applied to our context, Selberg’s Lemma says that the image of a DT representation
ρ : π1Σ→ PSL2R is virtually torsion free. This means that there is an index Nρ subgroup
of ρ(π1Σ) which has no torsion. In particular, the order of any torsion element in ρ(π1Σ)
must divide Nρ. This means that the possible values for the rotation angles of rational
rotations in ρ(π1Σ) are of the form 2πa/b where 0 < a < b are coprime integers and b
divides Nρ. This describes a finite family of angles.

Corollary 4.2. The set of rotation angles of all the rational rotations in the image of a
DT representation is finite.

We adopt the following notation. For a DT representation ρ, we shall denote by

Q ⊂ πQ

the finite set of rotation angles of rational rotations in the image of ρ. It is clear that the
set Q is invariant under conjugation of ρ. It is also constant along mapping class group
orbits since all orbit points have the same image up to conjugation. We can therefore
think of Q as an invariant of the mapping class group orbit of [ρ].

4.3. The 4-punctured sphere. We recall Cantat–Loray’s argument from [CL09, p.2962]
to show that infinite orbits in a DT components of a 4-punctured sphere are dense, reprov-
ing a result originally due to Previte–Xia [PX05]. Our presentation differs from the original
in the sense that we use the transversality results from Section 3.3 which we obtained via
symplectic geometry, rather than using the algebraic properties of trace coordinates.

Theorem 4.3 ([PX05, CL09]). The closure of every infinite mapping class group orbit
contained in a DT component of a 4-punctured sphere is open. Consequently, the closure
of the orbit is the whole DT component.

The proof of Theorem 4.3 unfolds over the next sections (Sections 4.3.1—4.3.4).

4.3.1. Structure of the proof. To prove Theorem 4.3, we start by fixing some point [ρ] ∈
RepDT

α (Σ) with infinite mapping class group orbit. We denote by Orb([ρ]) its mapping

class group orbit and by Orb([ρ]) its closure. Once we shall have proven that Orb([ρ])

is open, it will follow that Orb([ρ]) = RepDT
α (Σ) because RepDT

α (Σ) is connected. To

show that Orb([ρ]) is open, we shall construct an open neighborhood U[ρ′] ⊂ Orb([ρ])

around every point [ρ′] inside Orb([ρ]). We start by constructing U[ρ′] around every point
[ρ′] ∈ Orb([ρ]) (Section 4.3.3). It will be enough to do so for one specific point in Orb([ρ])
(Section 4.3.2) since we can then transport the open neighborhood to every other orbit
point by letting PMod(Σ) act. We shall then explain how to obtain a similar open set for

points in Orb([ρ]) \Orb([ρ]) (Section 4.3.4).

4.3.2. Choosing a point [ρ′] in Orb([ρ]). We shall work with the curves b, d, e and the
corresponding angle functions β, δ, ε that we introduced in Section 3.3. Let Q be the
finite set of rational rotation angles in the image of any point in Orb([ρ]) (introduced after
Corollary 4.2). Corollary 3.8 implies that both β−1(Q)∩ δ−1(Q) and β−1(Q)∩ ε−1(Q) are
finite subsets of RepDT

α (Σ). Moreover, since we are working with 4-punctured spheres, the
function β has exactly two critical points on RepDT

α (Σ). Therefore, since we are assuming
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that Orb([ρ]) is infinite, there exists a point [ρ′] ∈ Orb([ρ]) such that (dβ)[ρ′] ̸= 0 and such

that [ρ′] lies outside of the sets β−1(Q) ∩ δ−1(Q) and β−1(Q) ∩ ε−1(Q).

4.3.3. Constructing the open set U[ρ′]. We now apply Lemma 3.3 to the point [ρ′]. Since
(dβ)[ρ′] ̸= 0, either {β, δ}([ρ′]) ̸= 0 or {β, ε}([ρ′]) ̸= 0. Let us assume that {β, δ}([ρ′]) ̸= 0;
the other case can be treated similarly. In particular, both the b-orbit and the d-orbit
of [ρ′] are circles of length π that meet transversely at [ρ′]. Because of the way [ρ′] was
picked, either β([ρ′]) or δ([ρ′]) is an irrational multiple of π. Let us assume that β([ρ′]) is
an irrational multiple of π; again, the other case can be treated by analogous arguments.
Fact 2.4 implies that the b-orbit of [ρ′] is entirely contained in Orb([ρ′]) = Orb([ρ]).

As we explained in the proof of Corollary 3.6, {β, δ}([ρ′]) ̸= 0 implies that the cotan-
gent space to RepDT

α (Σ) at [ρ′] is generated by (dβ)[ρ′] and (dδ)[ρ′]. By the discussion of
Section 3.2, there exists an open interval I ⊂ R around 0 such that

U[ρ′] = {Φt1
d ◦ Φ

t2
b ([ρ

′]) : t1, t2 ∈ I}

is an open neighborhood of [ρ′] in RepDT
α (Σ). Fact 3.2 says that there exists a dense

subset I ′ ⊂ I such that δ(Φt2
b ([ρ

′])) is an irrational multiple of π for every t2 ∈ I ′. Since

Φt2
b ([ρ

′]) ∈ Orb([ρ]) for every t2 ∈ I ′ by the above, we conclude that the d-orbit of Φt2
b ([ρ

′])

is entirely contained in Orb([ρ]) for every t2 ∈ I ′. By density of I ′ in I, we conclude that

U[ρ′] ⊂ Orb([ρ]).

4.3.4. Limit points of Orb([ρ]). We still have to construct an analogous open set around

every point in Orb([ρ]) \ Orb([ρ]). As before, it is enough to do so for one point as we
can then translate this open set around every other point using PMod(Σ). Let [ρ∞] ∈
Orb([ρ]) \ Orb([ρ]). By Lemma 3.3, either {β, δ} or {β, ε} does not vanish at [ρ∞]. Let
us assume that {β, δ}([ρ∞]) ̸= 0; the other case can be treated similarly. The discussion
of Section 3.2 shows the existence of some open interval I∞ ∈ R around 0 such that
V∞ = {Φt1

d ◦Φ
t2
b ([ρ∞]) : t1, t2 ∈ I∞}∩{Φt1

b ◦Φ
t2
d ([ρ∞]) : t1, t2 ∈ I∞} is an open neighborhood

of [ρ∞] in RepDT
α (Σ).

Since [ρ∞] ∈ Orb([ρ])\Orb([ρ]), there exists an infinite subset {[ρn]} ⊂ Orb([ρ]) such that
[ρn] converges to [ρ∞] as n → ∞. We can find some large enough index n such that [ρn]
lies outside of the finite set β−1(Q) ∩ δ−1(Q) and such that [ρn] ∈ V∞. This means that

either the b-orbit or the d-orbit of [ρn] is entirely contained in Orb([ρ]). Assume it is the
b-orbit; again, the other case can be treated by similar arguments. Since [ρn] ∈ V∞, we can
find t1, t2 ∈ I∞ such that [ρ∞] = Φ−t2

d ◦ Φ−t1
b ([ρn]). Note that Φ−t1

b ([ρn]) ∈ V∞, because

Φ−t1
b ([ρn]) = Φt2

d ([ρ∞]). So, the Poisson bracket {β, δ} does not vanish at Φ−t1
b ([ρn]) and

Fact 3.2 implies that there are densely many t around t1 inside I∞ such that δ(Φ−t
b ([ρn]))

is an irrational multiple of π. Arguing as in Section 4.3.2, we obtain that the d-orbit of
Φ−t1
b ([ρn])—which coincides with the d-orbit of [ρ∞]—is entirely contained in Orb([ρ]).

