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Abstract—Efficient deployment of resource-intensive trans-
formers on edge devices necessitates cross-stack optimization.
We thus study the interrelation between structured pruning and
systolic acceleration, matching the size of pruned blocks with the
systolic array dimensions. In this setting, computations of pruned
weight blocks can be skipped, reducing run-time and energy
consumption, but potentially impacting quality of service (QoS).
To evaluate the trade-offs between systolic array size and sparsity
opportunities, we present a novel co-design framework that inte-
grates algorithmic optimization, system simulation, and hardware
design. Targeting speech recognition using transformers as case
study, we analyze how configuration choices across the stack
affect performance metrics. Results demonstrate that structured
pruning on systems featuring systolic array acceleration can
effectively increase performance, while maintaining high QoS lev-
els. Up to 26% system-wide speedups due to structured pruning
were measured, with only 1.4% word error rate degradation on
the standard Librispeech dataset.

Index Terms—Systolic array, structured pruning, hardware-
software co-design, edge AI.

I. INTRODUCTION

Transformers have fostered a revolution in machine learn-
ing, with applications ranging from classification [1] to gener-
ative models for text and images [2], to speech recognition [3].
However, their complex structure based on multiple attention
and feed-forward layers [4] results in unprecedented compu-
tational requirements, posing significant challenges for their
deployment. These are particularly acute in edge scenarios,
where systems have to operate within constrained energy and
performance envelopes.

In this context, a plethora of optimization strategies have
been proposed. On the software side [5], commonly used ap-
proaches involve reducing the precision of data representations
(quantization) and removing parts that contribute the least to
inference outcomes (pruning). As for hardware, efforts have
mainly focused on the acceleration of the main computational
kernel in transformers, i.e. General Matrix Multiplications
(GEMMs). Although diverse solutions ranging from analog
crossbars [6] [7] to near-DRAM computing [8] [9] work
toward this goal, a particularly promising alternative is repre-
sented by systolic arrays [10]. These two-dimensional meshes
of processing elements can indeed parallelize the computation
of a GEMM (or, more precisely, the computation of a GEMM
tile), while presenting a high parallelism degree, low resource
requirements and only mandating a simple, low-overhead
control logic.

Recent works [11]–[15] have attempted to co-optimize
software algorithms and hardware accelerators dedicated to

transformer inference [16]. Such a stance is particularly ap-
pealing at the crossroads of model pruning and systolic array
acceleration. On the software side, pruning can be performed
by eliding weights in regular block patterns (in a “structured”
way) rather than as individual elements [17]. While this
approach introduces a constraint to pruning, and can hence
result in lower overall sparsity rates, it substantially amplifies
hardware-side optimization opportunities when matching the
sizes of the pruned tile and the accelerator mesh. The explo-
ration of this strategy, which we term Systolic Array Structured
Pruning (SASP), is the focus of this work.

SASP opens a complex multidimensional design space
which requires careful consideration of metrics spanning from
hardware to algorithms. Indeed, while a larger accelerator can
expose a higher degree of parallelism, it also requires more
resources (area / energy). Moreover, SASP settings with larger
tiles may overly penalize the achievable sparsity for a desired
Quality of Service (QoS) or, alternatively, result in high QoS
degradation for a fixed pruning rate.

To explore these interrelations, we employ a holistic ap-
proach integrating methods for a) the structured pruning of
transformer algorithms, b) the system-level level modeling of
accelerated systems executing them, and c) the hardware syn-
thesis of accelerators. Our environment for SASP exploration
builds on frameworks for the training of transformers (ESP-
net [3]) and for system simulation (gem5 [18]). By employing
a novel systolic array architectural template, it supports both
floating point and weight-quantized data representations, as
supported by ESPnet.

As a test case, we employ our exploration approach to
analyze a speech recognition application, based on an 24-
block, 75M-parameter transformer processing the LibriSpeech
dataset [19]. We observed that SASP can achieve, for a
systolic array size of 32 × 32, up to 44% speedup and 42%
energy savings over a non-pruned, non-quantized system when
employing a 20% pruning rate, resulting in a marginal Word
Error Rate (WER) degradation of 1.4%.