Since we are assuming that {β, δ}([ρ∞]) ̸= 0, we can repeat the argument to find densely
many t around 0 in I∞ such that β(Φt

d([ρ∞])) is an irrational multiple of π. The b-orbits

of all such Φt
d([ρ∞]) are entirely contained in Orb([ρ]). So, up to shrinking the interval I∞

to some smaller interval I ′∞ around 0, we conclude that the open set

U[ρ∞] = {Φt1
b ◦ Φ

t2
d ([ρ∞]) : t1, t2 ∈ I ′∞}

around [ρ∞] is entirely contained in Orb([ρ]). This finishes the proof Theorem 4.3.
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Remark 4.4. Alternatively, it is possible to conclude the proof of Theorem 4.3 without
the construction of the open set from Section 4.3.4. We can instead use the ergodicity of
the mapping class group action on RepDT

α (Σ) (Theorem 2.2). Since Orb([ρ]) is a closed
invariant set with non-empty interior by the construction of Sections 4.3.2 and 4.3.3, and
since the Goldman measure νG is strictly positive, we conclude that νG(Orb([ρ])) = 1

by ergodicity. This immediately implies that Orb([ρ]) = RepDT
α (Σ) because νG has full

support.

5. Density of infinite orbits: the proof

5.1. Overview. In this section, we generalize Theorem 4.3 and prove that infinite map-
ping class group orbits inside DT components are dense for any number of punctures.

Theorem 5.1. For every punctured sphere Σ and every angle vector α satisfying the angle
condition (2.2), infinite mapping class group orbits in RepDT

α (Σ) are dense.

The proof of Theorem 5.1 is extensive and developed throughout the following sections
(Sections 5.2— 5.7).

5.2. Plan of the proof and notations. We shall give a proof of Theorem 5.1 by in-
duction on the number n of punctures on Σ. The base case n = 4 was treated in Theo-
rem 4.3. To prove the induction step, we fix a number of punctures n ≥ 5 and assume
that Theorem 5.1 holds for any number of punctures smaller than n. This is our induction
hypothesis.

Assumption 5.2 (Inductive hypothesis). The conclusion of Theorem 5.1 holds for every
sphere Σ with n punctures where n < n.

We also fix a DT component RepDT
α (Σ) and a point [ρ] ∈ RepDT

α (Σ) whose mapping
class group orbit Orb([ρ]) ⊂ RepDT

α (Σ) is infinite. We follow the same strategy as in the
case n = 4, which we described in Section 4.3.1. Briefly, our goal is to first construct
an open subset contained in Orb([ρ]) around one point of Orb([ρ]) (Sections 5.5 and 5.6)

in order to conclude that Orb([ρ]) has non-empty interior. We can then conclude that

Orb([ρ]) = RepDT
α (Σ) by ergodicity as we explained in Remark 4.4 (Section 5.7). There

is substantial preliminary work that has to be conducted in order to prove that Orb([ρ])
has non-empty interior (Sections 5.3 and 5.4).

Along the way, we shall use the induction hypothesis (Assumption 5.2) twice: once in the
proof of Lemma 5.3 and once in the proof of Lemma 5.9.

We shall work with a fixed geometric presentation of π1Σ with generators c1, . . . , cn and
consider B the associated standard pants decomposition of Σ. Recall that the pants curves
of B are given by the fundamental group elements bi = (c1 · · · ci+1)

−1 for i = 1, . . . , n− 3.
The corresponding regular fibers of the moment map µ = (µ1, . . . , µn−3) from Section 2.7
are, as usual, denoted by

R
◦
epDT

B,α(Σ) ⊂ RepDT
α (Σ).

5.3. Infinitely many orbit points in regular fibers. We start by proving that an infi-
nite orbit necessarily intersects the regular fibers R

◦
epDT

B,α(Σ) at infinitely many points.
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Lemma 5.3. Infinite orbits intersect the regular fibers at infinitely many points. In par-
ticular,

Orb([ρ]) ∩ R
◦
epDT

B,α(Σ)

is infinite.

Proof. We start by introducing some notation. For every subset I ⊂ {0, . . . , n − 3} of
cardinality 0 ≤ |I| ≤ n− 3, we consider the subset of RepDT

α (Σ) defined by

AI =
⋂
i∈I
{µi = 0} ∩

⋂
i/∈I

{µi ̸= 0}.

The functions µi are the components of the moment map introduced in Section 2.7. In
other words, the points of AI are those whose associated B-triangle chain has several
degenerate triangles: precisely those indexed by the elements of I. We can write RepDT

α (Σ)
as the disjoint union of all the AI and we point out that R

◦
epDT

B,α(Σ) = A∅. We shall also
write

OrbI = Orb([ρ]) ∩AI .

The sets OrbI are of course not invariant sets for the mapping class group action; they
are only preserved by the Dehn twists τb1 , . . . , τbn−3 . Since we are assuming that Orb([ρ])
is infinite, there exists a subset I ′ ⊂ {0, . . . , n− 3} of minimal cardinality such that OrbI′
is infinite. The conclusion of the lemma is equivalent to |I ′| = 0.

Assumption 5.4. We shall assume for the sake of contradiction that the set I ′ of minimal
cardinality with the property that OrbI′ is infinite has |I ′| ≥ 1.

Assume that there exists an index i′ ∈ I ′ such that i′ ≤ n − 4 and i′ + 1 /∈ I ′. We shall
prove that OrbI′∪{i′+1}\{i′} is also infinite. Note that the B-triangle chain of any point in
AI′ has Bi′ = Ci′+2 = Bi′+1 because µi′ = 0 and it also satisfies µi′+1 ̸= 0 because we are
assuming i′ + 1 /∈ I ′. Let τ denote the Dehn twist along the curve ci′+2ci′+3.

Claim 5.5. The Dehn twist τ maps every point of AI′ into either AI′\{i′} or AI′∪{i′+1}\{i′}.

Proof. To prove the claim, we shall show that the functions µj with j /∈ {i′, i′ + 1} are
invariant under τ and that the image of every point in AI′ has µi′ ̸= 0.

The argument is inspired from a similar argument used in the proof of [BM24, Theo-
rem 6.2]. If [ϕ] ∈ AI′ , then the B-triangle chain of ϕ contains a non-degenerate tri-
angle with vertices (Bi′+1 = Ci′+2, Ci′+3, Bi′+2) because µi′+1 ̸= 0. Its interior angles
are (βi′+1/2, π − αi′+3/2, π − βi′+2/2). Note that since µi′ = 0, it holds that βi′+1/2 =
π − αi′+2/2 + βi′/2.

Bi′+2

Bi′ = Ci′+2 = Bi′+1

Ci′+3

D

π − αi′+3/2

π − βi′+2/2

βi′+1/2

βi′/2
π − αi′+2/2
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The fixed point of ϕ(ci′+2ci′+3) is the point D on the geodesic segment [Ci′+3Bi′+2] such
that ∠Ci′+3Ci′+2D = π − αi′+2/2. The Dehn twist τ acts on the B-triangle chain of
[ϕ] by rotating the vertices Ci′+2 and Ci′+3 anti-clockwise around D, and it fixes all the
other exterior vertices. It also fixes the shared vertices B1, . . . , Bi′ and Bi′+2, . . . , Bn−3

(all except Bi′+1). In particular, for j /∈ {i′, i′ + 1}, the function µj is invariant under τ .
The image by τ of [ϕ] always has µi′ ̸= 0 because it rotates the exterior vertex Ci′+2 and
leaves the shared vertex Bi′ fixed (those two agree before the rotation since we start from
a point of AI′ and i′ ∈ I ′). This proves the claim. ♢

Remark 5.6. We can actually characterize the points of AI′ that are mapped inside
AI′∪{i′+1}\{i′} by τ . Those are the points whose image under τ has µi′+1 = 0. This
happens when Ci′+3 is sent to Bi′+2 by the rotation induced by τ . This eventuality is only
possible when the triangle (Bi′+1 = Ci′+2, Ci′+3, Bi′+2) is isosceles at Bi′+1 = Ci′+2 and
D is the midpoint of the geodesic segment [Ci′+3Bi′+2]. These two conditions can equiva-
lently be rewritten in terms of angles as π−αi′+3/2 = π−βi′+2/2 and π−αi′+2/2 = βi′/2,
or even βi′+2 = αi′+3 and βi′ = 2π − αi′+2. We conclude that τ should map most points
of AI′ into AI′\{i′}, namely all except those whose action coordinates βi′ and βi′+2 have a
very specific value.

A consequence of Claim 5.5 is that τ maps every point of OrbI′ to either OrbI′\{i′} or to
OrbI′∪{i′+1}\{i′}. Because we assumed I ′ to be minimal with the property that OrbI′ is
infinite (Assumption 5.4), the Dehn twist τ can only map finitely many points of OrbI′
into OrbI′\{i′}. In particular, OrbI′∪{i′+1}\{i′} will contain infinitely many points. In other
words, applying τ to the elements of OrbI′ allowed us to replace the element i′ of I ′ by
the consecutive integer i′ + 1 (which we assumed was not an element of I ′ before). By
repeating this procedure, we’ll eventually obtain that OrbI is infinite, where

I = {n− 2− |I ′|, . . . , n− 3}.
Note that |I| = |I ′|. The reason to replace OrbI′ by OrbI is that OrbI can be seen as a
subset of a DT component corresponding to a smaller sphere with only n = n − |I ′| < n
punctures which will allow us to apply our induction hypothesis (Assumption 5.2).

More precisely, the curve bn−2−|I′| = bn−2 separates Σ into two sub-spheres. Let Σ ⊂ Σ
denote the one with peripheral loops c1, . . . , cn−1 and bn−2.

bn−2
. . .. . .

cn−2 cn−1 cn cn+1

Σ

The natural inclusion π1Σ ↪→ π1Σ can be used to restrict representations of π1Σ to repre-
sentations of π1Σ. In other words, it defines a restriction map

R : Rep(Σ,PSL2R)→ Rep(Σ,PSL2R)
from the character variety of Σ to the character variety of Σ. The restriction map is
surjective because it is always possible to lift a representation of π1Σ to a representation



ORBIT CLOSURES FOR DEROIN–THOLOZAN REPRESENTATIONS 25

of π1Σ by sending the new generators to the identity. The inclusion Σ ⊂ Σ also defines
an injective group homomorphism PMod(Σ) ↪→ PMod(Σ) (see [FM12, Theorem 3.18])
whose image is the subgroup of PMod(Σ) generated by Dehn twists along simple closed
curves of Σ that are entirely contained in Σ. This subgroup acts on Rep(Σ,PSL2R) and
the restriction map R is equivariant with respect to this action and the standard action
of PMod(Σ) on Rep(Σ,PSL2R).

There is a DT component associated to Σ with peripheral angle

α =
(
α1, . . . , αn−1, αn + · · ·+ αn − 2π(n− n)

)
which we denote by RepDT

α (Σ). When we restrict representations from RepDT
α (Σ) to π1Σ,

we observe that those that satisfy µi = 0 for every i ∈ I get mapped injectively into
RepDT

α (Σ). In other words, R restricts to an isomorphism

(5.1) R : RepDT
α (Σ) ∩

⋂
i∈I
{µi = 0}

∼=−→ RepDT
α (Σ).

The fundamental group elements b1, . . . , bn−3 ∈ π1Σ defines a pants decomposition B
of Σ that is compatible with the geometric generators (c1, . . . , cn−1, bn−2) of π1Σ. The
corresponding regular fibers R

◦
epDT

B,α(Σ) ⊂ RepDT
α (Σ) coincide with restrictions of elements

of AI ⊂ RepDT
α (Σ):

R(AI) = R
◦
epDT

B,α(Σ).

We would like to apply the induction hypothesis to R(OrbI) ⊂ RepDT
α (Σ). In principle,

even though OrbI is infinite, it is not clear that R(OrbI) contains a point with infinite

PMod(Σ)-orbit. This is what we are going to show.

Remark 5.7. It was proven in [BM24] that a DT component contains at most finitely many
finite orbits, which implies that any infinite subset of a DT component necessarily contains
a point whose mapping class group orbit is infinite. In order to make the present paper
independent from [BM24] we shall not rely on the mentioned result to show Claim 5.8.

Claim 5.8. At least one point of R(OrbI) has an infinite PMod(Σ)-orbit inside RepDT
α (Σ).

Proof. Recall that R(OrbI) is actually a subset of R
◦
epDT

B,α(Σ). So, for every point [ϕ]

of R(OrbI), we can use Corollary 3.13 and Remark 3.14 to pick a curve zi ∈ {di, ei}
for every i = 1, . . . , n − 3 such the the differentials of the angle functions associated to
b1, . . . , bn−3, z1, . . . , zn−3 generate the cotangent space to RepDT

α (Σ) at [ϕ]. Since there are
only finitely many ways to pick the curves zi and R(OrbI) is infinite, we have made the
same choice of zi for infinitely many points of R(OrbI). In other words, there exists an

infinite subset Orb′
I
⊂ OrbI for which the cotangent space to RepDT

α (Σ) at every point

of R(Orb′
I
) is generated by the differentials of the angle functions associated to the same

curves b1, . . . , bn−3, z1, . . . , zn−3. In particular, the corresponding Dehn twists τbi and τzi
have no fixed points in R(Orb′

I
). The respective angle functions associated to the curves

bi and zi are denoted by βi and ζi.

Corollary 4.2 provides us with a finite set Q ⊂ πQ of all rational rotation angles in the
image of any point inside Orb([ρ]). Since Q is a finite set, Corollary 3.16 applied to
RepDT

α (Σ) implies that

(5.2) T = R
◦
epDT

B,α(Σ) ∩
n−3⋂
i=1

β−1
i (Q) ∩ ζ−1

i (Q)
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is finite. So, we can find a point [ϕ] ∈ R(Orb′
I
) \ T , because R(Orb′

I
) is infinite and

R(Orb′
I
) ⊂ R

◦
epDT

B,α(Σ). This point [ϕ] has the property that there exists an index i ∈
{1, . . . , n − 3} such that either βi([ϕ]) or ζi([ϕ]) is an irrational multiple of [ϕ]. Since
none of the two Dehn twists τbi and τzi fixes [ϕ] by construction, we conclude that the
PMod(Σ)-orbit of [ϕ] is infinite by Fact 2.4. ♢

Let [ϕ] ∈ R(OrbI) be any point with infinite PMod(Σ)-orbit provided by Claim 5.8.

We shall denote by OrbΣ([ϕ]) ⊂ RepDT
α (Σ) its PMod(Σ)-orbit. It is worth mentioning

that OrbΣ([ϕ]) is not necessarily contained inside R(OrbI) because some orbit points

in OrbΣ([ϕ]) may have extra degenerate triangles. However, OrbΣ([ϕ]) ∩ R
◦
epDT

B,α(Σ) ⊂
R(OrbI).

The equivariance of the restriction map R (introduced in (5.1)) implies

R−1
(
OrbΣ([ϕ])

)
⊂ Orb

(
R−1([ϕ])

)
= Orb([ρ])

which we use to write the following commutative diagram (in which the vertical arrows
are inclusions of subsets).

OrbΣ([ϕ]) ∩ R
◦
epDT

B,α(Σ) OrbI

R
◦
epDT

B,α(Σ) AI

R−1

R−1

∼=

Since n < n, the induction hypothesis (Assumption 5.2) applies to OrbΣ([ϕ]) and implies

that it is a dense subset of RepDT
α (Σ). This also means that OrbΣ([ϕ]) ∩ R

◦
epDT

B,α(Σ) is a

dense subset of R
◦
epDT

B,α(Σ). Chasing the diagram above, we conclude that OrbI is a dense

subset of AI .

The density of OrbI inside AI implies that OrbI contains infinitely many points with

βn−3 ̸= 2π − αn−1.