The contributions of this paper are summarized as follows:
• We introduce a methodology for the systematic explo-

ration of Systolic Array Structured Pruning (SASP), a co-
design strategy that combines systolic array acceleration
and structured pruning with matching accelerator and tile
size.

• We show how the insights collected from our framework
enable the evaluation of figures of merit at different ab-
straction levels, including the assessment of QoS, perfor-
mance, resource usage, and energy, as well as their trade-
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offs. We discuss how these can be effectively leveraged
from the joint perspective of algorithmic optimization,
system integration, and systolic array design.

• Using a speech recognition case study, we show that
SASP-based co-optimization of transformers and systolic
arrays can lead to efficiency and speedup gains of up to
26% with minimal QoS impact.

II. STATE OF THE ART

By providing spatially-distributed computation with low
control logic overhead, systolic arrays can effectively paral-
lelize the execution of matrix multiplications, the dominant
computing pattern in transformer inference [10]. To evaluate
the benefits that systolic arrays can induce, SMAUG [15]
and TiC-SAT [20] present system simulation infrastructures
able to support complete inferences, including both their
hardware-accelerated and their software-executed parts. These
works showcase that even small-sized systolic arrays have
the potential to reduce run-time by orders of magnitude.
Performance is further improved when data is properly laid out
in a tiled arrangement in memory according to the accelerator
characteristics, in order to maximize spatio-temporal locality.
Although such an approach has been adopted [11], [21], no
attempt was made therein to prune computations as we do here
with Systolic Array Structured Sparsity.

Indeed, the ductility of DNN models makes them highly
amenable to pruning. In the context of systolic array accel-
eration, pruning optimizations are categorized as either fine-
grained or structured [16]. In the first case, specialized systolic
arrays have been proposed which can leverage the presence
of zero values in tiles by either clock gating processing ele-
ments [22] or by reordering operands [23], [24]. Nonetheless,
fine-grained pruning requires a fair amount of control logic
overhead in the accelerator design and impacts the regularity
of data layout in memory, which may negate the intended
benefits [12], [25].

In this light, structured pruning strategies offer a promising
alternative, as tiles of low-significance can be entirely skipped
before processing them onto accelerators, when the tile size
matches the target accelerator parallelism. Hence, speedups
can be harnessed without requiring specialized hardware for
sparsity management. This position has been adopted by
previous works [26]–[30]. However, they only provide a partial
view of the ensuing design space. In particular, [26], [28]
and [27] adopt a system-level stance, exploring the potential
for acceleration of co-designed pruning strategies and data-
parallel accelerators, but do not investigate the impact on
Quality of Service (QoS, e.g. accuracy, word error rate) of
the performed pruning. Conversely, [29] and [30] provide
an algorithmic-level assessment of the effect of structured
sparsity, but neglect the hardware and architectural implication
of adopting a matched accelerator design. To the best of
our knowledge, a holistic view of the algorithmic-to-hardware
space exposed by SASP is hence missing. Our paper aims at
filling this gap.

Fig. 1: Qualitative radar plot illustrating two SASP solutions
with different trade-offs: a slow and accurate one (red) em-
ploying a small accelerator and a low pruning rate, and a fast
but inaccurate one (blue) using a large accelerator and a high
pruning rate. Across all axes, higher is better.

Fig. 2: Overview of Hardware-Software co-design framework.

III. CO-DESIGNING ACCELERATORS AND SPARSITY

The dimensions of the design space exposed by Systolic
Array Structured Pruning (SASP) solutions are illustrated in
Fig. 1. The illustrated figures of merit reside at widely different
layers of the hardware/software stack. Hence, to enable co-
optimization, we developed the integrated toolflow illustrated
in Fig. 2. The input to our framework is a trained transformer
model and a target dataset, which, in our implementation, are
defined via the ESPnet toolkit for automatic speech processing
[3]. Hyper-parameters determine the size of the SASP tile
(which sets the granularity of structured sparsity as well as
the size of the systolic array) and the target sparsity rate.
Moreover, both floating-point and weight-quantized imple-
mentations are supported.

The co-design framework is structured in 3 tiers: in its upper



 

Fig. 3: Tiled matrix multiplication with structured pruning.

tier, PyTorch APIs are employed to perform pruning and (op-
tionally) quantization. Then, system simulation is employed
to gather run-time statistics of the application executing on a
virtual system featuring systolic acceleration. Finally, an RTL-
level architectural template is used to gather hardware metrics
such as energy and area. The implementation of each tier is
detailed in the following.

A. Structured Pruning and Quantization

We base our strategy on the observation that matrices
employed by transformer models are much larger than the size
of systolic arrays. Hence, operations to perform GEMM must
be computed in a tiled fashion. As in [20], we herein consider
a weight-stationary scenario, in which a tile of parameters is
stored in the systolic array, and partial results are computed
by streaming inputs/outputs to/from the accelerator. These are
eventually aggregated via element-wise addition. As shown in
Fig. 3, in this setting, a tile containing only zero values can be
completely skipped, saving both the time required to configure
the systolic array and the time required to calculate the related
partial results. In the example in Fig. 3 it can be observed that
the sparsity induced by the red weight tile lowers the workload
required for the computation of the entire shaded column in
the output.

We enforce structured sparsity by zeroing a percentage of
tiles with the lowest L1-norm (sum of absolute values) across
the entire model. This approach allows to heterogeneously
prune GEMMs according to their sensitivity. In particular,
feed-forward GEMMs are much more amenable to pruning
than attention ones, so we focus on these for our exploration
in Section IV-C.

After sparsification, post-training quantization can option-
ally be used to reduce the representation precision of weights
from 32-bits floating point (FP32) to 8-bits integer (INT8).
Finally, inference is performed on a target dataset, in order to
gather QoS metrics such as Word Error Rate (WER).

B. Full System Simulation

Run-time statistics on the deployment of the SASP-pruned
models are collected in the gem5 [18] simulation environment,
which allows specifying complex systems including hardware
(processors, memory hierarchy) and software (operating sys-
tem) components. To this end, we developed a systolic array
gem5 module interfaced as a functional unit. Similarly to [20],
the functional unit employs dedicated instructions, extending
the ARM instruction set, to a) program weights, b) emulate the
systolic array computation, and c) stream inputs/outputs (see

Fig. 4: Architectural diagram of the systolic array, supporting
FP32 activations and either non-quantized (FP32) or quantized
(INT8) weights.

Fig. 4). We assume a 32-bit input-output interface, allowing
to transfer one input and one output activation per custom
instruction. As for weights, either a single FP32 or four INT8
values can be programmed in the array in a quantized or non-
quantized setting, respectively.

The implemented instruction set extensions can be em-
ployed to accelerate user-level applications via inline assembly
pragmas. For convenience, we wrapped these in parametric
library functions, allowing to transfer a weight tile or compute
a partial GEMM with a single function call. In this way,
we gathered the run-time characteristics of executing entire
transformer layers under varying architectural and sparsity
settings.

C. Systolic Array Architecture

The systolic array hardware implementation, depicted in
Figure (Fig. 4), comprises a mesh of processing elements
(PEs) with nearest-neighbor connections. Inside each, an adder
and a multiplier implement a MAC operation between input
activation, weight and partial result values, the latter being
stored in an accumulation register. Notice that inputs are
streamed left-to-right, partial results flow from top to bottom,
and weights are instead stationary. At the periphery of the
array, shift registers of varying depth are employed to skew
data along a diagonal, properly aligning inputs and outputs.

Instances of the template can be derived by providing
architectural parameters defining its size and the desired data
format (either FP32 for weights and activations, or using INT8
weights and FP32 activations). In both versions of the PE, the
multiplier and adder are pipelined to meet timing requirements.
The pipeline latency is entirely hidden by the activations I/O
latency from/to the systolic array. The instances are fully
synthesizable using standard digital IC design tools and logic
cell libraries.