The image of all such points by the Dehn twist around the curve cn−1cn belongs to
OrbI\{n−2−|I′|} by Claim 5.5 and Remark 5.6. So, we conclude that OrbI\{n−2−|I′|} is

infinite which contradicts the minimality assumption on I ′ (Assumption 5.4). This fin-
ishes the proof of Lemma 5.3. □

5.4. Cotangent spaces at orbit points. We consider the curves bi, di, ei and the asso-
ciated angle functions βi, δi, εi that we already used in Corollary 3.13. Corollary 3.13 says
that at every point [ϕ] of R

◦
epDT

B,α(Σ), we can pick ζi ∈ {δi, εi} for each i = 1, . . . , n−3 such

that {(dβi)[ϕ], (dζi)[ϕ] : i = 1, . . . , n− 3} is a basis of the cotangent space to R
◦
epDT

B,α(Σ) at

[ϕ]. It will be useful for the sequel if we could find a point [ρ′] ∈ Orb([ρ]) ∩R
◦
epDT

B,α(Σ) for

which we can always pick ζi = δi. In other words, we want to find an orbit point [ρ′] such
that

(5.3) T ∗
[ρ′]R

◦
epDT

B,α(Σ) =
〈
(dβi)[ρ′], (dδi)[ρ′] : i = 1, . . . , n− 3

〉
.

Recall from Remark 3.14 that we can pick ζi to be δi over εi as long as the angle coordinate
γi is not equal to 0 or π. This means that we are looking for an orbit point [ρ′] ∈
Orb([ρ]) ∩ R

◦
epDT

B,α(Σ) satisfying γi([ρ
′]) /∈ {0, π} for every i = 1, . . . , n− 3.
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5.4.1. A first infinite set. Our first goal is to deal with orbit points having one of their
action coordinate βi being equal to π.

Lemma 5.9. The set Orb([ρ])∩R◦
epDT

B,α(Σ) contains infinitely many points with the prop-
erty that if βi = π, then γi /∈ {0, π}. In other words, the set

X = Orb([ρ]) ∩ R
◦
epDT

B,α(Σ) \
n−3⋃
i=1

{βi = π} ∩ {γi ∈ {0, π}}

is infinite.

Proof. The proof is extensive and organized into multiple claims. For each i = 1, . . . , n−3,
we introduce the sets

Ai = R
◦
epDT

B,α(Σ) ∩ {βi = π} ∩ {γi ∈ {0, π}}

and A =
⋃

iAi. With this notation, X = Orb([ρ]) ∩ R
◦
epDT

B,α \ A. Recall from (2.7), that
the action coordinates β1, . . . , βn−3 always form an increasing sequence, meaning that for
every point of RepDT

α (Σ), there is at most one index i = 1, . . . , n − 3 for which βi = π.
This means that A is the disjoint union of its subsets Ai. We also introduce

Orbi = Orb([ρ]) ∩Ai.

Lemma 5.3 says that Orb([ρ])∩R◦
epDT

B,α is infinite. If Orb([ρ])∩A was a finite set, then we

would be done because X = Orb([ρ]) ∩ R
◦
epDT

B,α \
(
Orb([ρ]) ∩ A

)
. From now on, we shall

assume that Orb([ρ]) ∩ A is infinite, which implies that some Orbj is itself infinite. The

set Orbj decomposes as the disjoint union of the two subsets Orb0j = Orbj ∩{γj = 0} and
Orbπj = Orbj ∩{γj = π}.

Claim 5.10. Since we are working under the assumption that Orbj is infinite, Orbπj is
infinite too.

Proof. As we explained before (2.6), applying the Dehn twist τbi to a point of R
◦
epDT

B,α(Σ)

changes its ith angle coordinate from γi to γi + βi. So, in the context of Orbj , the Dehn

twist τbj defines a bijection Orb0j ←→ Orbπj . ♢

The B-triangle chain of any point in Aπ
j = Aj ∩{γj = π} has the following shape. The two

triangles that share the vertex Bj have a right angle at Bj because βj = π. Since γi = π,
the point Bj is the intersection of the geodesic lines (Bj−1Bj+1) and (Cj+1Cj+2) (they
meet perpendicularly at Bj). It is also possible to have a configuration where Bj−1 = Bj+1.
The two points Cj+1 and Cj+2 are always distinct because γj ̸= 0.

Bj+1

Bj−1 Cj+1

Bj

Cj+2

Dj

π − αj+1/2

π − αj+2/2

π − δj/2

π − βj+1/2
βj−1/2
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As in the proof of Lemma 3.10, we may consider the pants decomposition Dj of Σ which
is the standard pants decomposition associated to the cyclically permuted geometric gen-
erators

(cj+1, cj+2, . . . , cn, c1, . . . , cj)

of π1Σ. The first triangle in the Dj-triangle chain of any point in Aπ
j is always non-

degenerate because Cj+1 ̸= Cj+2. It has vertices (Cj+1, Cj+2, Dj) where Dj is the unique
point such that ∠DjCj+1Cj+2 = π − αj+1/2, ∠DjCj+2Cj+1 = π − αj+2/2, and such that
the triangle (Cj+1, Cj+2, Dj) is clockwise oriented. The point Dj with these properties
can be easily constructed: it is the intersection of the geodesic lines (Cj+1Bj−1) and
(Cj+2Bj+1).

Claim 5.11. The Dehn twist τdj along the curve dj = (cj+1cj+2)
−1 does not fix any point

of Aπ
j .

Proof. By Fact 2.5, in order for τdj to fix a point [ϕ] of Aπ
j , its Dj-triangle chain can only

contain one non-degenerate triangle: the triangle (Cj+1, Cj+2, Dj). This would mean that
Dj = C1 = · · · = Cj = Cj+3 = · · · = Cn, implying Dj = Bj−1 = Bj+1. So, the B-triangle
chain of [ϕ] would only contain two non-degenerate triangles which is impossible since
we’re assuming n ≥ 5 and [ϕ] ∈ R

◦
epDT

B,α(Σ) by definition of Aπ
j . ♢

Claim 5.12. The Dehn twist τdj maps every point ofAπ
j with δj ̸= π and δj−βj+1+βj−1 ̸= 0

to a point inside R
◦
epDT

B,α(Σ) with βi ̸= π for every i = 1, . . . , n − 3. In particular, every
point of Orbπj with δj ̸= π and δj − βj+1 + βj−1 ̸= 0 is mapped inside X by τdj .

Proof. Let [ϕ] be a point of Aπ
j with δj ̸= π and δj − βj+1 + βj−1 ̸= 0.

First, we use the assumption δj ̸= π to prove that τdj .[ϕ] lies inside R
◦
epDT

B,α(Σ). Recall
that τdj acts on the B-triangle chain of [ϕ] by rotating the exterior vertices Cj+1 and Cj+2

clockwise around Dj by an angle δj and leaves all the other exterior vertices fixed. In
particular, it does not move the shared vertices Bj−1 and Bj+1. This means that the
B-triangle chain of τdj .[ϕ] is degenerate only when the rotation induced by τdj maps Cj+1

to Bj−1 or if it maps Cj+2 to Bj+1. This is, however, impossible as long as δj ̸= π.

Next, we prove that the condition δj − βj+1 + βj−1 ̸= 0 implies βi(τdj · [ϕ]) ̸= π for
every i = 1, . . . , n − 3. Since the curves dj and bi are disjoint when i ̸= j, it holds that
βi(τdj · [ϕ]) = βi([ϕ]) ̸= π when i ̸= j. The tricky part is to prove that βj(τdj · [ϕ]) ̸= π.
Assume for the sake of contradiction that βj(τdj ·[ϕ]) = βj([ϕ]) = π. The assumption that
δj−βj+1+βj−1 ̸= 0 implies that Bj−1 ̸= Bj+1 for otherwise the two points would coincide
with Dj and we would have π−δj/2 = βj−1/2+π−βj+1/2. Since Bj−1 ̸= Bj+1, there are
two possible configurations: either Bj−1 lies strictly between Bj+1 and Bj , or Bj+1 lies
strictly between Bj−1 and Bj . We shall assume that we are in the first configuration; the
other configuration can be treated with similar arguments. In that case, Dj lies strictly
between Bj+1 and Cj+2. Denote by Cnew

j+2 the exterior vertex in the B-triangle chain of

τdj · [ϕ] obtained from Cj+2 by a clockwise rotation of angle δj around Dj . Since we are
assuming that βj(τdj·[ϕ]) = βj([ϕ]) and since we know that βj+1 remains unchanged by τdj ,
the triangle with vertices (Bj , Cj+2, Bj+1) in the B-triangle chain of [ϕ] is isometric to its
counterpart in the B-triangle chain of τdj·[ϕ]. In particular, d(Bj+1, Cj+2) = d(Bj+1, C

new
j+2 ).
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The triangle inequality gives

d(Bj+1, C
new
j+2 ) ≤ d(Bj+1, Dj) + d(Dj , C

new
j+2 )

= d(Bj+1, Dj) + d(Dj , Cj+2)

= d(Bj+1, Cj+2).

We conclude that d(Bj+1, C
new
j+2 ) = d(Bj+1, Dj)+ d(Dj , C

new
j+2 ) which is only possible when

Cnew
j+2 lies on the hyperbolic ray [Bj+1Dj) (recall that Bj+1 ̸= Dj). This is a contradiction

as δj ∈ (0, 2π), so we conclude that βj(τdj ·[ϕ]) ̸= π as desired. ♢

Claim 5.12 helps us in the following sense. If Orbπj contains finitely many points with
δj = π or δj − βj+1 + βj−1 = 0, then it contains infinitely many point with δj ̸= π
and δj − βj+1 + βj−1 ̸= 0 because it is an infinite set by Claim 5.10. In that case,
Claim 5.12 applies and produces infinitely many points in X , proving Lemma 5.9. So, we
are reduced to consider the case where Orbπj contains infinitely many points with δj = π
or δj −βj+1+βj−1 = 0. To show the existence of infinitely many points in X in that case,
we shall use the induction hypothesis (Assumption 5.2). We shall proceed as follow.

We follow the same strategy as in the proof of Claim 5.8. We first use Corollary 3.13 and
Remark 3.14 to find an infinite subset

(5.4) (Orbπj )
′ ⊂ Orbπj ∩

(
{δj = π} ∪ {δj = βj+1 − βj−1}

)
such that the cotangent space to RepDT

α (Σ) at every point of (Orbπj )
′ is generated by the

differentials of the angle functions associated to the same curves b1, . . . , bn−3, z1, . . . , zn−3

where zi ∈ {di, ei}. As usual, we’ll write ζi for the angle function associated to the curve zi.

We let Q ⊂ πQ denote the finite set of all rational rotation angles in the image of any
point inside Orb([ρ]) (Corollary 4.2). Corollary 3.16 implies that the set

(5.5) T = R
◦
epDT

B,α ∩
(
β−1
j (Q) ∩ δ−1

j (Q)
)
∩
⋂
i ̸=j

β−1
i (Q) ∩ ζ−1

i (Q)

is finite. So, there exists a point [ϕ] ∈ (Orbπj )
′ \ T because we’re assuming that (Orbπj )

′ is
infinite.

Claim 5.13. There exists an index k ̸= j such that either βk([ϕ]) or ζk([ϕ]) is an irrational
multiple of π.

Proof. Since [ϕ] ∈ (Orbπj )
′ ⊂ Aπ

j , it holds that βj([ϕ]) = π ∈ πQ. Recall that [ϕ] /∈ T
by construction, so either there exists an index k ̸= j such that βk([ϕ]) or ζk([ϕ]) is an
irrational multiple of π (and the claim is proven), or δj([ϕ]) /∈ πQ. When the latter
occurs, then δj([ϕ]) is equal to βj+1([ϕ]) − βj([ϕ]) because it cannot be equal to π. If
δj([ϕ]) = βj+1([ϕ])− βj−1([ϕ]) and δj([ϕ]) /∈ πQ, then one of βj+1([ϕ]) and βj−1([ϕ]) must
be an irrational multiple of π which also proves the claim. ♢

The curve bj separates Σ into two sub-spheres Σ1 and Σ2, with respectively j+2 and n−j
punctures.
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bj . . .. . .

cj cj+1 cj+2 cj+3

Σ1 Σ2

By choosing a system of geometric generators for both fundamental groups π1Σ1 and π1Σ2

and by mapping them to (c1, . . . , cj+1, bj) and (b−1
j , cj+2, . . . , cn) respectively, we define

two inclusions π1Σ1 ↪→ π1Σ and π1Σ2 ↪→ π1Σ. The restrictions of [ϕ], say [ϕ|Σ1 ] and [ϕ|Σ2 ]
both live in DT components, say RepDT

θ1
(Σ1) and RepDT

θ2
(Σ2), where θ1 = (α1, . . . , αj+1, π)

and θ2 = (π, αj+2, . . . , αn) (recall that βj([ϕ]) = π). More generally, there is a restriction
map

(5.6) R : RepDT
α (Σ) ∩ {βj = π} → RepDT

θ1 (Σ1)× RepDT
θ2 (Σ2)

which is surjective but it fails to be injective.6 In this notation, R([ϕ]) = ([ϕ|Σ1 ], [ϕ|Σ2 ]).

From the inclusions Σ1 ⊂ Σ and Σ2 ⊂ Σ, we obtain two injective group homomorphisms
PMod(Σ1) ↪→ PMod(Σ) and PMod(Σ2) ↪→ PMod(Σ) (see [FM12, Theorem 3.18]) which
glue along bj to produce a combined injective group homomorphism

(5.7) PMod(Σ1)× PMod(Σ2) ↪→ PMod(Σ).

Its image is the subgroup of PMod(Σ) generated by Dehn twists along simple closed curves
that are entirely contained in Σ1 or Σ2. It preserves the locus Rep

DT
α (Σ)∩{βj = π} inside

RepDT
α (Σ) and makes the restriction map R (5.6) equivariant with respect to the standard

action of PMod(Σ1)× PMod(Σ2) on RepDT
θ1

(Σ1)× RepDT
θ2

(Σ2).

The orbits of the restrictions [ϕ|Σ1 ] and [ϕ|Σ2 ] under the action of PMod(Σ1) and PMod(Σ2)
are written

Orb([ϕ|Σ1 ]) ⊂ RepDT
θ1 (Σ1) and Orb([ϕ|Σ2 ]) ⊂ RepDT

θ2 (Σ2).

In order to apply the induction hypothesis (Assumption 5.2), we need the following claim.

Claim 5.14. If k < j, then Orb([ϕ|Σ1 ]) is infinite. If k > j, then Orb([ϕ|Σ2 ]) is infinite.
Here k is the integer from Claim 5.13.

Proof. Recall from Claim 5.13 that k was defined with the property that either βk([ϕ]) or
ζk([ϕ]) is an irrational multiple of π. Let us first assume that k < j. In that case, the two
curves bk and zk are contained in Σ1. So, if βk([ϕ]) ∈ R \ πQ, then iterating τbk on [ϕ|Σ1 ]
will produce infinitely many orbit points in Orb([ϕ|Σ1 ]) by Fact 2.4. In the same fashion,
when ζk([ϕ]) ∈ R\πQ we obtain infinitely many orbit points in Orb([ϕ|Σ1 ]) by iterating τzk
on [ϕ|Σ1 ]. Note that both τbk and τzk do not fix [ϕ|Σ1 ] because we are assuming that the

differentials (dβk)[ϕ] and (dζk)[ϕ] are part of a basis of the cotangent space to RepDT
α (Σ)

at [ϕ] (this was the defining property of (Orbπj )
′ (5.4)), so they do not vanish (Fact 2.5).

If instead k > j, then the curves bk and zk are contained in Σ2 and the same argument
applies mutatis mutandis. ♢

6For instance, restricting the points in the regular fibers of the moment map R
◦
epDT

B,α ∩ {βj = π} →
RepDT

θ1
(Σ1)× RepDT

θ2
(Σ2) defines a circle bundle where each fiber is parametrized by γj .
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We are now ready to conclude the proof of Lemma 5.9. Thanks to Claim 5.14 and since
n > max(n−j, j+2), we can apply the induction hypothesis (Assumption 5.2) to one of the
restrictions [ϕ|Σ1 ] or [ϕ|Σ2 ] depending on the value of k. It shows that either Orb([ϕ|Σ1 ])
or Orb([ϕ|Σ2 ]) is dense in their respective DT component. We shall write

OrbΣ1([ϕ]) and OrbΣ2([ϕ])

for the orbits of [ϕ] under the action of PMod(Σ1) and PMod(Σ2) seen as subgroups of
PMod(Σ). Note that both are sub-orbits of Orb([ϕ]) = Orb([ρ]) and satisfy

R(OrbΣ1([ϕ])) = Orb([ϕ|Σ1 ])× {[ϕ|Σ2 ]}
and similarly for Σ2. It is worth pointing out that, even though every point in OrbΣ1([ϕ])
and OrbΣ2([ϕ]) has βj = π, the value of γj may vary; in fact, it is not preserved under the
actions of PMod(Σ1) and PMod(Σ2).