Both in non-quantized and weight-quantized settings, adders
in PEs support FP32 representation both for operands and for
the results. Conversely, multipliers can be highly optimized
in the weight-quantized case, as they must only support
simpler FP32_INT8 arithmetic. A diagram of the hybrid
FP32_INT8 multiplier design adopted in our architectural



Fig. 5: Hardware diagram of the hybrid FP32_INT8 multi-
plier. This logic is bypassed in case any of the operands is
equal to zero.

TABLE I: Parameters of the deployed ESPnet [3] model.

Encoder
blocks

Decoder
blocks

Attention
heads dmodel

Feed-
forward
layers

Feed-
forward

dimensions

Average
sequence

length

18 6 4 512 2 2048 128

systolic array template is presented in Fig. 5. This implemen-
tation correctly computes the multiplication result, except for
the case where either of the inputs equal to 0. We handle
this as a special case, by employing a dedicated multiplexer.
Moreover, to optimize area and energy efficiency, infinities,
NaNs, and subnormal numbers are not handled.

In detail, our design assumes that the INT8 weight is repre-
sented using a sign-and-magnitude format. Hence, the output
sign is computed as the XOR of the activation and weight
signs. Then, the FP32 mantissa is expanded by appending the
leading ‘1’, which is implicit in the IEEE format. Furthermore,
the expanded mantissa is multiplied by the magnitude of the
weight value (INT8). The resulting unaligned output mantissa
is right-shifted to align the leading ‘1’ and truncated to 23
bits. Finally, the output exponent is adjusted according to the
number of performed mantissa shifts.

Note that the hybrid multiplier design readily generalizes
to different floating-point and integer bitwidths beyond the
FP32_INT8 considered in this paper, e.g., to support FP16
activations.

IV. EXPERIMENTAL RESULTS

A. Setup

We evaluate our co-design approach on the LibriSpeech
ASR corpus [19], using a transformer model implemented with
ESPnet [3] using PyTorch [31], and targeting the encoder for
SASP optimization, since its execution dominates run-time.

TABLE II: Configuration of the simulated system.

Processors 1x in-order ARMv8 core @1.0 GHz
L1-I Cache 32 kB, 2-way, 2 cycle access

L1-D Cache 32 kB, 2-way, 2 cycle access
L2 Cache 1 MB, 2-way, 20 cycle access

Memory DDR4 2400 MHz, 4 GB
Operating System Ubuntu LTS 16.04

Systolic array Tightly coupled, control via custom instructions

(a) Area (b) Power

Fig. 6: Synthesis results for the systolic array design across
configurations of varying size (number of rows of the array)
and quantization.

The model structure corresponds to the parameters shown in
Table I. The model is trained using 960 hours of the train
set with speech perturbation (3× speed) [19] for 100 epochs
and achieves 3.4% WER on both the development and test
subsets (about 5 hours each). Further WER results in this
paper are reported on the test subset. System simulations were
run in the gem5-X variant [32] of the gem5 simulator [18].
We considered a single-core configuration having a 2-level
cache hierarchy and running at 1 GHz, as detailed in Table II.
Hardware syntheses of systolic array instances targeted the
same 1 GHz timing constraint, and employed a TSMC 28nm
technology node. Floating point arithmetic operators (adders
and multipliers) were derived from the FPxx library using
SpinalHDL [33], while the hybrid FP32_INT8 multiplier
was implemented from scratch according to the design in
Section III-C.

In all experiments, we considered systolic arrays of sizes
ranging from 4 × 4 to 32 × 32. We spanned various struc-
tured pruning rates and investigated both FP32_FP32 and
FP32_INT8 quantization schemes. Experiments at different
abstraction tiers collected results on area, energy, run-time,
and achieved Word Error Rate (WER). We detail each in the
rest of the section. Then, we provide insights from a cross-tier
point of view and summarize our findings in Section IV-F.

B. Hardware Exploration

The area and power results for different systolic array sizes
and quantization choices are shown in Fig. 6. Since multipliers
account for an important part of the area and power budget
of the entire systolic array (55.6% and 33.6%, respectively,
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Fig. 7: Per-layer normalized run-time of the transformer
encoder after applying Systolic Array Structured Pruning at
two global sparsity targets. Results are shown for an 8 × 8,
FP32_INT8 systolic array, with the execution time of each
layer normalized to the execution without pruning.

in the 8 × 8, FP32_FP32 implementation), the use of the
simpler FP32_INT8 design results in tangible savings. In
average, these reductions amount to 35.3% and 19.5% in area
and power across different array sizes.

Both area and power grow quadratically with the systolic
array dimension (e.g. by ∼4 times between the 4× 4 and the
8 × 8 instances), as both the number of PEs and the number
of elements in input/output shift registers have a quadratic
dependency on the number of array rows/columns.

C. System Exploration

Fig. 7 plots the measured per-layer normalized encoder run-
time of a systolic-accelerated system performing an inference.
Data refers to an 8× 8 systolic array, with varying degrees of
structured sparsity. Speedup numbers closely follow sparsity
levels, as inference run-time is strongly dominated by GEMM
computations (exceeding 97% in all cases [20]).

Pruning was performed according to the methodology pro-
posed in Section III-A targeting feed-forward layers, which
exhibit a much higher degree of resilience and account for the
largest part of the workload. Results in Fig. 7 highlight that
early feed-forward layers are the most amenable to pruning,
while later ones have a higher proportion of tiles with a non-
negligible L1-norm, which have a higher impact on inference
outcomes.

D. Impact of SASP on Quality of Service

Fig. 8 shows that Word Error Rate (WER) grows ex-
ponentially when increasing the degree of Systolic Array
Structured Pruning. Similar trends are present for both the
weight-quantized model (indicated as FP32_INT8) and the
non-quantized one (FP32_FP32).

As the size of the systolic array grows, trends become
steeper, showcasing an abrupt increase in WERs at smaller
SASP rates. This effect is caused by the higher brittleness of
large-tile structured pruning with respect to small-tile cases.
Indeed, while it may be possible to find four prunable 4×4 tiles

(a) FP32_FP32 (b) FP32_INT8

Fig. 8: Achieved Word Error Rate when varying the percentage
of Systolic Array Structured Pruning.

Fig. 9: Trade-offs among encoder inference speedup, area-
energy product and Word Error Rate across systolic array sizes
and structured pruning rates. Speedup is computed with respect
to a non-accelerated, non-quantized baseline.

(containing 64 values in total), selecting a single contiguous
8 × 8 tile (again, of 64 values) can be considerably more
challenging.

E. Multidimensional SASP Trade-offs

Fig. 9 shows the variations in performance, WER and
resource usage when changing SASP rate, quantization strat-
egy, and systolic array size. WER and Speedup are plotted
on the two axes, the marker shape discriminates between
FP32 and weight-quantized implementations, and the marker
colors indicate their resource requirements in terms of Area-
Energy product. Data points form four distinct clusters cor-
responding to each systolic array size. Two curves in each
cluster represent the two quantization choices, which have
notably different Area-Energy products. The non-quantized
FP32_FP32 version achieves lower (better) WER, with the
differences becoming more pronounced at higher pruning rates
and for larger systolic arrays.

From a run-time perspective, FP32_INT8 configurations
allow to reduce the cost of weight transfers by loading four



TABLE III: Area, encoder speedup and energy results for dif-
ferent systolic array configurations without SASP (3.5±0.2%
WER) and with SASP (5±0.4% WER). Speedup is computed
with respect to a non-quantized baseline executed on CPU.