We shall consider the case where k < j; the same arguments apply mutatis mutandis
when k > j. In that case, Orb([ϕ|Σ1 ]) is a dense subset of RepDT

θ1
(Σ1) as we have just

explained. In particular, it implies that OrbΣ1([ϕ])∩R
◦
epDT

B,α(Σ) is infinite. Recall that by
construction

OrbΣ1([ϕ]) ∩ R
◦
epDT

B,α(Σ) ⊂ Orb([ρ]) ∩ R
◦
epDT

B,α(Σ) ∩ {βj = π}.

There are two possibilities: either OrbΣ1([ϕ])∩R
◦
epDT

B,α(Σ) contains infinitely many points
with γj /∈ {0, π}. Since these points lie in X by definition then Lemma 5.9 follows.

Otherwise, all but finitely many points of OrbΣ1([ϕ]) ∩R
◦
epDT

B,α(Σ) satisfy γj ∈ {0, π}. Let
us assume to be in the second case.

Now, observe the following. Every point in Aπ
j ∩ {δj = π} satisfies βj = π, δj = π, and

γj = π. A simple trigonometric computation shows that, under these conditions, it is
possible to relate the values of βj−1 and βj+1. In particular, for a fixed value of βj−1,
there are only finitely many values of βj+1 that will guarantee βj = π, δj = π, and γj = π,
and vice versa. Similarly, every point in Aπ

j ∩ {δj = βj+1 − βj−1} has Bj−1 = Bj+1 = Dj .

In particular, it holds that d(Bj , Bj−1) = d(Bj , Bj+1) and both distances are directly
related by trigonometry to the angles βj−1 and βj+1. So, again, for every value of βj−1,
there are only finitely many possible values of βj+1 that will guarantee Bj−1 = Bj+1, and
vice versa. Let us say that βj−1 and βj+1 are compatible if they are the coordinates of the
same point in Aπ

j ∩ ({δj = π}∪{δj = βj+1−βj−1}). We have just explained that for every
value of βj−1, there are only finitely many compatible values of βj+1, and vice versa.

Claim 5.15. Recall that we are working under the assumption that all but finitely many
points of OrbΣ1([ϕ])∩R

◦
epDT

B,α(Σ) satisfy γj ∈ {0, π}. We claim that Orbπj contains infinitely
many points for which βj−1 is incompatible with βj+1.

Proof. First, note that βj+1 takes the same value at every point of OrbΣ1([ϕ])∩R
◦
epDT

B,α(Σ).

Since we are assuming that Orb([ϕ|Σ1 ]) is a dense subset of RepDT
θ1

(Σ1), there are infinitely

many points in OrbΣ1([ϕ])∩R
◦
epDT

B,α(Σ) for which the value of βj−1 is incompatible with βj+1

(which is the same at every point of OrbΣ1([ϕ])). By using that all but finitely many points
of OrbΣ1([ϕ]) ∩ R

◦
epDT

B,α(Σ) satisfy γj ∈ {0, π}, we conclude that OrbΣ1([ϕ]) ∩ R
◦
epDT

B,α(Σ)
contains infinitely many points with γj ∈ {0, π} and for which βj−1 is incompatible with
βj+1. We can apply the Dehn twist τbj to all those points with γj = 0 to get γj = π instead.

When we apply τbj to a point of OrbΣ1([ϕ]) ∩R
◦
epDT

B,α(Σ), we might land outside that set.

However, the image by τbj of a point of OrbΣ1([ϕ]) ∩ R
◦
epDT

B,α(Σ) with γj = 0 belongs to
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Orbπj . Since τbj does not affect the values of βj−1 and βj+1, incompatible values remain
incompatible and we therefore produced infinitely many points in Orbπj for which βj−1 is
incompatible with βj+1. ♢

All the infinitely many points of Orbπj for which βj−1 is incompatible with βj+1 provided
by Claim 5.15 either have δj ̸= π or δj ̸= βj+1 − βj by the definition of compatibil-
ity. Claim 5.12 applies and produce infinitely many points in X in that case too. This
completes the proof of the Lemma 5.9. □

5.4.2. A second infinite set. We now refine Lemma 5.9 as follows.

Lemma 5.16. The set

X ′ = Orb([ρ]) ∩ R
◦
epDT

B,α(Σ) \
n−3⋃
i=1

{γi ∈ {0, π}}

is infinite.

Proof. Lemma 5.9 tells us that the set

X = Orb([ρ]) ∩ R
◦
epDT

B,α(Σ) \
n−3⋃
i=1

{βi = π} ∩ {γi ∈ {0, π}}

is infinite. Pick an element [ϕ] of X . For each i = 1, . . . , n− 3 with γi([ϕ]) ∈ {0, π}, apply
τbi to [ϕ]. Note that by definition of X , if γi([ϕ]) ∈ {0, π}, then βi([ϕ]) ̸= π. This ensures us
that whenever γi([ϕ]) ∈ {0, π}, then γi(τbi ·[ϕ]) /∈ {0, π} since γi(τbi ·[ϕ]) = γi([ϕ]) + βi([ϕ]).

We just explained how to find, for every element [ϕ] of X , a binary vector ω ∈ {0, 1}n−3

such that (
∏

i τ
ωi
bi
)·[ϕ] ∈ X ′ (recall that the Dehn twists τbi commute because the curves

bi are disjoint). This defines a map Ω: X → X ′. Since the number of different binary
vectors ω is 2n−3, any point in the image of Ω has at most 2n−3 pre-images. Since X is
infinite, this shows that the image of Ω is infinite, and so X ′ is infinite too. □

5.5. Choosing a point [ρ′] in Orb([ρ]). We are now ready to pick our preferred or-
bit point [ρ′] ∈ Orb([ρ]). By construction (and that was the whole reason for proving
Lemma 5.16), the cotangent space to RepDT

α (Σ) at every point of X ′ is generated by dβi
and dδi with i = 1, . . . , n − 3. This is a consequence of Corollary 3.13 and Remark 3.14.
We can play the usual trick and use Corollaries 4.2 and 3.16 to identify a finite set

T = R
◦
epDT

B,α(Σ) ∩
n−3⋂
i=1

β−1
i (Q) ∩ δ−1

i (Q).

We choose [ρ′] to be any point inside X ′ \ T . Such a point always exists because X ′ is
infinite by Lemma 5.16 and T is a finite set. The chosen point [ρ′] (as any other element
of X ′ \ T ) enjoys the following properties:

(1) [ρ′] ∈ R
◦
epDT

B,α(Σ) and γi([ρ
′]) /∈ {0, π} for every i = 1, . . . , n− 3 by definition of X ′.

(2) {βi, δi}([ρ′]) ̸= 0 for every i = 1, . . . , n−3 by Lemma 3.10 because γi([ρ
′]) /∈ {0, π}.

(3) T ∗
[ρ′]Rep

DT
α (Σ) = ⟨(dβi)[ρ′], (dδi)[ρ′] : i = 1, . . . , n− 3⟩ because of Remark 3.14 and

Property (2).
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(4) There exists an index j ∈ {1, . . . , n − 3} such that βj([ρ
′]) ∈ R \ πQ or δj([ρ

′]) ∈
R \ πQ by definition of T .

5.6. Constructing the open set U[ρ′]. The goal of this section is to construct an open set
around our preferred orbit point [ρ′] constructed in Section 5.5 that is entirely contained

in Orb([ρ]). To simplify the notation, for any two real numbers (t, s) close to 0 and
i ∈ {1, . . . , n− 3}, we will write

Φ
(t,s)
i = Φt

di
◦ Φs

bi

for the composition of the Hamiltonian flows associated with the curves di and bi. Recall
from Property (4) that there exists an index j ∈ {1, . . . , n− 3} such that either βj([ρ

′]) or
δj([ρ

′]) is an irrational multiple of π. As we explained in Section 3.2, since the cotangent
space at [ρ′] is generated by the differentials (dβi)[ρ′] and (dδi)[ρ′] by Property (3), there

exists an open interval I ⊂ R containing 0 such that the map Ψ: I2(n−3) → RepDT
α (Σ)

defined by sending (t1, . . . , tn−3, s1, . . . , sn−3) to

Φ
(tj−1,sj−1)
j−1 ◦ · · · ◦ Φ(t1,s1)

1 ◦ Φ(tn−3,sn−3)
n−3 ◦ · · · ◦ Φ(tj ,sj)

j ([ρ′])

is a diffeomorphism onto its image Im(Ψ). The desired open set U[ρ′] will ultimately be

the image by Ψ of a smaller cube (I ′)2(n−3), where I ′ ⊂ I is an open sub-interval that
contains 0. In the definition of Ψ, we chose to compose the Hamiltonian flows in this
specific order for convenience with respect to the upcoming arguments. It is important
to start with the two Hamiltonian flows corresponding to the curves bj and dj for which
either βj([ρ

′]) or δj([ρ
′]) is an irrational multiple of π.

Up to shrinking the interval I a first time (by shrinking I we mean replacing I by an
open sub-interval that still contains 0), we may assume that every point in Im(Ψ) satisfies
Properties (1)—(3). This is because they are open properties and, as we explained in
the proof of Lemma 3.1, we can always shrink I so that Im(Ψ) is contained in any open
neighborhood of [ρ′].

5.6.1. A first slice. Let Uj ⊂ Im(Ψ) be the set of images by Ψ of points in I2(n−3) with
ti = si = 0 when i ̸= j. In other words,

(5.8) Uj =
{
Φ
(tj ,sj)
j ([ρ′]) : tj , sj ∈ I

}
.

Properties (4) and (2) tell us that either βj([ρ
′]) or δj([ρ

′]) is an irrational multiple of π
and {βj , δj}([ρ′]) ̸= 0. So, using similar arguments as in Section 4.3.3 and shrinking I

further if necessary, we conclude that Uj ⊂ Orb([ρ]).

5.6.2. Extending the slice by increasing the index. Of course, Uj is not an open subset of

RepDT
α (Σ); it is a 2-dimensional slice of Im(Ψ). In order to construct the desired open set

U[ρ′], we shall “enlarge” Uj until we get an open neighborhood of [ρ′]. We shall do that
by working with the fundamental group elements d1, . . . , dn−3 and the associated pants
decompositions D1, . . . ,Dn−3 of Σ which we already considered in Lemma 3.10. Recall
that the first triangle in the Di-triangle chain of any point in RepDT

α (Σ) has vertices
(Ci+1, Ci+2, Di).

Claim 5.17. If [ϕ] is any point of R
◦
epDT

B,α(Σ) with γi([ϕ]) ̸= 0 for some index i (typically a
point in Im(Ψ)), then only finitely many points along the bi-orbit of [ϕ] have Di = Ci+3.
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Proof. Since we are assuming that γi([ϕ]) ̸= 0, the first triangle in the Di-triangle chain of
[ϕ] is non-degenerate. It has vertices (Ci+1, Ci+2, Di) and interior angles (π− αi+1/2, π−
αi+2/2, π − δi/2). Recall that the points on the bi-orbit of [ϕ] can be represented by
triangle chains where the first i triangles are rotated around the shared vertex Bi and the
other triangles remain fixed. In particular, the points Ci+2 and Ci+3 do not move along
the bi-orbit of [ϕ]. It is possible that Ci+2 = Ci+3, but in that case Di ̸= Ci+3 because
Di ̸= Ci+2. If Ci+2 ̸= Ci+3, then the geodesic line (Ci+2Ci+3) is well-defined and invariant
along the bi-orbit of [ϕ].

If [ϕ′] is a point on the bi-orbit of [ϕ], we shall denote the vertices the associated triangle
chains with a prime. Recall that B′

i = Bi, C
′
i+2 = Ci+2, and C ′

i+3 = Ci+3. So, in order for
[ϕ′] to satisfy D′

i = C ′
i+3, the point C ′

i+1 must belong to both:

• The circle of radius d(Bi, Ci+1) centered at Bi because d(Bi, C
′
i+1) = d(Bi, Ci+1)

since [ϕ′] belongs to the bi-orbit of [ϕ].

• The geodesic line through Ci+2 that makes an angle π− αi+2/2 with the geodesic
line through Ci+2 and Ci+3 because we are assuming D′

i = C ′
i+3, C

′
i+2 = Ci+2, and

C ′
i+3 = Ci+3.

So there are at most two possibilities for the point C ′
i+1. This proves the claim. ♢

If we study theDi-triangle chain of a point [ϕ] ∈ R
◦
epDT

B,α(Σ) with γi([ϕ]) ̸= 0 andDi ̸= Ci+3,
then not only the first triangle is non-degenerate (because γi([ϕ]) ̸= 0), but also the second
triangle because Di ̸= Ci+3. So, (dδi)[ϕ] ̸= 0 by Fact 2.5 and there is a well-defined angle

coordinate γDi
1 paired with δi which is defined as the angle between the geodesic rays

[DiCi+3) and [Di, Ci+2).

Bi−1

Bi Bi+1

Bi+2

Ci+1 Ci+2

Ci+3

Di

γi

π − αi+1/2 π − αi+2/2

π − δi/2

γDi
1

Claim 5.18. If [ϕ] is a point with Ci+1 ̸= Ci+2 and Di ̸= Ci+3 for some index i, then

{δi, δi+1}([ϕ]) = 0 ⇔ γDi
1 ∈ {0, π}.

Proof. Similar arguments as in the proof of Lemma 3.10 can be used to prove the claim. If
we compare the Di-triangle chain and the Di+1-triangle chain of [ρ], then we shall obtain
a relation of the kind

cos(δi+1/2) = cos(γDi
1 ) · k1 + k2,
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where k1 and k2 are constant along the di-orbit of [ϕ]. Note that since we are assuming
n ≥ 5, the differential (dδi+1)[ϕ] vanishes if and only if the first triangle in the Di+1-triangle
chain of [ϕ] is degenerate by Fact 2.5 and the same argument as in the proof of Claim 5.11.

This can happen only when γDi
1 = 0. ♢

We can now combine the previous two claims to prove the following useful statement.

Lemma 5.19. If [ϕ] is a point of R
◦
epDT

B,α(Σ) with γi([ϕ]) /∈ {0, π} for some index i ∈
{1, . . . , n − 3}, then for every small enough open interval J ⊂ R around 0, there exists
densely many (ti, si) ∈ J2 for which

δi+1

(
Φ
(ti,si)
i ([ϕ])

)
∈ R \ πQ.

Proof. Since we are assuming that γi([ϕ]) /∈ {0, π} and [ϕ] ∈ R
◦
epDT

B,α(Σ), Lemma 3.10 im-
plies that {βi, δi}([ϕ]) ̸= 0. Arguing as in Section 3.2 with the Inverse Function Theorem,
we conclude that there exists a small enough interval J ⊂ R around 0 such that

Φ
(ti,si)
i : J2 → RepDT

α (Σ)

is a diffeomorphism onto its image. Up to shrinking J , we may assume that for every
si ∈ J , the point Φsi

bi
([ϕ]) still satisfies γi ̸= 0, and thus also Ci+1 ̸= Ci+2. Claim 5.17 says

that Φsi
bi
([ϕ]) also satisfies Di ̸= Ci+3 for all but finitely many si ∈ J . Along the di-orbits

of every Φsi
bi
([ϕ]) with Ci+1 ̸= Ci+2 and Di ̸= Ci+3 (which are all circles by assumption

on J), the Poisson bracket {δi, δi+1} only vanishes at finitely many points by Claim 5.18.
In particular, this means that the function δi+1 takes values in R \ πQ at densely many
points along those di-orbits. Since this happens along the di-orbits of Φ

si
bi
([ϕ]) for all but

finitely many si ∈ J , the proof of the lemma is complete. □

Recall that we already identified in (5.8) a 2-dimensional slice Uj that passes through [ρ′]

and is contained in Orb([ρ]). By definition, Uj lies in Im(Ψ) and so every point of Uj

satisfies the hypotheses of Lemma 5.19. This means that, up to further shrinking I if
necessary, the function δj+1 takes values in R\πQ at densely many points of Uj . By using
Fact 2.4, we conclude that

Vj+1 =
{
Φ
tj+1

dj+1
◦ Φ(tj ,sj)

j ([ρ′]) : tj , tj+1, sj ∈ I
}

is entirely contained in Orb([ρ]). It is also contained in Im(Ψ) (take sj+1 = 0). We have
just extended Uj by one dimension.