Size 4× 4 8× 8 16× 16 32× 32

FP32_FP32

Area (mm2) 0.05 0.21 0.83 3.34
No Speedup 8.42 19.79 35.22 50.95

SASP Energy (J) 1.60 3.09 6.37 15.32
Pruning (%) 25 25 20 20

SASP Speedup 10.56 25.01 42.21 60.91
Energy (J) 1.27 2.43 5.28 12.70

FP32_INT8

Area (mm2) 0.03 0.14 0.53 2.13
No Speedup 8.03 20.18 36.53 61.33

SASP Energy (J) 1.24 2.67 4.57 10.64
Pruning (%) 25 20 20 20

SASP Speedup 10.08 24.23 43.74 73.25
Energy (J) 0.99 2.21 3.79 8.82

INT8 weights per 32-bit bus access, as opposed to a single
FP32 one in the FP32_FP32 configuration. Consequently,
FP32_INT8 implementations outperform their FP32_FP32
counterparts for systolic array sizes larger than 4 × 4, as
the savings in data transfers offset software/system overhead.
Nonetheless, while quantization has a large impact on area
and energy, its influence on performance is smaller, as the
majority of the run-time is not spent in weight data transfers,
but instead for streaming inputs / computing outputs, which is
equally fast for both quantization schemes.

Within each systolic array size and quantization configu-
ration, the SASP pruning rate guides the trade-off between
inference time and WER. Fig. 9 shows that, up to an inflection
point at a WER of ∼5%, SASP enables to strike effective
fine-grained balances between run-time performance and QoS.
Beyond this inflection point, further increases in pruning rates
cause instead very high WER degradations.

Table III illustrates the effect of applying Systolic Array
Structured Pruning and weight quantization at the 5% inflec-
tion point. In this setting, SASP improves performance and
energy consumption up to 26% and 21%, respectively. Further-
more, when combining quantization and structured pruning,
performance and energy efficiency improvements reach 44%
and 42%, while also decreasing area occupation by 36%.
These substantial gains are achieved without increasing the
systolic array size, and hence do not incur the hefty associated
area and energy costs, as also depicted in Table III. As an
example, scaling from an 8 × 8 to a 32 × 32 systolic array
does yield a 3.04× speedup for FP32_INT8 quantization,
but also requires 15.21× more area and 3.98× more energy.

F. Cross-tier Analysis

As discussed above, increasing the systolic array size in-
creases run-time performance by offering higher parallelism,
but also restricts the achievable pruning rate for a given WER.
Therefore, when using SASP, increases in the array size (hence
the tile size in GEMM computations) result in diminishing
gains for a given WER target, as the pruning rate must be
lowered to maintain QoS. This trend is illustrated in Fig. 10,
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Fig. 10: Speedup with respect to software execution of the
encoder while varying the systolic array size, for different
Word Error Rates.

which highlights a sublinear relation between systolic array
size and speedup, both in the case of FP32 and weight-
quantized scenarios. Hardware costs (area / energy), instead,
increase quadratically with size, as outlined in Section IV-B,
requiring careful co-design considerations, especially when
targeting resource-constrained edge systems.

V. CONCLUSION

Deploying transformers on edge devices requires both soft-
ware optimization and hardware acceleration to meet strict
resource constraints while maintaining performance. In this
paper, we have analyzed their interaction, focusing on struc-
tured sparsity and systolic arrays. We explored Systolic Array
Structured Pruning (SASP), where the size of pruned blocks
is matched to the dimensions of the systolic array, enabling
the skipping of entire computation tiles. To assess the benefits
and pitfalls of SASP, we presented a cross-stack framework
to co-optimize edge AI transformers, which integrates algo-
rithmic optimization, system simulation, and hardware design.
Employing it, we performed a comprehensive analysis of how
SASP, quantization, and systolic array configurations affect
area, energy, performance, and Word Error Rate (WER) in
edge transformers for speech recognition.

Our results demonstrate that SASP provides fine-grained
control over the trade-off between inference run-time and
WER up to an inflection point, after which increased pruning
drastically degrades QoS for small performance gains. Ex-
perimental evidence has shown that system-wide performance
improvements of up to 44% and accelerator energy reductions
of up to 42% can be obtained under a 1.4% WER degradation,
when employing weight quantization and a 20% pruning
rate. Additionally, we showcased that, although larger systolic
arrays do reduce run-time, they also incur substantial energy
and area costs, while yielding sublinear speedups for a target
WER. This sublinearity emerges from the reduced structured
pruning opportunities, as finding contiguous zero blocks be-
comes harder with increasing block sizes. For this reason,
SASP is particularly well-suited for edge AI accelerators,
where stringent resource constraints are present.
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