Claim 5.20. The function βj+1 takes values in R \ πQ at densely many points of Vj+1.

Proof. Recall that the relation {βj+1, δj+1} ≠ 0 holds at every point of Im(Ψ) by assump-
tion. In particular, it also holds at every point of Uj . Now, if we apply Fact 3.2, we
shall conclude that βj+1 is an irrational multiple of π at densely many points along the
dj+1-orbit of every point in Uj . This proves the claim. ♢

Claim 5.20 implies that

U ′
j+1 =

{
Φ
sj+1

bj+1
◦ Φtj+1

dj+1
◦ Φ(tj ,sj)

j ([ρ′]) : tj , tj+1, sj , sj+1 ∈ I
}
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is contained in Orb([ρ]). Using Lemma 3.1, and after shrinking I further if necessary, we
deduce that the set

Uj+1 =
{
Φ
(tj+1,sj+1)
j+1 ◦ Φ(tj ,sj)

j ([ρ′]) : tj , tj+1, sj , sj+1 ∈ I
}

is also entirely contained in Orb([ρ]). We have now extended the slice Uj by two extra
dimensions. This procedure can be iterated until we shall obtain that

Un−3 =
{
Φ
(tn−3,sn−3)
n−3 ◦ · · · ◦ Φ(tj ,sj)

j ([ρ′]) : tj , sj , . . . , tn−3, sn−3 ∈ I
}

is contained in Orb([ρ]). The set Un−3 is an (n− j − 2)-dimensional neighborhood of [ρ′]

that is contained in Orb([ρ]). It is still not an open neighborhood of [ρ] (except when
j = 1). The purpose of the next section is to enlarge Un−3 to an open neighborhood
of [ρ′].

5.6.3. Extending the slice by decreasing the index. In order to enlarge Un−3, we need an
analogue of Lemma 5.19 which shows that

δi−1

(
Φ
(ti,si)
i ([ϕ])

)
∈ R \ πQ

for densely many (ti, si) allowing us to extend Un−3 along the direction of Φdi−1
. We

can obtain such a result by looking at different pants decompositions than the ones we
considered in Section 5.6.2. Consider the system of geometric generators of π1Σ given
by

(ci+1, ci+2, ci, c
−1
i ci+3ci, . . . , c

−1
i ci−1ci).

We denote the associated standard pants decomposition by D′
i. The first triangle in the D′

i-

triangle chain of any point in RepDT
α (Σ) coincides with the first triangle in its Di-triangle

chain because the first two generators coincide. They both have vertices (Ci+1, Ci+2, Di).
The two triangle chains differ from the second triangle onward. For instance, the second
triangle in a D′

i-triangle chain has vertices Di, Ci, and a third vertex that is the fixed
point of ϕ((ci+1ci+2ci)

−1).

Bi−2

Bi−1

Bi

Bi+1

Ci Ci+1

Ci+2

Di

π − αi+2/2

π − αi+1/2

γ
D′

i
1

π − δi/2

An analogous statement to Claim 5.17 holds. It can be proved using similar argu-
ments.

Claim 5.21. If [ϕ] is any point of R
◦
epDT

B,α(Σ) with γi([ϕ]) ̸= 0 for some index i, then only
finitely many points along the bi-orbit of [ϕ] have Di = Ci.
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If the D′
i-triangle chain of a point [ϕ] satisfies Ci+1 ̸= Ci+2 and Di ̸= Ci, then its first two

triangle are non-degenerate. So, there is a well-defined angle coordinate γ
D′

i
i which the

angle between the geodesic rays [DiCi+2) and [Di, Ci). We can reformulate Claim 5.18 in
those terms.

Claim 5.22. If [ϕ] is a point with Ci+1 ̸= Ci+2 and Di ̸= Ci for some index i, then

{δi−1, δi}([ϕ]) = 0 ⇔ γ
D′

i
1 ∈ {π − δi/2, 2π − δi/2}.

When we combine Claims 5.21 and 5.22, we obtain the desired variant of Lemma 5.19 that
will allow us to enlarge Un−3.

Lemma 5.23. If [ϕ] is a point of R
◦
epDT

B,α(Σ) with γi([ϕ]) /∈ {0, π} for some index i ∈
{1, . . . , n − 3}, then for every small enough open interval J ⊂ R around 0, there exist
densely many (ti, si) ∈ J2 for which

δi−1

(
Φ
(ti,si)
i ([ϕ])

)
∈ R \ πQ.

Here is how we can keep enlarging Un−3. First, we use Lemma 3.1 to modify Un−3 slightly
and affirm that

Wn−3 =
{
Φ
(tj ,sj)
j ◦ Φ(tn−3,sn−3)

n−3 ◦ · · · ◦ Φ(tj+1,sj+1)
j+1 ([ρ′]) : tj , sj , . . . , tn−3, sn−3 ∈ I

}
is also contained in Orb([ρ′]) (we might have to shrink I if necessary). Now, we can apply
Lemma 5.23 and conclude that, after maybe shrinking I further,

Vj−1 =
⋃

tj−1∈I
Φ
tj−1

dj−1
(Wn−3) ⊂ Orb([ρ′]).

If we apply Claim 5.20, we’ll further obtain that

U ′
j−1 =

⋃
tj−1,sj−1∈I

Φ
sj−1

bj−1
◦ Φtj−1

dj−1
(Wn−3) ⊂ Orb([ρ′]).

Lemma 3.1 allows us, up to shrinking I further, to permute Hamiltonian flows, so that we
have

Uj−1 =
⋃

tj−1,sj−1∈I
Φ
(tj−1,sj−1)
j−1 (Wn−3) ⊂ Orb([ρ′]).

Repeating this process, we shall eventually obtain that

U1 =
⋃

t1,...,sj−1∈I
Φ
(t1,s1)
1 ◦ · · · ◦ Φ(tj−1,sj−1)

j−1 (Wn−3) ⊂ Orb([ρ′]).

After applying Lemma 3.1 one last time and shrinking I if necessary, we conclude that

U[ρ′] =
{
Φ
(t1,s1)
1 ◦ · · · ◦ Φ(tn−3,sn−3)

n−3 ([ρ′]) : ti, si ∈ I
}

is entirely contained in Orb([ρ′]). The set U[ρ′] is the desired an open neighborhood
of [ρ′].

5.7. Finishing the proof. So far, we have proven that when Orb([ρ]) is infinite, then it
contains an orbit point [ρ′] for which we were able to construct an open neighborhood U[ρ′]

that is contained in Orb([ρ]). This shows that Orb([ρ]) is a closed invariant set with non-

empty interior. We conclude that Orb([ρ]) = RepDT
α (Σ) because of the ergodicity of the

mapping class group action on RepDT
α (Σ) (Theorem 2.2), as we explained in Remark 4.4.

This completes the proof of Theorem 5.1.
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bourg, France

Email address: bouilly@math.unistra.fr

(G. Faraco) Current address: Dipartimento di Matematica e Applicazioni U5, Universita‘ degli
Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy

Email address: gianluca.faraco@unimib.it

Email address: gianluca.faraco.math@gmail.com
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